JP2004342862A - Semiconductor device and its manufacturing method, false wafer and its manufacturing method, and multi-chip module - Google Patents

Semiconductor device and its manufacturing method, false wafer and its manufacturing method, and multi-chip module Download PDF

Info

Publication number
JP2004342862A
JP2004342862A JP2003138136A JP2003138136A JP2004342862A JP 2004342862 A JP2004342862 A JP 2004342862A JP 2003138136 A JP2003138136 A JP 2003138136A JP 2003138136 A JP2003138136 A JP 2003138136A JP 2004342862 A JP2004342862 A JP 2004342862A
Authority
JP
Japan
Prior art keywords
chip
semiconductor device
manufacturing
wiring
external terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003138136A
Other languages
Japanese (ja)
Inventor
Masaki Hatano
正喜 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003138136A priority Critical patent/JP2004342862A/en
Publication of JP2004342862A publication Critical patent/JP2004342862A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68377Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support with parts of the auxiliary support remaining in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2405Shape
    • H01L2224/24051Conformal with the semiconductor or solid-state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/1533Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate
    • H01L2924/15331Connection portion the connection portion being formed on the die mounting surface of the substrate the connection portion being formed both on the die mounting surface of the substrate and outside the die mounting surface of the substrate being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18162Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which has an external terminal easily connected with a plurality of chip components and an external apparatus and can be formed at a low cost and its manufacturing method, a false wafer and its manufacturing method, and a multi-chip module. <P>SOLUTION: A W-shaped recess is formed on the external side face 31 of a chip component 3. An interconnection 20 extracted from the electrode 5 of the chip component 3 is led to the rear face 36 side along the inclined surface of the W-shaped recess. Then, the rear face 36 is ground to expose the interconnection 20 at the bottom of the recess. After the interconnection 22 of the rear face 36 is formed in connection with the exposed part of the interconnection 20, an opening is formed in a protection film 21 formed on the front surface 35 to form the external terminal 16 of the front surface 35, and an opening is formed in a protection film 25 formed on the rear face 36 to form an external terminal 23 of the rear face 36. A series of these processes are conducted as one job on the false wafer 29. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置及びその製造方法、疑似ウェーハ及びその製造方法、並びにマルチチップモジュールに関するものである。
【0002】
【従来の技術】
従来、携帯用電子機器の小型・軽量化、高速化の要求に対し、一つの方法として、ICの高集積化、微細化を図って複数の機能をワンチップ(システムLSI)化しているが、歩留低下等による製造コストの増大等の問題でシステムLSIを低コストで実現することが難しくなっている。一方で、複数の半導体チップをワンパッケージ化したMCM(Multi Chip Module)が提案されている。
【0003】
MCMは多層配線基板に半導体チップを配置しているが、搭載する半導体チップの接続端子ピッチが狭くなると配線基板の製造が難しくなり、基板のコストアップとなる。また、バンプやワイヤボンディング、タブ等で接続するため、接続端子数に制限がある上、その平面視面積は搭載半導体チップの平面視面積の総和より大きくなってしまう。更に、信号伝達が遅くなり、性能低下等の問題がある。
【0004】
MCMの製造技術については、複数のベアチップをその表面が平坦になるように支持基板上に貼り付けて配線することにより、生産性よく配線することが開示されている(後述の特許文献1参照)。また、機能別に作製した複数個の半導体チップを互いに隣接して接着することにより、四辺形に形成した合成チップをウェーハ上に貼り付け、このチップのアクティブ面を平坦化して露出させたチップの外部接続端子から配線することにより、小面積化した合成チップを小さいパッケージに形成することが開示されている(後述の特許文献2参照)。更に、支持基板に良品チップを貼り付けた後に、保護物質を被着して剥離することで疑似ウェーハを作製し、その上に半導体プロセスにより配線することが開示されている(後述の特許文献3参照)。
【0005】
このうち、本出願人が提起した特許文献3(以下、先願発明と称する。)は、自社製又は他社製の区別なく、ウェーハより半導体チップを切り出した後、オープン/ショート或いはDC(直流)電圧測定により良品と確認された半導体ベアチップのみを疑似ウェーハ上に再配置し、これに所定の製造工程を施してチップ状電子部品を作製するものであるが、その製造プロセスを図25に示す。
【0006】
即ち、図25(a)は、仮の支持基板として用いた石英基板1を示す。但し、基板への加熱プロセスは400℃以下であるため、安価なガラス基板も使用でき、また、この石英基板1は繰り返し使用可能である。
【0007】
次に、図25(b)のように、石英基板1上に、紫外線を照射されると粘着力が低下する例えばアクリル系の粘着シート2を貼り付ける。
【0008】
次に、図25(c)のように、良品と確認された複数の良品ベアチップ3をチップ表面(デバイス面)28を下向きに配列して粘着シート2に貼り付ける。なお、良品ベアチップ3は、通常のウェーハ工程でダイシングして、使用したダイシングシート(図示せず)の延伸状態から取り出してもよく、チップトレイから移載してもよい。
【0009】
次に、図25(d)のように、良品ベアチップ3上から有機系絶縁性樹脂、例えばエポキシ系等の樹脂4をスピンコート法か印刷法により、均一に塗布する。
【0010】
次に、図25(e)のように、石英基板1の裏側51より紫外線を照射して、粘着シート2の粘着力を弱め、樹脂4で側面及び裏面が連続して固められた複数の良品ベアチップ(以下、半導体チップ、チップ又はチップ部品と称することがある。)3を配した疑似ウェーハ29を石英基板1から接着面52で剥離する。
【0011】
次に図25(f)のように、良品ベアチップ表面28(デバイス面)が上になるように疑似ウェーハ29をひっくり返す。下図は疑似ウェーハ29の一部を拡大図示したものであり、図示の如く、Si基板上にSiO膜7を介してA1電極パッド5及びパッシベーション膜8が形成されている。
【0012】
その後、無電解めっき法により、開口されたAl電極パッド5の上面のみに、選択的にNiめっき層を形成し、この上に配したはんだペーストを加熱溶融してはんだバンプをウェーハ一括で形成後に、再度プローブ検査により電気的特性を測定することにより、更により確実に良品チップのみを選別する。
【0013】
上記のように形成した半導体チップ3は、ワンチップに個片化後、例えば図28に示すようにはんだバンプ33を介して回路基板39の電極40にマウントしたり、例えば図29に示すようにチップ3を並列に配し、この複数のチップ3間の再配置配線12(半導体チップ内の配線をチップ上の任意の位置に引き出して行う配線)を行うことにより、回路構成をしてMCMを構成することができる。また、図示しないが半導体チップ3の電極パッド5から接続孔を介して絶縁層上に配線を導出し、更にこのような構造を積み上げて多層構造化することにより、回路基板へのマウント時に任意の位置に再配置配線を行って多ピン化に対応することもでき、これらを疑似ウェーハ29上で一括して行うことができる。
【0014】
このように、先願発明によれば、半導体チップの電極面以外(即ち、チップの側面及び裏面)が連続した保護物質によって保護されるので、チップ化後のハンドリングにおいてチップが保護され、ハンドリングが容易となる。
【0015】
また、半導体ウェーハから切出した良品のみを選択して再配置しているので、あたかも全品が良品チップからなる疑似ウェーハが得られ、配置した良品チップに対してウェーハ一括でのバンプ処理等が可能となり、低コストのバンプチップを形成できると共に、半導体チップを疑似ウェーハから切り出す際に、チップ間の保護物質の部分を切断することになるので、半導体チップ本体への悪影響(歪みやばり、亀裂等のダメージ)を抑えて容易に切断することができる。
【0016】
しかも、保護物質によってチップの側面及び裏面が覆われているため、Ni無電解めっき処理も可能である。そして、自社製ウェーハのみならず、他社から購入したベアチップでも容易にはんだバンプ処理等が可能になる。
【0017】
また、MCMに搭載される異種LSIチップを全て同一半導体メーカーから供給されるケースは少なく、SRAM、フラッシュメモリーやマイコン、更にCPU(中央演算処理ユニット)を、それぞれ得意とする半導体メーカーから別々にチップで供給してもらい、これらをMCM化することもできる等の優れた特徴を有している。
【0018】
上記した先願発明の半導体チップ3の再配置配線を疑似ウェーハ29上で行う場合、例えば図26〜図27のような方法で行うことができる。
【0019】
図26(a)は、上記した図25(f)の下図(一部の拡大図)を示す。即ち、疑似ウェーハ29を構成する保護物質としての樹脂4により、側面及び裏面を覆われて一体化された半導体チップ3上に、Alからなる電極パッド5(以下、電極と称する。)が配され、この電極5が露出するようにパッシベーション膜8が形成されている。
【0020】
この後に形成する配線はセミアディティブ法により形成されるが、簡略して図示する。まず、図26(b)に示すように、パッシベーション膜8を被覆するように層間絶縁膜9を形成後に、図26(c)に示すように、上面の全面にめっき用の電極となるシードメタルとして、Alと密着性の良いTiのスパッタ膜10を形成する。
【0021】
次に、図26(d)に示すように、スパッタ膜10上にフォトリソグラフィ技術によってフォトレジスト膜11を形成後に、図27(e)に示すように、Cuを用いて配線となる電解めっき膜12Aを形成する。これにより、Alと密着性の良いTiをシードメタルとすることにより、Tiのスパッタ膜10上にCuを容易にめっきすることができる。
【0022】
次に、図27(f)に示すように、フォトレジスト膜11を除去し、このフォトレジスト膜11下のスパッタ膜10をウェットエッチング等で除去することにより、再配置した配線12が形成される。
【0023】
次に、図27(g)に示すように、上部の全面を保護膜13で被覆後に、図27(h)に示すように、保護膜13に配線12との接続孔6を形成し、外部端子15を露出させる。
【0024】
上記の方法により、同一の疑似ウェーハ29上に複数個又は複数種のチップ部品を並列に配し、MCMの回路を形成するための再配置配線をウェーハレベルで一度に行うことができる。しかも、先願発明は、半導体ウェーハから切り出した良品チップのみを選んで再配置し、その側面及び裏面を樹脂で覆って一体化し、更に特性検査を行って、100%良品チップが配された疑似ウェーハ上で、これらのチップに対して一括してチップ間の再配置配線を行うことができ、MCMを疑似ウェーハ段階で形成することができる等の優れた特長を有している。
【0025】
【特許文献1】
特開平7−202115号(第5頁左欄、図1及び図3)
【特許文献2】
特開平11−330350号(第6頁右欄、図5及び図6)
【特許文献3】
特開2001−308116号(第5頁左欄、第7頁右欄及び図2)
【0026】
【発明が解決しようとする課題】
しかしながら、従来は先願発明においても、半導体チップ3の外部端子が疑似ウェーハ29の表面側にしか形成されていないため、裏面側で外部機器等との接続ができないという問題や、積層構造のMCMを形成できないという問題があった。
【0027】
そこで本発明の目的は、複数のチップ部品間及び外部機器との接続が容易な外部端子を有し、かつこれを低コストで形成可能な半導体装置及びその製造方法、疑似ウェーハ及びその製造方法、並びにマルチチップモジュールを提供することにある。
【0028】
【課題を解決するための手段】
即ち、本発明は、一方の面側に電極が設けられ、この電極面以外の少なくとも側面及び他方の面が保護物質で覆われているチップ部品を有する半導体装置において、前記チップ部品の前記電極の外部端子が、前記一方の面とこれとは反対側の他方の面とのうち少なくとも前記他方の面に形成されていることを特徴とする、半導体装置(以下、本発明の半導体装置と称する。)に係るものである。
【0029】
また、本発明は、一方の面側に電極が設けられ、この電極面以外の少なくとも側面及び他方の面が保護物質で覆われたチップ部品の複数個が、前記保護物質によって一体化されてなる疑似ウェーハを作製する工程と、
前記疑似ウェーハにおける前記チップ部品の前記電極の外部端子を前記一方の面とこれとは反対側の他方の面とのうち少なくとも前記他方の面に形成する工程と、
前記複数個のチップ部品間で少なくとも前記保護物質を切断する工程と
を有することを特徴とする、半導体装置の製造方法(以下、本発明の半導体装置の製造方法と称する。)に係るものである。
【0030】
本発明の半導体装置及びその製造方法によれば、一方の面側に電極を設けられたチップ部品が、電極面以外の少なくとも側面及び他方の面が保護物質で覆われているので、チップ化後のハンドリング時にチップ部品が保護され、ハンドリングが容易となると共に、保護物質の位置で切断してチップ部品に個片化することができるために、切断時にチップ部品がダメージ(亀裂や歪み等)を受けることがない。
【0031】
この構造において、チップ部品の外部端子が、一方の面とこれとは反対側の他方の面とのうち、少なくとも他方の面に形成されるので、このチップ部品の実装基板への実装時には、少なくとも他方の面の外部端子を介して接続が可能であり、また、他方の面の任意の位置に外部端子を設けることができ、設計の自由度が大きいと共に、この外部端子を介して実装可能であるために実装時の熱ストレスによるチップ部品の一方の面側(電極面側)への影響を緩和することができる。
【0032】
この場合、側面及び他方の面が保護物質で覆われているため、この保護物質によってチップ部品に対し絶縁分離を行いながら、保護物質の側面又は内部を通して一方の面の電極を他方の面側の外部端子に導びくための配線を形成することができ、かつ、保護物質によって前記配線を保護することができる。
【0033】
また、本発明は、一方の面側に電極が設けられ、この電極面以外の少なくとも側面及び他方の面が保護物質で覆われたチップ部品の複数個が、前記保護物質によって一体化されてなる疑似ウェーハであって、前記チップ部品の前記電極の外部端子が前記一方の面とこれとは反対側の他方の面とのうち少なくとも前記他方の面に形成されている、疑似ウェーハ(以下、本発明の疑似ウェーハと称する。)に係るものである。
【0034】
また、本発明は、一方の面側に電極が設けられ、この電極面以外の少なくとも側面及び他方の面が保護物質で覆われたチップ部品の複数個が、前記保護物質によって一体化されてなる疑似ウェーハの製造方法において、前記疑似ウェーハにおける前記チップ部品の前記電極の外部端子を前記一方の面とこれとは反対側の他方の面とのうち少なくとも前記他方の面に形成する工程を有することを特徴とする、疑似ウェーハの製造方法(以下、本発明の疑似ウェーハの製造方法と称する。)に係るものである。
【0035】
本発明の疑似ウェーハ及びその製造方法によれば、一方の面側に電極を設けられたチップ部品の複数個が、その電極面以外の少なくとも側面及び他方の面が保護物質で覆われ、一体化されているので、良品チップのみを選択して再配置し、あたかも全品が良品チップからなる疑似ウェーハ上で、チップ部品に対して一括での低コストなバンプ処理が可能となると共に、保護物質の位置で切断してチップ部品に個片化することができるので、チップ部品がダメージ(歪み、亀裂等)を受けることがなく、しかも、保護物質によってチップ部品の側面及び他方の面が覆われているため、Ni無電解めっき処理も可能であり、自社製、他社製の区別なくはんだバンプ処理等が可能になる。
【0036】
そして、このチップ部品の外部端子が、一方の面とこれとは反対側の他方の面とのうち少なくとも他方の面に形成されるので、この疑似ウェーハを切断して得られたチップ部品の実装基板への実装時には、少なくとも他方の面の外部端子を介して接続が可能であり、上記した本発明の半導体装置と同様の効果が奏せられる、再現性の良いチップ部品を有する疑似ウェーハを提供できる。
【0037】
また、本発明は、上記した本発明の半導体装置によって構成され、この半導体装置が有する複数の前記チップ部品間が前記外部端子を介して互いに接続されている、マルチチップモジュール(以下、本発明のマルチチップモジュールと称する。)に係るものである。
【0038】
本発明のマルチチップモジュールによれば、このマルチチップモジュールを構成するチップ部品が、上記した本発明の半導体装置によって構成されるので、複数のチップ部品の積層構造又は並列配置のマルチチップモジュールであっても、この複数のチップ部品間の接続をこれらのチップ部品の外部端子を介して行うことができる。
【0039】
【発明の実施の形態】
上記した本発明の半導体装置及びその製造方法、疑似ウェーハ及びその製造方法、並びにマルチチップモジュールにおいては、前記側面の保護物質の外側面に、前記一方の面(電極面又は表面)の外部端子と、他方の面(裏面)の外部端子とを接続するための導電体が形成され、前記導電体が、前記保護物質に傾斜外側面又は垂直貫通孔を設け、この傾斜外側面または垂直貫通孔に形成されていることが、めっき膜の如き導電体を形成し易くし、他方の面に外部端子を形成し易い点で望ましい。
【0040】
この場合、前記複数個のチップ部品間において、前記側面の保護物質に凹部(例えば傾斜面を有する溝、又はスルーホール)を形成し、この面上に前記一方の面の外部端子と他方の面の外部端子とを接続するための導電体を形成した後、前記他方の面側から少なくとも前記保護物質を部分的に研削により除去し、この除去面に前記導電体を露出させ、この露出した導電体に接続した前記他方の面の前記外部端子を形成することが望ましい。
【0041】
更に、前記凹部を前記チップ部品の厚みよりも深く形成することにより、前記保護物質の部分的除去によって、傾斜面又は垂直面を呈した前記凹部の面上に前記導電体を残し、この除去面に導電体を露出させることが望ましい。
【0042】
また、前記一方の面に前記外部端子を形成するための絶縁性保護膜下において、前記凹部においてこの絶縁性保護膜の材料が、前記側面の保護物質の材料に対し、物性が大きく異なる場合や凹部の平坦化が得られない場合には、前記凹部に対しては、前記絶縁性保護膜とは異なる絶縁物質(側面の保護物質と同じ材料)を前記傾斜外側面の前記導電体上に設け、この上に絶縁性保護膜を形成し、二重構造にしてもよい。
【0043】
また、前記一方の面に前記外部端子を形成するための絶縁性保護膜下において、導電性物質(例えばペースト)を前記外側面の前記導電体上に接して設けてもよい。これにより、前記他方の面側の保護物質の過剰な除去等による前記導電体の接続不良を補うことができる。
【0044】
そして、特性測定により良品と判定された前記チップ部品を有する前記疑似ウェーハを作製し、更に、前記疑似ウェーハの状態において再度前記チップ部品の特性測定を行い、良品のチップ部品又はチップ状電子部品を選択することが、歩留りを高める点で望ましい。
【0045】
これにより、上記した半導体装置を製造するための疑似ウェーハを得て、これを個片化した前記複数のチップ部品を接続するための前記外部端子が、一方のチップ部品の前記一方の面側(電極面側)と、他方のチップ部品の前記他方の面側(裏面側)にそれぞれ形成され、この外部端子を接続した積層構造のマルチチップモジュールを形成することもでき、また、前記複数のチップ部品を接続するための前記外部端子が、前記一方の面側(電極面側)又は前記他方の面側(裏面側)に形成され、この外部端子を接続した平置き(並列配置)構造のマルチチップモジュールを形成することもできる。
【0046】
次に、上記した本発明の好ましい実施の形態を図面参照下で具体的に説明する。
【0047】
実施形態1
図1は、本実施の形態の半導体装置50を示す。図示の如く、チップ部品3の電極5から導出された配線20が、チップ3の外側面31の樹脂4内において裏面36側へ斜めに配線され、その先端が反対方向へ対称形に屈折し、配線20の下端が裏面36に設けた配線22に接続されている。そして、引き出された配線20の一部分が、電極5近傍の表面35側で露出されて表面35側の外部端子16が形成され、裏面36側の外部端子23は、配線22の一部分を露出して形成されている。そして上下の外部端子16、23は対向配置され、この外部端子16、23は、それぞれ保護膜21、25に配線20、22との接続孔27、24の開口によって形成されている。
【0048】
図2は、上記した半導体装置50を積層した図を示す。上記したように、上下の外部端子16、23が対向配置されているため、下方の半導体装置50の表面35側の外部端子16と上方の半導体装置50の裏面36側の外部端子23とを、例えばはんだバンプ33等を介して接続できることにより、積層構造のMCM等を形成することが可能となり、MCMの小型化も可能になる。
【0049】
図3〜図5は、本実施の形態の半導体装置50を作成するために、疑似ウェーハ工程から、これを個片化して半導体装置とするまでの製造プロセスを示すものであるが、図3(a)〜(e)は先願発明における図25(b)〜(f)と同様であるので、この間のプロセスの説明は省略する。
【0050】
しかし、本実施の形態は先願発明とは異なり、チップ部品3の裏面36側にも外部端子を形成するために、チップ3の外側面31の樹脂4の部分において、裏面36側へ導びくための配線20が斜めに導出され、これに接続された配線22が設けられ、配線20の一部を露出させて表面35に外部端子16と、配線22の一部を露出させて裏面36に外部端子23とを設け、半導体装置50の両面に外部端子を形成する。
【0051】
従って、図3(e)のように、石英基板から剥離した疑似ウェーハ29に対し、図3(f)に示すように、配線を斜めに導出するために、チップ間の樹脂4に例えばW字状の溝18をダイサー等で切り出し形成する。そして、この溝18は疑似ウェーハ29に配置しているチップ3の厚みTより深く(D>T)形成し、かつ、疑似ウェーハ29の反りや強度が、その後の配線形成プロセスに耐え得る厚みが残せるように疑似ウェーハを形成することが必要である。この溝18はチップ3を配置前に樹脂4の成形時に形成してもよい。
【0052】
また、W字状の溝18の角度は鋭角であると、その後の配線形成が難しくなるので、配線形成プロセスを考慮した角度で形成するのがよい。できれば45度より鈍角で形成するのが好ましい。
【0053】
図4(g)は図3(f)におけるA部の拡大図であるが、既述した図26(a)と同様に、チップ3の側面及び裏面が樹脂4で覆われて一体化され、チップ3の電極5が露出するようにパッシベーション膜8が形成されている。
【0054】
次に、図4(h)に示すように、層間膜9をチップ3の電極5を開口するようにフォトリソグラフィ技術により所定のパターンで形成後に、層間膜9上の全面にスパッタ膜10を形成する。パッシベーション膜8の表面は荒れているので、これを平坦化するために層間膜9は不可欠であり、層間膜9の形成により平坦化され、これにより後に形成する配線を均一に形成できる。
【0055】
層間膜9の材料には感光性絶縁樹脂等を使用し、液状のものをスピンコートして塗布するか、又はドライフィルムをラミネーターで貼り付ける等にて行う。この時W字状の溝18が鋭角だと、溝部の層間膜9の厚みが厚くなり、溝18が層間膜9によって埋められて浅くなる可能性があるので、その場合は、スプレー塗布等を利用して全体を薄めに塗布し、W字状の溝部の層間膜9の厚みが厚くならないように、均一に形成することが必要である。
【0056】
次に、チップ3の電極5の外部端子を形成するための引き出し配線を形成するが、この配線は例えば次のごときプロセスで行うセミアディティブ法(スパッタ膜形成→めっきレジスト形成→めっき→めっきレジスト剥離→スパッタ膜エッチング)等で形成する。
【0057】
まず図4(i)に示すように、層間膜9上にめっきの電極となるシードメタルとして、Al電極5との密着性の良いTi等により形成したスパッタ膜10上の全面に、例えばポジ型のフォトレジスト膜11Aを形成する。
【0058】
次に、図4(j)に示すように、フォトレジスト膜11A上にパターン開口部43aを有する露光マスク42を配置し、フォトレジスト膜11Aを露光する。この露光光45によってマスク42のパターン開口部43a下のレジスト膜11Aが硬化され、レジストマスク11の一部が形成される。
【0059】
次に、図5(k)に示すように、露光マスク42の別のパターン開口部43bを所定位置に配し、フォトレジスト膜11Aを露光する。この露光によって、後に個片化時の切断位置となるW字状の溝18の中央部領域が硬化され、レジストマスク11の他の部分が形成される。この露光マスク42はこのように同一のマスクを使い分けてもよく、別々のマスクを用いてもよい。
【0060】
上記したフォトレジスト膜11Aの露光に際しては、パターン開口部43aと43bとを同時に露光できるマスク42を使用し、同時に露光してもよいが、溝18の部分とチップ3の上部とではレジスト膜41Aの厚さに大きな差があり、焦点深度が大きく違ってしまうため、溝18の部分とチップ3上のフォトレジスト膜とを同時には解像できない可能性がある。従って、この場合は、上記したように溝18の部分とチップ3上とを別々に露光するのがよい。
【0061】
次に、図5(l)に示すように、露光後のフォトレジスト膜11Aを現像することにより、硬化部にレジストマスク11が形成され、これをマスクとしてCuの電解めっきを行うことにより、裏面36側へ配線を導びく経路が傾斜面であるためめっきが付き易く、図5(m)に示すように、配線を形成するためのめっき膜12Aが段切れすることもなく、良好に形成される。
【0062】
次に、図6(n)に示すように、レジストマスク11を剥離除去後に、レジストマスク11下のスパッタ膜10をウェットエッチング等で除去することにより、再配置した配線20が形成される。ここでスパッタ膜は配線20の一部とみなし、これ以降の図においては図示省略する。
【0063】
次に、図6(o)に示すように、配線20を含む上部の全面に保護膜21を形成する。
【0064】
ここで、保護膜21として使用する材料が、樹脂4の材料に対して物性的(線膨張係数、ヤング率、硬化収縮等)に大きく違う場合や、溝18部分の平坦化が十分に得られない場合は、図12に示すように、保護膜21の形成前に、溝18部分のみに保護膜21aを形成し、その後に形成する保護膜21との2層構造としてもよい。保護膜21aとしては、樹脂4と同じ材料や感光性絶縁樹脂等を使用し、ディスペンス法又は印刷法等により溝18部分のみに形成する。
【0065】
次に、図6(p)に示すように、樹脂4を裏面36から研削し、溝18の底に形成されている配線20を露出させる。研削はSiウェーハの裏面研削用のグラインダー等で行う。
【0066】
本実施の形態は、配線20が溝18の底部分で露出されるように研削するのが特徴であり、露出した配線20の露出部20aが、その後の裏面36側の配線22に接続される。
【0067】
この場合、露出部20aの面積はできるだけ広い方がよい。従って、露出部20aを広くとるために、チップ3の裏面が少し削られる程度に研削してもよい。しかし、削り過ぎると溝底部の配線20が断線するので、D>T(即ち、チップ厚よりも溝が深い)が保たれる限り、予め溝18を浅く形成しておいてもよい。
【0068】
次に、図6(q)に示すように、裏面36側の外部端子となる配線22を形成する。この配線形成は、例えば前記配線20と同様にセミアディティブ法(ここでは図示省略する。)で形成する。
【0069】
次に、図6(r)に示すように、裏面36側の配線22に、外部端子23となる部分を開口するように、表面35の層間膜9と同様に所定のパターンで保護膜25を形成する。この保護膜25の材料としては、既述した感光性絶縁樹脂等を使用し、層間膜9と同様に行うことで形成できる。符号37は個片化する際の切断線を示し、この位置で切断して個片化することにより、図1に示したように、両面に外部端子16、23を有する半導体装置50が得られる。そして、チップ3の電極面以外が連続した樹脂4によって保護されるので、チップ化後のハンドリングにおいてチップが保護され、ハンドリングが容易であると共に、導出した配線20が樹脂4によりチップ3に対して絶縁されながら保護される。
【0070】
また、良品チップ3のみを選択して再配置しているので、あたかも全品が良品チップからなる疑似ウェーハ29が得られ、自社製、他社製の区別なく配置し、ウェーハレベルで一括処理が可能であり、低コストで外部端子を形成できると共に、チップ3を疑似ウェーハ29から切り出す際に、側面31の樹脂4の部分を切断するので、チップ3本体へのダメージ(歪みやばり、亀裂等)を抑えて容易に切断することができる。
【0071】
しかも、樹脂4によってチップ3の側面31及び裏面36が覆われているため、Ni無電解めっき処理も可能である。
【0072】
上記した如く、疑似ウェーハ29上における各チップ3毎の外部端子の形成プロセスを断面図にて説明したが、図7(a)はこれを部分的に平面図として示し、図7(b)は同じくその底面図として示した概略図であり、隣接するチップ3との間に導出した配線20及び裏面36の配線22を示したものであって、いずれも配線の形状を明示するために、表面35側の配線20及び裏面36の配線22を実線で示した。
【0073】
即ち、外部端子を形成するために、チップ3の電極5から導出した配線20は、チップ3の各辺(図7では一辺のみに簡略図示している。)に配置されている電極5から図7のように導出され、チップ間の樹脂4に設けられたW字状の溝18の形状に沿って裏面36側へ引き出された状態を示している。
【0074】
上記したように、疑似ウェーハ29の表面35にW字状の溝18を形成し、チップ3の電極5から導出してW字状の溝18に形成した配線20を、疑似ウェーハ29の裏面36を研削して露出させ、その露出部20aに接続した配線22の一部を露出させて裏面36側の外部端子23を形成し、これを疑似ウェーハ29上で一括して形成することにより、低コストで裏面への外部端子を形成できると共に、両面に外部端子が形成されていることにより、積層構造(スタック構造)のMCMが可能となる。しかも、外部端子16、23がチップ3の側面寄りに位置するため、実装時の熱ストレスによりチップ3が歪む又は反る等の影響を受けることが少ない利点がある。
【0075】
図8〜10は、上記のように形成した半導体装置50の代表的な実装例を示す図であり、上記のようにして疑似ウェーハ段階で外部端子を形成した後に、これを個片化した半導体装置50をプリント基板39に搭載した実装例である。
【0076】
図8はその一例を示す。本実施の形態による半導体装置50は、表面35側に外部端子16を有し、裏面36側にも外部端子23を有するので、プリント基板39の電極端子40に対して、ワイヤボンディングの如き配線を要せず、はんだバンプ33等を介してフェイスアップにて接続することができる。この場合、半導体装置50の外部端子16と23は対向配置しているが、裏面側の外部端子23はプリント基板39の電極端子40の位置に合せて配置してもよい。即ち、裏面側は電極面側のように、チップ3のアクティブ領域を避ける等の位置的制約がないため、設計上の自由度が大きく、任意の位置に外部端子を形成できる。
【0077】
図9は他の実装例を示すものであり、記述した図2と同様に積層構造とし、複数(図9では2層構造であるが2層以上でもよい。)の半導体装置50をプリント基板39に実装した状態である。このように積層構造においては、表面35の外部端子16と裏面36の外部端子23が対向配置されていることにより、はんだバンプ33等を介して簡単に接続することができる。そして、この場合もプリント基板39に接する半導体装置50の裏面36側の外部端子23は、プリント基板39の電極40の位置に合せて配置することもできる。
【0078】
図10は、更に他の実装例を示すものであり、図示の如く、半導体装置50を並列に配し、隣接する半導体装置50との間の配線は、裏面36側へ導出した配線20に接続した配線22を連結してもよい。この場合もプリント基板39に接続する裏面36の外部端子は、プリント基板39の電極40の位置に合せて設けることもでき、また、並列に配置する半導体装置の数はこれに限らず、2個以上を配置することができる。
【0079】
本実施の形態によれば、チップ3の表面35以外の少なくとも側面31及び裏面36が樹脂4で覆われているので、チップ化後のハンドリング時にチップ3が保護され、ハンドリングが容易となると共に、樹脂4の位置で切断してチップ3に個片化することができるために、切断時にチップ3がダメージ(亀裂や歪み等)を受けることがない。
【0080】
この構造において、チップ3の外部端子が、表面35と裏面36とのうち少なくとも裏面36に形成されるので、このチップ3の実装基板39への実装時には、少なくとも裏面36の外部端子23を介して接続が可能であり、また、裏面36の任意の位置に外部端子23を設けることができ、設計の自由度が大きいと共に、この外部端子23を介して実装可能であるために実装時の熱ストレスによるチップ3の電極面側への影響を緩和することができる。
【0081】
この場合、側面31及び裏面36が樹脂4で覆われているため、この樹脂4によってチップ3に対し絶縁分離を行いながら、樹脂4の側面又は内部を通して表面35の電極5を裏面36側の外部端子23に導びくための配線20を形成することができ、かつ、樹脂4によって前記配線20を保護することができる。
【0082】
更に、表面35と裏面36との両面に外部端子16、23を設けることにより、複数のチップ3を積層して外部端子16、23を接続することも可能であると共に、疑似ウェーハ段階で隣接チップ間の接続も可能であるため、積層構造のみならず、平置き構造のMCMの作製も容易である。このように表裏両面に外部端子16、23を有するチップ3を疑似ウェーハ製造時に一括して作製するので、先願発明の優れた特長を保持しながら、更に接続性に優れた半導体装置50を低コストで作製することができる。また、外部端子を裏面にも設ける構造は、既述した特許文献3のみならず、特許文献1及び2にも適用可能である。
【0083】
実施形態2
図11は、本実施の形態による半導体装置作製のプロセスを示すものであり、W字状の溝18の形成方法が、実施形態1のダイサーによる形成とは異なり、入れ子により形成する方法である。
【0084】
図11(a)は、既述した図25による先願発明と同様のプロセスにより、石英基板1上に、紫外線照射によって粘着力が低下する粘着シート2が貼り付けられた状態、そして図11(b)は、複数の良品ベアチップ3の表面(電極面)を下向きにして粘着シート2に貼り付け状態を示す。
【0085】
次に、図11(c)に示すように、各チップ間に断面がW字を伏せた形状の入れ子30を配し、粘着シート2に貼り付ける。この場合、入れ子30の高さDとチップ3の厚さTとの関係は、D>Tであることが重要であると共に、入れ子30の突状部は45度より鈍角であることが望ましい。
【0086】
次に、図11(d)に示すように、チップ3上から有機系絶縁性樹脂、例えばエポキシ系等の樹脂4をスピンコート法または印刷法により、均一に塗布する。
【0087】
次に、図11(e)に示すように、石英基板1の裏側から紫外線Lを照射して、粘着シート2の粘着力を弱め、側面及び裏面が樹脂4で固められた複数のチップ3を配した疑似ウェーハ29を石英基板1から剥離する。
【0088】
上記のプロセスを経ることにより、図11(f)に示すような疑似ウェーハ29(図11(e)における疑似ウェーハをひっくり返したもの。)を得ることができ、前記した実施形態1(図3(f)参照)と同様な形状の疑似ウェーハ29を形成することができる。
【0089】
従って、これ以降は実施形態1と同様のプロセスを経ることにより、実施形態1と同様な形状と機能を有する半導体装置を得ることができる。
【0090】
本実施の形態によれば、実施形態1と同様なW字状の溝を形成するものの、その形成方法のみが異なり、その他の製造プロセスは同様に行われ、全く同様の半導体装置が形成されるので、実施形態1と同様な機能を有し、同様な効果を発揮できる半導体装置を得ることができる。
【0091】
実施形態3
図13は、本実施の形態による半導体装置(図1に対応する)50Aを示す。この半導体装置50Aが実施形態1の半導体装置50(図1参照)と異なる点は、チップ3の電極5から導出された配線20が、チップ3の側面において裏面36側へ傾斜しているだけで、その先端が裏面36に設けた配線22に接続していることであり、その他は実施形態1と同様な構成となっている。この製造プロセスを図14により説明する。
【0092】
図14(a)は、既述した実施形態1における図3(f)及び実施形態2における図12(f)に対応する図であるが、図示のように、溝18の形状が実施形態1のW字状の溝とは異なり、梯形となっている。この場合も、溝18の深さDとチップ3の厚さTとの関係は、D>Tとなっている。この溝18は例えば切削により形成してもよく、実施形態2のように入れ子を用いて形成してもよい。そして、溝の形状が梯形であるためW字状の場合よりも隣接するチップ間の間隔を小さくでき、効率的なチップの配置が可能である。これ以降のプロセスは実施形態1と同様に行う。
【0093】
即ち、図14(b)(図14(a)部の拡大図)に示すように、チップ3の電極5を開口するように、層間膜9を所定パターンに形成する。層間膜9の材料としては感光性絶縁樹脂等を用い、液状のものをスピンコートして塗布するか又は、ドライフィルをラミネーターで貼り付けてもよい。
【0094】
次に、図14(c)に示すように、チップ3の電極5から配線20を導出して溝18内に配し、この配線20と隣接チップ3の電極5から導出した配線20が、溝18内で連続するように形成する。勿論この配線も、既述した図4(h)〜図5(m)と同様にセミアディティブ法により形成するが、ここでは簡略に図示する。
【0095】
次に、図14(d)に示すように、配線20を含む上部の全面に保護膜21を形成する。この材料としては、層間膜9と同様に感光性絶縁樹脂等を用いる。この場合、溝18の部分とその他の部分との平坦性が得られない場合には、図12に示したのと同様に、ディスペンス法又は印刷法等によって溝18部を先に塗布後に、再度全体を塗布するようにしてもよい。
【0096】
次に、図14(e)に示すように、裏面36側の樹脂4を研削し、溝18の底面の配線20を露出させる。この研削はSiウェーハ裏面研削用のグラインダー等で行う。
【0097】
次に、図14(f)に示すように、裏面に露出した配線20の露出部20aに接続させて裏面36の配線22を形成する。この配線も上記と同様にセミアディティブ法にて行う。
【0098】
次に、図14(g)に示すように、上記した層間膜9と同様の材料により裏面36の保護膜25を形成後に、電極5から導出した配線20との接続孔27を保護膜21に形成することにより、表面35側の外部端子16を形成する。また、保護膜25に裏面36側に設けた配線22との接続孔24を形成することにより、この面の外部端子23を形成する。そしてこのようなプロセスを疑似ウェーハ29上で一括して行うことができる。
【0099】
その後、切断線37の位置で切断することにより、図13に示したように、実施形態1と同等の機能を有し、両面に外部端子16、23を有する半導体装置50Aを得ることができる。そして、この半導体装置50Aは、実施形態1と同様に、外部端子の配置位置に関する設計上の自由度を有すると共に、図8のようにワンチップでのプリント基板への実装及び図9のような積層構造での実装、並びに図10のように平置き構造で実装することもできる。
【0100】
本実施の形態によれば、実施形態1とは溝18の形状が異なるものの、実施形態1と同様な機能を有し、同様な効果を発揮できる半導体装置50Aを得ることができる上に、隣接するチップ3の間隔を小さくできることにより、同一の疑似ウェーハ29に対し、チップ3の増配置によって生産の効率化が可能な利点を有している。
【0101】
実施形態4
図15は、本実施の形態による半導体装置(図1に対応する)50Bを示す。この半導体装置50Bが上記した各実施の形態の半導体装置と異なる点は、チップ3の側面の樹脂4内における裏面36側への配線の導出方法が、スルーホール状の垂直貫通孔を介していることであり、その他は上記した各実施の形態と同様な構成になっているが、前記した実施形態3と同様に、チップ3の間隔を小さくできる。この製造プロセスを図16により説明する。
【0102】
図16(a)は、図25(f)の拡大図と同様の状態の疑似ウェーハ29に対し、チップ3の電極5を開口するように層間膜9が形成された状態である。
【0103】
次に、図16(b)に示すように、チップ3の側面の樹脂4内に、裏面36側に配線20を導出するためのブラインドホール32をチップ3毎に間欠的に形成する(図18参照)。このブラインドホール32の深さDもチップ3の厚さTとの関係は、D>Tとなっている。このブラインドホール32は、例えばレーザー又はドリルによる切削等にて形成することができる。
【0104】
次に、図16(c)に示すように、チップ3の電極から導出した配線20をブラインドホール32を介して裏面36側へ導びく。この配線もセミアディティブ法によるプロセス(図4(h)〜図5(n)参照)を経て形成するものであるが、ブラインドホール32内に均一に十分なスパッタ膜を施すことにより、配線用の金属めっきでブラインドホール32を埋め込むことが可能である。ここでは配線の詳細なプロセスは図示省略する。
【0105】
次に、図16(d)に示すように、チップ3上面の配線20を含む全面に保護膜21を形成する。保護膜21の材料としては、層間膜9と同様に感光性絶縁樹脂を用い、ディスペンス法又は印刷法により塗布する。
【0106】
次に、図17(e)に示すように、裏面36側の樹脂4を研削し、ブラインドホール32に導びいた配線20の露出部20aを形成する。この研削はSiウェーハの裏面研削用のグラインダー等で行う。
【0107】
次に、図17(f)に示すように、裏面36に露出した配線20の露出部20aに接続させて裏面36の配線22を形成する。これも例えば上記と同様にセミアディティブ法で行う。
【0108】
次に、図17(g)に示すように、層間膜9と同様の材料を用い、裏面36側の保護膜25を形成した後に、表面35側の保護膜21に、電極5から導出した配線との接続孔27を形成することにより、表面35側の外部端子16を形成する。また、保護膜25に、配線20に接続した配線22との接続孔24を形成することにより、裏面36側の外部端子23を形成する。これらの外部端子16、23等の開口部の形成は、感光性絶縁樹脂からなる保護膜21、25に対するフォトリソグラフィ技術にて行うことができる。そして、このようなプロセスは疑似ウェーハ29の製造工程において、一括に行うことができる。
【0109】
その後、切断線37の位置で切断することにより、図15に示したように、実施形態1と同等の機能を有し、両面に外部端子16、23を有する半導体装置50Bを得ることができる。そしてこの半導体装置50Bは、実施形態1と同様に、外部端子の配置位置の設計の自由度を有すると共に、図8のようにワンチップでのプリント基板への実装及び図9のような積層構造での実装もでき、図10のように平置き構造で実装することもできる。
【0110】
図18は、要部を平面図(配線のみ実線で示す。)で示した概略図であるが、本実施の形態の特徴は、実施形態1〜3においてチップ3の外側面に沿って形成する線状の溝とは異なり。間欠的に形成したブラインドホール32(破線で表示した)を介して、配線20を裏面36へ導びいていることである。従って、チップ3の側面の樹脂4の強度を保つことができると共に、このように強度が保てることにより、更に後述する変形例(図19参照)のような利点がある。
【0111】
図19(a)は、実施形態4の変形例を示す概略図であり、図16(b)と同様の状態を示す。
【0112】
そして図19(b)は、裏面36側の研削工程を示している。即ち、前記したように、間欠的に形成するブラインドホール32であるため、チップ間の樹脂4の強度が保てることにより、裏面36の研削が可能になる。
【0113】
従って、次は図19(c)に示すように、表面35側の配線20と裏面36側の配線22を、前記した各配線と同様にセミアディティブ法を用いて、同一のめっき工程にて形成することができる。上記の研削によりブラインドホール32は、図19(b)に示すように貫通孔と化しているため、この両面同時めっきにより貫通孔内のめっきによる埋め込みも容易になる。
【0114】
次は、実施の形態4と同様に、所要のプロセスを経ることにより、図19(d)に示すような状態を形成することができる。従って製造工程を簡略して実施形態4と同様の構造及び機能を有する半導体装置50Bが、疑似ウェーハ段階で一括して作製可能となる。
【0115】
本実施の形態によれば、チップ3の電極5から導出した配線20を裏面36へ導びく方法が、他の実施形態とは異なるものの、他の実施形態と同様の機能を有し、同等の効果を発揮できることに加え、隣接するチップ3の間隔を小さくし、チップ3の増配置による生産の効率化が図れると共に、チップ間の樹脂4の強度が保たれることにより、表裏両面の同時めっきも可能になり、製造工程の簡略化により更に生産性を向上することができる。
【0116】
図20は、上記した各実施の形態に共通の変形例を示す図であるが、実施形態3の構造により説明する。
【0117】
即ち図20(a)は、実施形態3において、裏面を研削する前の状態(図14(d))と同様の状態であるが、この例が他と異なる点は、既述した各実施形態のチップ3の厚みよりも厚いチップ3Aを疑似ウェーハ29に配置していることである。溝18の深さDは実施形態3と同一であるが、チップ3Aの厚みTは溝18の深さDよりも大きく、D<Tとなっている。
【0118】
図20(a)の状態の疑似ウェーハ29に対し、図20(b)に示すように、裏面36側をチップ3Aの大半が除去されるまで研削し、配線20の底面の露出部20aを形成する。この研削によって、チップ3Aの厚さは、前記した各実施の形態におけるチップ3の厚みよりも薄くなることもあるが、Siウェーハ上に形成されている半導体素子に影響を及ぼすことはない。これにより更に薄型の半導体装置を形成することが可能であり、特に積層構造のMCMに好適である。
【0119】
次に図20(c)に示すように、研削したチップ3Aの裏面を層間絶縁膜14で被覆した後に、上記した実施形態3と同様のプロセスで処理を行う。即ち、裏面側に露出した配線20の露出部20aに裏面36の配線22を接続し、図20(d)に示すように、裏面36の保護膜25を形成後に、保護膜21に配線20との接続孔27を形成することにより、表面35側の外部端子16を形成し、また保護膜25に裏面36の配線22との接続孔24の形成により外部端子23を形成する。これにより両面に外部端子16、23を有する半導体装置を疑似ウェーハ段階で一括して形成することができる。
【0120】
図21は、他の変形例を示す図であるが、これも実施形態4を除く他の実施の形態に共通する。この例も実施形態3の構造により、上記の変形例(図20)と同様のチップ3Aを配した図により説明する。上記した変形例(図20)に限らず、裏面36の過剰な研削により、溝18内の配線20が局部的に断線された場合でも、この例の方法により断線部の接続を保つことができる。
【0121】
即ち、図21(a)に示すように、溝18内に導出した配線20を形成後に、溝18の底部の配線20上に局部的に、例えばペースト47等の如き導電性物質を配しておき、この上に図21(b)のように保護膜21を形成する。
【0122】
以後は、図20に示した変形例と同様に裏面36を研削により部分的に除去するが、図21(c)に示すように、過剰な研削により露出されるべき配線20が断線され、露出部20aが分断されても、疑似ウェーハ29全体の強度が保てるような局部的な断線であれば、疑似ウェーハ29が破壊されることなく、ペースト47によって断線部の接続を保つことができる。
【0123】
従って、図21(d)に示すように、研削によって露出したチップ3Aの裏面を層間絶縁膜14で被覆後に、上記した図20と同様のプロセスを経て、図21(e)のように、両面に外部端子16、23を有する半導体装置を疑似ウェーハ段階で一括形成できる。
【0124】
図22は、他の変形例を示す図であるが、これも実施形態4を除く他の実施の形態に共通する。この例も実施形態3の構造により、上記した変形例と同様のチップ3Aを配した図により説明するが、この例は上記した変形例(図21)のように、断線時のために予めペーストを配しておくのではなく、研削し過ぎにより断線した場合に施す処理法である。
【0125】
即ち、図22(a)の状態から、裏面36側を研削して除去することにより、図22(b)に示すように、研削過剰により溝18底部の配線に断線部20bが生じた場合は、図22(c)に示すように、断線部20bに例えばドリル等で孔34をあける。この孔34は、孔34の内壁面に配線20の断面積をできるだけ大きく露出させ、しかも浅い方がよい。そして孔34を形成後に、研削によって露出したチップ3Aの裏面を層間絶縁膜14で被覆する。図23は、孔34をあけた状態を示す底面図(孔を誇張図示した)である。
【0126】
次に、図22(d)に示すように、裏面36に配線22をセミアディティブ法によって形成することにより、断線部20bに形成した孔34がスパッタ膜とめっき膜とによって同時に埋められるため、断線した配線20が接続される。
【0127】
次は、所定のプロセスを経ることにより、図22(e)に示すように、両面に外部端子16、23を有する半導体装置が形成され、上記した処理を含む一連の処理を疑似ウェーハ段階で一括して行うことができる。
【0128】
また、上記した各実施の形態及び変形例の半導体装置は、図24に示すように外部端子は裏面だけに設けてもよい。この例を実施形態1(図1参照)の構造で説明する。
【0129】
図示の如く、この半導体装置50cは、チップ3の電極5から導出した外部端子を表面35側には設けず、裏面36側のみに設けるものである。従って、既述した図1と同様の製造プロセスによって形成され、外部端子23を裏面36側のみに形成している。
【0130】
図24において、外部端子23も図1と全く同じ位置になっているが、例えば実装基板の外部端子の位置に合せるなど、任意の位置に配置が可能であるため設計の自由度が大きく、実装時の熱ストレスを緩和し、チップへの影響を最小限にすることのできる位置に外部端子を配置できると共に、プリント基板へフェイスアップで実装できる。
【0131】
上記した各実装の形態は、本発明の技術的思想に基づいて種々に変形が可能である。
【0132】
例えば、チップ3の表面35の電極5から導出した配線20を裏面36側へ導びく方法は、実施形態1のW字状の溝、実施形態3の梯形溝、実施の形態4のブラインドホールに限らず、これ以外の適宜な方法であってよく、これらの溝18の形成方法もダイサー及び入れ子以外の方法が可能である。
【0133】
また、配線20、22の形成方法は、めっきに限らず、物理蒸着、又はスクリーン印刷により形成してもよい。また、積層構造の外部端子間の接続やプリント基板への実装時の外部端子の接続は、はんだバンプに限らずACF(異方性導電フィルム)を用いてもよい。
【0134】
また、チップ3の外部端子をチップの表面及び裏面のうち少なくとも裏面に形成することは、半導体チップ以外の例えば発光ダイオード又はフォトダイオード等のチップ部品に適用できる。
【0135】
【発明の作用効果】
上述した如く、本発明によれば、チップ部品の複数個が、電極面以外の少なくとも側面及び他方の面が保護物質で覆われた疑似ウェーハ工程を経て形成されているので、チップ化後のハンドリング時にチップ部品が保護され、ハンドリングが容易となると共に、保護物質の位置で切断してチップ部品に個片化することができるために、切断時にチップ部品がダメージ(亀裂や歪み等)を受けることがない。
【0136】
そして、このチップ部品の実装基板への実装時には、少なくとも他方の面の外部端子を介して接続が可能であり、また、他方の面の任意の位置に外部端子を設けることができ、設計の自由度が大きいと共に、この外部端子を介して実装可能であるために、実装時の熱ストレスによるチップ部品の一方の面側(電極面側)への影響を緩和することができる。
【0137】
この場合、この保護物質によってチップ部品に対し絶縁分離を行いながら、保護物質の側面又は内部を通して一方の面の電極を他方の面側の外部端子に導びくための配線を形成することができ、かつ、保護物質によって前記配線を保護することができる。
【0138】
そして、このチップ部品を個片化した半導体装置を用いて、複数のチップ部品の積層構造又は並列配置のマルチチップモジュールであっても、この複数のチップ部品間の接続をこれらのチップ部品の外部端子を介して行うことができる。
【図面の簡単な説明】
【図1】本発明の実施形態1による半導体装置を示す概略断面図である。
【図2】同、半導体装置の積層例を示す概略断面図である。
【図3】同、半導体装置の作製プロセスを示す概略断面図である。
【図4】同、半導体装置の作製プロセスを示す概略断面図である。
【図5】同、半導体装置の作製プロセスを示す概略断面図である。
【図6】同、半導体装置の作製プロセスを示す概略断面図である。
【図7】同、半導体装置の要部を示し、(a)は概略断面図、(b)は概略底面図である。
【図8】同、半導体装置の実装例を示す概略断面図である。
【図9】同、半導体装置の実装例を示す概略断面図である。
【図10】同、半導体装置の実装例を示す概略断面図である。
【図11】本発明の実施形態2による半導体装置の作製プロセスを示す概略断面図である。
【図12】同、実施形態1及び2の変形例を示す概略断面図である。
【図13】本発明の実施形態3による半導体装置を示す概略断面図である。
【図14】同、半導体装置の作製プロセスを示す概略断面図である。
【図15】本発明の実施形態4による半導体装置を示す概略断面図である。
【図16】同、半導体装置の作製プロセスを示す概略断面図である。
【図17】同、半導体装置の作製プロセスを示す概略断面図である。
【図18】同、半導体装置の要部を示す概略平面図である。
【図19】同、実施形態4の変形例の作製プロセスを示す概略断面図である。
【図20】同、実施形態3の構造で示した変形例の作製プロセスを示す概略断面図である。
【図21】同、実施形態3の構造で示した他の変形例の作製プロセスを示す概略断面図である。
【図22】同、実施形態3の構造で示した更に他の変形例の作製プロセスを示す概略断面図である。
【図23】図22(c)の状態における要部を示す概略底面図である。
【図24】実施の形態1の構造で示した変形例の概略断面図である。
【図25】従来例による半導体装置の作製プロセスを示す概略断面図である。
【図26】同、半導体装置の作製プロセスを示す概略断面図である。
【図27】同、半導体装置の作製プロセスを示す概略断面図である。
【図28】同、半導体装置の実装例を示す概略断面図である。
【図29】同、半導体装置の実装例を示す概略断面図である。
【符号の説明】
1…石英基板、2…粘着シート、3、3A…良品ベアチップ(半導体チップ)、
4…樹脂、4a…保護膜、5…電極、24、27…接続孔、7…SiO膜、
8…パッシベーション膜、9、14…層間絶縁膜、10…スパッタ膜、
11…レジストマスク、11A…フォトレジスト膜、12A…めっき膜、
20、22…配線、21、25、38…保護膜、16、23…外部端子、
18…溝、20a…露出部、20b…断線部、29…疑似ウェーハ、
30…入れ子、31…外側面、32、34…孔、33…はんだバンプ、
35…表面、36…裏面、37…切断線、39…プリント基板、40…電極、
42…マスク、43a、43b…開口部、45…露光光、47…ペースト、
50…半導体装置、L…紫外線、T…半導体チップの厚み、D…溝の深さ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device and its manufacturing method, a pseudo wafer and its manufacturing method, and a multi-chip module.
[0002]
[Prior art]
Conventionally, in response to the demand for smaller, lighter, and faster portable electronic devices, as one method, a plurality of functions are integrated into one chip (system LSI) by increasing the integration and miniaturization of ICs. It is difficult to realize a system LSI at low cost due to a problem such as an increase in manufacturing cost due to a decrease in yield. On the other hand, an MCM (Multi Chip Module) in which a plurality of semiconductor chips are packaged in one package has been proposed.
[0003]
In the MCM, a semiconductor chip is arranged on a multilayer wiring board. However, if the connection terminal pitch of the semiconductor chip to be mounted becomes narrow, it becomes difficult to manufacture the wiring board, and the cost of the board increases. In addition, since connection is performed by bumps, wire bonding, tabs, or the like, the number of connection terminals is limited, and the area in plan view is larger than the total area in plan view of the mounted semiconductor chip. Furthermore, there is a problem that signal transmission is slowed down and performance is reduced.
[0004]
Regarding the MCM manufacturing technique, it is disclosed that wiring is performed with high productivity by attaching a plurality of bare chips on a support substrate and wiring them so that their surfaces become flat (see Patent Document 1 described later). . In addition, by bonding a plurality of semiconductor chips manufactured for each function adjacent to each other, a quadrangular composite chip is attached to a wafer, and the active surface of the chip is flattened and exposed to the outside of the chip. It is disclosed that a composite chip having a reduced area is formed in a small package by wiring from a connection terminal (see Patent Document 2 described later). Furthermore, it is disclosed that after attaching a good chip to a supporting substrate, a protective substance is applied and peeled off to produce a pseudo wafer, and wiring is performed thereon by a semiconductor process (see Patent Document 3 described later). reference).
[0005]
Among these, Patent Document 3 (hereinafter, referred to as the prior application invention) filed by the present applicant discloses a method in which semiconductor chips are cut out from a wafer without any distinction between in-house and other companies, and then open / short or DC (direct current). Only semiconductor bare chips that have been confirmed as non-defective by voltage measurement are rearranged on a pseudo wafer and subjected to predetermined manufacturing steps to produce chip-shaped electronic components. The manufacturing process is shown in FIG.
[0006]
That is, FIG. 25A shows a quartz substrate 1 used as a temporary support substrate. However, since the process of heating the substrate is 400 ° C. or less, an inexpensive glass substrate can be used, and the quartz substrate 1 can be used repeatedly.
[0007]
Next, as shown in FIG. 25B, for example, an acrylic pressure-sensitive adhesive sheet 2 whose adhesive strength is reduced when irradiated with ultraviolet rays is attached onto the quartz substrate 1.
[0008]
Next, as shown in FIG. 25C, a plurality of non-defective bare chips 3 confirmed as non-defective are attached to the adhesive sheet 2 with the chip surface (device surface) 28 arranged downward. The non-defective bare chip 3 may be diced in a normal wafer process and taken out of a stretched state of a used dicing sheet (not shown), or may be transferred from a chip tray.
[0009]
Next, as shown in FIG. 25D, an organic insulating resin, for example, an epoxy resin 4 is uniformly applied on the non-defective bare chip 3 by a spin coating method or a printing method.
[0010]
Next, as shown in FIG. 25 (e), ultraviolet rays are radiated from the back side 51 of the quartz substrate 1 to weaken the adhesive force of the adhesive sheet 2, and a plurality of non-defective products whose side and back surfaces are continuously solidified with the resin 4 The pseudo wafer 29 on which the bare chip (hereinafter, sometimes referred to as a semiconductor chip, a chip or a chip component) 3 is disposed is separated from the quartz substrate 1 by the bonding surface 52.
[0011]
Next, as shown in FIG. 25 (f), the pseudo wafer 29 is turned over so that the non-defective bare chip surface 28 (device surface) faces upward. The lower figure is an enlarged view of a part of the pseudo wafer 29. As shown in FIG.2An A1 electrode pad 5 and a passivation film 8 are formed via a film 7.
[0012]
Thereafter, a Ni plating layer is selectively formed only on the upper surface of the opened Al electrode pad 5 by an electroless plating method, and the solder paste disposed thereon is heated and melted to form solder bumps on the wafer collectively. By measuring the electrical characteristics again by the probe test, only non-defective chips are selected more reliably.
[0013]
After the semiconductor chip 3 formed as described above is singulated into one chip, it is mounted on the electrode 40 of the circuit board 39 via the solder bump 33 as shown in FIG. 28, for example, or as shown in FIG. By arranging the chips 3 in parallel and performing the rearrangement wiring 12 (wiring performed by drawing the wiring in the semiconductor chip to an arbitrary position on the chip) between the plurality of chips 3, the circuit configuration is performed and the MCM is implemented. Can be configured. Although not shown, wiring is led out from the electrode pad 5 of the semiconductor chip 3 to the insulating layer through the connection hole, and furthermore, such a structure is stacked to form a multilayer structure. It is also possible to deal with an increase in the number of pins by performing relocation wiring at positions, and these can be collectively performed on the pseudo wafer 29.
[0014]
As described above, according to the invention of the prior application, since the surface other than the electrode surface of the semiconductor chip (that is, the side surface and the back surface of the chip) is protected by the continuous protective material, the chip is protected in handling after chip formation, and the handling is improved. It will be easier.
[0015]
In addition, since only non-defective products cut from the semiconductor wafer are selected and rearranged, a pseudo wafer consisting of all non-defective chips can be obtained, and bump processing can be performed on the arranged non-defective chips in a batch of wafers. In addition, a low-cost bump chip can be formed, and when a semiconductor chip is cut from a pseudo wafer, a portion of a protective material between the chips is cut, so that the semiconductor chip body is adversely affected (such as distortion, burrs, cracks, etc.). Damage) can be easily cut.
[0016]
In addition, since the side and back surfaces of the chip are covered with the protective substance, Ni electroless plating can be performed. Then, solder bump processing and the like can be easily performed not only on in-house manufactured wafers but also on bare chips purchased from other companies.
[0017]
In addition, there are few cases in which all the different LSI chips mounted on the MCM are supplied from the same semiconductor maker. The SRAM, flash memory, microcomputer, and CPU (Central Processing Unit) are separately manufactured by the semiconductor maker that is good at each. It has excellent features such as that they can be supplied as MCM and can be converted to MCM.
[0018]
When the relocation wiring of the semiconductor chip 3 of the above-mentioned prior invention is performed on the pseudo wafer 29, it can be performed, for example, by a method as shown in FIGS.
[0019]
FIG. 26A shows a lower view (a partially enlarged view) of the above-described FIG. 25F. That is, the electrode pad 5 (hereinafter, referred to as an electrode) made of Al is arranged on the integrated semiconductor chip 3 with the side surface and the back surface covered with the resin 4 as the protective substance constituting the pseudo wafer 29. A passivation film 8 is formed such that electrode 5 is exposed.
[0020]
Wiring to be formed thereafter is formed by a semi-additive method, but is shown in a simplified manner. First, as shown in FIG. 26 (b), after forming an interlayer insulating film 9 so as to cover the passivation film 8, as shown in FIG. 26 (c), a seed metal to be an electrode for plating is formed on the entire upper surface. Then, a Ti sputtered film 10 having good adhesion to Al is formed.
[0021]
Next, as shown in FIG. 26D, after forming a photoresist film 11 on the sputtered film 10 by a photolithography technique, as shown in FIG. Form 12A. Thus, by using Ti having good adhesion to Al as a seed metal, Cu can be easily plated on the Ti sputtered film 10.
[0022]
Next, as shown in FIG. 27F, the photoresist film 11 is removed, and the sputtered film 10 under the photoresist film 11 is removed by wet etching or the like, whereby the rearranged wiring 12 is formed. .
[0023]
Next, as shown in FIG. 27 (g), after covering the entire upper surface with a protective film 13, a connection hole 6 with the wiring 12 is formed in the protective film 13 as shown in FIG. The terminal 15 is exposed.
[0024]
According to the above-described method, a plurality of or a plurality of types of chip components can be arranged in parallel on the same pseudo wafer 29, and relocation wiring for forming an MCM circuit can be performed at a wafer level at a time. In addition, the prior invention selects and rearranges only non-defective chips cut out of a semiconductor wafer, covers the side and back surfaces with a resin, integrates them, further performs a characteristic test, and performs a pseudo test in which 100% non-defective chips are arranged. These chips have excellent features such as reallocation of wiring between these chips on a wafer at a time, and formation of an MCM at a pseudo wafer stage.
[0025]
[Patent Document 1]
JP-A-7-202115 (left column of page 5, FIGS. 1 and 3)
[Patent Document 2]
JP-A-11-330350 (page 6, right column, FIGS. 5 and 6)
[Patent Document 3]
JP 2001-308116 A (page 5 left column, page 7 right column and FIG. 2)
[0026]
[Problems to be solved by the invention]
However, conventionally, in the prior application, since the external terminals of the semiconductor chip 3 are formed only on the front side of the pseudo wafer 29, connection to external devices or the like cannot be performed on the rear side, and the MCM having a multilayer structure has a problem. There was a problem that cannot be formed.
[0027]
Therefore, an object of the present invention is to provide a semiconductor device having external terminals that can be easily connected between a plurality of chip components and to external devices, and that can be formed at low cost, a method of manufacturing the same, a pseudo wafer, and a method of manufacturing the same. Another object of the present invention is to provide a multi-chip module.
[0028]
[Means for Solving the Problems]
That is, the present invention provides a semiconductor device having a chip component in which an electrode is provided on one surface side and at least a side surface other than the electrode surface and the other surface are covered with a protective substance, A semiconductor device (hereinafter, referred to as a semiconductor device of the present invention), wherein external terminals are formed on at least the other surface of the one surface and the other surface opposite to the one surface. ).
[0029]
According to the present invention, an electrode is provided on one surface side, and a plurality of chip components in which at least a side surface other than the electrode surface and the other surface are covered with a protective material are integrated by the protective material. Producing a pseudo wafer;
Forming external terminals of the electrodes of the chip components in the pseudo wafer on at least the other surface of the one surface and the other surface opposite to the one surface,
Cutting at least the protective material between the plurality of chip components; and
The present invention relates to a method for manufacturing a semiconductor device (hereinafter, referred to as a method for manufacturing a semiconductor device of the present invention).
[0030]
According to the semiconductor device and the method of manufacturing the same of the present invention, since the chip component provided with the electrode on one surface side is covered with the protective material on at least the side surface and the other surface other than the electrode surface, The chip components are protected during handling, which makes handling easier and the chip components can be cut into individual chip components by cutting at the position of the protective substance. I will not receive it.
[0031]
In this structure, the external terminals of the chip component are formed on at least the other surface of the one surface and the other surface on the opposite side. Therefore, at least when the chip component is mounted on the mounting board, Connection can be made via external terminals on the other surface, and external terminals can be provided at any position on the other surface, so that the degree of freedom in design is large and mounting via these external terminals is possible. For this reason, the influence on the one surface side (electrode surface side) of the chip component due to the thermal stress at the time of mounting can be reduced.
[0032]
In this case, since the side surface and the other surface are covered with the protective material, the electrode on one surface is connected to the other surface side through the side surface or the inside of the protective material while insulating and separating the chip component with the protective material. Wiring for leading to an external terminal can be formed, and the wiring can be protected by a protective substance.
[0033]
According to the present invention, an electrode is provided on one surface side, and a plurality of chip components in which at least a side surface other than the electrode surface and the other surface are covered with a protective material are integrated by the protective material. A pseudo wafer (hereinafter referred to as a pseudo wafer) in which external terminals of the electrodes of the chip component are formed on at least the other surface of the one surface and the other surface opposite to the one surface. This is referred to as a pseudo wafer of the invention.).
[0034]
According to the present invention, an electrode is provided on one surface side, and a plurality of chip components in which at least a side surface other than the electrode surface and the other surface are covered with a protective material are integrated by the protective material. The method for manufacturing a pseudo wafer, comprising a step of forming external terminals of the electrodes of the chip components in the pseudo wafer on at least the other surface of the one surface and the other surface opposite thereto. (Hereinafter, referred to as a pseudo wafer manufacturing method of the present invention).
[0035]
According to the pseudo wafer and the method for manufacturing the same of the present invention, a plurality of chip components provided with electrodes on one surface side are covered with a protective substance on at least the side surface and the other surface other than the electrode surface, and integrated. In this way, only non-defective chips are selected and rearranged, enabling low-cost bump processing of chip components all at once on a pseudo wafer consisting of all non-defective chips, as well as protection substances. Since the chip component can be cut into individual pieces by cutting at the position, the chip component is not damaged (distorted, cracked, etc.), and the side surface and the other surface of the chip component are covered with the protective substance. Therefore, Ni electroless plating can be performed, and solder bump processing and the like can be performed irrespective of whether it is made in-house or made by another company.
[0036]
Then, since the external terminals of the chip component are formed on at least the other surface of one surface and the other surface on the opposite side, mounting of the chip component obtained by cutting the pseudo wafer is performed. At the time of mounting on a substrate, it is possible to provide a pseudo wafer having chip parts with good reproducibility, which can be connected via at least the external terminal on the other surface, and which has the same effect as the semiconductor device of the present invention described above. it can.
[0037]
According to another aspect of the present invention, there is provided a multi-chip module (hereinafter, referred to as a multi-chip module) configured by the above-described semiconductor device of the present invention, wherein the plurality of chip components included in the semiconductor device are connected to each other via the external terminals. Multi-chip module).
[0038]
According to the multi-chip module of the present invention, since the chip components constituting the multi-chip module are configured by the above-described semiconductor device of the present invention, the multi-chip module has a multilayer structure of a plurality of chip components or a multi-chip module having a parallel arrangement. However, the connection between the plurality of chip components can be made via the external terminals of these chip components.
[0039]
BEST MODE FOR CARRYING OUT THE INVENTION
In the above-described semiconductor device and the method for manufacturing the same, the pseudo wafer, the method for manufacturing the same, and the multi-chip module according to the present invention, the external surface of the one surface (electrode surface or surface) is provided on the outer surface of the protective material on the side surface. A conductor for connecting to an external terminal on the other surface (back surface) is formed, and the conductor provides an inclined outer surface or a vertical through hole in the protective material, and the inclined outer surface or the vertical through hole is formed in the inclined outer surface or the vertical through hole. It is desirable that it is formed because it facilitates formation of a conductor such as a plating film, and facilitates formation of external terminals on the other surface.
[0040]
In this case, a concave portion (for example, a groove having an inclined surface, or a through hole) is formed in the protective material on the side surface between the plurality of chip components, and the external terminal on one surface and the other surface are formed on this surface. After forming a conductor for connecting to the external terminal of the above, at least the protective material is partially removed from the other surface side by grinding, and the conductor is exposed on the removed surface. It is desirable to form the external terminal on the other surface connected to the body.
[0041]
Further, by forming the concave portion deeper than the thickness of the chip component, the conductor is partially removed to leave the conductor on the surface of the concave portion having an inclined surface or a vertical surface. It is desirable to expose the conductor.
[0042]
In addition, under the insulating protective film for forming the external terminal on the one surface, the material of the insulating protective film in the concave portion may have significantly different physical properties from the material of the protective material on the side surface. When the flattening of the concave portion cannot be obtained, an insulating material (the same material as the protective material on the side surface) different from the insulating protective film is provided on the conductor on the inclined outer surface for the concave portion. Alternatively, an insulating protective film may be formed thereon to form a double structure.
[0043]
Further, a conductive substance (for example, a paste) may be provided in contact with the outer surface of the conductor under the insulating protective film for forming the external terminal on the one surface. This makes it possible to compensate for a poor connection of the conductor due to excessive removal of the protective material on the other surface side.
[0044]
Then, the pseudo wafer having the chip component determined to be non-defective by the characteristic measurement is produced, and further, the characteristics of the chip component are measured again in the state of the pseudo wafer, and a non-defective chip component or a chip-shaped electronic component is measured. Selection is desirable in terms of increasing the yield.
[0045]
Thereby, a pseudo wafer for manufacturing the above-described semiconductor device is obtained, and the external terminals for connecting the plurality of chip components obtained by singulating the same are connected to the one surface side of one chip component ( The multi-chip module is formed on the electrode surface) and on the other surface side (rear surface side) of the other chip component, and can form a multi-chip module having a laminated structure in which the external terminals are connected. The external terminal for connecting a component is formed on the one surface side (electrode surface side) or the other surface side (back surface side), and a multi-unit (parallel arrangement) structure in which the external terminals are connected is provided. Chip modules can also be formed.
[0046]
Next, a preferred embodiment of the present invention will be specifically described with reference to the drawings.
[0047]
Embodiment 1
FIG. 1 shows a semiconductor device 50 of the present embodiment. As shown in the drawing, the wiring 20 led out from the electrode 5 of the chip component 3 is wired obliquely toward the back surface 36 in the resin 4 on the outer surface 31 of the chip 3, and its tip is bent symmetrically in the opposite direction, The lower end of the wiring 20 is connected to the wiring 22 provided on the back surface 36. Then, a part of the extracted wiring 20 is exposed on the front surface 35 side near the electrode 5 to form the external terminal 16 on the front surface 35, and the external terminal 23 on the back surface 36 exposes a part of the wiring 22. Is formed. The upper and lower external terminals 16 and 23 are opposed to each other, and the external terminals 16 and 23 are formed in the protective films 21 and 25 by the openings of the connection holes 27 and 24 with the wirings 20 and 22, respectively.
[0048]
FIG. 2 shows a diagram in which the above-described semiconductor devices 50 are stacked. As described above, since the upper and lower external terminals 16 and 23 are opposed to each other, the external terminal 16 on the front surface 35 of the lower semiconductor device 50 and the external terminal 23 on the rear surface 36 of the upper semiconductor device 50 are For example, since the connection can be made via the solder bumps 33 or the like, an MCM or the like having a laminated structure can be formed, and the size of the MCM can be reduced.
[0049]
FIG. 3 to FIG. 5 show a manufacturing process from a pseudo wafer process to individualization into a semiconductor device in order to produce the semiconductor device 50 of the present embodiment. FIGS. 25A to 25E are the same as FIGS. 25B to 25F in the prior invention, and the description of the process during this period will be omitted.
[0050]
However, this embodiment is different from the prior application invention in that the external terminals are also formed on the back surface 36 side of the chip component 3, so that the resin 4 on the outer surface 31 of the chip 3 is guided to the back surface 36 side. The wiring 20 is obliquely led out, and the wiring 22 connected thereto is provided. The external terminals 16 are exposed on the front surface 35 by exposing a part of the wiring 20 and the external terminals 16 are exposed on the back surface 36 by exposing a part of the wiring 22. External terminals 23 are provided, and external terminals are formed on both surfaces of the semiconductor device 50.
[0051]
Therefore, as shown in FIG. 3F, in order to derive the wiring obliquely, as shown in FIG. The groove 18 is cut out and formed with a dicer or the like. The groove 18 is formed deeper (D> T) than the thickness T of the chip 3 arranged on the pseudo wafer 29, and the thickness or the warp or strength of the pseudo wafer 29 is sufficient to withstand the subsequent wiring forming process. It is necessary to form a pseudo wafer so that it can be left. The groove 18 may be formed at the time of molding the resin 4 before disposing the chip 3.
[0052]
Further, if the angle of the W-shaped groove 18 is an acute angle, it is difficult to form wiring thereafter, so it is preferable to form the W-shaped groove 18 at an angle in consideration of the wiring forming process. If possible, it is preferable to form at an obtuse angle of more than 45 degrees.
[0053]
FIG. 4 (g) is an enlarged view of a portion A in FIG. 3 (f). As in FIG. 26 (a), the side and back surfaces of the chip 3 are covered with the resin 4 and integrated, The passivation film 8 is formed so that the electrode 5 of the chip 3 is exposed.
[0054]
Next, as shown in FIG. 4H, after forming an interlayer film 9 in a predetermined pattern by photolithography so as to open the electrode 5 of the chip 3, a sputtered film 10 is formed on the entire surface of the interlayer film 9. I do. Since the surface of the passivation film 8 is rough, the interlayer film 9 is indispensable for flattening the passivation film 8, and the passivation film 8 is flattened by forming the interlayer film 9, whereby a wiring to be formed later can be formed uniformly.
[0055]
A photosensitive insulating resin or the like is used as a material of the interlayer film 9 and a liquid material is spin-coated and applied, or a dry film is attached by a laminator or the like. At this time, if the W-shaped groove 18 is at an acute angle, the thickness of the interlayer film 9 in the groove portion becomes thick, and the groove 18 may be filled with the interlayer film 9 and become shallow. It is necessary that the entirety be applied thinly by using it and be formed uniformly so that the thickness of the interlayer film 9 in the W-shaped groove does not increase.
[0056]
Next, lead wires for forming external terminals of the electrodes 5 of the chip 3 are formed. This wire is formed by, for example, a semi-additive method (sputter film formation → plating resist formation → plating → plating resist peeling) performed in the following process. (→ sputter film etching).
[0057]
First, as shown in FIG. 4 (i), as a seed metal serving as a plating electrode on the interlayer film 9, a positive type Is formed.
[0058]
Next, as shown in FIG. 4J, an exposure mask 42 having a pattern opening 43a is arranged on the photoresist film 11A, and the photoresist film 11A is exposed. The resist film 11A under the pattern opening 43a of the mask 42 is cured by the exposure light 45, and a part of the resist mask 11 is formed.
[0059]
Next, as shown in FIG. 5K, another pattern opening 43b of the exposure mask 42 is arranged at a predetermined position, and the photoresist film 11A is exposed. By this exposure, the central region of the W-shaped groove 18 which will be a cutting position at the time of singulation is hardened, and another portion of the resist mask 11 is formed. As the exposure mask 42, the same mask may be selectively used as described above, or different masks may be used.
[0060]
When exposing the photoresist film 11A, a mask 42 capable of exposing the pattern openings 43a and 43b at the same time may be used and may be exposed at the same time. Since there is a large difference in the thickness of the substrate and the depth of focus, the portion of the groove 18 and the photoresist film on the chip 3 may not be simultaneously resolved. Therefore, in this case, it is preferable to separately expose the groove 18 and the chip 3 as described above.
[0061]
Next, as shown in FIG. 5 (l), by developing the exposed photoresist film 11A, a resist mask 11 is formed in the cured portion, and Cu is electroplated using the mask as a mask to form a back surface. Since the path for leading the wiring to the 36 side is an inclined surface, plating is easy to be applied, and as shown in FIG. 5 (m), the plating film 12A for forming the wiring is formed well without being disconnected. You.
[0062]
Next, as shown in FIG. 6 (n), after the resist mask 11 is peeled and removed, the sputtered film 10 under the resist mask 11 is removed by wet etching or the like, so that the rearranged wiring 20 is formed. Here, the sputtered film is regarded as a part of the wiring 20, and is not shown in the drawings thereafter.
[0063]
Next, as shown in FIG. 6 (o), a protective film 21 is formed on the entire upper surface including the wiring 20.
[0064]
Here, when the material used for the protective film 21 is significantly different from the material of the resin 4 in physical properties (linear expansion coefficient, Young's modulus, curing shrinkage, etc.), or the groove 18 is sufficiently flattened. If not, as shown in FIG. 12, a protective film 21a may be formed only in the groove 18 before the protective film 21 is formed, and a two-layer structure with the protective film 21 formed thereafter may be adopted. As the protective film 21a, the same material as the resin 4, a photosensitive insulating resin, or the like is used, and is formed only in the groove 18 by a dispense method or a printing method.
[0065]
Next, as shown in FIG. 6 (p), the resin 4 is ground from the back surface 36 to expose the wiring 20 formed at the bottom of the groove 18. Grinding is performed by a grinder or the like for grinding the back surface of the Si wafer.
[0066]
The present embodiment is characterized in that the wiring 20 is ground so that the wiring 20 is exposed at the bottom portion of the groove 18, and the exposed portion 20 a of the exposed wiring 20 is connected to the wiring 22 on the back surface 36 side thereafter. .
[0067]
In this case, the area of the exposed portion 20a is preferably as large as possible. Therefore, in order to widen the exposed portion 20a, the chip 3 may be ground to such an extent that the back surface of the chip 3 is slightly ground. However, if the shaving is excessive, the wiring 20 at the bottom of the groove will be broken. Therefore, as long as D> T (that is, the groove is deeper than the chip thickness) is maintained, the groove 18 may be formed to be shallow in advance.
[0068]
Next, as shown in FIG. 6 (q), the wiring 22 serving as an external terminal on the back surface 36 side is formed. This wiring is formed by, for example, a semi-additive method (not shown here) similarly to the wiring 20.
[0069]
Next, as shown in FIG. 6 (r), a protective film 25 is formed in a predetermined pattern on the wiring 22 on the back surface 36 in a predetermined pattern in the same manner as the interlayer film 9 on the front surface 35 so as to open a portion to be the external terminal 23. Form. The material of the protective film 25 can be formed by using the above-described photosensitive insulating resin or the like and performing the same process as the interlayer film 9. Reference numeral 37 denotes a cutting line for singulation, and a semiconductor device 50 having external terminals 16 and 23 on both surfaces is obtained as shown in FIG. 1 by cutting at this position and singulation. . Then, since the portion other than the electrode surface of the chip 3 is protected by the continuous resin 4, the chip is protected in handling after chip formation, handling is easy, and the derived wiring 20 is separated from the chip 3 by the resin 4. Protected while insulated.
[0070]
Also, since only the non-defective chips 3 are selected and rearranged, a pseudo wafer 29 in which all the non-defective chips are formed of non-defective chips can be obtained. Yes, external terminals can be formed at low cost, and when the chip 3 is cut out from the pseudo wafer 29, the resin 4 on the side surface 31 is cut off, so that damage to the chip 3 body (distortion, burrs, cracks, etc.) is prevented. It can be cut easily with holding down.
[0071]
Moreover, since the side surface 31 and the back surface 36 of the chip 3 are covered with the resin 4, Ni electroless plating can be performed.
[0072]
As described above, the process of forming the external terminals for each chip 3 on the pseudo wafer 29 has been described with reference to the cross-sectional view. FIG. 7A is a partial plan view, and FIG. FIG. 3 is a schematic diagram also shown as a bottom view thereof, showing the wiring 20 led out between the adjacent chip 3 and the wiring 22 on the back surface 36. The wiring 20 on the 35 side and the wiring 22 on the back surface 36 are shown by solid lines.
[0073]
That is, in order to form an external terminal, the wiring 20 derived from the electrode 5 of the chip 3 is drawn from the electrode 5 arranged on each side of the chip 3 (only one side is shown in FIG. 7). 7, and is drawn to the back surface 36 side along the shape of the W-shaped groove 18 provided in the resin 4 between the chips.
[0074]
As described above, the W-shaped groove 18 is formed in the front surface 35 of the pseudo wafer 29, and the wiring 20 formed in the W-shaped groove 18 derived from the electrode 5 of the chip 3 is connected to the back surface 36 of the pseudo wafer 29. Is ground and exposed, and a part of the wiring 22 connected to the exposed portion 20a is exposed to form the external terminal 23 on the back surface 36 side. The external terminals can be formed on the back surface at a low cost, and the external terminals are formed on both surfaces, so that an MCM having a stacked structure (stack structure) can be realized. In addition, since the external terminals 16 and 23 are located near the side surface of the chip 3, there is an advantage that the chip 3 is hardly affected by distortion or warpage due to thermal stress during mounting.
[0075]
8 to 10 are views showing a typical mounting example of the semiconductor device 50 formed as described above. After forming external terminals in the pseudo wafer stage as described above, the semiconductor device 50 is singulated. This is a mounting example in which the device 50 is mounted on a printed circuit board 39.
[0076]
FIG. 8 shows an example. Since the semiconductor device 50 according to the present embodiment has the external terminals 16 on the front surface 35 side and the external terminals 23 on the rear surface 36 side, wiring such as wire bonding is applied to the electrode terminals 40 of the printed circuit board 39. The connection can be made face-up via the solder bumps 33 or the like without the need. In this case, the external terminals 16 and 23 of the semiconductor device 50 are arranged to face each other, but the external terminals 23 on the back side may be arranged in accordance with the positions of the electrode terminals 40 of the printed circuit board 39. That is, unlike the electrode surface side, there is no positional restriction such as avoiding the active area of the chip 3 on the rear surface side, so that the degree of freedom in design is large and external terminals can be formed at arbitrary positions.
[0077]
FIG. 9 shows another example of mounting, in which the semiconductor device 50 has a laminated structure like FIG. 2 described above, and a plurality of (two or more layers in FIG. 9 may be used) semiconductor devices 50 are printed circuit boards 39. It is in the state of being mounted on. In this way, in the laminated structure, since the external terminals 16 on the front surface 35 and the external terminals 23 on the rear surface 36 are arranged to face each other, they can be easily connected via the solder bumps 33 and the like. Also in this case, the external terminals 23 on the back surface 36 side of the semiconductor device 50 that are in contact with the printed circuit board 39 can be arranged in accordance with the positions of the electrodes 40 on the printed circuit board 39.
[0078]
FIG. 10 shows still another mounting example, in which semiconductor devices 50 are arranged in parallel as shown in the figure, and wiring between adjacent semiconductor devices 50 is connected to wiring 20 led out to the back surface 36 side. May be connected. In this case as well, the external terminals on the back surface 36 connected to the printed circuit board 39 can be provided in accordance with the positions of the electrodes 40 on the printed circuit board 39, and the number of semiconductor devices arranged in parallel is not limited to this. The above can be arranged.
[0079]
According to the present embodiment, since at least the side surface 31 and the back surface 36 other than the front surface 35 of the chip 3 are covered with the resin 4, the chip 3 is protected at the time of handling after chipping, and handling is facilitated. Since the chip 3 can be cut into individual pieces by cutting at the position of the resin 4, the chip 3 is not damaged (crack, distortion, or the like) at the time of cutting.
[0080]
In this structure, since the external terminals of the chip 3 are formed on at least the rear surface 36 of the front surface 35 and the rear surface 36, at the time of mounting the chip 3 on the mounting board 39, at least via the external terminals 23 of the rear surface 36. Connection is possible, and the external terminal 23 can be provided at an arbitrary position on the back surface 36, so that the degree of freedom of design is large. Of the chip 3 on the electrode surface side can be reduced.
[0081]
In this case, since the side surface 31 and the back surface 36 are covered with the resin 4, the electrode 5 on the front surface 35 is connected to the outside of the back surface 36 through the side surface or inside of the resin 4 while insulating and separating the chip 3 with the resin 4. The wiring 20 for leading to the terminal 23 can be formed, and the wiring 20 can be protected by the resin 4.
[0082]
Further, by providing the external terminals 16 and 23 on both surfaces of the front surface 35 and the rear surface 36, it is possible to laminate the plurality of chips 3 and connect the external terminals 16 and 23, and to connect the adjacent terminals at the pseudo wafer stage. Since connection between them is also possible, it is easy to manufacture not only a laminated structure but also an MCM having a flat structure. As described above, since the chip 3 having the external terminals 16 and 23 on both the front and back surfaces is collectively manufactured at the time of manufacturing the pseudo wafer, the semiconductor device 50 having more excellent connectivity while maintaining the excellent features of the prior application is reduced. It can be manufactured at cost. The structure in which the external terminals are provided on the back surface is also applicable to Patent Documents 1 and 2 as well as Patent Document 3 described above.
[0083]
Embodiment 2
FIG. 11 shows a process for fabricating a semiconductor device according to the present embodiment, in which a W-shaped groove 18 is formed by nesting, unlike the dicer of the first embodiment.
[0084]
FIG. 11A shows a state in which an adhesive sheet 2 whose adhesive strength is reduced by ultraviolet irradiation is attached to a quartz substrate 1 by the same process as the above-described prior application according to FIG. 25, and FIG. b) shows a state in which the surfaces (electrode surfaces) of the plurality of non-defective bare chips 3 are attached to the adhesive sheet 2 with the surfaces facing downward.
[0085]
Next, as shown in FIG. 11C, a nest 30 having a W-shaped cross section is arranged between the chips and attached to the adhesive sheet 2. In this case, it is important that the relationship between the height D of the nest 30 and the thickness T of the chip 3 satisfies D> T, and it is desirable that the protrusion of the nest 30 has an obtuse angle of more than 45 degrees.
[0086]
Next, as shown in FIG. 11D, an organic insulating resin, for example, an epoxy resin 4 is uniformly applied on the chip 3 by spin coating or printing.
[0087]
Next, as shown in FIG. 11 (e), ultraviolet rays L are irradiated from the back side of the quartz substrate 1 to weaken the adhesive force of the adhesive sheet 2, and a plurality of chips 3 whose side and back surfaces are fixed with resin 4 are removed. The arranged pseudo wafer 29 is separated from the quartz substrate 1.
[0088]
Through the above-described process, a pseudo wafer 29 as shown in FIG. 11 (f) (the pseudo wafer in FIG. 11 (e) is turned over) can be obtained. A pseudo wafer 29 having the same shape as that of (f) can be formed.
[0089]
Therefore, the semiconductor device having the same shape and function as the first embodiment can be obtained by performing the same processes as the first embodiment thereafter.
[0090]
According to the present embodiment, although a W-shaped groove similar to that of the first embodiment is formed, only the forming method is different, and the other manufacturing processes are performed in the same manner, and a completely similar semiconductor device is formed. Therefore, it is possible to obtain a semiconductor device having the same functions as the first embodiment and exhibiting the same effects.
[0091]
Embodiment 3
FIG. 13 shows a semiconductor device (corresponding to FIG. 1) 50A according to the present embodiment. This semiconductor device 50A is different from the semiconductor device 50 of the first embodiment (see FIG. 1) only in that the wiring 20 derived from the electrode 5 of the chip 3 is inclined toward the back surface 36 on the side surface of the chip 3. The other end is connected to the wiring 22 provided on the back surface 36, and the other configuration is the same as that of the first embodiment. This manufacturing process will be described with reference to FIG.
[0092]
FIG. 14A is a view corresponding to FIG. 3F of the first embodiment and FIG. 12F of the second embodiment, and as shown in FIG. Unlike the W-shaped groove, the groove has a trapezoidal shape. Also in this case, the relationship between the depth D of the groove 18 and the thickness T of the chip 3 is D> T. The groove 18 may be formed by cutting, for example, or may be formed by using a nest as in the second embodiment. And since the shape of the groove is trapezoidal, the spacing between adjacent chips can be made smaller than in the case of a W-shape, and efficient chip arrangement is possible. Subsequent processes are performed in the same manner as in the first embodiment.
[0093]
That is, as shown in FIG. 14B (enlarged view of FIG. 14A), the interlayer film 9 is formed in a predetermined pattern so as to open the electrode 5 of the chip 3. As a material of the interlayer film 9, a photosensitive insulating resin or the like is used, and a liquid material may be spin-coated and applied, or a dry fill may be attached with a laminator.
[0094]
Next, as shown in FIG. 14C, the wiring 20 is led out from the electrode 5 of the chip 3 and arranged in the groove 18, and the wiring 20 and the wiring 20 led out from the electrode 5 of the adjacent chip 3 18 so as to be continuous. Of course, this wiring is also formed by the semi-additive method as in FIGS. 4 (h) to 5 (m) described above, but is simply illustrated here.
[0095]
Next, as shown in FIG. 14D, a protective film 21 is formed on the entire upper surface including the wiring 20. As this material, a photosensitive insulating resin or the like is used similarly to the interlayer film 9. In this case, when the flatness between the groove 18 and the other parts cannot be obtained, the groove 18 is first applied by a dispense method or a printing method, as shown in FIG. The whole may be applied.
[0096]
Next, as shown in FIG. 14E, the resin 4 on the rear surface 36 is ground to expose the wiring 20 on the bottom surface of the groove 18. This grinding is performed by a grinder for grinding the back surface of the Si wafer.
[0097]
Next, as shown in FIG. 14F, the wiring 22 on the back surface 36 is formed by connecting to the exposed portion 20a of the wiring 20 exposed on the back surface. This wiring is also performed by the semi-additive method as described above.
[0098]
Next, as shown in FIG. 14G, after forming the protective film 25 on the back surface 36 with the same material as the above-mentioned interlayer film 9, a connection hole 27 with the wiring 20 derived from the electrode 5 is formed in the protective film 21. By forming, the external terminal 16 on the surface 35 side is formed. Further, by forming a connection hole 24 with the wiring 22 provided on the back surface 36 side in the protective film 25, the external terminal 23 on this surface is formed. Such a process can be collectively performed on the pseudo wafer 29.
[0099]
Thereafter, by cutting at the position of the cutting line 37, as shown in FIG. 13, a semiconductor device 50A having the same function as that of the first embodiment and having the external terminals 16 and 23 on both surfaces can be obtained. The semiconductor device 50A has a degree of freedom in designing the arrangement positions of the external terminals, as in the first embodiment, and is mounted on a printed circuit board in one chip as shown in FIG. It can also be mounted in a laminated structure, or as a flat structure as shown in FIG.
[0100]
According to the present embodiment, although the shape of the groove 18 is different from that of the first embodiment, it is possible to obtain a semiconductor device 50A having the same function as the first embodiment and exhibiting the same effect, and Since the distance between the chips 3 can be reduced, the production efficiency can be increased by increasing the arrangement of the chips 3 with respect to the same pseudo wafer 29.
[0101]
Embodiment 4
FIG. 15 shows a semiconductor device (corresponding to FIG. 1) 50B according to the present embodiment. The semiconductor device 50B is different from the semiconductor device of each of the above-described embodiments in that a method for leading a wiring to the back surface 36 side in the resin 4 on the side surface of the chip 3 is through a through-hole vertical through hole. In other respects, the configuration is the same as that of each of the above-described embodiments. However, similarly to the above-described third embodiment, the interval between the chips 3 can be reduced. This manufacturing process will be described with reference to FIG.
[0102]
FIG. 16A shows a state in which the interlayer film 9 is formed on the pseudo wafer 29 in the same state as the enlarged view of FIG.
[0103]
Next, as shown in FIG. 16B, in the resin 4 on the side surface of the chip 3, a blind hole 32 for leading out the wiring 20 to the back surface 36 side is intermittently formed for each chip 3 (FIG. 18). reference). The relationship between the depth D of the blind hole 32 and the thickness T of the chip 3 is D> T. The blind hole 32 can be formed by, for example, cutting with a laser or a drill.
[0104]
Next, as shown in FIG. 16C, the wiring 20 led out from the electrode of the chip 3 is guided to the back surface 36 side through the blind hole 32. This wiring is also formed through a semi-additive process (see FIGS. 4 (h) to 5 (n)). By providing a sufficient sputter film uniformly in the blind hole 32, the wiring for the wiring is formed. The blind holes 32 can be embedded by metal plating. Here, a detailed wiring process is not shown.
[0105]
Next, as shown in FIG. 16D, a protective film 21 is formed on the entire surface including the wiring 20 on the upper surface of the chip 3. As the material of the protective film 21, a photosensitive insulating resin is used similarly to the interlayer film 9, and is applied by a dispense method or a printing method.
[0106]
Next, as shown in FIG. 17E, the resin 4 on the rear surface 36 is ground to form an exposed portion 20a of the wiring 20 led to the blind hole 32. This grinding is performed by a grinder or the like for grinding the back surface of the Si wafer.
[0107]
Next, as shown in FIG. 17F, the wiring 22 on the back surface 36 is formed by connecting to the exposed portion 20a of the wiring 20 exposed on the back surface 36. This is also performed, for example, by the semi-additive method as described above.
[0108]
Next, as shown in FIG. 17G, after the protective film 25 on the back surface 36 is formed using the same material as the interlayer film 9, the wiring derived from the electrode 5 is formed on the protective film 21 on the front surface 35. The external terminal 16 on the front surface 35 side is formed by forming the connection hole 27 with. Further, by forming a connection hole 24 with the wiring 22 connected to the wiring 20 in the protective film 25, the external terminal 23 on the back surface 36 side is formed. The openings such as the external terminals 16 and 23 can be formed by photolithography on the protective films 21 and 25 made of a photosensitive insulating resin. Such a process can be performed at once in the manufacturing process of the pseudo wafer 29.
[0109]
Thereafter, by cutting at the position of the cutting line 37, as shown in FIG. 15, a semiconductor device 50B having the same function as that of the first embodiment and having the external terminals 16 and 23 on both surfaces can be obtained. The semiconductor device 50B has a degree of freedom in designing the positions of the external terminals, as in the first embodiment, and is mounted on a printed circuit board as a single chip as shown in FIG. 8 and a laminated structure as shown in FIG. , And can be mounted in a flat structure as shown in FIG.
[0110]
FIG. 18 is a schematic diagram showing a main part in a plan view (only wiring is shown by solid lines). The feature of this embodiment is that it is formed along the outer surface of the chip 3 in the first to third embodiments. Unlike linear grooves. That is, the wiring 20 is guided to the back surface 36 via the blind holes 32 (indicated by broken lines) formed intermittently. Therefore, the strength of the resin 4 on the side surface of the chip 3 can be maintained, and by maintaining the strength in this manner, there is an advantage such as a modified example (see FIG. 19) described later.
[0111]
FIG. 19A is a schematic diagram showing a modification of the fourth embodiment, and shows a state similar to FIG. 16B.
[0112]
FIG. 19B shows a grinding step for the back surface 36 side. That is, as described above, since the blind holes 32 are formed intermittently, the strength of the resin 4 between the chips can be maintained, so that the back surface 36 can be ground.
[0113]
Therefore, next, as shown in FIG. 19C, the wiring 20 on the front surface 35 and the wiring 22 on the rear surface 36 are formed in the same plating step by using the semi-additive method in the same manner as the above-described respective wirings. can do. Since the blind hole 32 is formed into a through-hole as shown in FIG. 19B by the above-described grinding, the simultaneous plating on both sides facilitates the filling of the through-hole by plating.
[0114]
Next, similarly to the fourth embodiment, through a required process, a state as shown in FIG. 19D can be formed. Accordingly, the manufacturing process is simplified, and the semiconductor device 50B having the same structure and function as in the fourth embodiment can be collectively manufactured at the pseudo wafer stage.
[0115]
According to this embodiment, the method of guiding the wiring 20 derived from the electrode 5 of the chip 3 to the back surface 36 is different from the other embodiments, but has the same function as the other embodiments, and In addition to being able to exhibit the effect, the interval between adjacent chips 3 is reduced, and the production efficiency can be improved by increasing the arrangement of the chips 3, and the strength of the resin 4 between the chips is maintained, so that simultaneous plating on the front and back surfaces can be performed. And the productivity can be further improved by simplifying the manufacturing process.
[0116]
FIG. 20 is a diagram showing a modified example common to each of the above-described embodiments. The description will be made with reference to the structure of the third embodiment.
[0117]
That is, FIG. 20A is a state similar to the state before grinding the back surface (FIG. 14D) in the third embodiment, but the difference between this example and the other is that each embodiment described above is different. That is, a chip 3A thicker than the thickness of the chip 3 is arranged on the pseudo wafer 29. The depth D of the groove 18 is the same as that of the third embodiment, but the thickness T of the chip 3A is1Is greater than the depth D of the groove 18 and D <T1It has become.
[0118]
As shown in FIG. 20B, the back surface 36 of the pseudo wafer 29 in the state of FIG. 20A is ground until most of the chips 3A are removed, thereby forming an exposed portion 20a on the bottom surface of the wiring 20. I do. By this grinding, the thickness of the chip 3A may be smaller than the thickness of the chip 3 in each of the above-described embodiments, but does not affect the semiconductor elements formed on the Si wafer. This allows a thinner semiconductor device to be formed, and is particularly suitable for an MCM having a laminated structure.
[0119]
Next, as shown in FIG. 20C, after the back surface of the ground chip 3A is covered with the interlayer insulating film 14, the same process as in the third embodiment is performed. That is, the wiring 22 on the back surface 36 is connected to the exposed portion 20a of the wiring 20 exposed on the back surface side, and after forming the protective film 25 on the back surface 36, as shown in FIG. The external terminal 16 on the front surface 35 side is formed by forming the connection hole 27 of the above, and the external terminal 23 is formed on the protective film 25 by forming the connection hole 24 with the wiring 22 on the rear surface 36. As a result, semiconductor devices having external terminals 16 and 23 on both surfaces can be collectively formed at the pseudo wafer stage.
[0120]
FIG. 21 is a diagram showing another modification, which is also common to the other embodiments except the fourth embodiment. This example will also be described with reference to a diagram in which a chip 3A similar to that of the above-described modified example (FIG. 20) is arranged according to the structure of Embodiment 3. Not only in the above-described modified example (FIG. 20), even if the wiring 20 in the groove 18 is locally disconnected due to excessive grinding of the back surface 36, the connection of the disconnected portion can be maintained by the method of this example. .
[0121]
That is, as shown in FIG. 21A, after forming the wiring 20 led out in the groove 18, a conductive material such as a paste 47 is locally disposed on the wiring 20 at the bottom of the groove 18. Then, a protective film 21 is formed thereon as shown in FIG.
[0122]
Thereafter, as in the modification shown in FIG. 20, the back surface 36 is partially removed by grinding. However, as shown in FIG. 21C, the wiring 20 to be exposed due to excessive grinding is disconnected, and Even if the portion 20a is divided, if the local disconnection is such that the strength of the entire pseudo wafer 29 can be maintained, the connection of the disconnected portion can be maintained by the paste 47 without breaking the pseudo wafer 29.
[0123]
Therefore, as shown in FIG. 21D, after the back surface of the chip 3A exposed by the grinding is covered with the interlayer insulating film 14, the same process as in FIG. 20 described above is performed, and as shown in FIG. The semiconductor device having the external terminals 16 and 23 can be collectively formed at the pseudo wafer stage.
[0124]
FIG. 22 is a diagram showing another modification, which is also common to the other embodiments except the fourth embodiment. This example will also be described with reference to a diagram in which a chip 3A similar to the above-described modified example is arranged according to the structure of the third embodiment. However, this example is similar to the above-described modified example (FIG. 21) in that a paste is previously prepared for disconnection. This is a processing method to be performed when a wire is broken due to excessive grinding instead of disposing.
[0125]
That is, by grinding and removing the back surface 36 side from the state of FIG. 22 (a), as shown in FIG. 22 (b), when the disconnection portion 20b occurs in the wiring at the bottom of the groove 18 due to excessive grinding. As shown in FIG. 22C, a hole 34 is made in the disconnection portion 20b by, for example, a drill. The hole 34 exposes the cross-sectional area of the wiring 20 as large as possible on the inner wall surface of the hole 34, and it is better that it is shallow. After forming the holes 34, the back surface of the chip 3A exposed by the grinding is covered with the interlayer insulating film 14. FIG. 23 is a bottom view (a hole is exaggerated) showing a state where a hole 34 is formed.
[0126]
Next, as shown in FIG. 22D, by forming the wiring 22 on the back surface 36 by a semi-additive method, the holes 34 formed in the disconnection portions 20b are simultaneously filled with the sputtered film and the plating film. Wiring 20 is connected.
[0127]
Next, through a predetermined process, a semiconductor device having external terminals 16 and 23 on both sides is formed as shown in FIG. 22E, and a series of processes including the above-described processes are collectively performed at a pseudo wafer stage. You can do it.
[0128]
Further, in the semiconductor device of each of the above-described embodiments and modifications, the external terminals may be provided only on the back surface as shown in FIG. This example will be described with the structure of the first embodiment (see FIG. 1).
[0129]
As shown in the figure, in the semiconductor device 50c, external terminals derived from the electrodes 5 of the chip 3 are not provided on the front surface 35 side, but are provided only on the rear surface 36 side. Accordingly, the external terminals 23 are formed by the same manufacturing process as that of FIG.
[0130]
In FIG. 24, the external terminals 23 are also in exactly the same position as in FIG. 1, but they can be arranged at any position, for example, matching the positions of the external terminals on the mounting board, so that the degree of freedom of design is large, and The external terminals can be arranged at positions where thermal stress at the time can be reduced and the influence on the chip can be minimized, and can be mounted face-up on a printed circuit board.
[0131]
The above embodiments can be variously modified based on the technical idea of the present invention.
[0132]
For example, the method of guiding the wiring 20 derived from the electrode 5 on the front surface 35 of the chip 3 to the back surface 36 side is as follows: the W-shaped groove of the first embodiment, the trapezoidal groove of the third embodiment, and the blind hole of the fourth embodiment. The method is not limited to this, and any other appropriate method may be used. The method of forming these grooves 18 may be a method other than dicing and nesting.
[0133]
The method of forming the wirings 20 and 22 is not limited to plating, and may be formed by physical vapor deposition or screen printing. Further, the connection between the external terminals of the laminated structure and the connection of the external terminals at the time of mounting on a printed circuit board are not limited to the solder bumps, and an ACF (anisotropic conductive film) may be used.
[0134]
Forming the external terminals of the chip 3 on at least the back surface of the front and back surfaces of the chip can be applied to chip components other than the semiconductor chip, such as light emitting diodes or photodiodes.
[0135]
Operation and Effect of the Invention
As described above, according to the present invention, since a plurality of chip components are formed through a pseudo wafer process in which at least the side surfaces other than the electrode surfaces and the other surface are covered with a protective substance, handling after chip formation Sometimes chip components are protected, handling becomes easier, and the chip components can be damaged (cracks, distortions, etc.) during cutting because they can be cut into individual chip components by cutting at the position of the protective substance. There is no.
[0136]
At the time of mounting this chip component on a mounting board, connection can be made via at least external terminals on the other surface, and external terminals can be provided at arbitrary positions on the other surface. Since the degree of heat is large and mounting is possible via the external terminals, the influence of thermal stress during mounting on one surface side (electrode surface side) of the chip component can be reduced.
[0137]
In this case, it is possible to form wiring for leading the electrode on one surface to the external terminal on the other surface through the side surface or the inside of the protection material while insulating and separating the chip component by the protective material, In addition, the wiring can be protected by a protective substance.
[0138]
Then, even if the chip device is singulated and the multi-chip module having a stacked structure of a plurality of chip components or a parallel arrangement is used, the connection between the plurality of chip components is made external to these chip components. It can be done through terminals.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing a semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view illustrating a stacked example of the semiconductor device.
FIG. 3 is a schematic cross-sectional view showing a manufacturing process of the semiconductor device.
FIG. 4 is a schematic cross-sectional view illustrating a manufacturing process of the semiconductor device.
FIG. 5 is a schematic cross-sectional view showing a manufacturing process of the semiconductor device.
FIG. 6 is a schematic cross-sectional view showing a manufacturing process of the semiconductor device.
FIGS. 7A and 7B show a main part of the semiconductor device, wherein FIG. 7A is a schematic sectional view and FIG. 7B is a schematic bottom view.
FIG. 8 is a schematic sectional view showing a mounting example of the semiconductor device.
FIG. 9 is a schematic cross-sectional view showing a mounting example of the semiconductor device.
FIG. 10 is a schematic cross-sectional view showing a mounting example of the semiconductor device.
FIG. 11 is a schematic sectional view showing a manufacturing process of the semiconductor device according to Embodiment 2 of the present invention;
FIG. 12 is a schematic sectional view showing a modification of the first and second embodiments.
FIG. 13 is a schematic sectional view showing a semiconductor device according to a third embodiment of the present invention.
FIG. 14 is a schematic cross-sectional view showing a manufacturing process of the semiconductor device.
FIG. 15 is a schematic sectional view showing a semiconductor device according to a fourth embodiment of the present invention.
FIG. 16 is a schematic cross-sectional view showing a manufacturing process of the semiconductor device.
FIG. 17 is a schematic cross-sectional view showing a manufacturing process of the semiconductor device.
FIG. 18 is a schematic plan view showing a main part of the semiconductor device.
FIG. 19 is a schematic cross-sectional view showing a manufacturing process of a modification of the fourth embodiment.
FIG. 20 is a schematic cross-sectional view showing a manufacturing process of the modification shown in the structure of the third embodiment.
FIG. 21 is a schematic sectional view showing a manufacturing process of another modified example shown in the structure of Embodiment 3;
FIG. 22 is a schematic cross-sectional view showing a manufacturing process of still another modification shown in the structure of Embodiment 3;
FIG. 23 is a schematic bottom view showing a main part in the state of FIG. 22 (c).
FIG. 24 is a schematic cross-sectional view of a modification shown in the structure of the first embodiment.
FIG. 25 is a schematic cross-sectional view showing a manufacturing process of a semiconductor device according to a conventional example.
FIG. 26 is a schematic cross-sectional view showing a manufacturing process of the semiconductor device.
FIG. 27 is a schematic cross-sectional view showing a manufacturing process of the semiconductor device.
FIG. 28 is a schematic sectional view showing a mounting example of the semiconductor device.
FIG. 29 is a schematic cross-sectional view showing a mounting example of the semiconductor device.
[Explanation of symbols]
1: Quartz substrate, 2: Adhesive sheet, 3, 3A: Good bare chip (semiconductor chip),
4 ... Resin, 4a ... Protective film, 5 ... Electrode, 24, 27 ... Connection hole, 7 ... SiO2film,
8 passivation film, 9, 14 interlayer insulating film, 10 sputtered film,
11: resist mask, 11A: photoresist film, 12A: plating film,
20, 22 ... wiring, 21, 25, 38 ... protective film, 16, 23 ... external terminal,
18 groove, 20a exposed part, 20b disconnected part, 29 pseudo wafer,
30 ... nesting, 31 ... outer surface, 32, 34 ... hole, 33 ... solder bump,
35 ... front surface, 36 ... back surface, 37 ... cutting line, 39 ... printed circuit board, 40 ... electrode,
42 ... mask, 43a, 43b ... opening, 45 ... exposure light, 47 ... paste,
50: semiconductor device, L: ultraviolet ray, T: thickness of semiconductor chip, D: depth of groove

Claims (20)

一方の面側に電極が設けられ、この電極面以外の少なくとも側面及び他方の面が保護物質で覆われているチップ部品を有する半導体装置において、前記チップ部品の前記電極の外部端子が、前記一方の面とこれとは反対側の他方の面とのうち少なくとも前記他方の面に形成されていることを特徴とする、半導体装置。In a semiconductor device having a chip component in which an electrode is provided on one surface side and at least a side surface other than the electrode surface and the other surface are covered with a protective substance, an external terminal of the electrode of the chip component is the one terminal. A semiconductor device, which is formed on at least the other surface of the surface and the other surface on the opposite side. 前記側面の保護物質の外側面に、前記一方の面の外部端子と、他方の面の外部端子とを接続するための導電体が形成されている、請求項1に記載した半導体装置。The semiconductor device according to claim 1, wherein a conductor for connecting the external terminal on the one surface and the external terminal on the other surface is formed on an outer surface of the protective material on the side surface. 前記導電体が、前記保護物質の傾斜外側面又は垂直貫通孔に形成されている、請求項2に記載した半導体装置。The semiconductor device according to claim 2, wherein the conductor is formed on an inclined outer surface or a vertical through hole of the protective material. 前記一方の面に前記外部端子を形成するための絶縁性保護膜下において、これとは異なる絶縁物質が前記外側面の前記導電体上に設けられている、請求項2に記載した半導体装置。3. The semiconductor device according to claim 2, wherein an insulating material different from the insulating protective film for forming the external terminal on the one surface is provided on the conductor on the outer surface. 前記一方の面に前記外部端子を形成するための絶縁性保護膜下において、導電性物質が前記外側面の前記導電体上に接して設けられている、請求項2に記載した半導体装置。3. The semiconductor device according to claim 2, wherein a conductive material is provided in contact with the conductor on the outer surface under the insulating protective film for forming the external terminal on the one surface. 4. 一方の面側に電極が設けられ、この電極面以外の少なくとも側面及び他方の面が保護物質で覆われたチップ部品の複数個が、前記保護物質
によって一体化されてなる疑似ウェーハを作製する工程と、
前記疑似ウェーハにおける前記チップ部品の前記電極の外部端子を前記一方の面とこれとは反対側の他方の面とのうち少なくとも前記他方の面に形成する工程と、
前記複数個のチップ部品間で少なくとも前記保護物質を切断する工程と
を有することを特徴とする、半導体装置の製造方法。
A step of producing a pseudo wafer in which a plurality of chip components provided with electrodes on one surface side and at least the side surfaces other than the electrode surfaces and the other surface covered with a protective substance are integrated by the protective substance; When,
Forming external terminals of the electrodes of the chip components in the pseudo wafer on at least the other surface of the one surface and the other surface opposite to the one surface,
Cutting at least the protective material between the plurality of chip components.
前記複数個のチップ部品間において、前記側面の保護物質に凹部を形成し、この面上に前記一方の面の外部端子と他方の面の外部端子とを接続するための導電体を形成した後、前記他方の面側から少なくとも前記保護物質を部分的に除去してこの除去面に前記導電体を露出させ、この露出した導電体に接続した前記他方の面の前記外部端子を形成する、請求項6に記載した半導体装置の製造方法。A recess is formed in the protective material on the side surface between the plurality of chip components, and a conductor for connecting the external terminal on one surface and the external terminal on the other surface is formed on this surface. At least partially removing the protective material from the other surface side to expose the conductor on the removed surface, and forming the external terminal on the other surface connected to the exposed conductor. Item 7. A method for manufacturing a semiconductor device according to Item 6. 前記凹部を前記チップ部品の厚みよりも深く形成する、請求項7に記載した半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 7, wherein the recess is formed deeper than a thickness of the chip component. 前記保護物質の部分的除去によって、傾斜面又は垂直面を呈した前記凹部の面上に前記導電体を残す、請求項7に記載した半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 7, wherein the conductor is left on a surface of the concave portion having an inclined surface or a vertical surface by partially removing the protective material. 前記一方の面に前記外部端子を形成するための絶縁性保護膜下において、これとは異なる絶縁物質を前記外側面の前記導電体上に設ける、請求項7に記載した半導体装置の製造方法。8. The method according to claim 7, wherein a different insulating material is provided on the conductor on the outer surface under the insulating protective film for forming the external terminal on the one surface. 前記一方の面に前記外部端子を形成するための絶縁性保護膜下において、導電性物質を前記外側面の前記導電体上に接して設ける、請求項7に記載した半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 7, wherein a conductive substance is provided in contact with the outer surface of the conductor under the insulating protective film for forming the external terminal on the one surface. 特性測定により良品と判定された前記チップ部品を有する前記疑似ウェーハを作製する、請求項6に記載した半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 6, wherein the pseudo wafer having the chip component determined to be non-defective by characteristic measurement is manufactured. 前記疑似ウェーハの状態において前記チップ部品の特性測定を行い、良品のチップ部品又はチップ状電子部品を選択する、請求項6に記載した半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 6, wherein the characteristic of the chip component is measured in the state of the pseudo wafer, and a good chip component or a chip-shaped electronic component is selected. 一方の面側に電極が設けられ、この電極面以外の少なくとも側面及び他方の面が保護物質で覆われたチップ部品の複数個が、前記保護物質によって一体化されてなる疑似ウェーハであって、前記チップ部品の前記電極の外部端子が前記一方の面とこれとは反対側の他方の面とのうち少なくとも前記他方の面に形成されている、疑似ウェーハ。An electrode is provided on one surface side, a plurality of chip components at least side surfaces other than this electrode surface and the other surface are covered with a protective material, a pseudo wafer integrated with the protective material, A pseudo wafer, wherein external terminals of the electrodes of the chip component are formed on at least the other surface of the one surface and the other surface opposite to the one surface. 請求項2〜5のいずれか1項に記載した半導体装置を製造するのに用いられる、請求項14に記載した疑似ウェーハ。The pseudo wafer according to claim 14, which is used for manufacturing the semiconductor device according to any one of claims 2 to 5. 一方の面側に電極が設けられ、この電極面以外の少なくとも側面及び他方の面が保護物質で覆われたチップ部品の複数個が、前記保護物質によって一体化されてなる疑似ウェーハの製造方法において、前記疑似ウェーハにおける前記チップ部品の前記電極の外部端子を前記一方の面とこれとは反対側の他方の面とのうち少なくとも前記他方の面に形成する工程を有することを特徴とする、疑似ウェーハの製造方法。An electrode is provided on one surface side, and a plurality of chip components in which at least a side surface other than the electrode surface and the other surface are covered with a protective material, a method of manufacturing a pseudo wafer integrated with the protective material. Forming the external terminals of the electrodes of the chip components in the pseudo wafer on at least the other surface of the one surface and the other surface opposite to the one surface. Wafer manufacturing method. 請求項7〜13のいずれか1項に記載した半導体装置の製造方法を適用する、請求項16に記載した疑似ウェーハの製造方法。A method for manufacturing a pseudo wafer according to claim 16, wherein the method for manufacturing a semiconductor device according to any one of claims 7 to 13 is applied. 請求項1〜5のいずれか1項に記載した半導体装置によって構成され、この半導体装置が有する複数の前記チップ部品間が前記外部端子を介して互いに接続されている、マルチチップモジュール。A multi-chip module configured by the semiconductor device according to claim 1, wherein the plurality of chip components included in the semiconductor device are connected to each other via the external terminal. 前記複数のチップ部品を接続するための前記外部端子が、一方のチップ部品の前記一方の面側と、他方のチップ部品の前記他方の面側にそれぞれ形成されている、請求項18に記載したマルチチップモジュール。19. The external terminal according to claim 18, wherein the external terminals for connecting the plurality of chip components are formed on the one surface side of one chip component and the other surface side of the other chip component, respectively. Multi-chip module. 前記複数のチップ部品を接続するための前記外部端子が、前記一方の面側又は前記他方の面側に形成されている、請求項18に記載したマルチチップモジュール。19. The multi-chip module according to claim 18, wherein the external terminals for connecting the plurality of chip components are formed on the one surface side or the other surface side.
JP2003138136A 2003-05-16 2003-05-16 Semiconductor device and its manufacturing method, false wafer and its manufacturing method, and multi-chip module Pending JP2004342862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138136A JP2004342862A (en) 2003-05-16 2003-05-16 Semiconductor device and its manufacturing method, false wafer and its manufacturing method, and multi-chip module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138136A JP2004342862A (en) 2003-05-16 2003-05-16 Semiconductor device and its manufacturing method, false wafer and its manufacturing method, and multi-chip module

Publications (1)

Publication Number Publication Date
JP2004342862A true JP2004342862A (en) 2004-12-02

Family

ID=33527595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138136A Pending JP2004342862A (en) 2003-05-16 2003-05-16 Semiconductor device and its manufacturing method, false wafer and its manufacturing method, and multi-chip module

Country Status (1)

Country Link
JP (1) JP2004342862A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199129A (en) * 2009-02-23 2010-09-09 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same, and electronic apparatus
US7923291B2 (en) 2008-07-28 2011-04-12 Samsung Electronics Co., Ltd. Method of fabricating electronic device having stacked chips
JP2011524647A (en) * 2008-06-16 2011-09-01 テセラ・リサーチ・リミテッド・ライアビリティ・カンパニー Edge stacking at wafer level
JP2012134231A (en) * 2010-12-20 2012-07-12 Disco Abrasive Syst Ltd Multilayer device manufacturing method and multi layer device
JP2012248583A (en) * 2011-05-25 2012-12-13 Jjtech Co Ltd Manufacturing method of semiconductor device, semiconductor device and manufacturing method of intermediate plate
TWI394272B (en) * 2010-05-17 2013-04-21
US8883562B2 (en) 2007-07-27 2014-11-11 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
US8999810B2 (en) 2006-10-10 2015-04-07 Tessera, Inc. Method of making a stacked microelectronic package
US9048234B2 (en) 2006-10-10 2015-06-02 Tessera, Inc. Off-chip vias in stacked chips

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999810B2 (en) 2006-10-10 2015-04-07 Tessera, Inc. Method of making a stacked microelectronic package
US9048234B2 (en) 2006-10-10 2015-06-02 Tessera, Inc. Off-chip vias in stacked chips
US9378967B2 (en) 2006-10-10 2016-06-28 Tessera, Inc. Method of making a stacked microelectronic package
US8883562B2 (en) 2007-07-27 2014-11-11 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
JP2011524647A (en) * 2008-06-16 2011-09-01 テセラ・リサーチ・リミテッド・ライアビリティ・カンパニー Edge stacking at wafer level
US8680662B2 (en) 2008-06-16 2014-03-25 Tessera, Inc. Wafer level edge stacking
US7923291B2 (en) 2008-07-28 2011-04-12 Samsung Electronics Co., Ltd. Method of fabricating electronic device having stacked chips
JP2010199129A (en) * 2009-02-23 2010-09-09 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same, and electronic apparatus
US8450853B2 (en) 2009-02-23 2013-05-28 Shinko Electric Industries Co., Ltd. Semiconductor device and a method of manufacturing the same, and an electronic device
TWI394272B (en) * 2010-05-17 2013-04-21
JP2012134231A (en) * 2010-12-20 2012-07-12 Disco Abrasive Syst Ltd Multilayer device manufacturing method and multi layer device
JP2012248583A (en) * 2011-05-25 2012-12-13 Jjtech Co Ltd Manufacturing method of semiconductor device, semiconductor device and manufacturing method of intermediate plate

Similar Documents

Publication Publication Date Title
US8178964B2 (en) Semiconductor device package with die receiving through-hole and dual build-up layers over both side-surfaces for WLP and method of the same
TW577160B (en) Semiconductor device and manufacturing method thereof
JP3918681B2 (en) Semiconductor device
US7812434B2 (en) Wafer level package with die receiving through-hole and method of the same
US7459781B2 (en) Fan out type wafer level package structure and method of the same
KR100841499B1 (en) Semiconductor device and manufacturing method thereof
JP2005033141A (en) Semiconductor device, its manufacturing method, false wafer, its manufacturing method, and packaging structure of semiconductor device
JP2008244437A (en) Image sensor package having die receiving opening and method thereof
KR20080106082A (en) Cmos image sensor chip scale package with die receiving opening and method of the same
TWI409923B (en) Substrate structure with die embedded inside and dual build-up layers over both side surfaces and method of the same
JP2008160084A (en) Wafer level package with die storing cavity and its method
JP2002368160A (en) Wafer level package and manufacturing method therefor
JP3651346B2 (en) Semiconductor device and manufacturing method thereof
JP2003298005A (en) Semiconductor device and method of manufacturing thereof
US6955944B2 (en) Fabrication method for a semiconductor CSP type package
JP2004214543A (en) Semiconductor device and manufacturing method thereof
TWI567894B (en) Chip package
JP2004047931A (en) Method for forming electrode of circuit element and chip package and multilayer substrate formed by using the method
JP2004342862A (en) Semiconductor device and its manufacturing method, false wafer and its manufacturing method, and multi-chip module
US6432748B1 (en) Substrate structure for semiconductor package and manufacturing method thereof
JP4056360B2 (en) Semiconductor device and manufacturing method thereof
JP4054672B2 (en) Manufacturing method of semiconductor device
JP2006100666A (en) Semiconductor device and manufacturing method thereof
JP7404665B2 (en) Flip chip package, flip chip package substrate and flip chip package manufacturing method
KR101490799B1 (en) Wafer level package structure, LED module using the same and method for manufacturing thereof