JP2004342412A - Power generation method and device using organic substance - Google Patents

Power generation method and device using organic substance Download PDF

Info

Publication number
JP2004342412A
JP2004342412A JP2003136164A JP2003136164A JP2004342412A JP 2004342412 A JP2004342412 A JP 2004342412A JP 2003136164 A JP2003136164 A JP 2003136164A JP 2003136164 A JP2003136164 A JP 2003136164A JP 2004342412 A JP2004342412 A JP 2004342412A
Authority
JP
Japan
Prior art keywords
cathode
anode
electrolyte membrane
air
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2003136164A
Other languages
Japanese (ja)
Inventor
Tatsuo Shimomura
達夫 下村
Hiroshi Yokota
洋 横田
Hiroshi Yakuwa
浩 八鍬
Akiko Miya
晶子 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003136164A priority Critical patent/JP2004342412A/en
Publication of JP2004342412A publication Critical patent/JP2004342412A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of efficiently obtaining electric energy from an aqueous organic substance with a simple device. <P>SOLUTION: In the power generating method, one of the pair of electrodes as an anode is brought into contact with solution or slurry containing viable anaerobic microbes and an organic substance, and the other as a cathode is formed at least partly by a conductive porous material having pores in a structure, mesh or fibrous material. Then, the cathode is brought into contact with air with a contact interface of the air and water existent in the pores of the cathode, the cathode is separated from the solution or the slurry through an electrolyte film, and the cathode and the anode are electrically connected to form a closed circuit, whereby, a reduction reaction is made to proceed in the cathode with oxygen as an electron acceptor, and an oxidation reaction by the microbes is made to proceed in the anode with the organic substance as an electron donor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、廃水、廃液、し尿、食品廃棄物、その他の有機性廃棄物、汚泥などの有機性物質またはその分解物を基質とし、その基質と空気中の酸素との酸化還元反応を、嫌気性微生物による酸化反応と、酸素の還元反応に分離することによって発電を行う技術に関する。
【0002】
【従来の技術】
廃水、廃液、し尿、食品廃棄物、その他の有機性廃棄物または汚泥(以下、「含水有機性物質」とする)を分解して利用可能なエネルギーを取り出す方法として、メタン発酵を始めとする嫌気発酵法によってメタン等を生産して、これを用いて発電を行う方法や、微生物の嫌気呼吸反応から直接電気を取り出す微生物電池法などが考案されている。
【0003】
しかしながら、メタン発酵を始めとする嫌気発酵法によりメタン、エタノール、水素などを生産し、これらを用いて発電を行う方法は、微生物による物質生産過程と生産物を燃料とした発電過程の2段階のステップを必要とするため、エネルギー効率が悪く、装置も複雑になる問題がある。
【0004】
一方、微生物を利用して、アノード周辺の電子供与体からの電子を、アノードとカソードを回路として導通することでカソード周辺の電子受容体(主に溶存酸素)に供与して電流を得る方法が報告されている(下記特許文献1、2、及び3)。これらの方法ではカソードを水中に設置するため、水中での溶存酸素の拡散速度が全体の反応を律速する可能性が高い。すなわち、水中での溶存酸素の還元反応は水中での酸素の拡散速度により律速されるため、無攪拌時の電極単位表面積当たりの電流量は過電圧に関わりなく20μA/cmが最大値となる。これは空気中の酸素を用いた場合の値(過電圧200mVで約300mA/cm)と比較して著しく小さいため、含水有機性物質の酸化及び発電を律速することが予想される。
【0005】
また、別の例では微生物に電子メディエータを加えて、微生物を飢餓状態に維持することによって効率良く電子を取り出す方法が提案されており(特許文献4)、この文献中には、カソードとして酸素または空気極が使用できると記載されている。しかしながら当該文献中には、空気極を用いる場合の具体的な装置の構造などの記載および実施例はなく、問題を解決するための手段として他者が実施できるようには開示されていない。
【0006】
【特許文献1】特開2000−133327号公報
【特許文献2】特開2000−133326号公報
【特許文献3】特表2002−520032号公報
【特許文献4】米国特許4652501号明細書
【0007】
【発明が解決しようとする課題】
本発明の課題は、上記のような従来技術の問題点を解決し、簡易な装置により、効率的に含水有機性物質から電気エネルギーを得る方法を提供することにある。
【0008】
【課題を解決するための手段】
上記の課題を解決するための手段として、本発明は、含水有機性物質を分解して電気エネルギーを得る方法であって、一対の電極の一方を、嫌気性下で生育可能な微生物及び有機性物質を含む溶液又は懸濁液と接触させる酸化電極(アノード)として、前記有機性物質を電子供与体とする微生物による酸化反応を進行させ;他方の電極を、少なくとも一部が構造体内に空隙を有する導電性の多孔質材料、網状又は繊維状材料によって構成して空気と接触させる還元電極(カソード)とし、前記溶液又は懸濁液と電解質膜を介して離隔することで直接的に接触させないようにして、前記カソードの空隙中に空気と水との接触界面を存在させた状態で空気と接触させて酸素を電子受容体とする還元反応を進行させることを特徴とする発電方法並びにかかる発電方法を実施するための装置を提供する。
【0009】
このようにアノード及びカソードを配置することにより、アノード周辺の溶存酸素の減少による反応速度の低下がなく、電子がアノードからカソードへ流れて空気中の酸素に受け渡されるような電気化学反応が円滑に進行する。この反応の進行により、含水有機性物質が酸化分解され、いわゆる微生物電池を効率化したものとして電気エネルギーを有効に取り出すことができる。
【0010】
上記電極反応のうち、アノード側での反応、即ち有機性物質を電子供与体とする微生物による酸化反応は、含水有機性物質中で嫌気性微生物(通性又は絶対嫌気性微生物)によって生化学的に触媒される。一方、カソード側での電極反応、即ち酸素を電子受容体とする還元反応は、単に電極を空気中に置いただけでは進行しない。かかる電極反応を促進させるために発明者らが鋭意研究を行った結果、後述するように、カソードの少なくとも一部を、構造体内に空隙を有する導電性の多孔質材料、網状又は繊維材料で構成し、その空隙中に水/空気の接触界面、すなわち空気(酸素)と水とを隣接させる場を構築することにより、空気中の酸素および水面の水に接触する効率を高めることで、空気中の酸素の還元反応(電極反応)を促進できることが分かった。
【0011】
例えば、微細孔を有する導電性の多孔質材料に樹脂バインダで導電性粒子(カーボン、不活性金属、金属酸化物など)を結着したものをカソードとして用いることで、毛細管現象及び表面の親水化等により水を効果的に吸い上げて、微細孔内部に水/空気の接触界面を形成させて、空気中の酸素と水とを効率良く接触させて酸素の還元反応を促進することができる。
【0012】
更に、本発明者らの研究により、カソードに白金族元素、銀、遷移金属元素から選ばれる少なくとも一種類を含有する合金あるいは化合物からなる触媒を担持することでも、空気中の酸素の還元反応(電極反応)を促進できることが分かった。即ち、本発明においては、カソードとして、白金族元素、銀、遷移金属元素から選ばれる少なくとも1種類の元素を含有する合金あるいは化合物からなる触媒を担持したものを好ましく使用することができる。
【0013】
ここで白金族元素とは白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)またはイリジウム(Ir)を指し、いずれも電極触媒として有効である。また、ニッケル(Ni)、ビスマス(Bi)、チタン酸化物をドープした銀粉末を担持したもの、ファーネスブラック又はコロイド状グラファイトに銀を担持したもの、鉄(Fe)、コバルト(Co)、フタロシアニン、ヘミン、ペロブスカイト、MnN、金属ポルフィリン、MnO、バナジン酸塩、またはY−ZrO複合酸化物を用いたものについても電極触媒として好ましく用いることができる。
【0014】
また、上記カソードと上記含水有機性物質に接触しているアノードとは、配線によって電気的に接続すると共に、両者間で電子交換を行って閉回路を形成する必要がある。その一方で、上記含水有機性物質の還元能を無駄なく電気エネルギーとして取り出すためには、上記含水有機性物質が酸化剤(被還元物質)、即ち空気中の酸素と接触して還元能を消費させないように、上記含水有機性物質と空気中の酸素が接触しないように両者を隔離する必要がある。これらの条件を同時に満たすためには、上記カソードと含水有機性物質とを電解質膜、例えば固体高分子電解質膜で隔てることが望ましい。このような構造をとることにより、カソードは空気中の酸素と容易に接触することができ、また上記電解質膜中に存在する水を介して水素イオンの受給または水酸化物イオンの排出を行うことができる。また、電解質膜はできるだけ空気中の酸素を透過しないものがよく、アノード側、即ち含水有機性物質に酸素が浸透して含水有機性物質の還元能を低下させることを防ぐことが望ましい。
【0015】
このような電解質膜としては、スルホン酸基を有するフッ素樹脂系イオン交換膜(陽イオン交換膜)が好ましく用いられる。スルホン酸基は親水性があり、高い陽イオン交換能を持つ。また、より安価な電解質膜として主鎖部のみをフッ素化したフッ素樹脂系イオン交換膜や、芳香族炭化水素系膜も利用できる。このようなイオン交換膜としては、例えばIONICS製NEPTON CR61AZL−389、トクヤマ製NEOSEPTA CM−1または同CMB、旭硝子製Selemion CSVなどの市販製品を好ましく用いることができる。このように、含水有機性物質とカソードとを陽イオン交換膜で離隔した場合、アノードでの反応で発生した水素イオンが陽イオン交換膜を通してカソードに供給されて、カソードでの酸素の還元に用いられる。
【0016】
上記のように、アノード側(微生物反応室)とカソード側(空気反応室)を画定するための隔膜が陽イオン交換膜である場合、カソードにおいて水素イオンを利用する還元反応は、水素イオン濃度条件によっては本発明の発電に関与する全体の反応速度を制限する場合がある。すなわちアノードでの酸化反応が微生物によるものであるため、極端な酸性条件は微生物の活性を阻害するという理由で好ましくない可能性もある。また、水素イオン濃度が低濃度である場合、例えば、pH5以上の条件でアノード側において水素イオンが発生し、該水素イオンが拡散により陽イオン交換膜を透過してカソード側に供給されることとなる。このとき、カソード側における水素イオン濃度は10−5mol/L程度またはそれ以下と見積もられる。このように水素イオン濃度が低濃度条件になるとカソード側における酸素還元反応の速度が低下することとなり、また、アノード側の水素イオンが効率的にカソード側へと移動しないことも予想される。すなわち、このような場合には電池を形成する支持電解質としての電気抵抗(内部抵抗)が大きくなる可能性がある。一方、この反応系の利点は、常にアノード側からカソード側へと水および水素イオンの供給が行われるためにカソード側への水分の供給が充分に行われ、カソード側の酸素が膜を介してアノード側へ透過してアノード側の還元能を消費してしまう、いわゆるクロスフローの問題が生じにくいことである。
【0017】
また、カソードと含水有機性物質とを離隔するために用いる電解質膜としては、陰イオン交換膜を用いることもできる。かかる目的で使用することのできる陰イオン交換膜としては、アンモニウムヒドロキシド基(4級アンモニウム基)を有する水酸化物イオン(陰イオン)交換膜を好ましく用いることができる。このようなイオン交換膜としては、例えばIONICS製NEPTON AR103PZL、トクヤマ製NEOSEPTA AHA、旭硝子製Selemion ASVなどの市販製品を好ましく用いることができる。この場合、カソードにおいて水と酸素とが反応して水酸化物イオンが発生し、この水酸化物イオンが陰イオン交換膜を通して含水有機性物質中に移行する。このような系においては、カソード側はアノード側と比較して水の保持量が非常に小さいため、アノードでの水素イオン発生量と当量の水酸化物イオンをカソードにおいて発生させれば、カソード側のpHを非常に高くする、すなわち水酸化物イオン濃度を非常に高くすることができる。高濃度の水酸化物イオンは効率良く陰イオン交換膜を透過するので、支持電解質の電気抵抗(内部抵抗)を小さくすることができる。一方、この反応系は、常にカソード側からアノード側へのイオン移動が行われるためにカソード側への水供給が難しくなること、および上記イオン移動に伴ってカソード側の酸素が膜を介してアノード側へ透過してアノード側の還元能を消費してしまう、上述したクロスフローの問題が生じる可能性が有るという課題がある。すなわち、電解質膜として利用される陽イオン交換膜および陰イオン交換膜は、発電反応に関与する反応系を大きく変える効果を持ち、それぞれ長所と改善すべき課題を持つので、どちらを採用するかは装置の構造や用途、含水有機性物質の性質に応じて判断すべきである。
【0018】
水素イオンまたは水酸化物イオンの移動効率を高めるためには、カソードと上記電解質膜との間の距離はなるべく短いほうが良く、装置構造上可能であれば両者は接合していることが望ましい。特に、電解質膜の一部がカソード電極の多孔質構造内部の空隙内に網目状に侵入して結合していると、多孔質構造中に含まれる空気と電解質膜に含まれる水とで形成される水/空気接触界面の面積が飛躍的に増大するので、空気中の酸素を還元する反応効率が増大して発電性能を高めることができる。
【0019】
陽イオン交換膜を電解質膜として用いた場合、カソード側の反応においては、空気中の酸素を消費して水が発生する。このため常に換気を行って酸素を補給するとともに、水分を除いてカソードが過度に濡れるのを防ぐ必要がある。ただし、このとき供給する空気の湿度及び流量によってカソード側の保水量が変化するため、乾燥−加湿の制御は適宜行うことが望ましい。空気の供給及び排出による換気の方法としては、開放系で自然に対流置換させる方法、カソードの周囲を外殻で被包して空気室を設けて、空気室内を通風機により強制換気する方法、同じく空気室を設けて、酸化還元反応により生じる熱で空気室内を暖め、対流を生じさせて空気と水蒸気を上昇させて換気する方法が考えられ、本発明の装置を設置する場所、規模等の条件に合わせて換気方法を採用することが好ましい。
【0020】
また、陰イオン交換膜を電解質膜として用いた場合、カソード側の反応においては、酸素とカソード表面の水が消費され、水酸化物イオンが発生する。このため、常に換気を行って酸素を補給するとともに、水分を補給してカソードが乾燥するのを防ぐ必要がある場合がある。特に、換気空気が乾燥している場合、アノード側からの浸透による水供給速度がカソードでの蒸発および還元反応による水消費速度を下回る場合には、該換気空気を加湿するか、水蒸気を添加することによりカソードへ水分を供給することが望ましい。
【0021】
一方、アノード側での反応は、主に微生物の嫌気呼吸により、含水有機性物質由来の電子が微生物体内の電子伝達系を介して最終的にアノード電極に受け渡される。したがって、本発明に係る発電反応を効率よく進行させるためには、微生物の細胞膜内で電子伝達系を終結するものではなく、細胞膜外で電子をアノードで捕捉しやすい、アノードへの電子伝達を触媒するような微生物を利用することが望ましい。このようなアノードへの電子伝達を触媒する微生物としては、硫黄S(0)還元菌、三価鉄Fe(III)還元菌、二酸化マンガンMnO還元菌、脱塩素菌などが好ましく用いられる。このような微生物として、例えばDesulfuromonas sp.、Desulfitobacterium sp.、Geobivrio thiophilus sp.、Clostridium thiosulfatireducens sp.、Thermoterrabacterium ferrireducens sp.、Geothrix sp.、Geobacter sp.、Geoglobus sp.、Shewanella putrefaciens sp.などが特に好ましく用いられる。これらの微生物は、含水有機性物質中において主要な微生物ではないことが多いため、本発明の装置を立ち上げるにあたってはアノード側にこれらの微生物を植菌し、アノード表面にこれらの微生物が主に付着している状態を形成することが好ましい。これらの微生物が優先的に微生物反応室内で増殖するために、電極に電子を渡すことによる呼吸反応(電極呼吸)が酸発酵やメタン発酵よりもエネルギー的に有利である場の面積を大きくすべきであり、具体的には微生物反応室内のアノード表面積をなるべく大きくすることが好ましい。立ち上げ運転時には微生物反応室内にこれらの微生物の増殖に適当な培地を供給することが望ましく、さらにアノードの電位を高く維持することにより、アノード表面でのこれらの微生物の増殖を促すことがより望ましい。これらの微生物(群)を前培養もしくは微生物反応室内で培養するための方法として、スラリー状の硫黄、三価鉄、二酸化マンガンなどを電子受容体とする培地が各種報告されており、例えばHandbook of Microbial Media (Atlasら1997, CRC Press)に記載されているAncylobacter/Spirosoma培地、Desulfuromonas培地、Fe(III) Lactate Nutrient培地などが好ましく用いられる。
【0022】
アノード側での微生物から電極への電子伝達反応を促進するため、アノードはなるべく広い面積を持ち、効率よく微生物と接触することが望ましい。しかしながら、含水有機性物質を長期間にわたって連続的に処理する装置の場合、含水有機性物質中及びアノード表面において嫌気性微生物が連続的に増殖することから、あまりにも細密な3次元網目構造状、細いチューブ状または隙間の狭い積層板状の構造のアノード電極を用いると、微生物菌体による流路の閉塞、片流れ、デッドゾーンの形成等により有機性物質の分解及び発電効率が低下することが考えられる。このため、アノードの形態は、金網状、多孔質または表面に凹凸または襞がある一次構造であって、3次元網目状、チューブ状または積層板状の空間(含水有機性物質が流入してくる流路)を持つ2次構造を形成しており、かつ上記流路は処理対象となる含水有機性物質の流動性に応じて数mmから数cmの開度を持つことが望ましい。また、使用用途に応じて、経時的に上記流路を水洗または空洗して余剰の微生物菌体及び菌体外分泌物を除去することが望ましい。この際、空洗に使用する気体に酸素が含まれると、微生物反応室である反応容器中の嫌気性微生物に悪影響を及ぼす可能性があるため、不活性ガスまたは反応容器中で発生した嫌気性のガスを利用することが望ましい。
【0023】
アノードの素材としては、アノード反応による電極腐食、硫化水素等による硫化物腐食等に対する耐腐食性を持つものが好ましい。その中でも、チタンまたはチタン合金は電極に求められる導電性を持ちながら耐腐食性が高く、該酸化分解装置を長期間安定して運転することができるのでより好ましい。また、使用用途に応じて、電極に微生物が過剰に付着し導電性が低下するのを防ぐため、電極表面に銀、銅または亜鉛を蒸着するなどの抗菌化処理を行ってもよく、長期運転を安定化させる効果をあげる。さらに、アノード表面にキノン、ニュートラルレッド、チオニン、白金族元素、銀、遷移金属元素から選ばれる少なくとも一種類を含有する合金あるいは化合物からなる触媒を担持させることにより、微生物からアノードへの電子伝達効率を向上させることができる。
【0024】
また、本発明に係る反応容器の形態は、含水有機性物質や増殖した微生物菌体が滞留するようなデッドゾーンを形成しないように考慮すべきである。このための一つの手法として、撹拌もしくは循環水流を生じさせて含水有機性物質とアノード電極との接触効率を上げることができる。また、反応容器を気密な構造とする場合は、嫌気性ガスが容器内に蓄積して有効容積が低下することを防止するため、なんらかのガス抜きの機構を備えることが望ましい。もちろん、この嫌気性ガスは流路を空洗する方法に利用できることは上述したとおりである。
【0025】
さらに、カソードの場合と同じく、アノードと上記電解質膜との距離も水素イオンまたは水酸化物イオンの移動を容易にし、電解液系の電気抵抗を小さくするためになるべく短くすることが望ましく、接触させるアノードと電解質膜とを接触させて配置することが好ましい。但し、この場合には、含水有機性物質が電解質膜と接触してその中の水が電解質膜に吸収されるようにするために、アノードは透水性を有する形態、例えば多孔質材料や網状材料で構成したり、或いは通水孔を有する形態、例えば格子状若しくは櫛状の形態とすることが必要である。また、アノードと電解質膜とを接触させて配置することが装置の構造上困難な場合は、例えば、撹拌または循環水流を生じさせてアノードと電解質膜との間を循環する水流を作るようにし、水素イオンまたは水酸化物イオンの移動を容易にすることが望ましい。
【0026】
上記含水有機性物質の性状は、分子状酸素を嫌気的である反応容器(微生物反応室)内に持ち込まないために液体状または懸濁液、あるいは固形分の間隙が水で飽和している状態であることが望ましい。上記反応容器内での含水有機性物質の酸化反応は主に微生物による呼吸反応によって触媒されることから、反応容器内に投入される含水有機性物質は固形分の粒径が小さく、水中によく溶解または分散し、低分子であることが望ましく、また、微生物にとって易分解性の物質であることが望ましい。使用する含水有機性物質の種類によりこれらの条件が満たされない場合には、物理的、化学的または生物学的な前処理を行って含水有機性物質の微生物分解性を高めることができる。そのような方法としては、例えば、粉砕機による破砕、熱分解、超音波処理、オゾン処理、次亜塩素酸塩処理、過酸化水素処理、硫酸処理、微生物による加水分解、酸生成、低分子化処理が考えられる。これらの前処理に要するエネルギーは、前処理による主反応容器での発電エネルギーの向上とのバランスを考え、最適な前処理条件を選ぶことができる。
【0027】
【発明の実施の形態】
以下、図面を参照しながら、本発明に係る含水有機性物質を利用する発電装置の一具体例を説明する。以下の記載は、本発明の技術思想を具現化する幾つかの具体的形態を説明するもので、本発明はこの記載に限定されるものではない。
【0028】
図1は本発明の一態様に係る発電ユニットの具体例である。含水有機性物質(以下、基質と記載する)の電子が効率良くアノードに受け渡されるためには、アノードの表面積を大きくすること、アノードが基質と効率良く接触し、基質の動かないデッドゾーンを作らないこと、アノードとカソードとの間でイオン交換が効率良く行われると同時にアノードとカソードが電気的には絶縁していることが必要である。そのために、例えばアノードを筒形、例えば円筒形としてその中を基質が流れる構造とし、アノードとカソードとを電解質膜を挟んで3層状に接触させるように装置を構成すると好ましい。例えば、図1に示す膜・電極構造体により構成される本発明の発電装置の一具体例は、アノード1、電解質膜2、および多孔質カソード3が三重の筒状体をなすことによって構成される。筒状体の内部空間4に基質を流し、筒状体の周囲5には空気を存在させることにより、アノード1とカソード3の間に電位差が生じる。この状態でアノード1とカソード3とを導線6によって電気的に接続することにより電位差電流が流れ、一方、電解質膜2を介してアノード1とカソード3との間でイオンが交換されることにより、閉回路が形成される。
【0029】
筒状体の内径は、基質の流動性に応じ、数mmから数cm、場合によっては数十cmに設定することができる。図1に示すような発電ユニットは、適当な材料の支持層またはケーシングで保持することによりその物理的強度を増すことができる。また、この場合、筒状体を更に外殻で被包して外殻と筒状体との間の空間を空気室とし、空気室に空気を供給及び排出する手段を形成するようにしてもよい。なお、図1に示すように、電解質膜をアノードと接触させて配置する場合には、基質溶液がアノードを通して電解質膜と接触して、溶液中の水が電解質膜に吸収される必要があることは上記に説明した通りである。このためには、アノードは、透水性の形態、例えば、網状材料や多孔性材料などで形成するか、或いは格子状のような形態とすることが好ましい。
【0030】
図1に示すような三層筒状体の本発明に係る発電装置においては、用途に応じてアノードを外側に、カソードを内側に配置し、カソードの内側空間に空気を流通させる手段を配して該装置を基質液中に設置することで、発電運転を行うことができる。また、この場合、筒状体を例えばU字型に形成し、両端を基質液の液面から出して、筒内部の空間に空気が流通できるようにしてもよい。このようにカソードを内筒とする構成の場合には、カソードの内筒の内径を数mm程度またはそれ以下に小さくしても閉塞の生じる心配がない点が有利である。更に、三層筒状体において、内側の筒状体1を多孔質カソード、2を電解質膜、外側の筒状体3をアノードとすると、カソード1に比較して外側のアノード2の表面積を大きくすることができるので有利である。さらにアノードの表面積を広くするため、アノードの表面に凹凸や襞をもたせることも可能である。一方、カソード側の内径は、反応効率も関係するが、空気が容易に流通するだけの径があれば良く、閉塞の危険性がほとんどないため、内径を数mm程度またはそれ以下まで小さくすることが可能である。この場合、筒状体を更に外殻で被包して筒状体の外側空間を基質の流れる微生物反応室とし、微生物反応室に基質を供給及び排出する手段を配置することによって装置を構成することができる。
【0031】
また、図2は、上記に説明したような三層筒状体を複数個配列した本発明に係る発電装置の構成例を示す。図2(A)は該装置の縦断面図、図2(B)は図2(A)のa−a’線に沿った横断面図、図2(C)は図2(B)のb部の拡大図である。図2に示す発電装置においては、図2(C)に示すようなアノードの内筒1、電解質膜2及びカソードの外筒3から構成される三層筒状体(発電ユニット)50が複数本、外殻によって形成される空気室7の中に配置されている。基質は、流入ポンプ8により流入部9を介して複数配置された発電ユニット50の内部4へ分配注入される。ここで酸化分解を受けた基質は、流出部10を介して反応容器の外へ出た後、処理済み基質11として系外へ排出される。また、基質の一部は循環ポンプ12により再び流入部9へ戻される。この循環流によってアノード1と基質の接触が促進される。反応容器内に蓄積した微生物菌体及び汚泥は、経時的に余剰汚泥排出口13を開くことにより排出される。また、同じく13より、水、不活性ガス、嫌気ガスを注入することにより反応容器内を逆洗、空洗することができる。反応容器内で嫌気性ガスが発生した場合は、排気口19から排出することができる。この嫌気性ガスを貯留して空洗に使用してもよいことは上述したとおりである。
【0032】
一方、多孔質カソード3に酸素を供給するため、ブロワ14を用いて空気室7へ通気を行うことができる。ただし用途に応じて強制換気が必要でない場合には、空気室7を取り外して、各発電ユニット50の外筒であるカソード3が外気に触れるように装置を構成してもよい。通気された空気は、空気室7内の発電ユニットの間の空間5を流れ、カソード3と接触した後に、排気口15から排出される。また、カソードでの還元反応により生成した水は、水蒸気として排気口15から排出されるか、凝縮水として凝縮水ドレイン16から排出される。
【0033】
導線6は、アノードとの接続部17により複数の発電ユニット50の内筒1に、またカソードとの接続部18により複数の発電ユニット50の外筒3に電気的に接続される。この際、導線6は、周囲の環境と電気的に絶縁し、電気的短絡及び導線表面での酸化還元反応が起こらないようにすることが必要である。
【0034】
なお、図2に示す装置についても、図1に関して上記に説明したのと同様に、カソードを内筒、アノードを外筒として各発電ユニットの筒状体50を構成し、各筒状体50内部空間へ空気を供給し、発電ユニット50の筒状体の外側のアノードに基質を接触させるようにすることもできる。
【0035】
カソード電極については、いかに効率良く電極上での酸素の還元反応を進行させるかが課題となる。このためには、カソードの少なくとも一部を、構造体内に空隙を有する導電性の多孔質材料、網状又は繊維状材料によって形成して、このカソードの空隙中に空気と水との接触界面を存在させた状態で空気と接触させることにより、空気中の酸素および水面の水に接触する効率を高めることが好ましい。
【0036】
図3に本発明に係る装置において採用することのできるカソードの構造の一例を断面図で示す。図3(A)は、電解質膜2及びカソード3の構造の断面を示したものであり、図3(B)は、図3(A)のc−c’線に沿った断面図である。また、図3では、電解質膜2が陽イオン交換膜である場合の反応系を示す。図3に示すカソードは、多孔質のマトリックス20に、好ましくは白金族元素、銀、遷移金属元素から選ばれる少なくとも一種類を含有する合金あるいは化合物からなる触媒21を担持する構造を有し(図3−A)、空気室側5から見た場合網目状の構造を呈している(図3−B)。このような構成を取ることにより、カソードが、水面または電解質膜を経由する水を毛細管現象等で吸い上げつつ空気中の酸素と接触することができ、電極のミクロな構造中に空気ネットワーク22と水溶液ネットワーク23を持つことによって空気/水接触界面の面積を増大させ、空気中の酸素および水面の水に接触する効率を高めることができる。酸素と水素イオンが触媒21上で反応することにより、空気中の酸素の還元反応を促進することができる。
【0037】
図4に、本発明に係る装置において採用することのできるカソード構造の別の一例を示す。図4においても、電解質膜2が陽イオン交換膜である場合の反応系を示す。図4に示すカソードは、電解質膜2と同じ材料からなる溶液を、多孔質のマトリックス20の電解質膜2との接合面側に塗布して乾燥させることによって、電解質膜構造体の一部を多孔質マトリックス20の微細孔内部に浸入させたものである。このような構成を取ることにより、イオン交換および触媒の利用率を向上させ、空気中の酸素の還元反応を促進することができる。
【0038】
本発明の各種実施態様は、以下の通りである。
1.一対の電極の一方を、アノードとして、嫌気性下で生育可能な微生物及び有機性物質を含む溶液又は懸濁液と接触させ、他方の電極を、カソードとして、少なくとも一部を構造体内に空隙を有する導電性の多孔質材料、網状又は繊維状材料によって形成して、前記カソードの空隙中に空気と水との接触界面を存在させた状態で空気と接触させ、前記カソードと前記溶液又は懸濁液とを電解質膜を介して離隔して、前記カソードとアノードとを電気的に接続して閉回路を形成することにより、前記カソードにおいて酸素を電子受容体とする還元反応を進行させ、前記アノードにおいて前記有機性物質を電子供与体とする微生物による酸化反応を進行させることを特徴とする発電方法。
【0039】
2.前記カソードは、白金族元素、銀、遷移金属元素から選ばれる少なくとも1種類の元素を含有する合金あるいは化合物からなる触媒を担持したものであることを特徴とする上記第1項に記載の発電方法。
【0040】
3.前記電解質膜は陽イオン交換膜又は陰イオン交換膜であることを特徴とする上記第1項又は第2項に記載の発電方法。
【0041】
4.前記アノード表面に微生物を付着させる工程を含む上記第1項〜第3項のいずれかに記載の発電方法。
【0042】
5.前記有機性物質は有機性廃棄物であって、回分式又は流通式に前記有機性廃棄物を供給及び排出する上記第1項〜第4項のいずれかに記載の発電方法。
【0043】
6.電解質膜で画定される2種類の隔室を持ち;一方の隔室は、その中にアノードが配置され、有機性物質を含む溶液又は懸濁液の供給及び排出する機構を備えており;他方の隔室は、少なくとも一部が構造体内に空隙を有する導電性の多孔質材料、網状又は繊維状材料によって構成されるカソードが前記電解質膜に接するようにその中に配置され、酸素又は空気を供給及び排出する機構を備えており;前記アノードとカソードとを電気的に接続して閉回路を形成する手段を有する;ことを特徴とする発電装置。
【0044】
7.筒状のアノード、前記筒状のアノードの外側に接触して配置されている電解質膜、前記電解質膜の外側に接触して配置されている筒状のカソード、から構成される筒状体を具備し;前記カソードの少なくとも一部が構造体内に空隙を有する導電性の多孔質材料、網状又は繊維状材料によって構成されており;筒状のアノードの内部空間に、有機性物質を含む溶液又は懸濁液の供給及び排出する機構が備えられており;前記アノードとカソードとを電気的に接続して閉回路を形成する手段を有する;ことを特徴とする発電装置。
【0045】
8.アノード、電解質膜、カソードから構成される筒状体が複数個配置されている上記第7項に記載の発電装置。
【0046】
9.アノード、電解質膜、カソードから構成される筒状体が外殻によって被包されて筒状体の外側の空気室が形成され、空気室に空気を供給及び排出する機構が備えられている上記第7項又は第8項に記載の発電装置。
【0047】
10.筒状のカソード、前記筒状のカソードの外側に接触して配置されている電解質膜、前記電解質膜の外側に接触して配置されている筒状のアノード、によって構成される筒状体を具備し;前記カソードの少なくとも一部が構造体内に空隙を有する導電性の多孔質材料、網状又は繊維状材料によって構成されており;筒状のカソードの内部空間に空気を供給及び排出する機構が備えられており;前記アノードとカソードとを電気的に接続して閉回路を形成する手段を有する;ことを特徴とする発電装置。
【0048】
11.カソード、電解質膜、アノードから構成される筒状体が複数個配置されている上記第10項に記載の発電装置。
【0049】
12.カソード、電解質膜、アノードから構成される筒状体が外殻によって被包されて筒状体の外側の溶液室が形成され、溶液室に有機性物質を含む溶液又は懸濁液を供給及び排出する機構が備えられている上記第10項又は第11項に記載の発電装置。
【0050】
13.前記カソードは白金族元素、銀、遷移金属元素から選ばれる少なくとも1種類の元素を含有する合金あるいは化合物からなる触媒を担持したものであることを特徴とする上記第6項〜第12項のいずれかに記載の発電装置。
【0051】
14.前記電解質膜は、陽イオン交換膜又は陰イオン交換膜であることを特徴とする上記第6項〜第第13項のいずれかに記載の発電装置。
【0052】
15.前記電解質膜で画定される2種類の隔室は、複数組積層したものであることを特徴とする上記第6項〜第14項のいずれかに記載の発電装置。
【0053】
【実施例】
以下、本発明を実施例により具体的に説明する。ただし、本発明はこの実施例により制限されるものではない。
【0054】
図5に示す実験用の発電装置を用い、カソード側の電子受容体が水中の溶存酸素であった場合(比較例:従来の微生物電池に相当)と空気(酸素)であった場合(本発明の発電装置)の発電性能を比較した。
【0055】
発電装置は、1辺の長さ100mm、厚さ10mmのセルフレーム3枚(25、26、27)及び同寸のセパレータ24を積層した構造とした。セパレーター24に、セルフレーム25を隣接して配置し、白金を担持したファーネスブラック粒子をPTFE(テフロン(登録商標))バインダで結着したものをアノード1として配置した。次いで陽イオン交換膜(DuPont製Nafion)製の電解質膜2を固定したセルフレーム26を装着してアノード1と電解質膜2とを接触させて配置し、白金を担持したファーネスブラック粒子をPTFE(テフロン(登録商標))バインダで結着したものをカソード3として電解質膜2に接触させて配置し、セルフレーム27、セパレーター24’を配置した。このようにして、微生物反応室35、空気反応室37を形成した。この構造を、互い違いに3ユニット積層して装置を構成した。各セルフレームには基質液及び空気を流す流路を形成した。また、各アノード1及び各カソード3を導線(図示せず)により電気的に接続して、閉回路を形成した。注入口28より、含水有機性物質のモデルとして0.25mol/Lのグルコース水溶液を注入し、各微生物反応室35、35’、35”を通過させた後、排出口29より排出するようにした。また、注入口30より空気を通気し、各空気反応室37、37’、37”を通過させた後、排出口31より排気するようにした。本装置の3つのユニットを合わせた有効容積は、微生物反応室、空気反応室ともに108mLであり、滞留時間が、グルコース水溶液、空気ともに5分となるように供給及び排出速度を調整した。電極の総表面積は、アノード、カソードともに108cmとした。微生物反応室35、35’、35”には、運転開始前に消化槽汚泥を0.5g添加した。運転開始から2日間は、微生物が微生物反応室内に付着するのを待つため通液を行わず、Handbook of Microbial Media (Atlasら1997, CRC Press)に記載されているDesulfuromonas培地を微生物反応室側に充填して硫黄還元菌の優占化を促した。その後8日間は、グルコース水溶液の滞留時間を2日間として予備運転を行い、予備運転開始の10日後より滞留時間5分間での通常運転にして、アノード、カソード間の電流量及び電圧を測定した。
【0056】
比較例として、空気反応室37、37’、37”に酸素飽和させた水を、微生物反応室へのグルコース水溶液と同じ滞留時間で通水し、予備運転開始の後10日後より滞留時間5分間の通常運転にして、アノード、カソード間の電流量及び電圧を測定した。上記実施例及び比較例においては、予備実験期間中を含めて、常にカソード・アノード間は電気的に接続した状態とした。
【0057】
試験結果を表1に示した。発生した電位差(電圧)には大きな違いはなかったが、発生電流は、空気反応室に空気を通気した本発明の方法が、空気反応室に酸素飽和水を通水した比較例と比べて約1600倍の高い電流量を発生した。いずれの系においても、発生電流量及び電圧はその後1週間の連続運転中ほぼ安定していた。
【0058】
【表1】

Figure 2004342412
【0059】
【発明の効果】
以上説明したように、本発明により、廃水、廃液、し尿、食品廃棄物、その他の有機性廃棄物、汚泥などの有機性物質またはその分解物を効率的に酸化分解し、従来の微生物電池よりも多くの電気エネルギーを得ることが可能である。本発明は、含水有機性物質の酸化分解、および還元電位を利用した発電方法として広く利用されることが期待される。
【図面の簡単な説明】
【図1】本発明の膜・電極構造体の構造の例を示す概念図である。
【図2】本発明による発電装置の構成例を示す概念図である。図2Aは該装置の縦断面図、図2Bは図2Aのa−a’線に沿った断面図、図2Cは図2Bのb部分の拡大図である。
【図3】本発明のカソード電極の構造の一例を示す概念図である。図3Aは縦断面図、図3Bは図3Aのc−c’線に沿った断面図である。
【図4】本発明のカソード電極の構造の他の例を示す概念図である。
【図5】実施例で用いた本発明の発電装置の構成を示す概念図である。
【符号の説明】
1:アノード又はカソード
2:電解質膜
3:カソード又はアノード
4:内筒体内部
5:筒状体周囲の空間
6:導線
7:空気室
8:流入ポンプ
9:流入部
10:流出部
11:処理済み含水有機性物質排出部
12:循環ポンプ
13:余剰汚泥排出口
14:空気ブロワ
15:排気口
16:凝縮水ドレイン
17:アノードとの接続部
18:カソードとの接続部
19:排気口
20:多孔質マトリックス
21:触媒
22:空気ネットワーク
23:水溶液ネットワーク
24,24’:セパレーター
25,26,27:セルフレーム
28:含水有機性物質注入口
29:分解廃液排出口
30:空気注入口
31:空気排出口
35,35’,35”:微生物反応室
37,37’,37”:空気反応室[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses an organic substance such as waste water, waste liquid, human waste, food waste, other organic waste, or sludge or a decomposition product thereof as a substrate, and performs anaerobic oxidation-reduction reaction between the substrate and oxygen in the air. The present invention relates to a technique for generating electricity by separating the reaction into an oxidation reaction by a bacterium and a reduction reaction of oxygen.
[0002]
[Prior art]
Anaerobic methods, such as methane fermentation, are used to decompose wastewater, wastewater, human waste, food waste, other organic waste or sludge (hereinafter referred to as "water-containing organic substances") to extract usable energy. A method of producing methane or the like by a fermentation method and generating power using the methane or the like, and a microbial battery method of directly extracting electricity from an anaerobic respiration reaction of microorganisms have been devised.
[0003]
However, the method of producing methane, ethanol, hydrogen, etc. by anaerobic fermentation method such as methane fermentation and generating electricity using these methods is a two-step process of producing substances using microorganisms and generating electricity using products as fuel. Since steps are required, there is a problem that the energy efficiency is low and the apparatus is complicated.
[0004]
On the other hand, there is a method in which electrons from an electron donor around the anode are supplied to an electron acceptor (mainly dissolved oxygen) around the cathode by conducting the electrons from the electron donor around the anode in a circuit through the anode and the cathode, thereby obtaining a current. It has been reported (Patent Documents 1, 2, and 3 below). In these methods, since the cathode is placed in water, the rate of diffusion of dissolved oxygen in water is likely to limit the overall reaction. That is, since the reduction reaction of dissolved oxygen in water is limited by the diffusion rate of oxygen in water, the amount of current per unit surface area of the electrode at the time of no stirring is 20 μA / cm regardless of overvoltage. 2 Is the maximum value. This is a value when oxygen in air is used (about 300 mA / cm at an overvoltage of 200 mV). 2 ), Which is expected to limit the rate of oxidation of hydrous organic substances and power generation.
[0005]
In another example, a method has been proposed in which an electron mediator is added to a microorganism to efficiently extract electrons by maintaining the microorganism in a starvation state (Patent Document 4). In this document, oxygen or oxygen is used as a cathode as a cathode. It states that a cathode can be used. However, there is no description or example of the structure of a specific device in the case of using an air electrode, and no example in the document, and the document is not disclosed so as to be implemented by another person as a means for solving the problem.
[0006]
[Patent Document 1] JP-A-2000-133327
[Patent Document 2] JP-A-2000-133326
[Patent Document 3] Japanese Patent Publication No. 2002-520032
[Patent Document 4] US Pat. No. 4,652,501
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for efficiently obtaining electric energy from a water-containing organic substance with a simple device.
[0008]
[Means for Solving the Problems]
As a means for solving the above problems, the present invention is a method for obtaining electric energy by decomposing a water-containing organic substance, wherein one of a pair of electrodes comprises a microorganism capable of growing under anaerobic conditions and an organic substance. As an oxidation electrode (anode), which is brought into contact with a solution or suspension containing the substance, an oxidation reaction by a microorganism using the organic substance as an electron donor proceeds; the other electrode is at least partially formed with a void in the structure. A reduction electrode (cathode) composed of a conductive porous material, a mesh or a fibrous material having a contact with the air, and separated from the solution or suspension via an electrolyte membrane to prevent direct contact. A power generation method, wherein a reduction reaction using oxygen as an electron acceptor is progressed by contacting with air in a state where a contact interface between air and water is present in a space of the cathode. It provides an apparatus for carrying out such generation process.
[0009]
By arranging the anode and the cathode in this manner, there is no reduction in the reaction rate due to a decrease in dissolved oxygen around the anode, and an electrochemical reaction in which electrons flow from the anode to the cathode and are transferred to oxygen in the air is smooth. Proceed to. With the progress of this reaction, the water-containing organic substance is oxidized and decomposed, so that electric energy can be effectively extracted as a so-called microbial battery having improved efficiency.
[0010]
Of the above electrode reactions, the reaction on the anode side, that is, the oxidation reaction by a microorganism using an organic substance as an electron donor, is biochemically performed by an anaerobic microorganism (a facultative or anaerobic microorganism) in a water-containing organic substance. Catalyzed by On the other hand, the electrode reaction on the cathode side, that is, the reduction reaction using oxygen as an electron acceptor, does not proceed simply by placing the electrode in the air. As a result of the inventors' extensive research to promote such an electrode reaction, at least a part of the cathode is formed of a conductive porous material having voids in the structure, a mesh or a fiber material, as described later. By constructing a water / air contact interface in the space, that is, a field where air (oxygen) and water are adjacent to each other, the efficiency of contacting oxygen in the air and water on the surface of the water is increased, thereby increasing the efficiency of the air. It was found that the oxygen reduction reaction (electrode reaction) could be promoted.
[0011]
For example, by using a conductive porous material having fine pores to which conductive particles (carbon, inert metal, metal oxide, etc.) are bonded with a resin binder as a cathode, capillary action and surface hydrophilicity are achieved. By effectively sucking up water by, for example, forming a water / air contact interface inside the micropores, the oxygen in the air can be brought into efficient contact with water to promote the oxygen reduction reaction.
[0012]
Further, according to the study of the present inventors, the reduction reaction of oxygen in the air can be performed by carrying a catalyst made of an alloy or a compound containing at least one kind selected from a platinum group element, silver, and a transition metal element on the cathode. (Electrode reaction). That is, in the present invention, a cathode supporting a catalyst made of an alloy or a compound containing at least one element selected from platinum group elements, silver, and transition metal elements can be preferably used.
[0013]
Here, the platinum group element refers to platinum (Pt), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os) or iridium (Ir), all of which are effective as an electrode catalyst. Also, nickel (Ni), bismuth (Bi), silver oxide doped with titanium oxide, furnace black or colloidal graphite with silver, iron (Fe), cobalt (Co), phthalocyanine, Hemin, perovskite, Mn 4 N, metalloporphyrin, MnO 2 , Vanadate, or Y 2 O 3 -ZrO 2 Those using a composite oxide can also be preferably used as an electrode catalyst.
[0014]
Further, it is necessary to electrically connect the cathode and the anode in contact with the water-containing organic substance by wiring, and to exchange electrons between them to form a closed circuit. On the other hand, in order to extract the reducing ability of the hydrated organic substance as electric energy without waste, the hydrated organic substance comes into contact with an oxidizing agent (substance to be reduced), that is, oxygen in the air to consume the reducing ability. In order not to allow the water-containing organic substance and oxygen in the air to come into contact with each other, it is necessary to isolate them from each other. In order to satisfy these conditions at the same time, it is desirable to separate the cathode from the water-containing organic substance with an electrolyte membrane, for example, a solid polymer electrolyte membrane. With such a structure, the cathode can easily come into contact with oxygen in the air, and can receive hydrogen ions or discharge hydroxide ions through water present in the electrolyte membrane. Can be. The electrolyte membrane preferably does not transmit oxygen in the air as much as possible, and it is desirable to prevent oxygen from permeating the anode side, that is, the water-containing organic substance, thereby reducing the reducing ability of the water-containing organic substance.
[0015]
As such an electrolyte membrane, a fluororesin-based ion exchange membrane (cation exchange membrane) having a sulfonic acid group is preferably used. Sulfonic acid groups are hydrophilic and have high cation exchange capacity. Further, as a less expensive electrolyte membrane, a fluororesin-based ion exchange membrane in which only the main chain is fluorinated, or an aromatic hydrocarbon-based membrane can be used. As such an ion exchange membrane, for example, commercially available products such as NIONTON CR61AZL-389 manufactured by IONICS, NEOSEPTA CM-1 manufactured by Tokuyama or CEMS, and Salemion CSV manufactured by Asahi Glass can be preferably used. As described above, when the water-containing organic substance and the cathode are separated by the cation exchange membrane, hydrogen ions generated by the reaction at the anode are supplied to the cathode through the cation exchange membrane, and are used to reduce oxygen at the cathode. Can be
[0016]
As described above, when the diaphragm for defining the anode side (microbial reaction chamber) and the cathode side (air reaction chamber) is a cation exchange membrane, the reduction reaction using hydrogen ions at the cathode is performed under the hydrogen ion concentration condition. In some cases, the overall reaction rate involved in the power generation of the present invention may be limited. That is, since the oxidation reaction at the anode is caused by microorganisms, extreme acidic conditions may not be preferable because they inhibit the activity of microorganisms. When the hydrogen ion concentration is low, for example, hydrogen ions are generated on the anode side under conditions of pH 5 or more, and the hydrogen ions pass through the cation exchange membrane by diffusion and are supplied to the cathode side. Become. At this time, the hydrogen ion concentration on the cathode side is 10 -5 It is estimated to be about mol / L or less. When the hydrogen ion concentration becomes low as described above, the rate of the oxygen reduction reaction on the cathode side decreases, and it is expected that hydrogen ions on the anode side do not move efficiently to the cathode side. That is, in such a case, the electric resistance (internal resistance) as the supporting electrolyte forming the battery may increase. On the other hand, the advantage of this reaction system is that water and hydrogen ions are always supplied from the anode side to the cathode side, so that water is sufficiently supplied to the cathode side, and oxygen on the cathode side passes through the membrane. That is, the problem of so-called cross-flow, which is transmitted to the anode side and consumes the reducing ability of the anode side, is unlikely to occur.
[0017]
An anion exchange membrane can also be used as an electrolyte membrane used to separate the cathode from the water-containing organic substance. As an anion exchange membrane that can be used for such a purpose, a hydroxide ion (anion) exchange membrane having an ammonium hydroxide group (quaternary ammonium group) can be preferably used. As such an ion exchange membrane, for example, commercially available products such as NEPTON AR103PZL manufactured by IONICS, NEOSEPTA AHA manufactured by Tokuyama, and Salemion ASV manufactured by Asahi Glass can be preferably used. In this case, water and oxygen react at the cathode to generate hydroxide ions, and the hydroxide ions migrate into the water-containing organic substance through the anion exchange membrane. In such a system, the amount of water retained on the cathode side is much smaller than that on the anode side. Can be very high, that is, the hydroxide ion concentration can be very high. Since high-concentration hydroxide ions efficiently pass through the anion exchange membrane, the electric resistance (internal resistance) of the supporting electrolyte can be reduced. On the other hand, in this reaction system, ion transfer from the cathode side to the anode side is always performed, so that water supply to the cathode side becomes difficult, and oxygen on the cathode side is transferred to the anode through the membrane due to the ion transfer. There is a problem that there is a possibility that the above-described cross-flow problem may occur, which may be transmitted to the anode side and consume the reducing ability on the anode side. In other words, the cation exchange membrane and the anion exchange membrane used as the electrolyte membrane have the effect of greatly changing the reaction system involved in the power generation reaction, and each has advantages and issues to be improved. Judgment should be made according to the structure and use of the device and the properties of the water-containing organic substance.
[0018]
In order to increase the transfer efficiency of hydrogen ions or hydroxide ions, the distance between the cathode and the electrolyte membrane should be as short as possible, and it is desirable that both are joined if possible in terms of the device structure. In particular, when a part of the electrolyte membrane is meshed with and bonded to the pores inside the porous structure of the cathode electrode, it is formed by the air contained in the porous structure and the water contained in the electrolyte membrane. Since the area of the water / air contact interface is dramatically increased, the reaction efficiency of reducing oxygen in the air is increased, and the power generation performance can be improved.
[0019]
When a cation exchange membrane is used as an electrolyte membrane, oxygen in the air is consumed in the reaction on the cathode side to generate water. For this reason, it is necessary to always supply ventilation to supply oxygen, and to prevent the cathode from being excessively wet by removing moisture. However, at this time, since the water retention amount on the cathode side changes depending on the humidity and flow rate of the supplied air, it is desirable to appropriately control the drying and humidification. As a method of ventilation by supply and discharge of air, a method of naturally performing convection replacement in an open system, a method of providing an air chamber by surrounding the cathode with an outer shell, and forcibly ventilating the air chamber with a ventilator, Similarly, a method of providing an air chamber, heating the air chamber with heat generated by the oxidation-reduction reaction, generating convection to raise air and water vapor, and ventilating the air chamber can be considered. It is preferable to adopt a ventilation method according to the conditions.
[0020]
When an anion exchange membrane is used as an electrolyte membrane, in the reaction on the cathode side, oxygen and water on the cathode surface are consumed, and hydroxide ions are generated. For this reason, it may be necessary to always ventilate and replenish oxygen, and replenish moisture to prevent the cathode from drying. In particular, when the ventilation air is dry, if the water supply rate due to permeation from the anode side is lower than the water consumption rate due to the evaporation and reduction reaction at the cathode, the ventilation air is humidified or steam is added. Thus, it is desirable to supply water to the cathode.
[0021]
On the other hand, in the reaction on the anode side, electrons derived from a water-containing organic substance are finally transferred to the anode electrode via an electron transfer system in the microorganisms mainly due to anaerobic respiration of microorganisms. Therefore, in order to allow the power generation reaction according to the present invention to proceed efficiently, the electron transfer system is not terminated in the cell membrane of the microorganism, but the electrons are easily captured by the anode outside the cell membrane. It is desirable to use a microorganism that does the same. Microorganisms that catalyze the transfer of electrons to the anode include sulfur S (0) reducing bacteria, ferric iron (III) reducing bacteria, and manganese dioxide MnO. 2 Reducing bacteria, dechlorinating bacteria and the like are preferably used. As such a microorganism, for example, Desulfuromonas sp. , Desulfitobacterium sp. , Geobivrio thiophilus sp. , Clostridium thiosulfatiridoducens sp. , Thermoterrarbacterium ferrireducens sp. Geothrix sp. , Geobacter sp. Geoglobus sp. , Shewanella putrefaciens sp. Etc. are particularly preferably used. Since these microorganisms are often not the main microorganisms in the water-containing organic substance, when starting up the apparatus of the present invention, these microorganisms are inoculated on the anode side, and these microorganisms are mainly on the anode surface. It is preferable to form an attached state. In order for these microorganisms to grow preferentially in the microbial reaction chamber, the area of the field where the respiratory reaction (electrode respiration) by passing electrons to the electrode is more energetically favorable than acid fermentation or methane fermentation should be increased. Specifically, it is preferable to increase the anode surface area in the microbial reaction chamber as much as possible. During the start-up operation, it is desirable to supply a culture medium suitable for the growth of these microorganisms into the microbial reaction chamber, and it is more desirable to promote the growth of these microorganisms on the anode surface by maintaining the potential of the anode high. . As a method for pre-culturing these microorganisms (group) or culturing them in a microbial reaction chamber, various media using slurry-like sulfur, ferric iron, manganese dioxide, or the like as an electron acceptor have been reported. For example, Handbook of Ancylobacter / Spirosoma medium, Desulfuromonas medium, Fe (III) Lactate Nutrient medium described in Microbial Media (Atlas et al. 1997, CRC Press) are preferably used.
[0022]
In order to promote the electron transfer reaction from the microorganisms to the electrode on the anode side, it is desirable that the anode has as large an area as possible and that the contact with the microorganisms is efficient. However, in the case of an apparatus for continuously treating a hydrated organic substance for a long period of time, since an anaerobic microorganism continuously grows in the hydrated organic substance and on the anode surface, a too fine three-dimensional network structure, If an anode electrode with a thin tube or laminated plate structure with a narrow gap is used, it is thought that decomposition of organic substances and power generation efficiency may be reduced due to blockage of flow channels by microbial cells, one-sided flow, formation of dead zones, etc. Can be For this reason, the shape of the anode is a wire mesh, porous, or primary structure having irregularities or folds on its surface, and is a three-dimensional mesh, tube, or laminated plate-like space (a hydrous organic substance flows in). It is preferable that a secondary structure having a flow path) is formed, and the flow path has an opening of several mm to several cm depending on the fluidity of the hydrous organic substance to be treated. In addition, depending on the use, it is desirable to wash the flow path with water or empty with time to remove excess microbial cells and extracellular secretions. At this time, if oxygen is contained in the gas used for the empty washing, it may adversely affect anaerobic microorganisms in the reaction vessel, which is a microbial reaction chamber. It is desirable to use a gas of
[0023]
As a material of the anode, a material having corrosion resistance against electrode corrosion due to an anodic reaction, sulfide corrosion due to hydrogen sulfide or the like is preferable. Among them, titanium or a titanium alloy is more preferable because it has high corrosion resistance while having the conductivity required for the electrode, and can stably operate the oxidative decomposition device for a long period of time. Depending on the intended use, antimicrobial treatment such as vapor deposition of silver, copper or zinc may be performed on the electrode surface to prevent excessive adhesion of microorganisms to the electrode and lowering of the conductivity. Has the effect of stabilizing Further, by carrying a catalyst comprising an alloy or a compound containing at least one selected from quinone, neutral red, thionine, platinum group elements, silver and transition metal elements on the anode surface, the efficiency of electron transfer from microorganisms to the anode is improved. Can be improved.
[0024]
In addition, the form of the reaction vessel according to the present invention should be considered so as not to form a dead zone in which the hydrated organic substance and the proliferated microbial cells stay. As one method for this purpose, the contact efficiency between the hydrated organic substance and the anode electrode can be increased by stirring or generating a circulating water flow. When the reaction vessel has an air-tight structure, it is desirable to provide some degassing mechanism to prevent the anaerobic gas from accumulating in the vessel and reducing the effective volume. Of course, as described above, this anaerobic gas can be used for the method of cleaning the flow path.
[0025]
Further, as in the case of the cathode, it is desirable that the distance between the anode and the electrolyte membrane be as short as possible to facilitate the movement of hydrogen ions or hydroxide ions and to reduce the electric resistance of the electrolyte system. It is preferable to arrange the anode and the electrolyte membrane in contact with each other. However, in this case, in order to allow the water-containing organic substance to come into contact with the electrolyte membrane and to absorb water therein, the anode has a water-permeable form, for example, a porous material or a mesh material. Or a form having water holes, for example, a lattice or comb form. In addition, when it is difficult to arrange the anode and the electrolyte membrane in contact with each other, for example, in order to create a water flow circulating between the anode and the electrolyte membrane by generating stirring or a circulating water flow, It is desirable to facilitate the transfer of hydrogen ions or hydroxide ions.
[0026]
The properties of the above-mentioned hydrated organic substance are as follows: the liquid or suspension, or the state in which the gap of the solid is saturated with water because molecular oxygen is not brought into the anaerobic reaction vessel (microbial reaction chamber). It is desirable that Since the oxidation reaction of the water-containing organic substance in the reaction vessel is mainly catalyzed by a respiratory reaction by microorganisms, the water-containing organic substance put into the reaction vessel has a small solid content particle size, and is well mixed in water. Desirably, it is dissolved or dispersed and has a low molecular weight, and is preferably a substance that is easily decomposed by microorganisms. If these conditions are not satisfied depending on the type of hydrous organic substance used, physical, chemical or biological pretreatment can be performed to increase the microbial degradability of the hydrous organic substance. Such methods include, for example, crushing by a pulverizer, thermal decomposition, ultrasonic treatment, ozone treatment, hypochlorite treatment, hydrogen peroxide treatment, sulfuric acid treatment, hydrolysis by microorganisms, acid generation, low molecular weight reduction Processing is possible. The energy required for these pretreatments can be selected in consideration of the balance with the improvement of the power generation energy in the main reaction vessel by the pretreatment, and optimal pretreatment conditions can be selected.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a specific example of a power generation device using a water-containing organic substance according to the present invention will be described with reference to the drawings. The following description illustrates some specific embodiments that embody the technical idea of the present invention, and the present invention is not limited to this description.
[0028]
FIG. 1 illustrates a specific example of a power generation unit according to one embodiment of the present invention. In order for electrons of a water-containing organic substance (hereinafter, referred to as a substrate) to be efficiently transferred to the anode, the surface area of the anode must be increased, the anode must be in efficient contact with the substrate, and a dead zone in which the substrate does not move must be formed. It is necessary that not be made, and that the ion exchange between the anode and the cathode be performed efficiently and that the anode and the cathode be electrically insulated. For this purpose, it is preferable that the anode is formed into a cylindrical shape, for example, a cylindrical shape, and the substrate flows through the anode, and the device is configured to contact the anode and the cathode in three layers with an electrolyte membrane interposed therebetween. For example, one specific example of the power generation device of the present invention constituted by the membrane / electrode structure shown in FIG. 1 is configured by forming the anode 1, the electrolyte membrane 2, and the porous cathode 3 into a triple cylindrical body. You. The substrate flows into the internal space 4 of the cylindrical body, and the presence of air around the cylindrical body 5 causes a potential difference between the anode 1 and the cathode 3. In this state, the potential difference current flows by electrically connecting the anode 1 and the cathode 3 with the conducting wire 6, while ions are exchanged between the anode 1 and the cathode 3 through the electrolyte membrane 2, A closed circuit is formed.
[0029]
The inner diameter of the cylindrical body can be set to several mm to several cm, and in some cases, several tens cm, depending on the fluidity of the substrate. The power generation unit as shown in FIG. 1 can increase its physical strength by being held in a support layer or casing of a suitable material. Further, in this case, the cylindrical body may be further covered with an outer shell to form a space between the outer shell and the cylindrical body as an air chamber, and a means for supplying and discharging air to the air chamber may be formed. Good. As shown in FIG. 1, when the electrolyte membrane is placed in contact with the anode, it is necessary that the substrate solution comes into contact with the electrolyte membrane through the anode and that the water in the solution is absorbed by the electrolyte membrane. Is as described above. For this purpose, the anode is preferably formed of a water-permeable form, for example, a mesh material or a porous material, or a grid-like form.
[0030]
In the power generating apparatus according to the present invention having a three-layer cylindrical body as shown in FIG. 1, the anode is arranged outside and the cathode is arranged inside according to the application, and means for circulating air through the inside space of the cathode is arranged. The power generation operation can be performed by installing the device in the substrate liquid. In this case, the cylindrical body may be formed in, for example, a U-shape, and both ends may come out from the liquid surface of the substrate liquid so that air can flow through the space inside the cylinder. In the case of such a configuration in which the cathode is an inner cylinder, there is an advantage in that even if the inner diameter of the inner cylinder of the cathode is reduced to about several mm or less, there is no fear of blocking. Furthermore, in the three-layer cylindrical body, when the inner cylindrical body 1 is a porous cathode, 2 is an electrolyte membrane, and the outer cylindrical body 3 is an anode, the surface area of the outer anode 2 is larger than that of the cathode 1. This is advantageous because it can be performed. Further, in order to increase the surface area of the anode, the surface of the anode may be provided with irregularities or folds. On the other hand, the inside diameter of the cathode side is related to the reaction efficiency, but it is sufficient that the inside diameter is large enough to allow the air to flow easily, and there is almost no danger of clogging, so the inside diameter should be reduced to about several mm or less. Is possible. In this case, the apparatus is constituted by further enclosing the cylindrical body with an outer shell to make the outer space of the cylindrical body a microbial reaction chamber through which the substrate flows, and arranging means for supplying and discharging the substrate to and from the microbial reaction chamber. be able to.
[0031]
FIG. 2 shows an example of the configuration of a power generator according to the present invention in which a plurality of the three-layered cylindrical bodies as described above are arranged. 2A is a longitudinal sectional view of the device, FIG. 2B is a transverse sectional view taken along the line aa ′ in FIG. 2A, and FIG. 2C is b in FIG. 2B. It is an enlarged view of a part. In the power generation device shown in FIG. 2, a plurality of three-layer cylindrical bodies (power generation units) 50 each including an anode inner cylinder 1, an electrolyte membrane 2, and a cathode outer cylinder 3 as shown in FIG. , Are arranged in an air chamber 7 formed by the outer shell. The substrate is distributed and injected by the inflow pump 8 through the inflow section 9 to the inside 4 of the plurality of power generation units 50 arranged. The substrate that has undergone oxidative decomposition here goes out of the reaction vessel via the outflow portion 10 and is then discharged out of the system as a treated substrate 11. A part of the substrate is returned to the inflow section 9 by the circulation pump 12 again. This circulating flow promotes the contact between the anode 1 and the substrate. The microbial cells and sludge accumulated in the reaction vessel are discharged by opening the excess sludge outlet 13 with time. In addition, from the same manner as described above, by injecting water, an inert gas, and an anaerobic gas, the inside of the reaction vessel can be back-washed and washed empty. When anaerobic gas is generated in the reaction vessel, it can be discharged from the exhaust port 19. As described above, this anaerobic gas may be stored and used for empty washing.
[0032]
On the other hand, in order to supply oxygen to the porous cathode 3, ventilation can be performed to the air chamber 7 using the blower 14. However, if forced ventilation is not required depending on the application, the air chamber 7 may be removed, and the apparatus may be configured such that the cathode 3, which is the outer cylinder of each power generation unit 50, contacts the outside air. The ventilated air flows through the space 5 between the power generation units in the air chamber 7, and is discharged from the exhaust port 15 after coming into contact with the cathode 3. The water generated by the reduction reaction at the cathode is discharged from the exhaust port 15 as water vapor or discharged from the condensed water drain 16 as condensed water.
[0033]
The conducting wire 6 is electrically connected to the inner cylinders 1 of the plurality of power generation units 50 by a connection portion 17 to the anode, and to the outer cylinders 3 of the plurality of power generation units 50 by a connection portion 18 to the cathode. At this time, it is necessary that the conductor 6 be electrically insulated from the surrounding environment so that an electrical short circuit and an oxidation-reduction reaction on the surface of the conductor do not occur.
[0034]
In the apparatus shown in FIG. 2 as well, as described above with reference to FIG. 1, the cathode 50 is constituted by the inner cylinder and the anode is constituted by the outer cylinder to form the cylindrical bodies 50 of the respective power generation units. It is also possible to supply air to the space and bring the substrate into contact with the anode outside the cylindrical body of the power generation unit 50.
[0035]
As for the cathode electrode, how to efficiently promote the reduction reaction of oxygen on the electrode becomes an issue. To this end, at least a part of the cathode is formed of a conductive porous material, a mesh or a fibrous material having a void in the structure, and a contact interface between air and water is present in the void of the cathode. It is preferable to increase the efficiency of contact with oxygen in the air and water on the water surface by bringing the air into contact with the air in a state where the air is kept.
[0036]
FIG. 3 is a sectional view showing an example of the structure of a cathode that can be employed in the device according to the present invention. FIG. 3A shows a cross section of the structure of the electrolyte membrane 2 and the cathode 3, and FIG. 3B is a cross-sectional view taken along the line cc 'of FIG. 3A. FIG. 3 shows a reaction system when the electrolyte membrane 2 is a cation exchange membrane. The cathode shown in FIG. 3 has a structure in which a porous matrix 20 supports a catalyst 21 preferably made of an alloy or a compound containing at least one selected from a platinum group element, silver, and a transition metal element. 3-A), when viewed from the air chamber side 5, it has a mesh-like structure (FIG. 3-B). By adopting such a configuration, the cathode can contact the oxygen in the air while sucking up the water passing through the water surface or the electrolyte membrane by a capillary phenomenon or the like, and the air network 22 and the aqueous solution are formed in the micro structure of the electrode. By having the network 23, the area of the air / water contact interface can be increased, and the efficiency of contacting oxygen in the air and water on the water surface can be increased. The reaction of oxygen and hydrogen ions on the catalyst 21 can promote the reduction reaction of oxygen in the air.
[0037]
FIG. 4 shows another example of a cathode structure that can be employed in the device according to the present invention. FIG. 4 also shows a reaction system when the electrolyte membrane 2 is a cation exchange membrane. In the cathode shown in FIG. 4, a solution made of the same material as the electrolyte membrane 2 is applied to the surface of the porous matrix 20 joined to the electrolyte membrane 2 and dried, so that a part of the electrolyte membrane structure is porous. It is made to penetrate into the inside of the fine pores of the porous matrix 20. By adopting such a configuration, the ion exchange and the utilization of the catalyst can be improved, and the reduction reaction of oxygen in the air can be promoted.
[0038]
Various embodiments of the present invention are as follows.
1. One of the pair of electrodes is used as an anode and is brought into contact with a solution or suspension containing a microorganism and an organic substance capable of growing under anaerobic conditions, and the other electrode is used as a cathode and at least a part is provided with a void in the structure. Formed of a conductive porous material having a mesh or fibrous material, and brought into contact with air in a state where a contact interface between air and water is present in the space of the cathode, and the cathode and the solution or suspension are formed. The liquid is separated via an electrolyte membrane, and the cathode and the anode are electrically connected to form a closed circuit, whereby a reduction reaction using oxygen as an electron acceptor at the cathode proceeds, and the anode The method according to claim 1, wherein an oxidation reaction by a microorganism using the organic substance as an electron donor is advanced.
[0039]
2. 2. The method according to claim 1, wherein the cathode carries a catalyst made of an alloy or a compound containing at least one element selected from the group consisting of platinum group elements, silver, and transition metal elements. .
[0040]
3. 3. The method according to claim 1, wherein the electrolyte membrane is a cation exchange membrane or an anion exchange membrane.
[0041]
4. 4. The power generation method according to any one of the above items 1 to 3, including a step of attaching microorganisms to the anode surface.
[0042]
5. The power generation method according to any one of the above-described items 1 to 4, wherein the organic substance is an organic waste, and the organic waste is supplied and discharged in a batch or flow manner.
[0043]
6. It has two compartments defined by an electrolyte membrane; one compartment in which the anode is located and which has a mechanism for supplying and discharging a solution or suspension containing organic substances; The compartment is disposed therein such that a cathode composed of a conductive porous material having at least a portion of voids in the structure, a mesh or fibrous material is in contact with the electrolyte membrane, and oxygen or air is provided therein. A power generator comprising: a supply and discharge mechanism; and means for electrically connecting the anode and the cathode to form a closed circuit.
[0044]
7. A cylindrical body including a cylindrical anode, an electrolyte membrane disposed in contact with the outside of the cylindrical anode, and a cylindrical cathode disposed in contact with the outside of the electrolyte membrane; At least a portion of the cathode is made of a conductive porous material, mesh or fibrous material having voids in the structure; and a solution or suspension containing an organic substance is provided in the internal space of the cylindrical anode. A power generating apparatus comprising: a mechanism for supplying and discharging a turbid liquid; and a means for electrically connecting the anode and the cathode to form a closed circuit.
[0045]
8. 8. The power generator according to the above item 7, wherein a plurality of cylindrical bodies each composed of an anode, an electrolyte membrane, and a cathode are arranged.
[0046]
9. A cylindrical body composed of an anode, an electrolyte membrane, and a cathode is enveloped by an outer shell to form an air chamber outside the cylindrical body, and a mechanism for supplying and discharging air to and from the air chamber is provided. Item 7. The power generating device according to Item 7 or 8.
[0047]
10. A cylindrical body including a cylindrical cathode, an electrolyte membrane disposed in contact with the outside of the cylindrical cathode, and a cylindrical anode disposed in contact with the outside of the electrolyte membrane; At least a portion of the cathode is made of a conductive porous material, mesh or fibrous material having voids in the structure; and a mechanism for supplying and discharging air to the internal space of the cylindrical cathode is provided. And a means for electrically connecting the anode and the cathode to form a closed circuit.
[0048]
11. 11. The power generator according to the above item 10, wherein a plurality of cylindrical bodies each composed of a cathode, an electrolyte membrane, and an anode are arranged.
[0049]
12. A cylindrical body composed of a cathode, an electrolyte membrane, and an anode is enveloped by an outer shell to form a solution chamber outside the cylindrical body, and a solution or suspension containing an organic substance is supplied to and discharged from the solution chamber. Item 12. The power generating device according to Item 10 or 11, wherein the power generating device is provided with a mechanism for performing the operation.
[0050]
13. 13. The cathode according to any one of items 6 to 12, wherein the cathode carries a catalyst made of an alloy or a compound containing at least one element selected from a platinum group element, silver, and a transition metal element. A power generator according to any one of the above.
[0051]
14. 14. The power generator according to any one of the above items 6 to 13, wherein the electrolyte membrane is a cation exchange membrane or an anion exchange membrane.
[0052]
15. The power generator according to any one of the above items 6 to 14, wherein a plurality of sets of the two types of compartments defined by the electrolyte membrane are stacked.
[0053]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples. However, the present invention is not limited by this embodiment.
[0054]
Using the experimental power generator shown in FIG. 5, the electron acceptor on the cathode side was dissolved oxygen in water (Comparative Example: equivalent to a conventional microbial battery) and air (oxygen) (the present invention). The power generation performances of the power generation devices of the present invention were compared.
[0055]
The power generator had a structure in which three cell frames (25, 26, 27) each having a side length of 100 mm and a thickness of 10 mm and a separator 24 of the same size were stacked. A cell frame 25 was arranged adjacent to the separator 24, and furnace black particles carrying platinum were bound with a PTFE (Teflon (registered trademark)) binder, and the anode 1 was arranged. Next, a cell frame 26 to which an electrolyte membrane 2 made of a cation exchange membrane (Dafon Nafion) is fixed is mounted, the anode 1 and the electrolyte membrane 2 are placed in contact with each other, and furnace black particles carrying platinum are converted into PTFE (Teflon). (Registered trademark) A binder bound with a binder was placed in contact with the electrolyte membrane 2 as a cathode 3, and a cell frame 27 and a separator 24 'were placed. Thus, a microorganism reaction chamber 35 and an air reaction chamber 37 were formed. The device was constructed by alternately stacking three units of this structure. In each cell frame, a flow path for flowing the substrate liquid and air was formed. Further, each anode 1 and each cathode 3 were electrically connected by a conducting wire (not shown) to form a closed circuit. A 0.25 mol / L aqueous glucose solution was injected from the inlet 28 as a model of a water-containing organic substance, passed through each of the microbial reaction chambers 35, 35 ′ and 35 ″, and then discharged from the outlet 29. Further, air was ventilated from the inlet 30 and passed through each of the air reaction chambers 37, 37 ', 37 ", and then exhausted from the outlet 31. The combined effective volume of the three units of this apparatus was 108 mL for both the microbial reaction chamber and the air reaction chamber, and the supply and discharge rates were adjusted so that the residence time was 5 minutes for both the aqueous glucose solution and the air. The total surface area of the electrodes is 108 cm for both anode and cathode 2 And 0.5 g of digester sludge was added to the microbial reaction chambers 35, 35 ', and 35 "before the operation was started. For two days from the start of the operation, the liquid was passed to wait for the microorganisms to adhere to the microbial reaction chamber. Instead, a Desulfuromonas medium described in Handbook of Microbial Media (Atlas et al., 1997, CRC Press) was filled in the microbial reaction chamber to promote dominance of sulfur-reducing bacteria. Preliminary operation was performed for two days, and normal operation with a residence time of 5 minutes was started 10 days after the start of the preliminary operation, and the current amount and voltage between the anode and the cathode were measured.
[0056]
As a comparative example, oxygen-saturated water was passed through the air reaction chambers 37, 37 ′, and 37 ″ at the same residence time as the aqueous glucose solution into the microorganism reaction chamber, and the residence time was 5 minutes after 10 days from the start of the preliminary operation. The current amount and the voltage between the anode and the cathode were measured in the normal operation of Example 1. In the above Examples and Comparative Examples, the cathode and the anode were always electrically connected, including during the preliminary experiment. .
[0057]
The test results are shown in Table 1. Although there was no significant difference in the generated potential difference (voltage), the generated current was smaller in the method of the present invention in which air was passed through the air reaction chamber than in the comparative example in which oxygen-saturated water was passed through the air reaction chamber. A high current amount of 1600 times was generated. In each system, the amount of generated current and voltage were substantially stable during the continuous operation for one week thereafter.
[0058]
[Table 1]
Figure 2004342412
[0059]
【The invention's effect】
As described above, according to the present invention, wastewater, waste liquid, human waste, food waste, other organic waste, organic substances such as sludge or its decomposed products are efficiently oxidatively decomposed, and compared with conventional microbial batteries. It is also possible to obtain a lot of electrical energy. INDUSTRIAL APPLICABILITY The present invention is expected to be widely used as a power generation method using oxidative decomposition of a water-containing organic substance and reduction potential.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of the structure of a membrane / electrode structure of the present invention.
FIG. 2 is a conceptual diagram illustrating a configuration example of a power generation device according to the present invention. 2A is a longitudinal sectional view of the device, FIG. 2B is a sectional view taken along line aa ′ of FIG. 2A, and FIG. 2C is an enlarged view of a portion b of FIG. 2B.
FIG. 3 is a conceptual diagram showing an example of the structure of a cathode electrode according to the present invention. FIG. 3A is a longitudinal sectional view, and FIG. 3B is a sectional view taken along the line cc ′ in FIG. 3A.
FIG. 4 is a conceptual diagram showing another example of the structure of the cathode electrode of the present invention.
FIG. 5 is a conceptual diagram showing a configuration of a power generator according to the present invention used in the examples.
[Explanation of symbols]
1: Anode or cathode
2: Electrolyte membrane
3: Cathode or anode
4: Inside the inner cylinder
5: Space around cylindrical body
6: Lead wire
7: Air chamber
8: Inflow pump
9: Inflow section
10: Outflow section
11: Discharge unit for treated hydrous organic matter
12: Circulation pump
13: Excess sludge outlet
14: Air blower
15: Exhaust port
16: Condensate drain
17: Connection with anode
18: Connection with cathode
19: Exhaust port
20: Porous matrix
21: Catalyst
22: Air network
23: Aqueous solution network
24, 24 ': separator
25, 26, 27: cell frame
28: Injection port for water-containing organic substances
29: Decomposition waste liquid outlet
30: Air inlet
31: Air outlet
35, 35 ', 35 ": Microbial reaction chamber
37, 37 ', 37 ": air reaction chamber

Claims (15)

一対の電極の一方を、アノードとして、嫌気性下で生育可能な微生物及び有機性物質を含む溶液又は懸濁液と接触させ、他方の電極を、カソードとして、少なくとも一部を構造体内に空隙を有する導電性の多孔質材料、網状又は繊維状材料によって形成して、前記カソードの空隙中に空気と水との接触界面を存在させた状態で空気と接触させ、前記カソードと前記溶液又は懸濁液とを電解質膜を介して離隔して、前記カソードとアノードとを電気的に接続して閉回路を形成することにより、前記カソードにおいて酸素を電子受容体とする還元反応を進行させ、前記アノードにおいて前記有機性物質を電子供与体とする微生物による酸化反応を進行させることを特徴とする発電方法。One of the pair of electrodes is used as an anode and is brought into contact with a solution or suspension containing a microorganism and an organic substance capable of growing under anaerobic conditions, and the other electrode is used as a cathode and at least a part is provided with a void in the structure. Formed of a conductive porous material having a mesh or fibrous material, and brought into contact with air in a state where a contact interface between air and water is present in the space of the cathode, and the cathode and the solution or suspension are formed. The liquid is separated via an electrolyte membrane, and the cathode and the anode are electrically connected to form a closed circuit, whereby a reduction reaction using oxygen as an electron acceptor at the cathode proceeds, and the anode The method according to claim 1, wherein an oxidation reaction by a microorganism using the organic substance as an electron donor is advanced. 前記カソードは、白金族元素、銀、遷移金属元素から選ばれる少なくとも1種類の元素を含有する合金あるいは化合物からなる触媒を担持したものであることを特徴とする請求項1に記載の発電方法。2. The power generation method according to claim 1, wherein the cathode carries a catalyst made of an alloy or a compound containing at least one element selected from a platinum group element, silver, and a transition metal element. 前記電解質膜は陽イオン交換膜又は陰イオン交換膜であることを特徴とする請求項1又は2に記載の発電方法。3. The method according to claim 1, wherein the electrolyte membrane is a cation exchange membrane or an anion exchange membrane. 前記アノード表面に微生物を付着させる工程を含む請求項1乃至3のいずれかに記載の発電方法。The power generation method according to any one of claims 1 to 3, further comprising a step of attaching microorganisms to the anode surface. 前記有機性物質は有機性廃棄物であって、回分式又は流通式に前記有機性廃棄物を供給及び排出する請求項1乃至4のいずれかに記載の発電方法。The power generation method according to any one of claims 1 to 4, wherein the organic substance is an organic waste, and the organic waste is supplied and discharged in a batch or flow manner. 電解質膜で画定される2種類の隔室を持ち;一方の隔室は、その中にアノードが配置され、有機性物質を含む溶液又は懸濁液の供給及び排出する機構を備えており;他方の隔室は、少なくとも一部が構造体内に空隙を有する導電性の多孔質材料、網状又は繊維状材料によって構成されるカソードが前記電解質膜に接するようにその中に配置され、酸素又は空気を供給及び排出する機構を備えており;前記アノードとカソードとを電気的に接続して閉回路を形成する手段を有する;ことを特徴とする発電装置。It has two compartments defined by an electrolyte membrane; one compartment in which the anode is located and which has a mechanism for supplying and discharging a solution or suspension containing organic substances; The compartment is disposed therein such that a cathode composed of a conductive porous material having at least a portion of voids in the structure, a mesh or fibrous material is in contact with the electrolyte membrane, and oxygen or air is provided therein. A power generator comprising: a supply and discharge mechanism; and means for electrically connecting the anode and the cathode to form a closed circuit. 筒状のアノード、前記筒状のアノードの外側に接触して配置されている電解質膜、前記電解質膜の外側に接触して配置されている筒状のカソード、から構成される筒状体を具備し;前記カソードの少なくとも一部が構造体内に空隙を有する導電性の多孔質材料、網状又は繊維状材料によって構成されており;筒状のアノードの内部空間に、有機性物質を含む溶液又は懸濁液の供給及び排出する機構が備えられており;前記アノードとカソードとを電気的に接続して閉回路を形成する手段を有する;ことを特徴とする発電装置。A cylindrical body including a cylindrical anode, an electrolyte membrane disposed in contact with the outside of the cylindrical anode, and a cylindrical cathode disposed in contact with the outside of the electrolyte membrane; At least a portion of the cathode is made of a conductive porous material, mesh or fibrous material having voids in the structure; and a solution or suspension containing an organic substance is provided in the internal space of the cylindrical anode. A power generating apparatus comprising: a mechanism for supplying and discharging a turbid liquid; and means for electrically connecting the anode and the cathode to form a closed circuit. アノード、電解質膜、カソードから構成される筒状体が複数個配置されている請求項7に記載の発電装置。The power generator according to claim 7, wherein a plurality of cylindrical bodies each including an anode, an electrolyte membrane, and a cathode are arranged. アノード、電解質膜、カソードから構成される筒状体が外殻によって被包されて筒状体の外側の空気室が形成され、空気室に空気を供給及び排出する機構が備えられている請求項7又は8に記載の発電装置。A cylindrical body comprising an anode, an electrolyte membrane, and a cathode is enveloped by an outer shell to form an air chamber outside the cylindrical body, and a mechanism for supplying and discharging air to and from the air chamber is provided. The power generator according to 7 or 8. 筒状のカソード、前記筒状のカソードの外側に接触して配置されている電解質膜、前記電解質膜の外側に接触して配置されている筒状のアノード、によって構成される筒状体を具備し;前記カソードの少なくとも一部が構造体内に空隙を有する導電性の多孔質材料、網状又は繊維状材料によって構成されており;筒状のカソードの内部空間に空気を供給及び排出する機構が備えられており;前記アノードとカソードとを電気的に接続して閉回路を形成する手段を有する;ことを特徴とする発電装置。A cylindrical body including a cylindrical cathode, an electrolyte membrane disposed in contact with the outside of the cylindrical cathode, and a cylindrical anode disposed in contact with the outside of the electrolyte membrane; At least a portion of the cathode is made of a conductive porous material, mesh or fibrous material having voids in the structure; and a mechanism for supplying and discharging air to the internal space of the cylindrical cathode is provided. And a means for electrically connecting the anode and the cathode to form a closed circuit. カソード、電解質膜、アノードから構成される筒状体が複数個配置されている請求項10に記載の発電装置。The power generator according to claim 10, wherein a plurality of cylindrical bodies each including a cathode, an electrolyte membrane, and an anode are arranged. カソード、電解質膜、アノードから構成される筒状体が外殻によって被包されて筒状体の外側の溶液室が形成され、溶液室に有機性物質を含む溶液又は懸濁液を供給及び排出する機構が備えられている請求項10又は11に記載の発電装置。A cylindrical body composed of a cathode, an electrolyte membrane, and an anode is enveloped by an outer shell to form a solution chamber outside the cylindrical body, and a solution or suspension containing an organic substance is supplied to and discharged from the solution chamber. The power generator according to claim 10 or 11, further comprising a mechanism for performing the operation. 前記カソードは白金族元素、銀、遷移金属元素から選ばれる少なくとも1種類の元素を含有する合金あるいは化合物からなる触媒を担持したものであることを特徴とする請求項6〜12のいずれかに記載の発電装置。13. The cathode according to claim 6, wherein the cathode carries a catalyst made of an alloy or a compound containing at least one element selected from a platinum group element, silver, and a transition metal element. Power generator. 前記電解質膜は、陽イオン交換膜又は陰イオン交換膜であることを特徴とする請求項6〜13のいずれかに記載の発電装置。The power generator according to any one of claims 6 to 13, wherein the electrolyte membrane is a cation exchange membrane or an anion exchange membrane. 前記電解質膜で画定される2種類の隔室は、複数組積層したものであることを特徴とする請求項6〜14のいずれかに記載の発電装置。The power generator according to any one of claims 6 to 14, wherein a plurality of sets of the two types of compartments defined by the electrolyte membrane are stacked.
JP2003136164A 2003-05-14 2003-05-14 Power generation method and device using organic substance Ceased JP2004342412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136164A JP2004342412A (en) 2003-05-14 2003-05-14 Power generation method and device using organic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136164A JP2004342412A (en) 2003-05-14 2003-05-14 Power generation method and device using organic substance

Publications (1)

Publication Number Publication Date
JP2004342412A true JP2004342412A (en) 2004-12-02

Family

ID=33526217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136164A Ceased JP2004342412A (en) 2003-05-14 2003-05-14 Power generation method and device using organic substance

Country Status (1)

Country Link
JP (1) JP2004342412A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066284A (en) * 2004-08-27 2006-03-09 Hitachi Kiden Kogyo Ltd Power generation method using excess sludge
JP2006159112A (en) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology Microorganism carrying battery combined electrolyzer, and electrolytic method using the same
JP2006179223A (en) * 2004-12-21 2006-07-06 Ebara Corp Power generation method and apparatus using organic substance
JP2006190502A (en) * 2004-12-28 2006-07-20 Tokyo Univ Of Agriculture & Technology Electrode for biofuel cell and biofuel cell
WO2007037228A1 (en) * 2005-09-28 2007-04-05 Ebara Corporation Anode for biological power generation and power generation method and device utilizing it
WO2007037261A1 (en) * 2005-09-28 2007-04-05 Ebara Corporation Biological power plant, and method of treating organic solid contaminant-containing waste, method of treating organic high molecular substance-containing liquid waste and method of treating organic substance-containing liquid waste by using the biological power plant, and apparatus for conducting these methods
JP2007090232A (en) * 2005-09-28 2007-04-12 Ebara Corp Method and device for treating organic substance-containing waste solution
JP2007117996A (en) * 2005-09-28 2007-05-17 Ebara Corp Method and device of treating waste containing organic solid contaminated substance
JP2007227216A (en) * 2006-02-24 2007-09-06 Marine Biotechnol Inst Co Ltd Bioreactor/microbial fuel cell hybrid system
WO2008109911A1 (en) * 2007-03-15 2008-09-18 The University Of Queensland Microbial fuel cell
JP2008288134A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Fuel cell
CN100449845C (en) * 2006-11-28 2009-01-07 北京航空航天大学 Stackable single cell microbe fuel battery
JP2009093948A (en) * 2007-10-10 2009-04-30 National Institute Of Advanced Industrial & Technology Direct fuel cell
WO2008036347A3 (en) * 2006-09-20 2009-06-04 Harvard College Methods and apparatus for stimulating and managing power from microbial fuel cells
WO2009081730A1 (en) * 2007-12-21 2009-07-02 Kurita Water Industries Ltd. Microbioelectric generating device
JP2009176556A (en) * 2008-01-24 2009-08-06 National Institute Of Advanced Industrial & Technology Fuel cell
WO2010044145A1 (en) * 2008-10-15 2010-04-22 鹿島建設株式会社 Microbial fuel cell and membrane cassette for microbial fuel cells
JP2010102953A (en) * 2008-10-23 2010-05-06 Kurita Water Ind Ltd Microbiological power generation device and positive electrode for the microbiological power generation device
WO2010073907A1 (en) 2008-12-24 2010-07-01 栗田工業株式会社 Microbial electricity-generating method and microbial electric generator
JP2011065821A (en) * 2009-09-16 2011-03-31 Kurita Water Ind Ltd Microorganism power generation method and microorganism power generation device
JP2011065820A (en) * 2009-09-16 2011-03-31 Kurita Water Ind Ltd Microorganism power generation method and device
KR101040185B1 (en) 2009-03-31 2011-06-09 명지대학교 산학협력단 Microbial fuel cell unit equipped with functional electrodes and microbial fuel cell prepared therewith
WO2011088348A3 (en) * 2010-01-14 2011-12-01 J. Craig Venter Institute Modular energy recovering water treatment devices
CN102583768A (en) * 2012-01-09 2012-07-18 中国科学院广州能源研究所 New method for efficiently treating garbage leachate
CN102935444A (en) * 2012-12-10 2013-02-20 邸园园 Kitchen waste disposal device
CN101710626B (en) * 2009-11-12 2013-04-17 南京大学 Single-chamber microbial fuel cell and application thereof in wastewater treatment
JP2013143305A (en) * 2012-01-12 2013-07-22 Sekisui Chem Co Ltd Membrane/electrode assembly structure, and microorganism fuel cell module
JP2013143363A (en) * 2012-01-13 2013-07-22 Sekisui Chem Co Ltd Microbial fuel cell system
JP2013538114A (en) * 2010-07-21 2013-10-10 カンブリアン イノベーション エルエルシー Bio-electrochemical system for treating wastewater and method for treating acid gas
JP2015038888A (en) * 2008-06-04 2015-02-26 セルエラ, インコーポレイテッド Alkali membrane fuel cell and device and method for supplying water thereto
WO2016047060A1 (en) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 Liquid processing unit and liquid processing device
JP2016087497A (en) * 2014-10-30 2016-05-23 国立大学法人 東京大学 Method of treating nitrogen-containing compound containing water
JP2016168594A (en) * 2009-06-16 2016-09-23 カンブリアン イノベーションズ インコーポレイデッド Systems and devices for treating and monitoring water, wastewater and other biodegradable matter
JP2017021978A (en) * 2015-07-10 2017-01-26 株式会社明電舎 Microbial fuel cell
US9963790B2 (en) 2010-10-19 2018-05-08 Matthew Silver Bio-electrochemical systems
CN108178284A (en) * 2017-12-11 2018-06-19 广东信丰达环保科技有限公司 One kind is wrapped up in around biomembrane rotary cathode sewage-treatment plant
CN108704933A (en) * 2018-04-26 2018-10-26 中国石油大学(北京) A kind of device and method of the hexavalent chromium polluted soil of in-situ immobilization
CN108706692A (en) * 2018-08-27 2018-10-26 吴群 Multistage room multiple catalyzing electrode electro Chemical reactor
WO2019078002A1 (en) * 2017-10-18 2019-04-25 パナソニックIpマネジメント株式会社 Liquid processing system
CN110571438A (en) * 2019-09-05 2019-12-13 三明学院 Air cathode for microbial fuel cell and microbial fuel cell
CN110563158A (en) * 2019-09-27 2019-12-13 西安建筑科技大学 Zero-valent iron-based coil spring type microbial fuel cell capable of synchronously removing nitrogen and phosphorus and working method thereof
WO2020032356A1 (en) * 2018-08-09 2020-02-13 한국에너지기술연구원 Salinity gradient power generation device
KR20200052153A (en) * 2018-11-06 2020-05-14 한국에너지기술연구원 Power generating apparatus using the salinity gradient
KR102157334B1 (en) * 2019-05-20 2020-09-17 한국에너지기술연구원 Power generating apparatus using the salinity gradient
JP2021109125A (en) * 2020-01-08 2021-08-02 住友重機械工業株式会社 Wastewater treatment apparatus, electrode and wastewater treatment method
CN113461138A (en) * 2021-06-25 2021-10-01 江西师范大学 Apparatus for sewage treatment and sewage treatment method
CN115038670A (en) * 2020-01-31 2022-09-09 三菱重工业株式会社 Inoculated sludge product, inoculated sludge feeding device and inoculated sludge feeding method
JP7404080B2 (en) 2020-01-17 2023-12-25 住友重機械工業株式会社 Wastewater treatment equipment, wastewater treatment method, and treatment system
NL2037227A (en) * 2024-03-12 2024-04-03 Yangtze Ecology And Env Co Ltd Pretreatment method for industrial wastewater in composite sewage treatment plant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188008A (en) * 1992-04-01 1994-07-08 Toshiba Corp Fuel battery
WO2001004061A1 (en) * 1999-07-07 2001-01-18 Korea Institute Of Science And Technology A biofuel cell using wastewater and active sludge for wastewater treatment
JP2002270209A (en) * 2001-03-06 2002-09-20 Sharp Corp Solid polymer fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188008A (en) * 1992-04-01 1994-07-08 Toshiba Corp Fuel battery
WO2001004061A1 (en) * 1999-07-07 2001-01-18 Korea Institute Of Science And Technology A biofuel cell using wastewater and active sludge for wastewater treatment
JP2002270209A (en) * 2001-03-06 2002-09-20 Sharp Corp Solid polymer fuel cell

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685385B2 (en) * 2004-08-27 2011-05-18 株式会社日立プラントテクノロジー Power generation method using surplus sludge
JP2006066284A (en) * 2004-08-27 2006-03-09 Hitachi Kiden Kogyo Ltd Power generation method using excess sludge
JP2006159112A (en) * 2004-12-08 2006-06-22 National Institute Of Advanced Industrial & Technology Microorganism carrying battery combined electrolyzer, and electrolytic method using the same
JP2006179223A (en) * 2004-12-21 2006-07-06 Ebara Corp Power generation method and apparatus using organic substance
JP2006190502A (en) * 2004-12-28 2006-07-20 Tokyo Univ Of Agriculture & Technology Electrode for biofuel cell and biofuel cell
JP2007090232A (en) * 2005-09-28 2007-04-12 Ebara Corp Method and device for treating organic substance-containing waste solution
JP2007117996A (en) * 2005-09-28 2007-05-17 Ebara Corp Method and device of treating waste containing organic solid contaminated substance
WO2007037261A1 (en) * 2005-09-28 2007-04-05 Ebara Corporation Biological power plant, and method of treating organic solid contaminant-containing waste, method of treating organic high molecular substance-containing liquid waste and method of treating organic substance-containing liquid waste by using the biological power plant, and apparatus for conducting these methods
WO2007037228A1 (en) * 2005-09-28 2007-04-05 Ebara Corporation Anode for biological power generation and power generation method and device utilizing it
JP2007227216A (en) * 2006-02-24 2007-09-06 Marine Biotechnol Inst Co Ltd Bioreactor/microbial fuel cell hybrid system
WO2008036347A3 (en) * 2006-09-20 2009-06-04 Harvard College Methods and apparatus for stimulating and managing power from microbial fuel cells
CN100449845C (en) * 2006-11-28 2009-01-07 北京航空航天大学 Stackable single cell microbe fuel battery
WO2008109911A1 (en) * 2007-03-15 2008-09-18 The University Of Queensland Microbial fuel cell
JP2008288134A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Fuel cell
JP2009093948A (en) * 2007-10-10 2009-04-30 National Institute Of Advanced Industrial & Technology Direct fuel cell
WO2009081730A1 (en) * 2007-12-21 2009-07-02 Kurita Water Industries Ltd. Microbioelectric generating device
US8828567B2 (en) 2007-12-21 2014-09-09 Kurita Water Industries Ltd. Microbial power generation device
JP2009176556A (en) * 2008-01-24 2009-08-06 National Institute Of Advanced Industrial & Technology Fuel cell
JP2015038888A (en) * 2008-06-04 2015-02-26 セルエラ, インコーポレイテッド Alkali membrane fuel cell and device and method for supplying water thereto
WO2010044145A1 (en) * 2008-10-15 2010-04-22 鹿島建設株式会社 Microbial fuel cell and membrane cassette for microbial fuel cells
JP2010102953A (en) * 2008-10-23 2010-05-06 Kurita Water Ind Ltd Microbiological power generation device and positive electrode for the microbiological power generation device
WO2010073907A1 (en) 2008-12-24 2010-07-01 栗田工業株式会社 Microbial electricity-generating method and microbial electric generator
KR20110106293A (en) 2008-12-24 2011-09-28 쿠리타 고교 가부시키가이샤 Microbial electricity-generating method and microbial electric generator
US9209475B2 (en) 2008-12-24 2015-12-08 Kurita Water Industries Ltd. Method for microbially generating electricity and microbial power generator
KR101040185B1 (en) 2009-03-31 2011-06-09 명지대학교 산학협력단 Microbial fuel cell unit equipped with functional electrodes and microbial fuel cell prepared therewith
JP2016168594A (en) * 2009-06-16 2016-09-23 カンブリアン イノベーションズ インコーポレイデッド Systems and devices for treating and monitoring water, wastewater and other biodegradable matter
JP2011065820A (en) * 2009-09-16 2011-03-31 Kurita Water Ind Ltd Microorganism power generation method and device
JP2011065821A (en) * 2009-09-16 2011-03-31 Kurita Water Ind Ltd Microorganism power generation method and microorganism power generation device
CN101710626B (en) * 2009-11-12 2013-04-17 南京大学 Single-chamber microbial fuel cell and application thereof in wastewater treatment
AU2011205747B2 (en) * 2010-01-14 2016-06-02 J. Craig Venter Institute Modular energy recovering water treatment devices
WO2011088348A3 (en) * 2010-01-14 2011-12-01 J. Craig Venter Institute Modular energy recovering water treatment devices
JP2013517129A (en) * 2010-01-14 2013-05-16 ジエイ・クレイグ・ベンター・インステイテユート Modular energy recovery water treatment system
US9505636B2 (en) 2010-01-14 2016-11-29 J. Craig Venter Institute Modular energy recovering water treatment devices
US10099950B2 (en) 2010-07-21 2018-10-16 Cambrian Innovation Llc Bio-electrochemical system for treating wastewater
JP2013538114A (en) * 2010-07-21 2013-10-10 カンブリアン イノベーション エルエルシー Bio-electrochemical system for treating wastewater and method for treating acid gas
JP2016120492A (en) * 2010-07-21 2016-07-07 カンブリアン イノベーション エルエルシー Bio-electrochemical system for treating wastewater and method for treating acid gas
US9963790B2 (en) 2010-10-19 2018-05-08 Matthew Silver Bio-electrochemical systems
CN102583768A (en) * 2012-01-09 2012-07-18 中国科学院广州能源研究所 New method for efficiently treating garbage leachate
JP2013143305A (en) * 2012-01-12 2013-07-22 Sekisui Chem Co Ltd Membrane/electrode assembly structure, and microorganism fuel cell module
JP2013143363A (en) * 2012-01-13 2013-07-22 Sekisui Chem Co Ltd Microbial fuel cell system
CN102935444A (en) * 2012-12-10 2013-02-20 邸园园 Kitchen waste disposal device
WO2016047060A1 (en) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 Liquid processing unit and liquid processing device
CN106573809A (en) * 2014-09-26 2017-04-19 松下知识产权经营株式会社 Liquid processing unit and liquid processing device
JPWO2016047060A1 (en) * 2014-09-26 2017-06-15 パナソニックIpマネジメント株式会社 Liquid processing unit and liquid processing apparatus
JP2016087497A (en) * 2014-10-30 2016-05-23 国立大学法人 東京大学 Method of treating nitrogen-containing compound containing water
JP2017021978A (en) * 2015-07-10 2017-01-26 株式会社明電舎 Microbial fuel cell
WO2019078002A1 (en) * 2017-10-18 2019-04-25 パナソニックIpマネジメント株式会社 Liquid processing system
CN108178284A (en) * 2017-12-11 2018-06-19 广东信丰达环保科技有限公司 One kind is wrapped up in around biomembrane rotary cathode sewage-treatment plant
CN108704933A (en) * 2018-04-26 2018-10-26 中国石油大学(北京) A kind of device and method of the hexavalent chromium polluted soil of in-situ immobilization
CN108704933B (en) * 2018-04-26 2020-09-11 中国石油大学(北京) Device and method for in-situ remediation of hexavalent chromium contaminated soil
WO2020032356A1 (en) * 2018-08-09 2020-02-13 한국에너지기술연구원 Salinity gradient power generation device
CN108706692A (en) * 2018-08-27 2018-10-26 吴群 Multistage room multiple catalyzing electrode electro Chemical reactor
KR20200052153A (en) * 2018-11-06 2020-05-14 한국에너지기술연구원 Power generating apparatus using the salinity gradient
KR102133446B1 (en) 2018-11-06 2020-07-13 한국에너지기술연구원 Power generating apparatus using the salinity gradient
KR102157334B1 (en) * 2019-05-20 2020-09-17 한국에너지기술연구원 Power generating apparatus using the salinity gradient
CN110571438A (en) * 2019-09-05 2019-12-13 三明学院 Air cathode for microbial fuel cell and microbial fuel cell
CN110563158A (en) * 2019-09-27 2019-12-13 西安建筑科技大学 Zero-valent iron-based coil spring type microbial fuel cell capable of synchronously removing nitrogen and phosphorus and working method thereof
CN110563158B (en) * 2019-09-27 2024-04-05 西安建筑科技大学 Coil spring type synchronous nitrogen and phosphorus removal microbial fuel cell based on zero-valent iron and working method thereof
JP2021109125A (en) * 2020-01-08 2021-08-02 住友重機械工業株式会社 Wastewater treatment apparatus, electrode and wastewater treatment method
JP7404080B2 (en) 2020-01-17 2023-12-25 住友重機械工業株式会社 Wastewater treatment equipment, wastewater treatment method, and treatment system
CN115038670A (en) * 2020-01-31 2022-09-09 三菱重工业株式会社 Inoculated sludge product, inoculated sludge feeding device and inoculated sludge feeding method
CN113461138A (en) * 2021-06-25 2021-10-01 江西师范大学 Apparatus for sewage treatment and sewage treatment method
NL2037227A (en) * 2024-03-12 2024-04-03 Yangtze Ecology And Env Co Ltd Pretreatment method for industrial wastewater in composite sewage treatment plant

Similar Documents

Publication Publication Date Title
JP2004342412A (en) Power generation method and device using organic substance
JP4773736B2 (en) Power generation method and apparatus using organic substance
CN103972521B (en) Electrode material, electrode and battery
JPWO2007037228A1 (en) Bioelectric power generation anode and power generation method and apparatus using the same
JP2007095471A (en) Anode for bio-generation, and method and device of power generation utilizing this
JP2007117995A (en) Method for treating waste water containing organic high molecular substance and apparatus therefor
WO2010044145A1 (en) Microbial fuel cell and membrane cassette for microbial fuel cells
JP6184256B2 (en) Cathode for microbial fuel cell, method for producing the same, and microbial fuel cell
EP3270451B1 (en) Microbial fuel cell system
JP2007090232A (en) Method and device for treating organic substance-containing waste solution
CN104701561B (en) Photoelectric-microbiological composite anode microbial fuel cell and method for processing domestic sewage by using microbial fuel cell
US20160351937A1 (en) Microbial fuel cell, microbial fuel cell system, and method for using microbial fuel cell
JP2006331706A (en) Electronic mediator for bio-power generation, anode for bio-power generation, power generation method and power generation device utilizing this
JP2015041477A (en) Air cathode for microbial fuel cell, and microbial fuel cell
JP2006179223A (en) Power generation method and apparatus using organic substance
EP3466895A1 (en) Purification unit and purification device
JP2007027019A (en) Anode for biological power generation and method and device for biological power generation utilizing same
JP2011049068A (en) Bio-fuel cell
CN111819308B (en) Implantable device for generating hydrogen
EP3493312A1 (en) Microbial fuel cell
JP2007095470A (en) Anode for bioelectrogenesis, its manufacturing method and power generation device
US20180013161A1 (en) Microbial fuel cell system
JP5770645B2 (en) Membrane / electrode bonded structure and microbial fuel cell module
JP5302969B2 (en) Microbial fuel cell cathode assembly
JP6358352B1 (en) Microbial power generation apparatus and microbial power generation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20100722