JP2004343898A - Thermoelectric generator - Google Patents

Thermoelectric generator Download PDF

Info

Publication number
JP2004343898A
JP2004343898A JP2003137880A JP2003137880A JP2004343898A JP 2004343898 A JP2004343898 A JP 2004343898A JP 2003137880 A JP2003137880 A JP 2003137880A JP 2003137880 A JP2003137880 A JP 2003137880A JP 2004343898 A JP2004343898 A JP 2004343898A
Authority
JP
Japan
Prior art keywords
thermoelectric
amount
heat transfer
thermoelectric generator
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003137880A
Other languages
Japanese (ja)
Other versions
JP4366114B2 (en
Inventor
Jinsai Cho
仁才 儲
Toshiya Shintani
俊哉 新谷
Kanichi Kadotani
▲皖▼一 門谷
Toshinobu Tanimura
利伸 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2003137880A priority Critical patent/JP4366114B2/en
Publication of JP2004343898A publication Critical patent/JP2004343898A/en
Application granted granted Critical
Publication of JP4366114B2 publication Critical patent/JP4366114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric generator which can surely improve the power generation efficiency. <P>SOLUTION: In a thermoelectric generator 1, the vaporization amount of a condensed heat medium vaporizing at a vaporization part 10 shows a distribution which is larger on the upstream side and tends to be smaller toward the downstream in the flow direction of a high-temperature medium. However, power generating plates 21 are arranged densely and sparsely from the upstream to the downstream even at a thermoelectric exchanging part 20. Accordingly, the distribution of a condensation amount on a condensation face 23B of a thermoelectric module 23 is also made to be similar to that corresponding to the distribution of the vaporization amount. Therefore, the unevenness such that the vapor is excessively supplied to the condensation face 23B on the upstream side or it is not sufficiently supplied on the downstream side can be eliminated. As a result, the power generation efficiency to the supply amount of the vapor can be surely improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱電発電装置に関する。
【0002】
【背景技術】
近年、例えばエンジンから排出される排気ガスによりフッ素系不活性液体等の凝縮熱媒体の蒸気を生成し、この蒸気によって熱電モジュールの凝縮面を加熱するとともに、冷却面を冷却水によって冷却することにより、当該熱電モジュールの凝縮面および冷却面の温度差によって発電するようにしたサーモサイフォン型の熱電発電装置の開発が行われている(例えば、特許文献1)。
【0003】
このような熱電発電装置では、排気ガスが流れるダクトを利用して凝縮熱媒体を蒸発させる蒸発部が設けられている。蒸発部の構造を具体的にいうと先ず、ダクトは排気ガスが略水平方向に流れるように設けられ、このダクトには排気ガスの水平な流れに対して直交する向き(上下方向)に伝熱管が貫通している。そして、貯留された凝縮熱媒体中にダクトが浸されていることにより、伝熱管は外周側から排気ガスで加熱されるとともに、この加熱によって伝熱管の内部に入り込む凝縮熱媒体が蒸発する。また、蒸発部においては、複数の伝熱管が排気ガスの流れ方向およびダクトの幅方向に沿って等ピッチで配置されている。
【0004】
これに対して熱電モジュールは中空板体の両面に配置され、表面の凝縮面が蒸気によって加熱される一方で、板体に密着した冷却面が板体内を通る冷却水で冷却される。この際、熱電モジュールが配置された板体は、排気ガスの流れ方向またはダクトの幅方向に沿って等ピッチで複数枚配置されている。そして、加熱に用いられた凝縮熱媒体の蒸気は、熱電モジュールの凝縮面上で凝縮し、凝縮熱媒体の貯留部に滴り落ちて戻る。
【0005】
【特許文献1】
特開2000−272152号公報(図1、図2)
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1記載の熱電発電装置では、その蒸発部において伝熱管が排気ガスの特に流れ方向において等ピッチで配置されているため、ダクトの入口側に近い伝熱管ほど排気ガスから受ける熱量が大きくて加熱されやすく、凝縮熱媒体の蒸発量も多いのであるが、下流に向かうほど排気ガスの温度が低くなるために、伝熱管が容易に加熱されずに凝縮熱媒体の蒸発量も少なくなる。
このため、排気ガスの流れ方向での凝縮熱媒体の蒸発量にムラが生じ、その略直上に並設された熱電モジュールにおいても、上流側の熱電モジュールでは最大発電能力を越えて蒸気が過剰に供給され、下流側の熱電モジュールでは蒸気の量が少なくて十分に発電されない結果となり、装置全体の発電効率を下げるという問題があった。
なお、図17には、蒸発部での排気ガスの流れ方向での位置と蒸発量との関係が示されており、下流に向かうに従って蒸発量が減少することがわかる。
【0007】
本発明の目的は、発電効率を確実に向上させることができる熱電発電装置を提供することにある。
【0008】
【課題を解決するための手段と作用効果】
本発明の請求項1に係る熱電発電装置は、所定方向に流れる高温媒体により凝縮熱媒体の蒸気を生成する蒸発部と、この蒸発部からの前記凝縮熱媒体の蒸気によって加熱される凝縮面を有した熱電モジュールとを備え、前記熱電モジュールの凝縮面での前記凝縮熱媒体の凝縮量の分布は、前記蒸発部における前記高温媒体の流れ方向での前記凝縮熱媒体の蒸発量に応じて設定されていることを特徴とする。
【0009】
このような本発明によれば、高温媒体の流れ方向に沿った熱電モジュール側の凝縮量の分布を、蒸発部側の蒸発量の分布に応じて設定するのであるが、このためには、例えば上流側での蒸発量が多く、下流側で少ない場合には、上流側に大きな凝縮面が確保されるように熱電モジュールを配置し、下流側に小さな凝縮面が確保されるように熱電モジュールを配置すればよい。こうすることにより、熱電モジュールの凝縮面に対して蒸気が過剰に供給されたり、反対に十分に供給されなかったりといったムラがなくなるので、蒸気の供給量に対する発電効率が確実に向上する。
【0010】
本発明の請求項2に係る熱電発電装置は、請求項1に記載の熱電発電装置において、前記蒸発部からの前記凝縮熱媒体の蒸発量は、前記高温媒体の流れ方向で略均一に設定されていることを特徴とする。
【0011】
熱電発電装置では、装置内部を真空にすることが凝縮面での凝縮効率を向上させるうえで優位とされているが、この場合には真空装置等が必要になって構造が複雑になり、かつ高価になる。そこで現実には、装置内部を連通孔を介して大気開放し、常時大気圧に保持することが行われる。しかし、前述のように蒸発部からの蒸発量にムラがあると、動作開始直後に装置内の空気の一部が連通孔からスムーズに抜けきれず、装置内に滞留して蒸気が凝縮しにくくなる。
これに対して本発明では、蒸発部からの蒸発量を流れ方向に沿って略均一にするので、蒸気が流れ方向で均一な量で立ちのぼるようになるとともに、装置内の空気が蒸気によって偏りなくスムーズに排気されるようになり、蒸気の凝縮が阻害される心配がなくなって発電効率が良好に維持される。
【0012】
ここで、下流に向かうに従って温度が低くなる高温媒体に対し、流れ方向の蒸発量を略均一化するためには、蒸発部での蒸発量に係る実効伝熱面積を大きくすることが有効である。すなわち、蒸発量Qは、高温媒体と伝熱管内の凝縮熱媒体との間の熱通過率をU、伝熱面積をF、高温媒体と伝熱管内の凝縮熱媒体との間の温度差を(Tf−Ts)とすれば、Q=UF(Tf−Ts)で与えられるから、温度差も小さくなる下流側では伝熱面積Fと熱通過率Uを大きくすればよい。
【0013】
【発明の実施の形態】
以下、本発明の各実施形態を図面に基づいて説明する。なお、後述する第2実施形態以降において、以下の第1実施形態で説明する構成部材と同じ部材および同じ機能部材には同一符号を付し、第2実施形態以降でのそれらの説明を省略または簡略化する。
【0014】
〔第1実施形態〕
図1は、本実施形態に係る熱電発電装置1の概略全体を示す側断面図。図2は、(A)が熱電発電装置1の熱電変換部20を示す平断面図、(B)が熱電発電装置1の蒸発部10を示す平断面図である。
【0015】
図1において、熱電発電装置1は、例えばエンジン等の内燃機関から排出される排気ガス等を高温媒体(黒矢印参照)として蒸発部10に流通させて加熱するとともに、この蒸発部10によりフッ素系不活性液体等の凝縮熱媒体の蒸気を生成して上方の熱電変換部20に供給し、この熱電変換部20にて蒸気の熱エネルギを電気エネルギに変換して発電する装置であり、概略これら蒸発部10および熱電変換部20をハウジング30で覆った構成である。
【0016】
蒸発部10は、ハウジング30内を高温媒体が通過するようにダクト11を備えている。ダクト11内には、図2(B)にも示すように、高温媒体の流れ方向に対して上下に直交する方向に複数の伝熱管12が貫通配置されている。伝熱管12の本数は特に限定されず、所望する蒸発量によって適宜設定されてよい。また、本実施形態では、高温媒体の流れ方向に沿った伝熱管12のピッチは均等であり、ダクト11の幅方向に沿ったピッチも均等とされている。
【0017】
このようなダクト11は、ハウジング30内においては、その略上面まで凝縮熱媒体中に浸されている。つまり、ダクト11が貫挿している部分は、ハウジング30内に設けられた凝縮熱媒体の貯留部31になっている。貯留部31の凝縮熱媒体は、図1中最上流の一本の伝熱管12に代表して示されているように当該伝熱管12内に入り込むのであるが、伝熱管12が高温媒体で加熱されているために、この伝熱管12内で蒸気となって上方に立ちのぼる。この際、ダクト11の入口側では高温媒体の温度が約500℃程度と高く、出口側では約250℃程度まで下がるため、蒸発部10からの蒸発量は上流側が多く、下流に向かって徐々に少なくなる。すなわち、図17で説明したような蒸発量の分布が得られる。
【0018】
一方の熱電変換部20は、高温媒体の流れ方向に沿って並設された複数の発電プレート21を備えている。発電プレート21は、中空板状の冷却板22の表裏両面に複数の熱電モジュール23を配置した構成であり、冷却水が図示しない冷却水循環手段から冷却板22内に供給されて熱電モジュール23の冷却面23Aを冷却する。これに対して、熱電モジュール23の表面は凝縮面23Bとなっており、蒸発部10からの蒸気が凝縮面23Bを加熱するとともに、この凝縮面23B上で凝縮する。そして、この時の冷却面23Aおよび凝縮面23Bの温度差に応じて熱電モジュール23で発電される。
【0019】
これらの発電プレート21は、熱電モジュール23の凝縮面23Bが高温媒体の流れ方向に対して直角となるように垂設されており、流れ方向での各発電プレート21のピッチが上流側で小さく、下流に向かうに従って大きくなっている。つまり、上流側で密に配置され、下流に向かって粗になるように配置されているのである。これにより、上流で生成される多くの蒸気に対しては、より大きな凝縮面23Bで受け、下流で生成される少ない蒸気に対して、より小さな凝縮面23Bで受けることが可能であり、上流から下流にかけての凝縮面23Bでの凝縮量も、図17に示した曲線のような分布となる。
【0020】
そして、凝縮面23B上で凝縮した凝縮熱媒体は、貯留部31に落下して戻り、再び蒸発部10で加熱されて蒸発し、この蒸発、凝縮を繰り返す。
ところで、ハウジング30の上部中央には、熱電変換部20(ハウジング30内)と外部とを連通させる連通孔32が設けられている。この連通孔32は、ハウジング30内を略大気圧に保つ役目を有しており、熱電発電装置1の動作開始時においては、ハウジング30内にある空気が蒸発部10からの蒸気で上方に追いやられ、連通孔32から外部に排気される。
【0021】
なお、図示しないが、連通孔32には、空気を通過させるが、蒸気を通過させないフィルタ等が設けられており、蒸気が排出されないようになっている。また、ハウジング30内を大気圧ではなく、予め設定された所定の圧力に維持したい場合などには、連通孔32に圧力調整弁等を設けてもよい。
【0022】
このような本実施形態によれば、以下のような効果がある。
すなわち、熱電発電装置1によれば、蒸発部10で蒸発する凝縮熱媒体の蒸発量は、高温媒体の流れ方向において、図17に示す曲線カーブにならった分布を示すのであるが、熱電変換部20にあっても、発電プレート21が上下流にかけて密、粗に配置されていることにより、熱電モジュール23の凝縮面23B上での凝縮量もやはり、蒸発量の分布に応じた同様な分布にできる。従って、上流においては、凝縮面23Bに対して蒸気が過剰に供給されたり、また、下流においては、十分に供給されないといったムラをなくすことができ、蒸気の供給量に対する発電効率を確実に向上させることができる。
【0023】
〔第2実施形態〕
図3、図4には、本発明の第2実施形態に係る熱電発電装置2が示されている。この熱電発電装置2において、蒸発部10の構造は前述した第1実施形態と同じであり、熱電変換部20の構造のみが異なる。
【0024】
熱電変換部20では、高温媒体の流れ方向での各発電プレート21のピッチが均等である。ただし、上下方向の寸法が異なる発電プレート21が複数種類用いられている。つまり、上流側の発電プレート21の上下寸法が大きく、下流に向かうに従って小さくなっている。これにより、上流側での熱電モジュール23の数を増やしてより大きな凝縮面23Bを確保し、下流側での熱電モジュール23の数を減らす等して凝縮面23Bが小さくなるようにしている。
【0025】
このような構造でも、上流で生成される多くの蒸気に対しては、より大きな凝縮面23Bで受け、下流で生成される少ない蒸気に対して、より小さい凝縮面23Bで受けることが可能であり、上流から下流にかけての凝縮面23Bでの凝縮量も、図17に示した曲線のような分布となる。従って、第1実施形態と同様に、上流においては、凝縮面23Bに対して蒸気が過剰に供給されたり、また、下流においては、十分に供給されないといったムラをなくすことができ、蒸気の供給量に対する発電効率を確実に向上させることができる。
【0026】
なお、本実施形態では、発電プレート21の上下寸法を変えることで、一枚の発電プレート21に設けられる熱電モジュール23の数を変えたり、あるいは大きさの異なる熱電モジュール23を組み合わせることにより、蒸発量の分布に応じた凝縮量の分布を実現しているのであるが、例えば発電プレート21の冷却板22の大きさを全て同じにして発電プレート21全体の上下寸法を統一した場合でも、これに設けられる熱電モジュール23の数や大きさを変えることで、本実施形態と同じ効果を得ることができる。また、このような場合では、冷却板22の種類としては一種類でよいから、その製造コストも低減できる。
【0027】
〔第3実施形態〕
図5、図6には、本発明の第3実施形態に係る熱電発電装置3が示されている。この熱電発電装置3において、蒸発部10の構造は前述した第1、第2実施形態と同じであり、熱電変換部20の構造のみが異なる。
【0028】
熱電変換部20では、高温媒体の流れ方向に沿って連続した発電プレート21を複数用い、これらを熱電変換部20の幅方向に等ピッチで配置した構造である。そして、各発電プレート21においては、上流側に設けられる熱電モジュール23の数を多くしたり、大きさの異なる熱電モジュール23を組み合わせることでより大きな凝縮面23Bを確保し、下流側での熱電モジュール23の数を減らす等して凝縮面23Bが小さくなるようにしている。このような構造でも、前述した作用により、第1、第2実施形態と同様な効果を得ることができる。
【0029】
なお、本実施形態では、発電プレート21の上下寸法が高温媒体の流れ方向で等しく、矩形状とされていたが、熱電モジュール23の配置形態に基づいて上流側を大きな上下寸法に、下流に向かうに従って小さな上下寸法になるようにし、これにより斜辺部分を有する形状にしてもよい。
【0030】
〔第4実施形態〕
図7、図8には、本発明の第4実施形態に係る熱電発電装置4が示されている。この熱電発電装置4では、従来と同様に、熱電変換部20の複数の発電プレート21が高温媒体の流れ方向に沿って等ピッチで配置されている。このため、蒸発部10での高温媒体の流れ方向での蒸発量を略均一にすることにより、等ピッチに配置された発電プレート21側の凝縮面23Bでの凝縮量も高温媒体の流れ方向で均一化となるようにしている。
【0031】
具体的には、蒸発部10で用いられている伝熱管12の径寸法を上流側では大きく、下流に向かうに従って小さくしている。ただし、本実施形態では、製造上の便宜を考慮し、径寸法の異なる三種類の伝熱管12A,12B,12Cが用いられ、三分割された区画a,b,cにそれぞれ複数配置されている。そして、各区画a,b,cでは、区画aでの伝熱管12Aの密度を粗に、区画bでの伝熱管12Bの配置を密に、区画cでの伝熱管12Cの配置をより密にしてある。これにより、各区画a,b,cでの伝熱管12の伝熱面積Fの大きさは、区画aでの伝熱面積F<区画bでの伝熱面積F<区画cでの伝熱面積Fとなり、結果として、下流に向かうに従って伝熱面積Fを大きくして高温媒体の流れ方向での蒸発量を同じにしている。
【0032】
図16には、蒸発部10における高温媒体の流れ方向での位置と蒸発量との関係が示されている。この図によれば、各区画a,b,c内において蒸発量の分布が完全に一定(フラット)ではないが、略均一化されており、流れ方向のいずれの部位でも略同じ量の蒸発量が得られるようになっている。なお、蒸発量を完全に一定にする場合には、ダクト11の幅方向に沿って配列されている伝熱管12の径寸法を各列毎に異ならせればよいのであるが、それは製造上極めて高価な構造になるため、実用的ではないから、ここでの図示等を省略する。
【0033】
以上の構造でも、蒸発量の分布が略均一であるのに対して、同じ発電プレート21が等ピッチで配置されていることで、凝縮面23Bでの凝縮量の分布も高温媒体の流れ方向で略均一になっているため、凝縮量の分布が蒸発量の分布に応じて設定されているといえる。従って、上下流にわたって蒸気をムラなく供給でき、蒸気の供給量に対する発電効率を確実に向上させることができる。
【0034】
また、蒸発部10からの蒸発量が流れ方向に沿って略均一であるから、蒸気が流れ方向で均一な量で立ちのぼるようになるとともに、熱電発電装置4内の空気を蒸気によって連通孔32から偏りなくスムーズに排気でき、空気の滞留によって蒸気の凝縮が阻害されるのを防止でき、発電効率を一層向上させることができる。
【0035】
〔第5実施形態〕
図9、図10には、本発明の第5実施形態に係る熱電発電装置5が示されている。この熱電発電装置5において、熱電変換部20の構造は前述した第4実施形態と同じであり、蒸発部10の構造のみが異なる。つまり第4実施形態とは別の構造により蒸発量の略均一化を実現している。
【0036】
本実施形態での蒸発部10ではやはり、径寸法の異なる三種類の伝熱管12A,12B,12Cが用いられているのであるが、各区画a,b,cでの粗密の違いは第4実施形態ほどではない。勿論、伝熱管12の径寸法によっては、下流に向かうに従って密であってもよい。そして、各伝熱管12は、下流に向かうに従って上下の長さ寸法が大きいものが用いられており、こうすることで下流側での伝熱管12の伝熱面積Fを大きくし、高温媒体の流れ方向での蒸発量の均一化を図っている(図16参照)。
【0037】
このような構造でも、上下流にわたって蒸気をムラなく供給でき、蒸気の供給量に対する発電効率を確実に向上させることができる。また、空気のスムーズな排気により、発電効率を一層向上させることができるという効果もある。
【0038】
〔第6実施形態〕
図11、図12には、本発明の第6実施形態に係る熱電発電装置6が示されている。この熱電発電装置6において、熱電変換部20の構造も前述した第4、第5実施形態と同じであり、蒸発部10の構造のみが異なる。
【0039】
本実施形態での蒸発部10では、各区画a,b,cでの伝熱管12A,12B,12Cの配置密度は、第5実施形態と同様に粗密の違いがさほどない。また、それらの長さ寸法は全て同じである。しかし、区画b,cに配置された伝熱管12A,12Bの外周には、伝熱面積Fを大きくする目的で円環薄板状のフィン13が設けられている。フィン13は、伝熱管12B,12Cにおいて、その上下方向に間隔をあけて複数設けられているのであるが、管一本当たりのフィン13の数は伝熱管12Bよりも伝熱管12Cの方が多く、これによって流れ方向での蒸発量の均一化が図られている。
【0040】
このような構造でも、上下流にわたって蒸気をムラなく供給できるため、第4、第5実施形態と同様な作用効果を得ることができる。
【0041】
〔第7実施形態〕
図13、図14には、本発明の第7実施形態に係る熱電発電装置7が示されている。この熱電発電装置7において、熱電変換部20の構造も前述した第4〜第6実施形態と同じであり、蒸発部10の構造のみが異なる。
【0042】
本実施形態での蒸発部10では、各伝熱管12A,12B,12Cの配置密度も、第5、第6実施形態と同様に粗密の違いがさほどない。また、それらの長さ寸法も全て同じである。しかし、区画b,cに配置された伝熱管12B,12Cの内周には、図14(C)にも伝熱管12Bを代表して示すように、伝熱面積Fを大きくする目的でヒレ状のフィン14が設けられている。フィン14は、伝熱管12B,12Cの長さ方向に沿って連続し、かつ等周間隔で複数条設けられており、例えば伝熱管12B,12Cがアルミ製の場合など、押出成型(押出形材)により管部分と一体に形成されている。また、管一本当たりのフィン14の数は伝熱管12Bよりも伝熱管12Cの方が多く、これにより流れ方向での蒸発量の均一化が図られている。
【0043】
このような構造でも、上下流にわたって蒸気をムラなく供給できるため、第4、第5実施形態と同様な作用効果を得ることができる。
【0044】
なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的を達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。
例えば、前記各実施形態の蒸発部10においては、凝縮熱媒体を蒸発させるために断面円形の伝熱管12が用いられていたが、伝熱管12の断面形状等は任意であり、断面三角形や四角形等の断面多角形の伝熱管、あるいは断面楕円形の伝熱管など、円形に限定されない。
さらに、このような伝熱管を外周側から高温媒体で加熱するタイプの他、高温媒体を伝熱管内を通して内部から加熱し、その外周面によって凝縮熱媒体を蒸発させるタイプの蒸発部を用いてもよい。
【0045】
また、本発明に係る蒸発部としては、任意断面形状の伝熱管を用いる他、図15に示すように、プレートを用いて形成してもよい。この蒸発部10は、矩形状で上下に細長い開口部15Aを有した複数のダクト部15を備えている。ダクト部15は略水平方向に連通するように上下部分が塞がれており、この中を高温媒体が流れる(黒矢印参照)。ダクト部15内には、補強を兼ねたフィン16が流れ方向に連続して設けられている。
ダクト部15間はプレート17で隔てられた蒸気発生部18となっている。蒸気発生部18の上下部分は、高温媒体の流れ方向に沿って連続した矩形状の開口部18Aとされているとともに、ダクト部15の開口部15A間に相当する部分が塞がれており、下側の開口部(不図示)から入り込む凝縮熱媒体を加熱して上側の開口部15Aから蒸気として熱電変換部20に供給する(白抜き矢印参照)。
【0046】
そして、このような蒸発部10においても、高温媒体の入口側の開口部15Aではその温度が高いのであるが、下流に向かうに従って温度が下がるために蒸発量も少なくなり、高温媒体の流れ方向での蒸発量の部分が図17に示したようになる。従って、このような蒸発部10を用いた場合には、前述の第1〜第3実施形態で説明した熱電変換部20を用いることで、本発明の目的を達成できることになる。
【0047】
その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に図示され、かつ、説明されているが、本発明の技術的思想および目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。
従って、上記に開示した形状、数量などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、数量などの限定の一部もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る熱電発電装置の概略全体を示す側断面図。
【図2】(A)が第1実施形態の熱電発電装置の熱電変換部を示す平断面図、(B)が蒸発部を示す平断面図。
【図3】本発明の第2実施形態に係る熱電発電装置の概略全体を示す側断面図。
【図4】(A)が第2実施形態の熱電発電装置の熱電変換部を示す平断面図、(B)が蒸発部を示す平断面図。
【図5】本発明の第3実施形態に係る熱電発電装置の概略全体を示す側断面図。
【図6】(A)が第3実施形態の熱電発電装置の熱電変換部を示す平断面図、(B)が蒸発部を示す平断面図。
【図7】本発明の第4実施形態に係る熱電発電装置の概略全体を示す側断面図。
【図8】(A)が第4実施形態の熱電発電装置の熱電変換部を示す平断面図、(B)が蒸発部を示す平断面図。
【図9】本発明の第5実施形態に係る熱電発電装置の概略全体を示す側断面図。
【図10】(A)が第5実施形態の熱電発電装置の熱電変換部を示す平断面図、(B)が蒸発部を示す平断面図。
【図11】本発明の第6実施形態に係る熱電発電装置の概略全体を示す側断面図。
【図12】(A)が第6実施形態の熱電発電装置の熱電変換部を示す平断面図、(B)が蒸発部を示す平断面図。
【図13】本発明の第7実施形態に係る熱電発電装置の概略全体を示す側断面図。
【図14】(A)が第7実施形態の熱電発電装置の熱電変換部を示す平断面図、(B)が蒸発部を示す平断面図、(C)が要部を拡大して示す断面図。
【図15】本発明の変形例を示す斜視図。
【図16】前記第4〜第7実施形態の蒸発部における高温媒体の流れ方向での位置と蒸発量との関係を示す図である。
【図17】従来の蒸発部における高温媒体の流れ方向での位置と蒸発量との関係を示す図である。
【符号の説明】
1〜7…熱電発電装置、10…蒸発部、11…ダクト、12…伝熱管、20…熱電変換部、22…発電プレート、23…熱電モジュール、23B…凝縮面。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric generator.
[0002]
[Background Art]
In recent years, for example, exhaust gas discharged from an engine generates vapor of a condensing heat medium such as a fluorine-based inert liquid, and this vapor heats the condensing surface of the thermoelectric module and cools the cooling surface with cooling water. In addition, a thermosiphon-type thermoelectric generator that generates power based on a temperature difference between a condensing surface and a cooling surface of the thermoelectric module has been developed (for example, Patent Document 1).
[0003]
Such a thermoelectric generator is provided with an evaporator for evaporating the condensing heat medium by using a duct through which exhaust gas flows. Specifically, first, the duct is provided so that the exhaust gas flows in a substantially horizontal direction, and the duct is provided with a heat transfer tube in a direction (vertical direction) orthogonal to the horizontal flow of the exhaust gas. Is penetrating. Since the duct is immersed in the stored condensing heat medium, the heat transfer tube is heated by the exhaust gas from the outer peripheral side, and the condensing heat medium entering the heat transfer tube evaporates by this heating. In the evaporating section, a plurality of heat transfer tubes are arranged at equal pitches along the flow direction of the exhaust gas and the width direction of the duct.
[0004]
On the other hand, the thermoelectric modules are arranged on both sides of the hollow plate, and the condensed surface of the surface is heated by the steam, while the cooling surface in close contact with the plate is cooled by cooling water passing through the plate. At this time, a plurality of plate bodies on which the thermoelectric modules are arranged are arranged at an equal pitch along the flow direction of the exhaust gas or the width direction of the duct. Then, the vapor of the condensing heat medium used for heating condenses on the condensing surface of the thermoelectric module, and returns to the storage part of the condensing heat medium by dropping.
[0005]
[Patent Document 1]
JP-A-2000-272152 (FIGS. 1 and 2)
[0006]
[Problems to be solved by the invention]
However, in the thermoelectric generator described in Patent Document 1, since the heat transfer tubes are arranged at an equal pitch in the evaporating section, particularly in the flow direction of the exhaust gas, the heat transfer tube closer to the inlet side of the duct receives less heat from the exhaust gas. It is large and easy to heat, and the amount of evaporation of the condensing heat medium is large.However, since the temperature of the exhaust gas decreases toward the downstream, the heat transfer tube is not easily heated and the amount of evaporation of the condensing heat medium also decreases. .
As a result, the amount of evaporation of the condensed heat medium in the flow direction of the exhaust gas becomes uneven, and even in the thermoelectric modules juxtaposed almost immediately above the thermoelectric modules on the upstream side, the steam exceeds the maximum power generation capacity and excessive steam is generated. In the thermoelectric module on the downstream side, the amount of steam is small and the power is not sufficiently generated due to the small amount of steam, and there is a problem that the power generation efficiency of the entire apparatus is reduced.
FIG. 17 shows the relationship between the position of the exhaust gas in the evaporator in the flow direction and the amount of evaporation, and it can be seen that the amount of evaporation decreases toward the downstream.
[0007]
An object of the present invention is to provide a thermoelectric generator capable of reliably improving power generation efficiency.
[0008]
[Means for Solving the Problems and Effects]
The thermoelectric generator according to claim 1 of the present invention includes an evaporator that generates a vapor of a condensing heat medium by a high-temperature medium flowing in a predetermined direction, and a condensing surface heated by the vapor of the condensed heat medium from the evaporator. A distribution of the amount of condensation of the condensed heat medium on the condensation surface of the thermoelectric module is set according to the amount of evaporation of the condensed heat medium in the direction of flow of the high-temperature medium in the evaporator. It is characterized by having been done.
[0009]
According to the present invention, the distribution of the amount of condensation on the thermoelectric module side along the flow direction of the high-temperature medium is set in accordance with the distribution of the amount of evaporation on the evaporation unit side. If the amount of evaporation on the upstream side is large and the amount on the downstream side is small, arrange the thermoelectric module so that a large condensation surface is secured on the upstream side, and install the thermoelectric module so that a small condensation surface is secured on the downstream side. It should just be arranged. This eliminates unevenness such as excessive supply of steam to the condensing surface of the thermoelectric module and conversely insufficient supply of steam, so that the power generation efficiency with respect to the supply amount of steam is reliably improved.
[0010]
In the thermoelectric generator according to claim 2 of the present invention, in the thermoelectric generator according to claim 1, the amount of evaporation of the condensed heat medium from the evaporator is set substantially uniformly in the flow direction of the high-temperature medium. It is characterized by having.
[0011]
In the thermoelectric generator, it is considered that vacuuming the inside of the device is superior in improving the condensation efficiency on the condensation surface, but in this case, a vacuum device or the like is required and the structure becomes complicated, and Be expensive. Therefore, in practice, the inside of the apparatus is opened to the atmosphere through a communication hole and constantly kept at atmospheric pressure. However, if the amount of evaporation from the evaporator is uneven as described above, part of the air in the device cannot be smoothly removed from the communication hole immediately after the operation starts, and the air stays in the device and vapor is hardly condensed. Become.
On the other hand, in the present invention, since the amount of evaporation from the evaporator is made substantially uniform along the flow direction, the steam rises in a uniform amount in the flow direction, and the air in the apparatus is not biased by the steam. The gas is smoothly exhausted, and there is no fear that the condensation of the vapor is hindered, so that the power generation efficiency is maintained satisfactorily.
[0012]
Here, in order to make the amount of evaporation in the flow direction substantially uniform with respect to the high-temperature medium whose temperature decreases toward the downstream, it is effective to increase the effective heat transfer area related to the amount of evaporation in the evaporator. . That is, the evaporation amount Q is U, the heat transfer rate between the high-temperature medium and the condensing heat medium in the heat transfer tube is F, the heat transfer area is F, and the temperature difference between the high-temperature medium and the condensing heat medium in the heat transfer tube is U. If (Tf−Ts), then Q = UF (Tf−Ts), so that the heat transfer area F and the heat transfer rate U may be increased on the downstream side where the temperature difference is small.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the second and subsequent embodiments described below, the same members and the same functional members as those described in the first embodiment will be given the same reference numerals, and descriptions thereof in the second and subsequent embodiments will be omitted or omitted. Simplify.
[0014]
[First Embodiment]
FIG. 1 is a side sectional view schematically showing the entire thermoelectric generator 1 according to the present embodiment. 2A is a plan sectional view showing the thermoelectric converter 20 of the thermoelectric generator 1, and FIG. 2B is a plan sectional view showing the evaporator 10 of the thermoelectric generator 1. As shown in FIG.
[0015]
In FIG. 1, for example, a thermoelectric generator 1 circulates an exhaust gas or the like discharged from an internal combustion engine such as an engine as a high-temperature medium (see a black arrow) through an evaporator 10 and heats the exhaust gas. This is a device that generates steam of a condensed heat medium such as an inert liquid and supplies it to the upper thermoelectric conversion unit 20, and converts the heat energy of the steam into electric energy in the thermoelectric conversion unit 20 to generate power. The evaporator 10 and the thermoelectric converter 20 are covered with a housing 30.
[0016]
The evaporator 10 includes a duct 11 so that a high-temperature medium passes through the housing 30. As shown in FIG. 2B, a plurality of heat transfer tubes 12 are provided in the duct 11 in a direction perpendicular to the flow direction of the high-temperature medium. The number of the heat transfer tubes 12 is not particularly limited, and may be appropriately set depending on a desired evaporation amount. Further, in the present embodiment, the pitch of the heat transfer tubes 12 along the flow direction of the high-temperature medium is equal, and the pitch along the width direction of the duct 11 is also equal.
[0017]
In the housing 30, such a duct 11 is immersed in the condensing heat medium to a substantially upper surface thereof. That is, the portion through which the duct 11 penetrates serves as the storage portion 31 of the condensed heat medium provided in the housing 30. The condensed heat medium in the storage section 31 enters the heat transfer tube 12 as shown as one of the most upstream heat transfer tubes 12 in FIG. 1, but the heat transfer tube 12 is heated by the high-temperature medium. As a result, it rises as steam in the heat transfer tube 12. At this time, since the temperature of the high-temperature medium is as high as about 500 ° C. on the inlet side of the duct 11 and drops to about 250 ° C. on the outlet side, the amount of evaporation from the evaporating section 10 is large on the upstream side and gradually decreases toward the downstream side. Less. That is, the distribution of the evaporation amount as described with reference to FIG. 17 is obtained.
[0018]
One thermoelectric conversion section 20 includes a plurality of power generation plates 21 arranged in parallel along the flow direction of the high-temperature medium. The power generation plate 21 has a configuration in which a plurality of thermoelectric modules 23 are arranged on both front and back surfaces of a hollow plate-shaped cooling plate 22. Cooling water is supplied into the cooling plate 22 from cooling water circulating means (not shown) to cool the thermoelectric module 23. The surface 23A is cooled. On the other hand, the surface of the thermoelectric module 23 is a condensing surface 23B, and the vapor from the evaporator 10 heats the condensing surface 23B and condenses on the condensing surface 23B. Then, power is generated by the thermoelectric module 23 according to the temperature difference between the cooling surface 23A and the condensing surface 23B at this time.
[0019]
These power generation plates 21 are vertically installed so that the condensation surface 23B of the thermoelectric module 23 is perpendicular to the flow direction of the high-temperature medium, and the pitch of each power generation plate 21 in the flow direction is small on the upstream side, It gets bigger toward the downstream. In other words, they are densely arranged on the upstream side and are arranged so as to be coarser toward the downstream side. Accordingly, it is possible to receive a large amount of steam generated upstream on the larger condensing surface 23B and receive a small amount of steam generated downstream on the smaller condensing surface 23B. The amount of condensation on the condensation surface 23B downstream also has a distribution like the curve shown in FIG.
[0020]
Then, the condensed heat medium condensed on the condensing surface 23B falls back into the storage unit 31, is heated again by the evaporating unit 10 and evaporates, and repeats the evaporation and condensation.
By the way, a communication hole 32 for communicating the thermoelectric converter 20 (inside the housing 30) with the outside is provided at the upper center of the housing 30. The communication hole 32 serves to maintain the inside of the housing 30 at substantially the atmospheric pressure. At the start of the operation of the thermoelectric generator 1, the air in the housing 30 is driven upward by steam from the evaporator 10. Then, the air is exhausted from the communication hole 32 to the outside.
[0021]
Although not shown, the communication hole 32 is provided with a filter or the like that allows air to pass through but does not allow steam to pass through, so that the steam is not discharged. When it is desired to maintain the interior of the housing 30 at a predetermined pressure instead of the atmospheric pressure, a pressure adjusting valve or the like may be provided in the communication hole 32.
[0022]
According to the present embodiment, the following effects can be obtained.
In other words, according to the thermoelectric generator 1, the amount of evaporation of the condensed heat medium evaporated in the evaporator 10 shows a distribution following the curve curve shown in FIG. 17 in the flow direction of the high-temperature medium. 20, since the power generation plates 21 are densely and roughly arranged upstream and downstream, the amount of condensation on the condensation surface 23B of the thermoelectric module 23 also has a similar distribution according to the distribution of the amount of evaporation. it can. Therefore, it is possible to eliminate unevenness such as excessive supply of steam to the condensing surface 23B on the upstream side and insufficient supply of steam on the downstream side, thereby reliably improving power generation efficiency with respect to the supply amount of steam. be able to.
[0023]
[Second embodiment]
FIGS. 3 and 4 show a thermoelectric generator 2 according to a second embodiment of the present invention. In the thermoelectric generator 2, the structure of the evaporator 10 is the same as that of the first embodiment described above, and only the structure of the thermoelectric converter 20 is different.
[0024]
In the thermoelectric converter 20, the pitch of each power generation plate 21 in the flow direction of the high-temperature medium is uniform. However, a plurality of types of power generation plates 21 having different vertical dimensions are used. That is, the vertical dimension of the power generation plate 21 on the upstream side is large, and becomes smaller toward the downstream side. Thereby, the number of the thermoelectric modules 23 on the upstream side is increased to secure a larger condensation surface 23B, and the number of the thermoelectric modules 23 on the downstream side is reduced to reduce the condensation surface 23B.
[0025]
Even with such a structure, it is possible to receive more steam generated upstream by the larger condensing surface 23B and receive less steam generated downstream by the smaller condensing surface 23B. Also, the amount of condensation on the condensation surface 23B from the upstream to the downstream has a distribution like the curve shown in FIG. Therefore, similarly to the first embodiment, unevenness such as excessive supply of steam to the condensation surface 23B on the upstream side and insufficient supply of steam on the downstream side can be eliminated. Power generation efficiency can be reliably improved.
[0026]
In the present embodiment, the evaporation is performed by changing the vertical size of the power generation plate 21 to change the number of thermoelectric modules 23 provided on one power generation plate 21 or by combining the thermoelectric modules 23 having different sizes. Although the distribution of the condensed amount according to the distribution of the amount is realized, for example, even when all the sizes of the cooling plates 22 of the power generation plate 21 are made the same and the vertical size of the entire power generation plate 21 is unified, By changing the number and size of the provided thermoelectric modules 23, the same effect as in the present embodiment can be obtained. In such a case, since only one type of cooling plate 22 is required, the manufacturing cost can be reduced.
[0027]
[Third embodiment]
5 and 6 show a thermoelectric generator 3 according to a third embodiment of the present invention. In this thermoelectric generator 3, the structure of the evaporator 10 is the same as in the first and second embodiments described above, and only the structure of the thermoelectric converter 20 is different.
[0028]
The thermoelectric conversion unit 20 has a structure in which a plurality of power generation plates 21 that are continuous along the flow direction of the high-temperature medium are used, and these are arranged at equal pitches in the width direction of the thermoelectric conversion unit 20. In each power generation plate 21, a larger condensing surface 23B is secured by increasing the number of thermoelectric modules 23 provided on the upstream side or by combining thermoelectric modules 23 having different sizes. The condensing surface 23B is reduced by reducing the number of the condensing surfaces 23 or the like. Even with such a structure, the same effects as those of the first and second embodiments can be obtained by the above-described operation.
[0029]
In the present embodiment, the upper and lower dimensions of the power generation plate 21 are the same in the flow direction of the high-temperature medium and are rectangular. , The vertical dimension may become smaller in accordance with the formula (1).
[0030]
[Fourth embodiment]
7 and 8 show a thermoelectric generator 4 according to a fourth embodiment of the present invention. In this thermoelectric generator 4, a plurality of power generation plates 21 of the thermoelectric converter 20 are arranged at equal pitches along the flow direction of the high-temperature medium, as in the conventional case. Therefore, by making the amount of evaporation of the high-temperature medium in the evaporating section 10 in the flow direction substantially uniform, the amount of condensation on the condensing surface 23B on the side of the power generation plate 21 arranged at an equal pitch also changes in the flow direction of the high-temperature medium. It is made uniform.
[0031]
Specifically, the diameter of the heat transfer tube 12 used in the evaporating section 10 is large on the upstream side and smaller on the downstream side. However, in this embodiment, three types of heat transfer tubes 12A, 12B, and 12C having different diameters are used in consideration of manufacturing convenience, and a plurality of the heat transfer tubes are arranged in three divided sections a, b, and c. . In each of the sections a, b, and c, the density of the heat transfer tubes 12A in the section a is coarse, the arrangement of the heat transfer tubes 12B in the section b is dense, and the arrangement of the heat transfer tubes 12C in the section c is more dense. It is. Accordingly, the size of the heat transfer area F of the heat transfer tube 12 in each of the sections a, b, and c is such that the heat transfer area F in the section a <the heat transfer area F in the section b <the heat transfer area in the section c. F, as a result, the heat transfer area F is increased toward the downstream, and the evaporation amount in the flow direction of the high-temperature medium is made the same.
[0032]
FIG. 16 shows the relationship between the position in the flow direction of the high-temperature medium in the evaporator 10 and the amount of evaporation. According to this figure, the distribution of the evaporation amount in each of the sections a, b, and c is not completely constant (flat), but is substantially uniform, and the evaporation amount is substantially the same in any part in the flow direction. Is obtained. In order to make the amount of evaporation completely constant, the diameter of the heat transfer tubes 12 arranged along the width direction of the duct 11 may be made different for each row, but this is extremely expensive in manufacturing. Since this structure is not practical, it is not shown here.
[0033]
In the above structure, the distribution of the amount of evaporation is substantially uniform, whereas the distribution of the amount of condensation on the condensing surface 23B also varies in the flow direction of the high-temperature medium because the same power generation plates 21 are arranged at the same pitch. Since it is substantially uniform, it can be said that the distribution of the amount of condensation is set according to the distribution of the amount of evaporation. Therefore, the steam can be supplied evenly over the upstream and downstream, and the power generation efficiency with respect to the supply amount of the steam can be reliably improved.
[0034]
Further, since the amount of evaporation from the evaporating section 10 is substantially uniform along the flow direction, the steam rises in a uniform amount in the flow direction, and the air in the thermoelectric generator 4 is released from the communication hole 32 by the steam. Exhaust can be performed smoothly without bias, and it is possible to prevent the condensation of steam from being hindered by stagnation of air, thereby further improving power generation efficiency.
[0035]
[Fifth Embodiment]
9 and 10 show a thermoelectric generator 5 according to a fifth embodiment of the present invention. In this thermoelectric generator 5, the structure of the thermoelectric converter 20 is the same as that of the fourth embodiment described above, and only the structure of the evaporator 10 is different. That is, the evaporation amount is made substantially uniform by a structure different from that of the fourth embodiment.
[0036]
In the evaporating section 10 in the present embodiment, three types of heat transfer tubes 12A, 12B, and 12C having different diameters are used, but the difference in density between the sections a, b, and c is the same as in the fourth embodiment. Not as good as form. Of course, depending on the diameter of the heat transfer tube 12, the heat transfer tube 12 may be denser toward the downstream. Each of the heat transfer tubes 12 has a larger vertical dimension as it goes downstream, so that the heat transfer area F of the heat transfer tube 12 on the downstream side is increased, and the flow of the high-temperature medium is increased. The evaporation amount in each direction is made uniform (see FIG. 16).
[0037]
Even with such a structure, the steam can be supplied evenly over the upstream and downstream, and the power generation efficiency with respect to the supply amount of the steam can be reliably improved. Further, there is also an effect that the power generation efficiency can be further improved by the smooth exhaust of the air.
[0038]
[Sixth embodiment]
FIGS. 11 and 12 show a thermoelectric generator 6 according to a sixth embodiment of the present invention. In the thermoelectric generator 6, the structure of the thermoelectric converter 20 is also the same as in the fourth and fifth embodiments described above, and only the structure of the evaporator 10 is different.
[0039]
In the evaporating section 10 according to the present embodiment, the arrangement density of the heat transfer tubes 12A, 12B, and 12C in each of the sections a, b, and c does not significantly differ in density as in the fifth embodiment. In addition, their length dimensions are all the same. However, annular thin plate-shaped fins 13 are provided on the outer periphery of the heat transfer tubes 12A and 12B arranged in the sections b and c for the purpose of increasing the heat transfer area F. The plurality of fins 13 are provided at intervals in the vertical direction in the heat transfer tubes 12B and 12C. The number of the fins 13 per tube is larger in the heat transfer tube 12C than in the heat transfer tube 12B. Thus, the evaporation amount is made uniform in the flow direction.
[0040]
Even with such a structure, since the steam can be supplied evenly over the upstream and downstream, the same operation and effects as those of the fourth and fifth embodiments can be obtained.
[0041]
[Seventh embodiment]
FIGS. 13 and 14 show a thermoelectric generator 7 according to a seventh embodiment of the present invention. In this thermoelectric generator 7, the structure of the thermoelectric converter 20 is also the same as that of the fourth to sixth embodiments described above, and only the structure of the evaporator 10 is different.
[0042]
In the evaporating section 10 in the present embodiment, the arrangement density of the heat transfer tubes 12A, 12B, and 12C does not differ much in density as in the fifth and sixth embodiments. In addition, their length dimensions are all the same. However, in order to increase the heat transfer area F, the inner circumference of the heat transfer tubes 12B and 12C arranged in the sections b and c is enlarged as shown in FIG. Fins 14 are provided. The fins 14 are continuous along the length direction of the heat transfer tubes 12B and 12C and are provided in plural at equal circumferential intervals. For example, when the heat transfer tubes 12B and 12C are made of aluminum, they are formed by extrusion molding (extruded material). ) Is formed integrally with the tube portion. Further, the number of the fins 14 per tube is larger in the heat transfer tube 12C than in the heat transfer tube 12B, whereby the evaporation amount in the flow direction is made uniform.
[0043]
Even with such a structure, since the steam can be supplied evenly over the upstream and downstream, the same operation and effects as those of the fourth and fifth embodiments can be obtained.
[0044]
Note that the present invention is not limited to the above-described embodiment, but includes other configurations that can achieve the object of the present invention, and also includes the following modifications and the like.
For example, in the evaporating section 10 of each of the above-described embodiments, the heat transfer tube 12 having a circular cross section is used to evaporate the condensing heat medium. However, the cross sectional shape and the like of the heat transfer tube 12 are arbitrary, and a triangular or square cross section The shape is not limited to a circle, such as a heat transfer tube having a polygonal cross section or a heat transfer tube having an elliptical cross section.
Further, in addition to the type in which such a heat transfer tube is heated from the outer peripheral side with a high-temperature medium, an evaporator of a type in which a high-temperature medium is heated from the inside through the heat transfer tube and the condensed heat medium is evaporated by the outer peripheral surface may be used. Good.
[0045]
The evaporator according to the present invention may be formed using a plate as shown in FIG. 15 in addition to using a heat transfer tube having an arbitrary cross section. The evaporating section 10 includes a plurality of duct sections 15 each having a rectangular shape and having vertically elongated openings 15A. The duct portion 15 is closed at upper and lower portions so as to communicate with each other in a substantially horizontal direction, through which a high-temperature medium flows (see black arrows). In the duct portion 15, fins 16 also serving as reinforcement are provided continuously in the flow direction.
Between the duct portions 15 is a steam generating portion 18 separated by a plate 17. The upper and lower portions of the steam generating portion 18 are rectangular openings 18A continuous along the flow direction of the high-temperature medium, and a portion corresponding to the space between the openings 15A of the duct portion 15 is closed. The condensed heat medium entering from the lower opening (not shown) is heated and supplied to the thermoelectric converter 20 as steam from the upper opening 15A (see the white arrow).
[0046]
In the evaporating section 10 as well, the temperature is high at the opening 15A on the inlet side of the high-temperature medium, but the temperature decreases as it goes downstream, so that the amount of evaporation decreases and the flow direction of the high-temperature medium decreases. The portion of the evaporation amount is as shown in FIG. Therefore, when such an evaporation unit 10 is used, the object of the present invention can be achieved by using the thermoelectric conversion unit 20 described in the first to third embodiments.
[0047]
In addition, the best configuration and method for carrying out the present invention have been disclosed in the above description, but the present invention is not limited thereto. That is, the present invention has been particularly illustrated and described primarily with respect to particular embodiments, but may be modified in form with respect to the embodiments described above without departing from the spirit and scope of the invention. A person skilled in the art can make various modifications in the structure, quantity, and other detailed configurations.
Therefore, the description with the limited shapes, quantities, and the like disclosed above is illustratively described for facilitating the understanding of the present invention, and does not limit the present invention. The description by the name of the member excluding some or all of the limitations such as is included in the present invention.
[Brief description of the drawings]
FIG. 1 is a side cross-sectional view schematically showing the entire thermoelectric generator according to a first embodiment of the present invention.
FIG. 2A is a plan sectional view showing a thermoelectric conversion unit of the thermoelectric generator of the first embodiment, and FIG. 2B is a plan sectional view showing an evaporating unit.
FIG. 3 is a side sectional view schematically showing the entire thermoelectric generator according to a second embodiment of the present invention.
FIG. 4A is a plan sectional view showing a thermoelectric converter of a thermoelectric generator according to a second embodiment, and FIG. 4B is a plan sectional view showing an evaporator.
FIG. 5 is a side sectional view schematically showing the entire thermoelectric generator according to a third embodiment of the present invention.
FIG. 6A is a plan sectional view showing a thermoelectric converter of a thermoelectric generator according to a third embodiment, and FIG. 6B is a plan sectional view showing an evaporator.
FIG. 7 is a side sectional view schematically showing the entire thermoelectric generator according to a fourth embodiment of the present invention.
8A is a plan sectional view showing a thermoelectric converter of a thermoelectric generator according to a fourth embodiment, and FIG. 8B is a plan sectional view showing an evaporator.
FIG. 9 is a side cross-sectional view schematically showing the entire thermoelectric generator according to a fifth embodiment of the present invention.
FIG. 10A is a plan sectional view showing a thermoelectric converter of a thermoelectric generator according to a fifth embodiment, and FIG. 10B is a plan sectional view showing an evaporator.
FIG. 11 is a side sectional view schematically showing the entire thermoelectric generator according to a sixth embodiment of the present invention.
FIG. 12A is a plan sectional view showing a thermoelectric converter of a thermoelectric generator according to a sixth embodiment, and FIG. 12B is a plan sectional view showing an evaporator.
FIG. 13 is a side sectional view schematically showing the entire thermoelectric generator according to a seventh embodiment of the present invention.
14A is a plan sectional view showing a thermoelectric converter of a thermoelectric generator according to a seventh embodiment, FIG. 14B is a plan sectional view showing an evaporator, and FIG. FIG.
FIG. 15 is a perspective view showing a modification of the present invention.
FIG. 16 is a diagram showing a relationship between a position in a flow direction of a high-temperature medium and an amount of evaporation in an evaporating section of the fourth to seventh embodiments.
FIG. 17 is a diagram showing a relationship between a position in a flow direction of a high-temperature medium and an amount of evaporation in a conventional evaporator.
[Explanation of symbols]
1 to 7: thermoelectric generator, 10: evaporator, 11: duct, 12: heat transfer tube, 20: thermoelectric converter, 22: power generation plate, 23: thermoelectric module, 23B: condensation surface.

Claims (2)

熱電発電装置(1〜7)において、
所定方向に流れる高温媒体により凝縮熱媒体の蒸気を生成する蒸発部(10)と、
この蒸発部(10)からの前記凝縮熱媒体の蒸気によって加熱される凝縮面(23B)を有した熱電モジュール(23)とを備え、
前記熱電モジュール(23)の凝縮面(23B)での前記凝縮熱媒体の凝縮量の分布は、前記蒸発部(10)における前記高温媒体の流れ方向での前記凝縮熱媒体の蒸発量に応じて設定されている
ことを特徴とする熱電発電装置(1〜7)。
In the thermoelectric generators (1 to 7),
An evaporating unit (10) for generating vapor of a condensing heat medium by a high-temperature medium flowing in a predetermined direction;
A thermoelectric module (23) having a condensing surface (23B) heated by the vapor of the condensing heat medium from the evaporating section (10);
The distribution of the amount of condensation of the condensing heat medium on the condensing surface (23B) of the thermoelectric module (23) depends on the amount of evaporation of the condensing heat medium in the direction of flow of the high-temperature medium in the evaporating section (10). Thermoelectric generators (1 to 7) characterized by being set.
請求項1に記載の熱電発電装置(4〜7)において、
前記蒸発部(10)からの前記凝縮熱媒体の蒸発量は、前記高温媒体の流れ方向で略均一に設定されている
ことを特徴とする熱電発電装置(4〜7)。
The thermoelectric generator (4 to 7) according to claim 1,
The thermoelectric generator (4 to 7), wherein the amount of evaporation of the condensed heat medium from the evaporator (10) is set substantially uniformly in the flow direction of the high-temperature medium.
JP2003137880A 2003-05-15 2003-05-15 Thermoelectric generator Expired - Fee Related JP4366114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003137880A JP4366114B2 (en) 2003-05-15 2003-05-15 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003137880A JP4366114B2 (en) 2003-05-15 2003-05-15 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2004343898A true JP2004343898A (en) 2004-12-02
JP4366114B2 JP4366114B2 (en) 2009-11-18

Family

ID=33527437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003137880A Expired - Fee Related JP4366114B2 (en) 2003-05-15 2003-05-15 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP4366114B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011006978A1 (en) * 2009-07-17 2011-01-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelectric device comprising tube bundles
WO2011011795A3 (en) * 2009-07-24 2012-02-16 Bsst Llc Thermoelectric-based power generation systems and methods
AT508978B1 (en) * 2009-10-23 2012-12-15 Miba Sinter Austria Gmbh THERMO GENERATOR
WO2013026702A3 (en) * 2011-08-25 2013-05-02 Siemens Aktiengesellschaft Gas turbine arrangement, power plant and method for the operation thereof
JP2013085334A (en) * 2011-10-06 2013-05-09 Jfe Steel Corp Thermoelectric generator
US8445772B2 (en) 2005-06-28 2013-05-21 Bsst, Llc Thermoelectric power generator with intermediate loop
US8495884B2 (en) 2001-02-09 2013-07-30 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
WO2013114428A1 (en) * 2012-01-31 2013-08-08 トヨタ自動車株式会社 Thermoelectric generator
JP2014094410A (en) * 2012-10-12 2014-05-22 Jfe Steel Corp Steel plate production equipment row performing casting and metal rolling and thermoelectric generation method using the same
JP2014166041A (en) * 2013-02-25 2014-09-08 Jfe Steel Corp Continuous casting facility array and thermoelectric generation method
WO2014156179A1 (en) * 2013-03-27 2014-10-02 Jfeスチール株式会社 Thermoelectric power generation device and thermoelectric power generation method
WO2014156178A1 (en) * 2013-03-27 2014-10-02 Jfeスチール株式会社 Thermoelectric power generation device and thermoelectric power generation method
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
CN104661768A (en) * 2012-09-27 2015-05-27 杰富意钢铁株式会社 Manufacturing equipment line, and thermoelectric power generation method
JP2015116005A (en) * 2013-12-10 2015-06-22 トヨタ自動車株式会社 Thermoelectric generator
JP2015165554A (en) * 2014-02-05 2015-09-17 パナソニック株式会社 Thermoelectric generator unit and thermoelectric generation system
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
JP2016144830A (en) * 2012-09-27 2016-08-12 Jfeスチール株式会社 Manufacturing equipment train and thermoelectric generation method
JP2016165217A (en) * 2016-02-29 2016-09-08 Jfeスチール株式会社 Thermoelectric generation apparatus
JP2017034132A (en) * 2015-08-03 2017-02-09 株式会社デンソー Thermoelectric generator
JP2017069248A (en) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 Power generating device
WO2017204283A1 (en) * 2016-05-25 2017-11-30 ヤンマー株式会社 Thermoelectric power generation device and thermoelectric power generation system
WO2018079171A1 (en) * 2016-10-25 2018-05-03 ヤンマー株式会社 Thermoelectric generation system
CN109154253A (en) * 2016-05-25 2019-01-04 洋马株式会社 Thermoelectric generating device
EP3534525A4 (en) * 2016-10-25 2020-04-29 Yanmar Co., Ltd. Thermoelectric generator

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8495884B2 (en) 2001-02-09 2013-07-30 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
US8445772B2 (en) 2005-06-28 2013-05-21 Bsst, Llc Thermoelectric power generator with intermediate loop
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
CN102472143A (en) * 2009-07-17 2012-05-23 排放技术有限公司 Thermoelectric device comprising tube bundles
WO2011006978A1 (en) * 2009-07-17 2011-01-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelectric device comprising tube bundles
WO2011011795A3 (en) * 2009-07-24 2012-02-16 Bsst Llc Thermoelectric-based power generation systems and methods
US9276188B2 (en) 2009-07-24 2016-03-01 Gentherm Incorporated Thermoelectric-based power generation systems and methods
US8656710B2 (en) 2009-07-24 2014-02-25 Bsst Llc Thermoelectric-based power generation systems and methods
AT508978B1 (en) * 2009-10-23 2012-12-15 Miba Sinter Austria Gmbh THERMO GENERATOR
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9806247B2 (en) 2011-08-25 2017-10-31 Siemens Aktiengesellschaft Gas turbine arrangement, power plant and method for the operation thereof
WO2013026702A3 (en) * 2011-08-25 2013-05-02 Siemens Aktiengesellschaft Gas turbine arrangement, power plant and method for the operation thereof
JP2013085334A (en) * 2011-10-06 2013-05-09 Jfe Steel Corp Thermoelectric generator
WO2013114428A1 (en) * 2012-01-31 2013-08-08 トヨタ自動車株式会社 Thermoelectric generator
EP2811142A1 (en) * 2012-01-31 2014-12-10 Toyota Jidosha Kabushiki Kaisha Thermoelectric generator
EP2811142A4 (en) * 2012-01-31 2014-12-10 Toyota Motor Co Ltd Thermoelectric generator
CN104081031A (en) * 2012-01-31 2014-10-01 丰田自动车株式会社 Thermoelectric generator
US9716216B2 (en) 2012-01-31 2017-07-25 Toyota Jidosha Kabushiki Kaisha Thermoelectric power generating device
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
JPWO2014050126A1 (en) * 2012-09-27 2016-08-22 Jfeスチール株式会社 Manufacturing equipment column and thermoelectric power generation method
CN104661768A (en) * 2012-09-27 2015-05-27 杰富意钢铁株式会社 Manufacturing equipment line, and thermoelectric power generation method
JP2016144830A (en) * 2012-09-27 2016-08-12 Jfeスチール株式会社 Manufacturing equipment train and thermoelectric generation method
JP2014094410A (en) * 2012-10-12 2014-05-22 Jfe Steel Corp Steel plate production equipment row performing casting and metal rolling and thermoelectric generation method using the same
JP2014166041A (en) * 2013-02-25 2014-09-08 Jfe Steel Corp Continuous casting facility array and thermoelectric generation method
JP5832697B2 (en) * 2013-03-27 2015-12-16 Jfeスチール株式会社 Thermoelectric power generation apparatus and thermoelectric power generation method using the same
WO2014156178A1 (en) * 2013-03-27 2014-10-02 Jfeスチール株式会社 Thermoelectric power generation device and thermoelectric power generation method
WO2014156179A1 (en) * 2013-03-27 2014-10-02 Jfeスチール株式会社 Thermoelectric power generation device and thermoelectric power generation method
JP5832698B2 (en) * 2013-03-27 2015-12-16 Jfeスチール株式会社 Thermoelectric power generation apparatus and thermoelectric power generation method
CN105103432A (en) * 2013-03-27 2015-11-25 杰富意钢铁株式会社 Thermoelectric power generation device and thermoelectric power generation method
JP2015116005A (en) * 2013-12-10 2015-06-22 トヨタ自動車株式会社 Thermoelectric generator
JP2015165554A (en) * 2014-02-05 2015-09-17 パナソニック株式会社 Thermoelectric generator unit and thermoelectric generation system
JP2017034132A (en) * 2015-08-03 2017-02-09 株式会社デンソー Thermoelectric generator
JP2017069248A (en) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 Power generating device
JP2016165217A (en) * 2016-02-29 2016-09-08 Jfeスチール株式会社 Thermoelectric generation apparatus
WO2017204283A1 (en) * 2016-05-25 2017-11-30 ヤンマー株式会社 Thermoelectric power generation device and thermoelectric power generation system
CN109155599A (en) * 2016-05-25 2019-01-04 洋马株式会社 Thermoelectric generating device and thermoelectric heat generation system
CN109154253A (en) * 2016-05-25 2019-01-04 洋马株式会社 Thermoelectric generating device
EP3467288A4 (en) * 2016-05-25 2020-02-12 Yanmar Co., Ltd. Thermoelectric power generation device
CN109154253B (en) * 2016-05-25 2021-07-16 洋马动力科技有限公司 Thermoelectric power generation device
WO2018079171A1 (en) * 2016-10-25 2018-05-03 ヤンマー株式会社 Thermoelectric generation system
EP3534525A4 (en) * 2016-10-25 2020-04-29 Yanmar Co., Ltd. Thermoelectric generator
US11031535B2 (en) 2016-10-25 2021-06-08 Yanmar Power Technology Co., Ltd. Thermoelectric power generation system

Also Published As

Publication number Publication date
JP4366114B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP2004343898A (en) Thermoelectric generator
US6601643B2 (en) Flat evaporator
JP4669208B2 (en) Fuel cell cooling device
JP2017516061A (en) Combinatorial convector
JP2013514515A (en) Heat exchanger
US8113192B2 (en) Evacuated tubular solar collector with eccentric type manifold flange
JPWO2009051001A1 (en) Unidirectional fluid transfer device
CN107680947A (en) A kind of Phase cooling system
JP6773790B2 (en) Methods for thermal control of fuel cells and cells with a temperature control system
JP2013044496A (en) Evaporative cooling device and cooling system for vehicle using the same
US20090100854A1 (en) Evaporatively cooled condenser
JP6747937B2 (en) Thermoelectric power generation system
US20070144454A1 (en) Evaporative humidifier for fuel cell system
JP2010112688A (en) Cooling device for thermoelectric conversion power generation
JP2016023925A (en) Evaporation air conditioning system
KR200371015Y1 (en) Air to Air Heat Exchanger of High Efficiency Refrigerated Air Dryer with Guide Vane
RU2717174C1 (en) Thermoelectric device for power generation
KR102055708B1 (en) Draft type condenser with improved of cooling efficiency by using heat pipe inserted in the steam turbine output steam pipe
JP2005024132A (en) Evaporator
KR100665895B1 (en) Air to Air Heat Exchanger of High Efficiency Refrigerated Air Dryer with Guide Vane
JP2002060205A (en) Fuel reformer
CN217206582U (en) Turbine blade, gas turbine and gas turbine
JPH04167A (en) Heat exchanger
JP3860055B2 (en) Thin loop channel device and temperature control device using the same
JP2007178101A (en) Condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees