JP2007227216A - Bioreactor/microbial fuel cell hybrid system - Google Patents

Bioreactor/microbial fuel cell hybrid system Download PDF

Info

Publication number
JP2007227216A
JP2007227216A JP2006048103A JP2006048103A JP2007227216A JP 2007227216 A JP2007227216 A JP 2007227216A JP 2006048103 A JP2006048103 A JP 2006048103A JP 2006048103 A JP2006048103 A JP 2006048103A JP 2007227216 A JP2007227216 A JP 2007227216A
Authority
JP
Japan
Prior art keywords
fuel cell
methane fermentation
microbial fuel
hydrogen
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006048103A
Other languages
Japanese (ja)
Other versions
JP5063905B2 (en
Inventor
Shunichi Ishii
俊一 石井
Kazuya Watanabe
一哉 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marine Biotechnology Institute Co Ltd
Original Assignee
Marine Biotechnology Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marine Biotechnology Institute Co Ltd filed Critical Marine Biotechnology Institute Co Ltd
Priority to JP2006048103A priority Critical patent/JP5063905B2/en
Publication of JP2007227216A publication Critical patent/JP2007227216A/en
Application granted granted Critical
Publication of JP5063905B2 publication Critical patent/JP5063905B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for executing a stable methane fermentation process without causing accumulation of hydrogen or souring by providing a hybrid system composed by combining a methane fermentation process of organic matter with a microbial fuel cell, in a methane fermentation process of organic matter. <P>SOLUTION: In the microbial fuel cell, a negative electrode is inserted into a culture medium of an anaerobic fermenter for executing the methane fermentation process therein; the negative electrode is a fibrous graphite electrode; and the pH of the fermenter is 6-8. The methane fermentation process of organic matter can be executed in the anaerobic fermenter by using the microbial fuel cell. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機物のメタン発酵による処理方法及びそれを利用した微生物燃料電池に関する。   The present invention relates to a method for treating organic matter by methane fermentation and a microbial fuel cell using the same.

現在、廃棄物バイオマスからのバイオエネルギー生産法として、メタン発酵が広く用いられている。   Currently, methane fermentation is widely used as a bioenergy production method from waste biomass.

しかしながら、メタン発酵では高負荷の運転を行うと有機酸と水素が蓄積してpHが低下し、これによりメタン発酵の効率が低下する(いわゆる「酸敗」)ことが大きな問題となっている。   However, in a methane fermentation, when an operation with a high load is performed, an organic acid and hydrogen are accumulated to lower the pH, thereby reducing the efficiency of the methane fermentation (so-called “acid loss”).

酸敗は以下のような機構で起こると考えられている。有機酸→水素→メタンの反応は、有機酸分解細菌とメタン生成細菌の共生的分解により進行するが、この一連の反応において、有機酸から水素を生成する反応は水素ガスの蓄積によって著しく阻害され、分解が非常に進みづらいプロピオン酸や酢酸の場合では、水素分圧が100 Paを超えると反応が進まなくなると言われている(Schink B., 1997, Mirobiol. Mol. Biol. Rev., 61, 262-280)。有機物からの有機酸と水素の産生(酸発酵)は非常に速く、高負荷で運転すると有機酸が蓄積してpHが徐々に低下する。ところが、水素を除去する能力を有するメタン産生菌はpH6以下では活性が著しく低下し、そのため水素ガスが蓄積して有機酸の分解反応が強く阻害され、結果としてpHがさらに低下することになる。このような、有機酸の蓄積によるpHの低下と、メタン菌の活性低下による水素蓄積の悪循環により、メタン発酵の効率が著しく低下する現象が酸敗である。   It is thought that rancidity occurs by the following mechanism. The reaction of organic acid → hydrogen → methane proceeds by the symbiotic degradation of organic acid-decomposing bacteria and methanogenic bacteria. In this series of reactions, the reaction of generating hydrogen from organic acids is significantly inhibited by the accumulation of hydrogen gas. In the case of propionic acid and acetic acid, the decomposition of which is very difficult to proceed, it is said that the reaction does not proceed when the hydrogen partial pressure exceeds 100 Pa (Schink B., 1997, Mirobiol. Mol. Biol. Rev., 61 , 262-280). Production of organic acid and hydrogen from organic matter (acid fermentation) is very fast, and when operating at high load, organic acid accumulates and pH gradually decreases. However, the activity of methane-producing bacteria having the ability to remove hydrogen is remarkably reduced at pH 6 or lower, so that hydrogen gas accumulates and the organic acid decomposition reaction is strongly inhibited, resulting in a further decrease in pH. Such a phenomenon that the efficiency of methane fermentation is remarkably reduced due to the decrease in pH due to the accumulation of organic acid and the vicious cycle of hydrogen accumulation due to the decrease in activity of methane bacteria is sourness.

このような問題に対して、この悪循環の原因物質である水素を低濃度に制御することによって、有機酸の分解を安定化することが示されている(R.E.Speece、原著「産業廃水処理のための嫌気性バイオテクノロジー」p96-101)。水素ガスの除去方法としては、ガス相のストラッピングや二槽式処理法が用いられている。特に、二槽式処理法の一槽目は酸生成相であり、水素発酵とも呼ばれている。ここで、回収される水素は、燃料電池の原料として期待されている。   In response to these problems, it has been shown that the decomposition of organic acids can be stabilized by controlling the concentration of hydrogen, the causative agent of this vicious cycle, to low levels (RESpeece, the original book “For Industrial Wastewater Treatment”). Anaerobic biotechnology "p96-101). As a method for removing hydrogen gas, gas phase strapping or a two-tank processing method is used. In particular, the first tank of the two tank processing method is an acid generation phase, which is also called hydrogen fermentation. Here, the recovered hydrogen is expected as a raw material of the fuel cell.

一方、次世代型バイオエネルギー回収プロセスとして期待される微生物燃料電池(Microbial Fuel Cell, MFC)を用いると、バイオマスから生物化学的変換により直接的に電気エネルギーを生産することができる。この装置を用いると、メタン発酵や水素発酵によって生成される燃料を、発電装置を用いて変換する際に発生するエネルギーロスが無くなることが提唱されている(非特許文献1)。しかしながら、現状のMFCプロセスの問題点は、電気生成速度がかなり遅いことである。実際、電気生成速度をかなり上げないと(100倍とも10000倍とも言われている)実用レベルに達しないと推測されている。   On the other hand, when a microbial fuel cell (MFC), which is expected as a next-generation bioenergy recovery process, is used, electric energy can be directly produced from biomass by biochemical conversion. When this apparatus is used, it is proposed that the energy loss which generate | occur | produces when converting the fuel produced | generated by methane fermentation or hydrogen fermentation using a power generator (nonpatent literature 1). However, the problem with the current MFC process is that the electricity generation rate is rather slow. In fact, it is presumed that the electricity generation rate will not reach a practical level unless the electricity generation rate is increased significantly (100 times or 10,000 times).

また、Rabaeyらはグルコースを基質とした二槽式の微生物燃料電池を用いた研究を発表しているが、該微生物燃料電池のメタン発酵への適用については何ら開示していない(非特許文献2)。   Moreover, although Rabaey et al. Have published a research using a two-tank type microbial fuel cell using glucose as a substrate, there is no disclosure of application of the microbial fuel cell to methane fermentation (Non-patent Document 2). ).

Rabaey K & Verstraete W, 2005, Trends. Biotech., 23, 291-298Rabaey K & Verstraete W, 2005, Trends. Biotech., 23, 291-298 Rabaey K, Boon N, Siciliano SD, Verhaege M and Verstraete W, “Biofuel cells select for microbial consortia that self-mediated electron transfer”, Appl. Environ. Microbiol. 2004, 70, 5373-5382Rabaey K, Boon N, Siciliano SD, Verhaege M and Verstraete W, “Biofuel cells select for microbial consortia that self-mediated electron transfer”, Appl. Environ. Microbiol. 2004, 70, 5373-5382

有機物のメタン発酵過程において、水素の蓄積や酸敗を発生させることなく、安定したメタン発酵処理を行なう方法を提供する。   Provided is a method for performing a stable methane fermentation treatment without causing hydrogen accumulation or rancidity in an organic matter methane fermentation process.

本発明者らは、有機物のメタン発酵処理と微生物燃料電池とを組み合わせたハイブリッドシステムとすることにより上記課題を解決できることを見出し、本発明を完成させるに至った。   The present inventors have found that the above problem can be solved by using a hybrid system combining a methane fermentation treatment of an organic substance and a microbial fuel cell, and have completed the present invention.

即ち、本発明は以下の発明を包含する。
(1)負極が、メタン発酵処理が行なわれる嫌気培養槽の培地に挿入されていることを特徴とする微生物燃料電池。
(2)前記負極が繊維状のグラファイト電極である前記(1)記載の微生物燃料電池。
(3)前記培地のpHが6〜8である前記(1)又は(2)記載の微生物燃料電池。
(4)有機物のメタン発酵による処理方法であって、前記(1)〜(3)のいずれかに記載の微生物燃料電池を用いて、嫌気培養槽で有機物のメタン発酵処理を行なうことを特徴とする前記方法。
That is, the present invention includes the following inventions.
(1) A microbial fuel cell, wherein the negative electrode is inserted into a medium of an anaerobic culture tank in which methane fermentation treatment is performed.
(2) The microbial fuel cell according to (1), wherein the negative electrode is a fibrous graphite electrode.
(3) The microbial fuel cell according to (1) or (2), wherein the pH of the medium is 6 to 8.
(4) A method for treating organic matter by methane fermentation, characterized in that microbial fermentation treatment of organic matter is performed in an anaerobic culture tank using the microbial fuel cell according to any one of (1) to (3) above. Said method.

本発明により、水素の蓄積や酸敗の問題が生じず、安定したメタン発酵過程により有機物を処理する方法が提供される。従来、有機物の微生物処理により発生する水素ガスを燃料電池の燃料として使用する方法は知られていたが、本発明の微生物燃料電池では、水素ガスを介さずに、有機物のメタン発酵過程で本来水素の発生のために供与される電子を直接利用するため、高効率で電気エネルギーを回収することができる。   According to the present invention, there is provided a method for treating an organic substance by a stable methane fermentation process without causing problems of hydrogen accumulation and rancidity. Conventionally, a method of using hydrogen gas generated by microbial treatment of organic matter as a fuel for a fuel cell has been known. However, in the microbial fuel cell of the present invention, hydrogen is not originally passed through the methane fermentation process of organic matter. Since the electrons donated for the generation of are directly used, electric energy can be recovered with high efficiency.

本発明で用いられる微生物燃料電池は、負極がメタン発酵処理が行なわれる嫌気培養槽の培地に挿入されていることを特徴とする。   The microbial fuel cell used in the present invention is characterized in that the negative electrode is inserted into the medium of an anaerobic culture tank in which methane fermentation treatment is performed.

本発明の微生物燃料電池の一例を図1を参照して説明する。
メタン発酵処理に用いられる基質(有機物)としては特に限定されるものではなく、例えば、食品製造、流通、消費の各段階で排出され収集された生ごみその他の食品廃棄物や、下水処理場その他の有機物系廃液処理施設から発生する微生物汚泥等の有機性廃棄物が挙げられる。
An example of the microbial fuel cell of the present invention will be described with reference to FIG.
The substrate (organic matter) used in the methane fermentation process is not particularly limited. For example, food waste and other food wastes collected and collected at each stage of food production, distribution, and consumption, sewage treatment plants and others Organic waste such as microbial sludge generated from the organic waste liquid treatment facility.

メタン発酵に供される有機物は好ましくは溶液やスラリー等の液状で、酸生成微生物及びメタン生成微生物とともに嫌気培養槽に投入される。酸生成微生物及びメタン生成微生物は特に限定されるものではなく、通常のメタン発酵に使用される微生物を使用することができる。   The organic matter to be subjected to methane fermentation is preferably in the form of a liquid such as a solution or slurry, and is put into an anaerobic culture tank together with acid-producing microorganisms and methanogenic microorganisms. The acid-producing microorganism and the methanogenic microorganism are not particularly limited, and microorganisms used for ordinary methane fermentation can be used.

嫌気培養槽の培地には、本発明の微生物燃料電池の負極となる電極が浸漬される。電極への微生物の付着性を高めるために、繊維状のグラファイト電極を負極として用いることが好ましい。また、負極に直接微生物を付着させて用いてもよい。嫌気培養槽(負極槽)は上部の気相部分を、例えば、窒素ガスや炭酸ガス等で置換して嫌気状態にする。なお、電子の授受を容易にするためにメディエーターを添加してもよい。   An electrode serving as the negative electrode of the microbial fuel cell of the present invention is immersed in the medium of the anaerobic culture tank. In order to increase the adhesion of microorganisms to the electrode, it is preferable to use a fibrous graphite electrode as the negative electrode. Moreover, you may use it, making microorganisms adhere directly to a negative electrode. In the anaerobic culture tank (negative electrode tank), the upper gas phase portion is replaced with, for example, nitrogen gas, carbon dioxide gas or the like to make an anaerobic state. Note that a mediator may be added to facilitate the transfer of electrons.

有機物を用いるメタン発酵は周知慣用の技術であり、本発明においても通常の条件により嫌気培養槽で有機物のメタン発酵を行なえばよい。   Methane fermentation using an organic substance is a well-known and commonly used technique. In the present invention, methane fermentation of an organic substance may be performed in an anaerobic culture tank under normal conditions.

一方、正極は、例えば、グラファイト電極等を用いて、これに酸素を含む気体を曝気する。また、正極槽には活性を高めるためにフェリシアン化カリウムを添加することが好ましい。   On the other hand, for example, a graphite electrode is used as the positive electrode, and a gas containing oxygen is aerated. Further, it is preferable to add potassium ferricyanide to the positive electrode tank in order to increase the activity.

負極側の容器と正極側の容器とはセパレータを介して結合されており、セパレータとしては水素イオン交換膜等の陽イオン交換膜が好ましい。   The container on the negative electrode side and the container on the positive electrode side are coupled via a separator, and the separator is preferably a cation exchange membrane such as a hydrogen ion exchange membrane.

嫌気培養槽でのメタン発酵過程が進行すると酸の生成により培地のpH値が小さくなることがある。pHが6よりも小さくなると発電量が小さくなる場合があるので、培地のpHは6〜8に保つことが好ましい。   When the methane fermentation process proceeds in an anaerobic culture tank, the pH value of the medium may be reduced due to acid generation. Since the amount of power generation may be reduced when the pH is less than 6, the pH of the medium is preferably maintained at 6-8.

図1の微生物燃料電池において、正極と負極とを導線で接続すると電子が負極から正極へと移動し、電流が流れる。本発明の微生物燃料電池では、負極で生じる電子は本来水素の生成に使用されるものであるが、正極へと移動するため、水素ガスの発生が抑制されると考えられる。水素が生じないので嫌気培養槽中には酸が蓄積しにくくなり、メタン発酵プロセスが安定的に効率よく進行することが可能となる。   In the microbial fuel cell of FIG. 1, when the positive electrode and the negative electrode are connected by a conductive wire, electrons move from the negative electrode to the positive electrode, and current flows. In the microbial fuel cell of the present invention, electrons generated at the negative electrode are originally used for generating hydrogen, but move to the positive electrode, so that it is considered that generation of hydrogen gas is suppressed. Since no hydrogen is generated, acid is less likely to accumulate in the anaerobic culture tank, and the methane fermentation process can proceed stably and efficiently.

本発明の方法により有機物をメタン発酵により処理すれば、培地にメタン発酵を強く阻害する水素を蓄積させないのでメタン発酵を安定的に且つ効率的に行なうことができる。また、それと同時にこの微生物反応を利用して微生物燃料電池を構成して電気エネルギーも得ることができる。従来の微生物燃料電池では、微生物反応により生成した水素ガスを利用するものが主であったが、これに対して本発明の微生物燃料電池は、水素ガスを介さずに直接電子を回収するので極めて高い効率で電気エネルギーを得ることができ、電子回収率は催行で90%以上とすることも可能である。   If the organic substance is treated by methane fermentation according to the method of the present invention, hydrogen that strongly inhibits methane fermentation is not accumulated in the culture medium, so that methane fermentation can be performed stably and efficiently. At the same time, a microbial fuel cell can be constructed using this microbial reaction to obtain electric energy. Conventional microbial fuel cells mainly use hydrogen gas generated by microbial reaction, whereas the microbial fuel cell of the present invention recovers electrons directly without passing through hydrogen gas. Electric energy can be obtained with high efficiency, and the electron recovery rate can be 90% or more during the event.

このように、メタン発酵と微生物燃料電池とを組み合わせたハイブリッドシステムは、水素ガスを介さずに電気エネルギーを得るという点で従来にはない概念の微生物燃料電池である。   Thus, a hybrid system combining methane fermentation and a microbial fuel cell is a microbial fuel cell with a concept that has not existed in the past in terms of obtaining electrical energy without going through hydrogen gas.

以下に本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

実施例1:セルラーゼを基質としたメタン発酵と組み合わせた微生物燃料電池
バイオマスとして最も利用の期待されるセルロースを基質とし、メタン発酵/微生物燃料電池ハイブリッドシステムを構築した。
Example 1 A methane fermentation / microbial fuel cell hybrid system was constructed using cellulose, which is most expected to be used as microbial fuel cell biomass combined with methane fermentation using cellulase as a substrate, as a substrate.

図1のようなラボスケールの小型微生物燃料電池システムを作成した。セパレータには陽イオン透過膜(ネオセプタCMS(登録商標、アストム製))を用いた。抵抗は510Ωとし、生じる電流をポテンシオスタット(マルチポテンシオスタット2092、東方技研)でモニターした。   A lab-scale small microbial fuel cell system as shown in FIG. 1 was created. As the separator, a cation permeable membrane (Neocepta CMS (registered trademark, manufactured by Astom)) was used. The resistance was 510Ω, and the resulting current was monitored with a potentiostat (Multipotentiostat 2092, Toho Giken).

電極としては、負極にはグラファイト繊維電極(φ6μm×12000本)を、正極にはグラファイト板電極(3cm×10cm×0.25cm)を使用した。正極槽はエアポンプを用いて空気を曝気して正極に酸素が接触するようにした。正極に流れてきた電子を酸素分子が受け取っている。負極は気相をN2-CO2(80:20)ガスで置換して嫌気状態とした。 As the electrode, a graphite fiber electrode (φ6 μm × 12000) was used for the negative electrode, and a graphite plate electrode (3 cm × 10 cm × 0.25 cm) was used for the positive electrode. In the positive electrode tank, air was aerated using an air pump so that oxygen was in contact with the positive electrode. Oxygen molecules receive the electrons that flow to the positive electrode. The negative electrode was anaerobic by replacing the gas phase with N 2 —CO 2 (80:20) gas.

正極にはオートクレーブした緩衝液(30mM Tris-Cl(pH6.8)、0.1g/L KCl、0.6g/L NaH2PO4)300mLを添加した。負極にはオートクレーブした培地(0.1g/L KCl、0.6g/L NaH2PO4、0.2g/L NH4Cl、1mL ビタミン混合物、1mL 微量元素混合物、1mL Se/W 溶液、2g/L NaHCO3、0.5g/L L-システイン)に、10mMのアセテートと6g/Lのセルロース(アビセル)を基質として添加した。 To the positive electrode, 300 mL of autoclaved buffer (30 mM Tris-Cl (pH 6.8), 0.1 g / L KCl, 0.6 g / L NaH 2 PO 4 ) was added. The negative electrode contains autoclaved medium (0.1 g / L KCl, 0.6 g / L NaH 2 PO 4 , 0.2 g / L NH 4 Cl, 1 mL vitamin mixture, 1 mL trace element mixture, 1 mL Se / W solution, 2 g / L NaHCO 3 , 0.5 g / L L-cysteine), 10 mM acetate and 6 g / L cellulose (Avicel) were added as substrates.

嫌気性条件下で嫌気培養槽に田んぼ土壌を約3.5g接種し、回路を閉じ曝気を開始した。ガスの組成はガスクロマトグラフィー(GC14A、島津製作所製)で定量し、有機酸の蓄積は高速流体液体クロマトグラフィー(class VP、島津製作所製)で定量した。   Under anaerobic conditions, about 3.5g of rice field soil was inoculated into an anaerobic culture tank, the circuit was closed and aeration was started. The composition of the gas was quantified by gas chromatography (GC14A, manufactured by Shimadzu Corporation), and the accumulation of organic acid was quantified by high performance fluid liquid chromatography (class VP, manufactured by Shimadzu Corporation).

図1に示す微生物燃料電池について、電気産生、有機酸、水素、メタンの産生量、pHのモニタリングを行った。その結果を図2に示す。   The microbial fuel cell shown in FIG. 1 was monitored for electricity production, organic acid, hydrogen, methane production, and pH. The result is shown in FIG.

電流の産生は回路接続時から見られ、約0.2mAまで上昇した(0-7日)。その後、有機酸の蓄積によりpHが低下し、電流産生活性およびメタン生成活性が低下した(7-20日)。微生物電池システムを挿入していない場合、この酸敗過程で水素ガスが20-40%蓄積することが知られているが、これに対して本発明の場合ではメタン発酵過程における水素ガスの蓄積は全く見られなかった。pHを7付近までNa2CO3を用いて戻すとメタン生成活性が上昇した(20-45日)。その過程で水素ガスからの電流産生も回復した。 Current production was seen from the time of circuit connection and increased to approximately 0.2 mA (0-7 days). Thereafter, the pH decreased due to the accumulation of organic acid, and the current production activity and the methanogenesis activity decreased (7-20 days). When no microbial battery system is inserted, it is known that 20-40% of hydrogen gas accumulates during this rancidity process, whereas in the case of the present invention, there is no accumulation of hydrogen gas during the methane fermentation process. I couldn't see it. When the pH was returned to around 7 using Na 2 CO 3 , the methanogenic activity increased (20-45 days). In the process, current production from hydrogen gas was also recovered.

このように、全過程において、微生物燃料電池システムをメタン発酵過程に組み合わせた場合、メタン発酵過程における水素分圧が100Paを超えることは無かった。これより、微生物燃料電池システムは、水素分圧を100Pa以下に保つとともに、除去された水素分子に対応する分の電子を電流として回収していることが示唆された。   Thus, in the whole process, when the microbial fuel cell system was combined with the methane fermentation process, the hydrogen partial pressure in the methane fermentation process did not exceed 100 Pa. This suggests that the microbial fuel cell system keeps the hydrogen partial pressure at 100 Pa or less and collects electrons corresponding to the removed hydrogen molecules as current.

本発明の微生物燃料電池ハイブリッドシステムは有機性廃棄物から燃料や原料として有用なメタンが得られるだけでなく、電気エネルギーも得られるため、有機廃棄物のリサイクル処理に有用である。   The microbial fuel cell hybrid system of the present invention is useful not only for obtaining methane useful as a fuel or raw material from organic waste, but also for obtaining electric energy, and is therefore useful for recycling processing of organic waste.

本発明の微生物燃料電池の一例を示す図である。It is a figure which shows an example of the microbial fuel cell of this invention. 実施例1の実験結果を示す図である。It is a figure which shows the experimental result of Example 1.

Claims (4)

負極が、メタン発酵処理が行なわれる嫌気培養槽の培地に挿入されていることを特徴とする微生物燃料電池。   A microbial fuel cell, wherein the negative electrode is inserted into a medium of an anaerobic culture tank in which methane fermentation treatment is performed. 前記負極が繊維状のグラファイト電極である請求項1記載の微生物燃料電池。   The microbial fuel cell according to claim 1, wherein the negative electrode is a fibrous graphite electrode. 前記培地のpHが6〜8である請求項1又は2記載の微生物燃料電池。   The microbial fuel cell according to claim 1 or 2, wherein the medium has a pH of 6 to 8. 有機物のメタン発酵による処理方法であって、請求項1〜3のいずれか1項記載の微生物燃料電池を用いて、嫌気培養槽で有機物のメタン発酵処理を行なうことを特徴とする前記方法。   It is the processing method by methane fermentation of organic substance, Comprising: The said method characterized by performing the methane fermentation process of organic substance in an anaerobic culture tank using the microbial fuel cell of any one of Claims 1-3.
JP2006048103A 2006-02-24 2006-02-24 Bioreactor / microbial fuel cell hybrid system Expired - Fee Related JP5063905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006048103A JP5063905B2 (en) 2006-02-24 2006-02-24 Bioreactor / microbial fuel cell hybrid system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006048103A JP5063905B2 (en) 2006-02-24 2006-02-24 Bioreactor / microbial fuel cell hybrid system

Publications (2)

Publication Number Publication Date
JP2007227216A true JP2007227216A (en) 2007-09-06
JP5063905B2 JP5063905B2 (en) 2012-10-31

Family

ID=38548828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006048103A Expired - Fee Related JP5063905B2 (en) 2006-02-24 2006-02-24 Bioreactor / microbial fuel cell hybrid system

Country Status (1)

Country Link
JP (1) JP5063905B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224090A (en) * 2008-03-14 2009-10-01 Kajima Corp Internal resistance measuring device for response-delay type fuel cell
WO2010044145A1 (en) * 2008-10-15 2010-04-22 鹿島建設株式会社 Microbial fuel cell and membrane cassette for microbial fuel cells
JP2010207192A (en) * 2009-03-12 2010-09-24 Central Res Inst Of Electric Power Ind Method and apparatus for electric culture
JP2010207193A (en) * 2009-03-12 2010-09-24 Central Res Inst Of Electric Power Ind Electric culture method and electric culture apparatus
JP2011212599A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Heat exchanger having battery function, and methane fermentation treatment system using the same
JP2012529987A (en) * 2009-06-16 2012-11-29 カンブリアン イノベーション エルエルシー Systems and devices for treating and monitoring water, wastewater, and other biodegradable materials
CN104064791A (en) * 2014-02-26 2014-09-24 武汉科技大学 Biological inverted-conversion reactor of microbial fuel cell, purification method of CO2 in gas and preparation method of CO2 biological synthetic fuel
US9046478B2 (en) 2009-12-08 2015-06-02 Cambrian Innovation Inc. Microbially-based sensors for environmental monitoring
KR101528159B1 (en) * 2012-11-13 2015-06-12 광주과학기술원 Hybrid reactor consisting of upflow anaerobic sludge blanket reactor and microbial fuel cell
US9963790B2 (en) 2010-10-19 2018-05-08 Matthew Silver Bio-electrochemical systems
US10099950B2 (en) 2010-07-21 2018-10-16 Cambrian Innovation Llc Bio-electrochemical system for treating wastewater
JP2018161620A (en) * 2017-03-27 2018-10-18 三菱電機株式会社 Sludge treatment apparatus and water treatment system, sludge treatment method, and water treatment method using same
US10851003B2 (en) 2010-07-21 2020-12-01 Matthew Silver Denitrification and pH control using bio-electrochemical systems
US11150213B2 (en) 2011-06-14 2021-10-19 Cambrian Innovation Inc. Biological oxygen demand sensors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342412A (en) * 2003-05-14 2004-12-02 Ebara Corp Power generation method and device using organic substance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342412A (en) * 2003-05-14 2004-12-02 Ebara Corp Power generation method and device using organic substance

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8426045B2 (en) 2008-03-14 2013-04-23 Kajima Corporation Internal-resistance measuring device for response-delay type fuel cell
JP2009224090A (en) * 2008-03-14 2009-10-01 Kajima Corp Internal resistance measuring device for response-delay type fuel cell
WO2010044145A1 (en) * 2008-10-15 2010-04-22 鹿島建設株式会社 Microbial fuel cell and membrane cassette for microbial fuel cells
JP2010207192A (en) * 2009-03-12 2010-09-24 Central Res Inst Of Electric Power Ind Method and apparatus for electric culture
JP2010207193A (en) * 2009-03-12 2010-09-24 Central Res Inst Of Electric Power Ind Electric culture method and electric culture apparatus
US9776897B2 (en) 2009-06-16 2017-10-03 Matthew Silver Systems and devices for treating water, wastewater and other biodegradable matter
US11708284B2 (en) 2009-06-16 2023-07-25 Cambrian Innovation, Inc. Systems and devices for treating and monitoring water, wastewater and other biodegradable matter
JP2015033693A (en) * 2009-06-16 2015-02-19 カンブリアン イノベーションズ インコーポレイデッド Systems and devices for treating and monitoring water, wastewater and other biodegradable matter
JP2012529987A (en) * 2009-06-16 2012-11-29 カンブリアン イノベーション エルエルシー Systems and devices for treating and monitoring water, wastewater, and other biodegradable materials
US9551685B2 (en) 2009-12-08 2017-01-24 Cambrian Innovation Inc. Microbially-based sensors for environmental monitoring
US9046478B2 (en) 2009-12-08 2015-06-02 Cambrian Innovation Inc. Microbially-based sensors for environmental monitoring
JP2011212599A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Heat exchanger having battery function, and methane fermentation treatment system using the same
US10099950B2 (en) 2010-07-21 2018-10-16 Cambrian Innovation Llc Bio-electrochemical system for treating wastewater
US10851003B2 (en) 2010-07-21 2020-12-01 Matthew Silver Denitrification and pH control using bio-electrochemical systems
US9963790B2 (en) 2010-10-19 2018-05-08 Matthew Silver Bio-electrochemical systems
US11150213B2 (en) 2011-06-14 2021-10-19 Cambrian Innovation Inc. Biological oxygen demand sensors
KR101528159B1 (en) * 2012-11-13 2015-06-12 광주과학기술원 Hybrid reactor consisting of upflow anaerobic sludge blanket reactor and microbial fuel cell
CN104064791A (en) * 2014-02-26 2014-09-24 武汉科技大学 Biological inverted-conversion reactor of microbial fuel cell, purification method of CO2 in gas and preparation method of CO2 biological synthetic fuel
JP2018161620A (en) * 2017-03-27 2018-10-18 三菱電機株式会社 Sludge treatment apparatus and water treatment system, sludge treatment method, and water treatment method using same

Also Published As

Publication number Publication date
JP5063905B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5063905B2 (en) Bioreactor / microbial fuel cell hybrid system
Zhen et al. Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: current situation, challenges and future perspectives
Hamelers et al. New applications and performance of bioelectrochemical systems
Butti et al. Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling
Chandrasekhar et al. Electro-fermentation for biofuels and biochemicals production: Current status and future directions
Tremblay et al. Electrifying microbes for the production of chemicals
Cercado-Quezada et al. Testing various food-industry wastes for electricity production in microbial fuel cell
Logan Simultaneous wastewater treatment and biological electricity generation
Saheb-Alam et al. Effect of start-up strategies and electrode materials on carbon dioxide reduction on biocathodes
Sravan et al. Emerging trends in microbial fuel cell diversification-Critical analysis
Li et al. Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction
Wang et al. Hydrogen production using biocathode single-chamber microbial electrolysis cells fed by molasses wastewater at low temperature
Cheng et al. Impact factors and novel strategies for improving biohydrogen production in microbial electrolysis cells
JP2012512326A (en) Process for the production of chemicals
CA2614204A1 (en) Microbial fuel cells for oxidation of electron donors
JP2007528709A (en) Method for producing hydrogen
Gavilanes et al. Microbial electrosynthesis of bioalcohols through reduction of high concentrations of volatile fatty acids
He et al. Suppressing methane production to boost high-purity hydrogen production in microbial electrolysis cells
Baek et al. High-rate microbial electrosynthesis using a zero-gap flow cell and vapor-fed anode design
US11575171B2 (en) Biological battery and biological cathode electrode
De Sá et al. Anode air exposure during microbial fuel cell operation inoculated with marine sediment
Naha et al. Bioelectrosynthesis of organic and inorganic chemicals in bioelectrochemical system
Azuma et al. Catalyst development of microbial fuel cells for renewable-energy production
Zamri et al. Microbial fuel cell as new renewable energy for simultaneous waste bioremediation and energy recovery
Moscoviz et al. Bioelectrochemical systems for the valorization of organic residues

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5063905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees