JP2004344095A - Method for counting microorganisms and member for capturing microorganisms - Google Patents

Method for counting microorganisms and member for capturing microorganisms Download PDF

Info

Publication number
JP2004344095A
JP2004344095A JP2003146224A JP2003146224A JP2004344095A JP 2004344095 A JP2004344095 A JP 2004344095A JP 2003146224 A JP2003146224 A JP 2003146224A JP 2003146224 A JP2003146224 A JP 2003146224A JP 2004344095 A JP2004344095 A JP 2004344095A
Authority
JP
Japan
Prior art keywords
microorganism
microorganisms
filtration
counting
capturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003146224A
Other languages
Japanese (ja)
Other versions
JP4426777B2 (en
Inventor
Hiroto Shimakita
寛仁 島北
Yoshikazu Tashiro
義和 田代
Hideaki Matsuoka
英明 松岡
Mikako Saito
美佳子 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Ecology Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Ecology Systems Co Ltd filed Critical Matsushita Ecology Systems Co Ltd
Priority to JP2003146224A priority Critical patent/JP4426777B2/en
Publication of JP2004344095A publication Critical patent/JP2004344095A/en
Application granted granted Critical
Publication of JP4426777B2 publication Critical patent/JP4426777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for rapidly counting microorganisms in a liquid specimen containing the microorganisms; and to provide a member for capturing the microorganisms for carrying out the method. <P>SOLUTION: The method for counting the microorganisms comprises capturing the microorganisms on the surfaces of filtering regions by filtering the liquid specimen containing the microorganisms by dropping the specimen from the upper part of the member for capturing the microorganisms, having the specified many filtering regions having a prescribed fine size by which the microorganisms can be captured by filtering, and formed on a plane at an interval, and counting the microorganisms in the specimen by optically examining each of the filtering regions one by one. The member for capturing the microorganisms has the specified filtering regions obtained by nipping a filtration film by two flat plates having many fine holes with prescribed sizes at the interval so that the liquid specimen may be filtered from the fine holes of one flat plate through the filtration film to the fine holes of the other flat plate to specify the filtering region. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、微生物(その意味するところは少なくとも細菌と真菌を含む概念である)を含む液状検体から微生物の計数を迅速に行うことができる方法と当該方法を実施するために用いる微生物捕捉部材に関するものである。
【0002】
【従来の技術】
この種の微生物計数方法に関する発明としては、例えば、下記の特許文献1に記載されている、親水性の濾過膜で検体液を濾過し、その検体液中に含まれている生菌を該濾過膜上に捕捉し、次いでその上から生菌中のアデノシン−3−燐酸を抽出するための沸点が120℃以下の揮発性抽出剤を噴霧しつつ、又はした後、室温もしくは加温して液体を揮散せしめてから、ルシフェリン−ルシフェラーゼ発光試薬液を噴霧して発光せしめ、その発光量を発光量測定装置を用いて測定することを特徴とする検体中の生菌数の測定方法などが知られている。
【0003】
【特許文献1】
特開平5−328995号公報
【0004】
【発明が解決しようとする課題】
上記の方法においては、微生物の捕捉を濾過膜の表面全体において行うので、発光量を測定するためには濾過膜の表面全体をくまなく検査する必要があり、例えば、有効面積が直径20mmの濾過膜を用いた場合、測定に数時間を費やさなければならないという問題がある。
そこで本発明は、微生物を含む液状検体から微生物の計数を迅速に行うことができる方法および当該方法を実施するために用いる微生物捕捉部材を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の点に鑑みてなされた本発明の微生物計数方法は、請求項1記載の通り、微生物を濾過して捕捉することができる所定の微細な大きさを有する濾過領域を平面上に離間させて多数設けたことによって濾過領域が特定された微生物捕捉部材の上方から、微生物を含む液状検体を滴下して濾過することで濾過領域の表面に微生物を捕捉した後、個々の濾過領域を順次光学的に検査して、検体中の微生物を計数することを特徴とする。
また、請求項2記載の微生物計数方法は、請求項1記載の微生物計数方法において、個々の濾過領域の大きさを直径1〜1000μmの円形とすることを特徴とする。
また、請求項3記載の微生物計数方法は、請求項1または2記載の微生物計数方法において、微生物を含む液状検体を滴下する微生物捕捉部材の面積に対する濾過領域全体の面積の比率が10〜75%であることを特徴とする。
また、請求項4記載の微生物計数方法は、請求項1乃至3のいずれかに記載の微生物計数方法において、濾過膜の表面に所定の大きさを有する細孔を離間させて多数設けた平板を密着させることで微生物捕捉部材とし、当該平板の上方から微生物を含む液状検体を滴下して濾過することで平板に設けた細孔部分に相当する濾過膜部分を濾過領域としてその表面に微生物を捕捉することを特徴とする。
また、請求項5記載の微生物計数方法は、請求項1乃至4のいずれかに記載の微生物計数方法において、微生物を含む液状検体および/または濾過領域の表面に捕捉された微生物に蛍光発色試薬を添加することで微生物を蛍光発色させて計数することを特徴とする。
また、請求項6記載の微生物計数方法は、請求項1乃至5のいずれかに記載の微生物計数方法において、コンピュータの移動プログラムによってステージ駆動が可能なオートステージに微生物捕捉部材を載置し、個々の濾過領域をオートスキャニングして計数することを特徴とする。
また、本発明の微生物捕捉部材は、請求項7記載の通り、所定の大きさを有する細孔を離間させて多数設けた2枚の平板で濾過膜を挟持し、一方の平板の細孔から濾過膜を介して他方の平板の細孔へ液状検体が濾過されるように構成したことで濾過領域が特定されていることを特徴とする。
【0006】
【発明の実施の形態】
本発明の微生物計数方法は、微生物を濾過して捕捉することができる所定の微細な大きさを有する濾過領域を平面上に離間させて多数設けたことによって濾過領域が特定された微生物捕捉部材の上方から、微生物を含む液状検体を滴下して濾過することで濾過領域の表面に微生物を捕捉した後、個々の濾過領域を順次光学的に検査して、検体中の微生物を計数することを特徴とするものである。
本発明の微生物計数方法によれば、微生物の捕捉は所定の微細な大きさを有する濾過領域において行われるので、微生物は言わば特定位置に集菌された状態にある。従って、微生物の計数は個々の濾過領域を順次検査して行えばよいだけであるので、測定時間の短縮を図ることができる。
【0007】
微生物捕捉部材における個々の濾過領域の大きさは、例えば、直径1〜1000μmの円形とすることが好ましい。この際、光学的検査手段における測定視野領域内に1つの濾過領域が存在するように、測定視野領域の大きさを考慮して濾過領域の大きさを選択すれば、より測定時間の短縮を図ることができる。即ち、例えば、光学的検査手段として40倍対物レンズを装着した蛍光顕微鏡を用いる場合、その測定視野領域の大きさは直径約300μmであるので、濾過領域の大きさを直径300μmとすれば、1つの濾過領域の検査を1回の測定で済ませることができる。濾過領域の大きさが測定視野領域の大きさよりも大きい場合、1つの濾過領域の測定にスキャニングを必要とする一方、測定視野領域内に複数の濾過領域が存在する場合、微生物の計数過程において、1つの濾過領域の重複測定を回避するために測定済みの濾過領域と未測定の濾過領域を峻別する必要があり、いずれにしても測定時間の短縮を阻害する要因になる恐れがある。
【0008】
微生物を含む液状検体を滴下する微生物捕捉部材の面積に対する濾過領域全体の面積の比率は、10〜75%であることが好ましい。面積比率が10%を下回ると濾過が円滑に行われなくなる恐れがある一方、面積比率が75%を上回ると微生物捕捉部材の強度に悪影響を及ぼす恐れがあるからである。なお、所定の面積比率を確保した上で、個々の濾過領域の測定を行うためのスキャニングの回数を減らすためには、微生物捕捉部材における個々の濾過領域の大きさは、直径100μm以上の円形とすることが好ましい。
【0009】
濾過領域が特定された微生物捕捉部材の具体例としては、濾過膜の表面に所定の大きさを有する細孔を離間させて多数設けた平板を密着させたものが挙げられる。このような微生物捕捉部材においては、平板に設けた細孔部分に相当する濾過膜部分が濾過領域となる。微生物を捕捉するための濾過膜(メンブレンフィルター)は、例えば、ポリカーボネート樹脂などのような濾過膜として通常用いられる材質からなるものであればよい。所定の大きさを有する細孔を離間させて多数設けた平板は、例えば、メタクリル樹脂などのような合成樹脂からなるものであればよい。濾過膜と平板は、予めまたは用時に接着剤やグリースなどで密着されたものであることが好ましい。また、濾過膜と平板の表面を黒色とすることで紫外線領域の励起光の反射を防止することができる。なお、所定の大きさを有する細孔を離間させて多数設けた平板を用いる代わりに、印刷技術により濾過膜の表面を所定のパターンに被覆することで濾過領域を設けてもよい。
【0010】
濾過膜の表面に所定の大きさを有する細孔を離間させて多数設けた平板を密着させた微生物捕捉部材は、例えば、所定の大きさを有する細孔を離間させて多数設けた2枚の平板で濾過膜を挟持し、一方の平板の細孔から濾過膜を介して他方の平板の細孔へ液状検体が濾過されるように構成することが好ましい。図1はこのような微生物捕捉部材の平面図(a)と断面図(b)である。図1において、符号1は微生物捕捉部材、符号2は濾過膜、符号3は平板、符号4は細孔である。
【0011】
微生物捕捉部材における個々の濾過領域の光学的検査による微生物の計数は、例えば、微生物を含む液状検体および/または濾過領域の表面に捕捉された微生物に蛍光発色試薬を添加することで微生物を蛍光発色させて行う。
蛍光発色試薬としては、微生物を蛍光発色させることができるものとして知られている各種の試薬を用いることができる。例えば、蛍光グルコース(2−NBDG:2−[N−(7−nitrobenz−2−oxa−1,3−diazole−4yl)amino]−2−deoxy−D−glucose)は、生体内へ取り込ませることで微生物を1細胞単位で検出することができ、かつ、生きた微生物を生きたままの状態で検出することができる。また、その反応時間は数分程度と短い。従って、2−NBDGを用いた方法は、簡便・迅速かつ高感度な方法であるといえ、生きている微生物のリアルタイム検出ができるといった利点を有する。その他、生きている微生物も死んでいる微生物もいずれも蛍光発色させることができる試薬(4’,6−ジアミジノ−2−フェニルインドール二塩酸塩など)、死んでいる微生物だけを前記発色と異なる波長で蛍光発色させることができる試薬(プロピデュームイオダイドなど)、生きている微生物だけを前記発色と異なる波長で蛍光発色させることができる試薬(6−カルボキシフルオレセインジアセテートなど)、特定微生物由来物質と反応することで前記発色と異なる波長で特定微生物だけを蛍光発色させることができる試薬(大腸菌や大腸菌群が生産する酵素タンパク質であるβ−グルクロニダーゼやβ−ガラクトシダーゼと特異的に反応することによって分解されて4−メチルウンベリフェロンを生成する4−メチルウンベリフェリル−β−D−ガラクトシドなど)などを、単独でまたは複数種類を混合して用い、生きている微生物と死んでいる微生物の計数、生きている微生物のみの計数、死んでいる微生物のみの計数、特定微生物のみの計数などを行ってもよい。
【0012】
図2は微生物捕捉部材に捕捉された微生物の計数を行うための微生物計数装置の一態様を示す概念図である。この微生物計数装置は、光源104、光源集光手段としてのレンズ110、受光部111を含む。光源104から発せられた励起光から目的の波長を取り出すために励起光分光フィルタ112で分光する。分光された励起光はダイクロイックミラー113を経て、光路を変化させられる。光路を変化させられた励起光はレンズ110を経て検査台116に載置された微生物捕捉部材1の表面に集光される。検査台116は微生物捕捉部材1を嵌合させるための陥没部分(装置溝)を有し、ここに微生物捕捉部材1をそのまま組み込むことができる形状としてある。微生物捕捉部材1の表面で励起光によって励起された蛍光は、再びダイクロイックミラー113を透過する。その際、蛍光はダイクロイックミラー113をそのまま透過し、受光部111に到達する。受光部111に到達した蛍光は、目的の蛍光のみを取り出すために蛍光分光フィルタ114を経て、受光部111に内蔵された光電変換素子115に到達し、信号化され、認識される。光電変換素子115に到達した蛍光は、微生物判断手段105において微生物由来の蛍光または異物由来の蛍光と判断され、微生物由来と判断された蛍光は積算されて、微生物が計数される。微生物捕捉部材を載置する検査台116をコンピュータの移動プログラムによってステージ駆動が可能なオートステージとし、個々の濾過領域をオートスキャニングして計数するようにすれば、測定時間のより一層の短縮を図ることができる。この際、測定視野領域内に1つの濾過領域が存在するように、測定視野領域の大きさを考慮して濾過領域の大きさを選択すれば、個々の濾過領域の測定を行う際にオートステージを移動制御する必要がなく、全濾過領域の全微生物の計数に際してのオートステージ移動は、単に個々の濾過領域の間において行えばよいだけであるから、オートステージ移動についての高い位置精度を必要としないという利点がある。
【0013】
【実施例】
以下に本発明を実施例により詳細に説明するが、本発明は以下の記載に何ら限定して解釈されるものではない。
【0014】
(濾過領域が特定された微生物捕捉部材の作製)
図3と図4にそれぞれ概略的な平面図と断面図を示したプレート本体とホルダ部を厚さ1mmのメタクリル樹脂押出板(デラグラスA:旭化成社)を用いて作製した。プレート本体とホルダ部には、濾過領域に相当する55個の直径300μmの細孔(面積約0.07mm)を切削により離間して設けた。なお、個々の濾過領域のスキャニングを容易ならしめるために細孔の位置を特定すべく、各細孔の中心を特定座標に設定してその中心から半径150μmの範囲を切削して細孔とした。
メンブレンフィルターは直径25mmでポアサイズ0.22μmの黒色のもの(ミリポア社)を直径8mmの円形に切断して用いた。
ホルダ部の上面から天然ラテックスを用いて細孔を塞いだ後、下面に高真空グリースを塗抹した。その後、硬化した天然ラテックスを除去して細孔を確保した状態でホルダ部の下面にメンブレンフィルターを圧着してホルダ部とメンブレンフィルターを密着させた。そして、このメンブレンフィルターを密着させたホルダ部をプレート本体にセットすることで微生物捕捉部材とした(図5参照:有効面積に対する濾過領域全体の面積の比率は13.8%)。
【0015】
(2−NBDGの合成)
10mLの0.3M炭酸水素ナトリウム溶液に溶解したD−グルコサミン(シグマ社)0.5gと、20mLのメタノールに溶解した7−クロロ−4−ニトロベンズ−2−オキサ−1,3−ジアゾール(NBD−Cl)0.5gを100mL三角フラスコ中で混合し、すぐに窒素ガスをフラスコ内に充填して適当に口を閉じた。このフラスコ全体をアルミホイルで覆い、暗下、37℃で18時間以上震盪反応を行った。その後、エバポレーター(37℃)を用いて反応生成物からメタノールを除去した後、蒸留水にて全量を10mLとした。この反応性生物の溶液を、予め蒸留水で一晩以上膨潤させておいたアニオン性ゲルであるDEAEセファデックスA−50{DEAE Sephadex A−50:2.0g/D.W.:300mL(アマシャムファルマシア社)}を充填した内径30mm×高さ200mmのオープンカラムにローディングし、溶離液に蒸留水を用いて溶出した。これにより溶出してくるオレンジ色の反応生成物を回収し、再びエバポレーター(37℃)を用いて濃縮した。これを予め蒸留水で膨潤させておいたセファデックスLH−20{Sephadex LH−20:20g/D.W.:200mL(アマシャムファルマシア社)}を充填した内径20mm×高さ250mmのオープンカラムにローディングした。このゲル濾過により未反応のD−グルコサミンを除去し、回収した溶出液を凍結乾燥機を用いて乾燥粉末状の2−NBDGを得た。
【0016】
(液状検体の調製)
試験菌(E.coli K−12)を血球計算盤にて100cells/100μLに調整し、更に各段階で2倍希釈を行い、100cells、50cells、25cells、12cells、6cells(各100μL中)の菌液を液状検体とした。なお、希釈液には50mMリン酸緩衝液を用いた。
【0017】
(菌体の捕捉)
100μLの液状検体に100μMの2−NBDGを11μL添加し(終濃度を約10μMとする)、水浴にて5分間37℃下におき、菌体の2−NBDG取り込み反応を行った。その後、図6のようにして、吸引ビンに接続した減圧濾過用フィルターホルダ上に微生物捕捉部材を載置し、その上方から液状検体を滴下し、アスピレーターで吸引しながら液状検体を濾過して微生物捕捉部材における55箇所の濾過領域に菌体を捕捉した。更に未反応の2−NBDGを濾過領域の表面から除去するために500μLのリン酸緩衝液を上方から滴下して洗浄処理を行った。
【0018】
(蛍光顕微鏡による菌体の計数)
55箇所の濾過領域に菌体を捕捉した微生物捕捉部材を、その下方から寒天により水分補給を行うことで保湿状態を維持することができるように設計されたプレートケースに嵌合し、コンピュータの移動プログラムによってステージ駆動が可能なオートステージに載置した。そして40倍長焦点対物レンズを装着した落射型蛍光顕微鏡(BH−2:オリンパス社)にて個々の濾過領域を順次目視で検査して菌体の計数を行った。なお、移動プラグラムにおける移動座標は、55個の細孔の中心に存在するものを(0,0)とし、Y座標上にある最上部の細孔(0,2100)と最下部の細孔(0,−2100)の合計3個の細孔(単位はμm)を基準にして決定した。蛍光顕微鏡の励起光はIB励起を用いた。以上のようにして菌体の計数を行った後(菌体の捕捉から蛍光顕微鏡による計数に費やした時間は約60分)、微生物捕捉部材からメンブレンフィルターを取り外し、これをLB培地{Trypton Pepton(和光純薬社)2gとYeastExtract(ディフコ社)1gと塩化ナトリウム1gを純水200mLに溶解してからpH7.0に調整して高圧蒸気滅菌処理したもの}に1.5%バクトアガー(ディフコ社)を添加して作製した寒天培地上で培養し、コロニーを形成させて生菌の確認を行った。寒天法と蛍光顕微鏡を用いた計数方法の相関性を調べるために、寒天培地に各希釈段階における液状検体を100μL塗抹して18時間37℃にて培養し、形成されたコロニー数と蛍光顕微鏡を用いた計数方法による結果を比較した。
各希釈段階の液状検体における寒天法と蛍光顕微鏡を用いた計数方法の相関性に関するグラフを図7に示す。両者は、y=0.950x−0.337、R=0.946という高い相関性を有していた(n=23)。
【0019】
(スパイク試験)
菌数を100cells/100μLに調整した液状検体10μLをリン酸緩衝液90μLに添加したものをサンプルとした(添加菌数10cells)。このサンプルに100μMの2−NBDGを11μL添加し(終濃度を約10μMとする)、水浴にて5分間37℃下におき、菌体の2−NBDG取り込み反応を行った。その後、上記と同様にして微生物捕捉部材における55箇所の濾過領域に菌体を捕捉し、蛍光顕微鏡を用いて菌体の計数を行った。以上のようにして菌体の計数を行った後、上記と同様にして微生物捕捉部材からメンブレンフィルターを取り外し、これを寒天培地上で培養し、コロニーを形成させて生菌の確認を行った。寒天法と蛍光顕微鏡を用いた計数方法の相関性を調べるために、寒天培地にサンプルを100μL塗抹して18時間37℃にて培養し、形成されたコロニー数と蛍光顕微鏡を用いた計数方法による結果を比較した。結果は寒天法においては10.3±3.7(n=3)であり、蛍光顕微鏡を用いた計数では10.0±3.5(n=3)であった。
【0020】
(考察)
以上の結果から、蛍光顕微鏡を用いた計数方法は、液状検体に含まれる全菌体の計数を迅速かつ高精度に行うことができるものであることがわかった。
【0021】
【発明の効果】
本発明によれば、微生物を含む液状検体から微生物の計数を迅速に行うことができる方法および当該方法を実施するために用いる微生物捕捉部材が提供される。
【図面の簡単な説明】
【図1】本発明の微生物捕捉部材の一態様の平面図(a)と断面図(b)である。
【図2】微生物捕捉部材に捕捉された微生物の計数を行うための微生物計数装置の一態様を示す概念図である。
【図3】実施例で用いた微生物捕捉部材を構成するプレート本体の概略的な平面図と断面図である。
【図4】同、ホルダ部の概略的な平面図と断面図である。
【図5】実施例で用いた微生物捕捉部材の概略的な分解図である。
【図6】実施例における菌体の捕捉方法の説明図である。
【図7】実施例における寒天法と蛍光顕微鏡を用いた計数方法の相関性を示すグラフである。
【符号の説明】
1 微生物捕捉部材
2 濾過膜
3 平板
4 細孔
104 光源
105 微生物判断手段
110 レンズ
111 受光部
112 励起光分光フィルタ
113 ダイクロイックミラー
114 蛍光分光フィルタ
115 光電変換素子
116 検査台
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for rapidly counting microorganisms from a liquid sample containing microorganisms (which means a concept including at least bacteria and fungi), and a microorganism capturing member used for carrying out the method. Things.
[0002]
[Prior art]
As an invention related to this kind of microorganism counting method, for example, a sample solution is filtered through a hydrophilic filtration membrane described in Patent Document 1 below, and the viable bacteria contained in the sample solution are filtered. While being sprayed with a volatile extractant having a boiling point of 120 ° C. or less for extracting adenosine-3-phosphate in living bacteria from the membrane, and then spraying the solution onto the membrane at room temperature or after heating, Is volatilized, and then a luciferin-luciferase luminescence reagent solution is sprayed to emit light, and the amount of luminescence is measured using a luminescence measuring device. ing.
[0003]
[Patent Document 1]
JP-A-5-328995
[Problems to be solved by the invention]
In the above method, since the capture of microorganisms is performed on the entire surface of the filtration membrane, it is necessary to inspect the entire surface of the filtration membrane in order to measure the amount of luminescence, for example, filtration with an effective area of 20 mm in diameter. When a membrane is used, there is a problem that several hours have to be spent for the measurement.
Therefore, an object of the present invention is to provide a method capable of rapidly counting microorganisms from a liquid sample containing microorganisms, and a microorganism capturing member used for performing the method.
[0005]
[Means for Solving the Problems]
The microorganism counting method of the present invention made in view of the above point, as described in claim 1, by separating a filtration region having a predetermined fine size capable of filtering and capturing microorganisms on a plane. After capturing the microorganisms on the surface of the filtration region by dropping and filtering a liquid sample containing microorganisms from above the microorganism capturing member whose filtration region has been identified by providing a large number, the individual filtration regions are sequentially optically filtered. And counting microorganisms in the sample.
A microorganism counting method according to a second aspect is characterized in that, in the microorganism counting method according to the first aspect, the size of each filtration region is a circle having a diameter of 1 to 1000 μm.
According to a third aspect of the present invention, in the microorganism counting method according to the first or second aspect, the ratio of the area of the entire filtration region to the area of the microorganism capturing member into which the liquid sample containing the microorganism is dropped is 10 to 75%. It is characterized by being.
Further, the microorganism counting method according to claim 4 is the microorganism counting method according to any one of claims 1 to 3, wherein a flat plate provided with a large number of pores having a predetermined size is provided on the surface of the filtration membrane. A microbe-capturing member is obtained by bringing it into close contact, and a liquid sample containing microbes is dropped from above the flat plate and filtered. It is characterized by doing.
A microorganism counting method according to a fifth aspect of the present invention is the microorganism counting method according to any one of the first to fourth aspects, wherein a fluorescent coloring reagent is added to the liquid specimen containing the microorganism and / or the microorganism captured on the surface of the filtration region. It is characterized in that the microorganisms are fluorescently colored and counted by the addition.
According to a sixth aspect of the present invention, there is provided the microorganism counting method according to any one of the first to fifth aspects, wherein the microorganism capturing member is placed on an automatic stage that can be driven by a moving program of a computer. Is characterized by auto-scanning and counting the filtration area.
Further, the microorganism trapping member of the present invention, as described in claim 7, sandwiches the filtration membrane between a large number of two flat plates provided with a plurality of pores having a predetermined size separated from each other, from the pores of one flat plate The configuration is such that the liquid sample is filtered through the filtration membrane into the pores of the other flat plate, whereby the filtration region is specified.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The microorganism counting method of the present invention is a microbial capturing member in which the filtration region is specified by providing a large number of filtration regions having a predetermined fine size capable of filtering and capturing microorganisms separated from each other on a plane. After capturing the microorganisms on the surface of the filtration area by dropping and filtering a liquid specimen containing microorganisms from above, the individual filtration areas are sequentially optically inspected to count the microorganisms in the specimen. It is assumed that.
According to the microorganism counting method of the present invention, the capture of microorganisms is performed in a filtration region having a predetermined fine size, so that the microorganisms are collected at a specific position. Therefore, the counting of the microorganisms may be performed only by sequentially examining the individual filtration areas, so that the measurement time can be reduced.
[0007]
The size of each filtration region in the microorganism capturing member is preferably, for example, a circle having a diameter of 1 to 1000 μm. At this time, if the size of the filtering region is selected in consideration of the size of the measuring visual region so that one filtering region exists in the measuring visual region in the optical inspection means, the measurement time is further reduced. be able to. That is, for example, when using a fluorescence microscope equipped with a 40 × objective lens as the optical inspection means, the size of the measurement field area is about 300 μm in diameter. Inspection of one filtration area can be completed by one measurement. When the size of the filtration area is larger than the size of the measurement visual field area, scanning is required for measurement of one filtration area, while when there are a plurality of filtration areas in the measurement visual field area, in the process of counting microorganisms, In order to avoid duplicate measurement of one filtration region, it is necessary to distinguish between a filtration region that has already been measured and a filtration region that has not been measured, and in any case, it may be a factor that hinders a reduction in measurement time.
[0008]
The ratio of the area of the entire filtration region to the area of the microorganism capturing member onto which the liquid specimen containing microorganisms is dropped is preferably 10 to 75%. If the area ratio is less than 10%, filtration may not be performed smoothly. On the other hand, if the area ratio exceeds 75%, the strength of the microorganism capturing member may be adversely affected. In addition, after securing a predetermined area ratio, in order to reduce the number of times of scanning for measuring each filtration region, the size of each filtration region in the microorganism capturing member is a circle having a diameter of 100 μm or more. Is preferred.
[0009]
As a specific example of the microorganism capturing member in which the filtration region is specified, a member in which a large number of flat plates are closely attached to a surface of a filtration membrane by separating pores having a predetermined size from each other is exemplified. In such a microorganism capturing member, a filtration membrane portion corresponding to a pore portion provided on a flat plate is a filtration region. The filtration membrane (membrane filter) for capturing microorganisms may be made of a material usually used as a filtration membrane such as a polycarbonate resin. The flat plate provided with a large number of fine pores having a predetermined size separated from each other may be made of a synthetic resin such as methacrylic resin. It is preferable that the filtration membrane and the flat plate are brought into close contact with an adhesive or grease in advance or at the time of use. In addition, by making the surfaces of the filtration membrane and the flat plate black, reflection of excitation light in the ultraviolet region can be prevented. In addition, instead of using a flat plate having a large number of pores having a predetermined size separated from each other, a filtration region may be provided by coating the surface of a filtration membrane in a predetermined pattern by a printing technique.
[0010]
A microorganism trapping member in which a large number of flat plates having a predetermined size are separated from each other on the surface of the filtration membrane, for example, two plates provided with a large number of separated pores having a predetermined size. It is preferable that the filtration membrane is sandwiched between flat plates, and the liquid sample is filtered from the pores of one flat plate to the pores of the other flat plate via the filtration membrane. FIG. 1 is a plan view (a) and a sectional view (b) of such a microorganism capturing member. In FIG. 1, reference numeral 1 denotes a microorganism capturing member, reference numeral 2 denotes a filtration membrane, reference numeral 3 denotes a flat plate, and reference numeral 4 denotes a pore.
[0011]
The counting of microorganisms by optical inspection of individual filtration regions in the microorganism capturing member is performed, for example, by adding microorganisms to a liquid sample containing microorganisms and / or adding microorganisms captured on the surface of the filtration region to a fluorescent coloring reagent. Let me do it.
As the fluorescent coloring reagent, various reagents known to be able to cause the microorganism to emit fluorescent light can be used. For example, fluorescent glucose (2-NBDG: 2- [N- (7-nitrobenz-2-oxa-1,3-diazole-4yl) amino] -2-deoxy-D-glucose) is taken into a living body. Thus, microorganisms can be detected on a cell-by-cell basis, and live microorganisms can be detected in a living state. The reaction time is as short as several minutes. Therefore, the method using 2-NBDG can be said to be a simple, quick and highly sensitive method, and has an advantage that real-time detection of a living microorganism can be performed. In addition, a reagent (4 ', 6-diamidino-2-phenylindole dihydrochloride, etc.) that can cause both a living microorganism and a dead microorganism to emit fluorescent light, and a wavelength that is different from the color of the dead microorganism only (Such as propidium iodide), reagents capable of causing only living microorganisms to emit fluorescence at a wavelength different from the above-mentioned color (eg, 6-carboxyfluorescein diacetate), substances derived from specific microorganisms Reagent capable of causing only specific microorganisms to emit fluorescent light at a wavelength different from the above-mentioned color by reacting with (a specific reaction with β-glucuronidase or β-galactosidase which is an enzyme protein produced by Escherichia coli or Escherichia coli group). To produce 4-methylumbelliferone -Β-D-galactoside) or the like, alone or as a mixture of two or more, counting living and dead microorganisms, counting only living microorganisms, counting only dead microorganisms, Counting of only specific microorganisms may be performed.
[0012]
FIG. 2 is a conceptual diagram showing one embodiment of a microorganism counting device for counting microorganisms captured by the microorganism capturing member. This microorganism counting apparatus includes a light source 104, a lens 110 as a light source condensing means, and a light receiving unit 111. In order to extract a target wavelength from the excitation light emitted from the light source 104, the light is split by the excitation light spectral filter 112. The split excitation light passes through the dichroic mirror 113 to change the optical path. The excitation light whose optical path has been changed is condensed on the surface of the microorganism capturing member 1 placed on the inspection table 116 via the lens 110. The inspection table 116 has a depressed portion (device groove) for fitting the microorganism capturing member 1, and has a shape in which the microorganism capturing member 1 can be directly incorporated. The fluorescence excited by the excitation light on the surface of the microorganism capturing member 1 passes through the dichroic mirror 113 again. At that time, the fluorescent light passes through the dichroic mirror 113 as it is and reaches the light receiving unit 111. The fluorescence that has reached the light receiving unit 111 passes through a fluorescence spectral filter 114 in order to extract only the target fluorescence, reaches the photoelectric conversion element 115 built in the light receiving unit 111, is converted into a signal, and is recognized. The fluorescence reaching the photoelectric conversion element 115 is determined by the microorganism determination means 105 as fluorescence derived from microorganisms or fluorescence derived from a foreign substance, and the fluorescence determined as being derived from microorganisms is added up, and the microorganisms are counted. If the inspection table 116 on which the microorganism capturing member is placed is an auto stage that can be driven by a stage by a computer moving program, and the individual filtration regions are automatically scanned and counted, the measurement time can be further reduced. be able to. At this time, if the size of the filtration area is selected in consideration of the size of the measurement visual field area so that one filtration area exists in the measurement visual field area, the auto-stage is used when measuring each filtration area. It is not necessary to control the movement of the auto stage, and the auto stage movement at the time of counting all the microorganisms in the entire filtration area only needs to be performed between the individual filtration areas. There is an advantage of not doing.
[0013]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention should not be construed as being limited to the following description.
[0014]
(Production of a microorganism capture member with a specified filtration area)
The plate body and the holder, whose schematic plan view and cross-sectional view are shown in FIGS. 3 and 4, respectively, were produced using a 1 mm-thick methacrylic resin extruded plate (Delaglass A: Asahi Kasei Corporation). In the plate body and the holder, 55 fine holes having a diameter of 300 μm (area: about 0.07 mm 2 ) corresponding to a filtration region were provided by cutting. In addition, in order to specify the position of the pores in order to facilitate the scanning of the individual filtration area, the center of each pore was set to a specific coordinate, and a range of a radius of 150 μm from the center was cut to form the pores. .
As the membrane filter, a black filter having a diameter of 25 mm and a pore size of 0.22 μm (Millipore) cut into a circular shape having a diameter of 8 mm was used.
After closing the pores from the upper surface of the holder using natural latex, high vacuum grease was smeared on the lower surface. Thereafter, a membrane filter was pressed against the lower surface of the holder portion in a state where the cured natural latex was removed and pores were secured, so that the holder portion and the membrane filter were brought into close contact with each other. The holder with the membrane filter in close contact was set on the plate body to form a microorganism capturing member (see FIG. 5: the ratio of the area of the entire filtration area to the effective area was 13.8%).
[0015]
(Synthesis of 2-NBDG)
0.5 g of D-glucosamine (Sigma) dissolved in 10 mL of 0.3 M sodium hydrogencarbonate solution and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-) dissolved in 20 mL of methanol. Cl) was mixed in a 100 mL Erlenmeyer flask, immediately filled with nitrogen gas, and the mouth was appropriately closed. The entire flask was covered with aluminum foil and subjected to a shaking reaction at 37 ° C. for 18 hours or more in the dark. Thereafter, methanol was removed from the reaction product using an evaporator (37 ° C.), and the total amount was adjusted to 10 mL with distilled water. A solution of this reactive product was anionic gel DEAE Sephadex A-50 @ DEAE Sephadex A-50: 2.0 g / D. W. : 300 mL (Amersham Pharmacia Co.) was loaded on an open column having an inner diameter of 30 mm and a height of 200 mm packed with eluted water using distilled water as an eluent. As a result, the eluted orange reaction product was recovered and concentrated again using an evaporator (37 ° C.). Sephadex LH-20 which has been swollen with distilled water in advance {Sephadex LH-20: 20 g / D. W. : 200 mL (Amersham Pharmacia Co.) was loaded into an open column having an inner diameter of 20 mm and a height of 250 mm filled with}. Unreacted D-glucosamine was removed by this gel filtration, and the recovered eluate was used to obtain 2-NBDG in a dry powder form using a freeze dryer.
[0016]
(Preparation of liquid sample)
A test bacterium (E. coli K-12) was adjusted to 100 cells / 100 μL with a hemocytometer, and further diluted 2-fold at each stage, and bacterial cells of 100 cells, 50 cells, 25 cells, 12 cells, and 6 cells (in each 100 μL) Was used as a liquid sample. The diluent used was a 50 mM phosphate buffer.
[0017]
(Capture of bacteria)
11 μL of 100 μM 2-NBDG was added to 100 μL of the liquid specimen (final concentration: about 10 μM), and the mixture was placed in a water bath at 37 ° C. for 5 minutes to perform a 2-NBDG uptake reaction of cells. Then, as shown in FIG. 6, the microorganism capturing member is placed on the filter holder for reduced pressure filtration connected to the suction bottle, the liquid sample is dropped from above, and the liquid sample is filtered while aspirating with an aspirator. Bacteria were captured in 55 filtration areas of the capture member. Further, in order to remove unreacted 2-NBDG from the surface of the filtration region, a washing treatment was performed by dropping 500 μL of a phosphate buffer solution from above.
[0018]
(Counting of bacterial cells by fluorescence microscope)
The microbe-capturing member capturing the cells in the 55 filtration areas is fitted into a plate case designed to be able to maintain a moisturized state by supplying water with agar from underneath, and moving the computer. The stage was mounted on an auto stage that can be driven by a program. The individual filtration areas were sequentially visually inspected with an epifluorescence microscope (BH-2: Olympus Corporation) equipped with a 40 × focal length objective lens, and the number of bacterial cells was counted. The moving coordinates in the moving program are defined as (0, 0) at the center of the 55 pores, and the uppermost pore (0, 2100) and the lowermost pore ( 0, -2100), which was determined based on a total of three pores (unit: μm). IB excitation was used as excitation light for the fluorescence microscope. After the cells were counted as described above (the time spent from the capture of the cells to the counting by the fluorescence microscope was about 60 minutes), the membrane filter was removed from the microorganism capturing member, and the LB medium was removed from Trypton Pepton (LB medium). 2 g of Wako Pure Chemical Industries, 1 g of Yeast Extract (Difco) and 1 g of sodium chloride dissolved in 200 mL of pure water, adjusted to pH 7.0, sterilized by high pressure steam, and 1.5% Bacto agar (Difco) Was added, and cultured on an agar medium prepared to form a colony. In order to examine the correlation between the agar method and the counting method using a fluorescence microscope, 100 μL of the liquid sample at each dilution step was smeared on an agar medium and cultured at 37 ° C. for 18 hours. The results from the counting methods used were compared.
FIG. 7 is a graph showing the correlation between the agar method and the counting method using a fluorescence microscope in the liquid sample in each dilution step. Both, y = 0.950x-0.337, had a high correlation of R 2 = 0.946 (n = 23 ).
[0019]
(Spike test)
A sample was prepared by adding 10 μL of a liquid specimen whose number of bacteria was adjusted to 100 cells / 100 μL to 90 μL of a phosphate buffer (the number of added cells was 10 cells). To this sample, 11 μL of 100 μM 2-NBDG was added (final concentration: about 10 μM), and the mixture was placed in a water bath at 37 ° C. for 5 minutes to perform a 2-NBDG uptake reaction of cells. Thereafter, the cells were captured in the 55 filtration regions of the microorganism capturing member in the same manner as described above, and the cells were counted using a fluorescence microscope. After counting the cells as described above, the membrane filter was removed from the microorganism capturing member in the same manner as described above, and this was cultured on an agar medium to form a colony and confirm viable cells. In order to examine the correlation between the agar method and the counting method using a fluorescence microscope, 100 μL of the sample was smeared on an agar medium, cultured for 18 hours at 37 ° C., and the number of colonies formed and the counting method using a fluorescence microscope were determined. The results were compared. The result was 10.3 ± 3.7 (n = 3) in the agar method and 10.0 ± 3.5 (n = 3) in the counting using a fluorescence microscope.
[0020]
(Discussion)
From the above results, it was found that the counting method using the fluorescence microscope can quickly and accurately count all the cells contained in the liquid sample.
[0021]
【The invention's effect】
According to the present invention, there is provided a method for rapidly counting microorganisms from a liquid sample containing microorganisms, and a microorganism capturing member used for performing the method.
[Brief description of the drawings]
FIG. 1 is a plan view (a) and a sectional view (b) of one embodiment of a microorganism capturing member of the present invention.
FIG. 2 is a conceptual diagram showing one embodiment of a microorganism counting device for counting microorganisms captured by a microorganism capturing member.
FIG. 3 is a schematic plan view and a cross-sectional view of a plate main body constituting the microorganism capturing member used in the example.
FIG. 4 is a schematic plan view and a cross-sectional view of the holder section.
FIG. 5 is a schematic exploded view of the microorganism capturing member used in the example.
FIG. 6 is an explanatory diagram of a method for capturing bacterial cells in an example.
FIG. 7 is a graph showing the correlation between the agar method and the counting method using a fluorescence microscope in Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Microorganism capture member 2 Filtration membrane 3 Plate 4 Pores 104 Light source 105 Microorganism judgment means 110 Lens 111 Light receiving section 112 Excitation light spectrum filter 113 Dichroic mirror 114 Fluorescence spectrum filter 115 Photoelectric conversion element 116 Inspection table

Claims (7)

微生物を濾過して捕捉することができる所定の微細な大きさを有する濾過領域を平面上に離間させて多数設けたことによって濾過領域が特定された微生物捕捉部材の上方から、微生物を含む液状検体を滴下して濾過することで濾過領域の表面に微生物を捕捉した後、個々の濾過領域を順次光学的に検査して、検体中の微生物を計数することを特徴とする微生物計数方法。A liquid sample containing microorganisms, from above the microorganism capturing member in which the filtration region is specified by providing a large number of filtration regions having a predetermined fine size capable of filtering and capturing microorganisms at a distance on a plane. A microorganism counting method comprising: capturing microorganisms on the surface of a filtration region by dropping and filtering; and sequentially optically inspecting each filtration region to count the microorganisms in the sample. 個々の濾過領域の大きさを直径1〜1000μmの円形とすることを特徴とする請求項1記載の微生物計数方法。2. The method for counting microorganisms according to claim 1, wherein the size of each filtration area is a circle having a diameter of 1 to 1000 [mu] m. 微生物を含む液状検体を滴下する微生物捕捉部材の面積に対する濾過領域全体の面積の比率が10〜75%であることを特徴とする請求項1または2記載の微生物計数方法。The microorganism counting method according to claim 1 or 2, wherein the ratio of the area of the entire filtration region to the area of the microorganism capturing member onto which the liquid specimen containing microorganisms is dropped is 10 to 75%. 濾過膜の表面に所定の大きさを有する細孔を離間させて多数設けた平板を密着させることで微生物捕捉部材とし、当該平板の上方から微生物を含む液状検体を滴下して濾過することで平板に設けた細孔部分に相当する濾過膜部分を濾過領域としてその表面に微生物を捕捉することを特徴とする請求項1乃至3のいずれかに記載の微生物計数方法。A microbial trapping member is formed by closely contacting a large number of flat plates provided with pores having a predetermined size separated from each other on the surface of the filtration membrane, and a liquid sample containing microorganisms is dropped from above the flat plate and filtered. The microorganism counting method according to any one of claims 1 to 3, wherein a microorganism is trapped on a surface of the filtration membrane portion corresponding to the pore portion provided in (1) as a filtration region. 微生物を含む液状検体および/または濾過領域の表面に捕捉された微生物に蛍光発色試薬を添加することで微生物を蛍光発色させて計数することを特徴とする請求項1乃至4のいずれかに記載の微生物計数方法。The microorganism according to any one of claims 1 to 4, wherein the microorganism is fluorescently colored by adding a fluorescent coloring reagent to the liquid sample containing the microorganism and / or the microorganism captured on the surface of the filtration region, and the microorganism is counted. Microbial counting method. コンピュータの移動プログラムによってステージ駆動が可能なオートステージに微生物捕捉部材を載置し、個々の濾過領域をオートスキャニングして計数することを特徴とする請求項1乃至5のいずれかに記載の微生物計数方法。The microorganism counting device according to any one of claims 1 to 5, wherein the microorganism capturing member is placed on an auto stage that can be driven by a stage by a moving program of a computer, and the individual filtration areas are auto-scanned and counted. Method. 所定の大きさを有する細孔を離間させて多数設けた2枚の平板で濾過膜を挟持し、一方の平板の細孔から濾過膜を介して他方の平板の細孔へ液状検体が濾過されるように構成したことで濾過領域が特定されていることを特徴とする微生物捕捉部材。A filtration membrane is sandwiched between two plates provided with a large number of pores having a predetermined size and separated from each other, and the liquid sample is filtered from the pores of one plate to the pores of the other plate through the filtration membrane. A microorganism trapping member characterized in that a filtration region is specified by having such a configuration.
JP2003146224A 2003-05-23 2003-05-23 Microorganism counting method Expired - Fee Related JP4426777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146224A JP4426777B2 (en) 2003-05-23 2003-05-23 Microorganism counting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146224A JP4426777B2 (en) 2003-05-23 2003-05-23 Microorganism counting method

Publications (2)

Publication Number Publication Date
JP2004344095A true JP2004344095A (en) 2004-12-09
JP4426777B2 JP4426777B2 (en) 2010-03-03

Family

ID=33533143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146224A Expired - Fee Related JP4426777B2 (en) 2003-05-23 2003-05-23 Microorganism counting method

Country Status (1)

Country Link
JP (1) JP4426777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630246A (en) * 2020-11-30 2021-04-09 广东省微生物研究所(广东省微生物分析检测中心) Method for capturing and imaging long and medium linear microorganisms in sediment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630246A (en) * 2020-11-30 2021-04-09 广东省微生物研究所(广东省微生物分析检测中心) Method for capturing and imaging long and medium linear microorganisms in sediment

Also Published As

Publication number Publication date
JP4426777B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
WO2003012397A1 (en) Microorganism-collecting chip, microorganism-collecting kit, method of quantifying microorganisms, specimen for confirming normal state of microorganism-quantifying apparatus and microorganism-quantifying apparatus
JP5837420B2 (en) Method for characterizing microorganisms on solid or semi-solid media
AU2007229975B2 (en) Device and method for detection of fluorescence labelled biological components
WO1992014838A1 (en) Method of determining viable count
CN102782561A (en) System and method for time-related microscopy of biological organisms
EP3290920B1 (en) Method for collecting microbial antigen
CN109266717A (en) A kind of method and apparatus by single cell analysis detection bacterium drug resistance
JP4118927B2 (en) Specimens for normality confirmation test of microorganism weighing device
JP2006238779A (en) Method for detecting microbial cell
JP2017108738A (en) Cell detection device and cell recovery device
US20060148028A1 (en) Method for detecting microbe or cell
WO2003100086A1 (en) Living cell counting method and device
JP2007060945A (en) Microorganism counter
JP4590902B2 (en) Filamentous fungus measurement method
JP3998782B2 (en) Rapid measurement method of microbial count and filtration membrane used for it
WO2021150812A1 (en) Exudate analysis using optical signatures
JP2004344095A (en) Method for counting microorganisms and member for capturing microorganisms
JP4810871B2 (en) Microorganism detection method
WO2010151131A2 (en) Apparatus for detecting viable microorganisms or spores in a sample and use thereof.
WO2018198681A1 (en) Method for determining presence or absence of phytopathogenic microbe in test sample
JP3385078B2 (en) How to detect microorganisms
JP4118930B2 (en) Microorganism weighing method
JP4840398B2 (en) Antigen separation apparatus and antigen measurement method and apparatus using the same
JP4171974B2 (en) Antigen separation apparatus and antigen measurement method and apparatus using the same
JP2010246442A (en) Method and apparatus for measuring number of lactic bacteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees