JP2004340653A - Measuring method of conical surface shape of tapered roller bearing - Google Patents

Measuring method of conical surface shape of tapered roller bearing Download PDF

Info

Publication number
JP2004340653A
JP2004340653A JP2003135291A JP2003135291A JP2004340653A JP 2004340653 A JP2004340653 A JP 2004340653A JP 2003135291 A JP2003135291 A JP 2003135291A JP 2003135291 A JP2003135291 A JP 2003135291A JP 2004340653 A JP2004340653 A JP 2004340653A
Authority
JP
Japan
Prior art keywords
measured
conical surface
measuring
inner ring
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003135291A
Other languages
Japanese (ja)
Other versions
JP4376545B2 (en
Inventor
Yoshinobu Akamatsu
良信 赤松
Yasuyuki Hirota
泰之 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2003135291A priority Critical patent/JP4376545B2/en
Publication of JP2004340653A publication Critical patent/JP2004340653A/en
Application granted granted Critical
Publication of JP4376545B2 publication Critical patent/JP4376545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method of the conical surface shape of a tapered roller bearing for simply, inexpensively, and accurately measuring a shape necessary for a conical surface of each component. <P>SOLUTION: This measuring method is used for measuring the conical surface shape of an object under measurement which is any of an inner ring, an outer ring, or a roller of the tapered roller bearing. When the object is the inner ring 1, a displacement meter 6 is calibrated by using a pattern 21. This displacement meter 6 is used to measure a plurality of positions of the inner ring 1 while linearly moving the inner ring 1 in a direction X that is a direction perpendicular to the measuring direction of the displacement meter 6 and parallel to the generatrix of the conical surface S1 of the inner ring 1. The measurement is performed on its both ends, its center position where a crowning amount is maximum, etc. while adjusting its axial position by changing the number of interposition of two spacers 18 and 19. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、内輪、外輪、ころ等の円すい面の円すい角度,直径,クラウニング量等に係る形状を測定する円すいころ軸受の円すい面形状測定方法に関し、例えば研削現場で適用できる測定方法に関する。
【0002】
【従来の技術】
一般的な立体形状を測定する装置には三次元形状測定機があり、円すいころ軸受の円すい面形状を高精度に測定する方法として三次元形状測定機を用いる場合がある。円すい面の角度の測定法にはJIS B−7523のサインバーを用いて円すい面を表面粗さ計の触針に対して平行とし、母線形状の測定結果から円すい角度を算出する場合もある。また、被測定物を円すい面の母線が水平となるように傾斜して配置し、触針ゲージで傾斜角度を測定する方法も提案されている(例えば特許文献1における従来の技術の説明欄)。各研削現場では、円すい角度と円すい面の直径を測定している。内輪ところは、ダイヤルゲージを用いて計測して円すい角度と直径を個別に測定している。外輪は空気マイクロメータを用いて円すい角度と直径を同時に測定している。
【0003】
【特許文献1】
特開2000−230816号公報
【0004】
【発明が解決しようとする課題】
しかし、三次元形状測定機や表面粗さ測定機は精密な測定機であるため、設置場所の除振、温度、ミストなどの雰囲気の管理が必要である。そのため、円すいころ軸受の研削盤の近くで加工後の部品の円すい面を測定する用途には使用できない。加工現場では、内輪の円すい角度と直径をダイヤルゲージを用いて個別に測定しているため、測定治具が複数必要であるが、適切な治具がない。加工現場におけるころの測定の場合も、内輪と同じである。また、円すいころ軸受の円すい面には、平滑な圧力分布となるようにクラウニングが施されているが、加工現場で内輪、ころ、および外輪のクラウニング量の測定を行う方法が確立されていない。上記特許文献1の従来例の方法は、触針ゲージを移動させて測定するが、その移動によって測定精度が低下する。また、触針ゲージの較正の方法も確率されていない。
【0005】
この発明の目的は、各部品の円すい面に必要な形状を、簡易にかつ低コストで精度良く測定することのできる円すいころ軸受の円すい面形状測定方法を提案することである。
【0006】
【課題を解決するための手段】
この発明の円すいころ軸受の円すい面形状測定方法は、円すいころ軸受の内輪、外輪、およびころのいずれかである被測定物の円すい面形状を測定する円すい面形状測定方法において、模範を用いて較正した同じ変位計を用い、被測定物を上記変位計の測定方向に対する直角方向でかつ被測定物の円すい面の母線に沿う方向に直線的に移動させて被測定物の複数箇所を測定する方法である。
この方法によると、被測定物を変位計の測定方向に対する直角方向でかつ被測定物の円すい面の母線に沿う方向に直線的に移動させ、被測定物の複数箇所を測定するため、円すいころ軸受部品の円すい面における任意の軸方向位置の直径が測定できる。直径寸法は、上記模範との相対比較により測定できる。また、被測定物側を移動させるので、変位計を移動させて計測する場合に比べて簡単な設備で精度良く測定することができる。上記複数箇所の測定は、模範を用いて較正した同じ変位計を用いるため、より精度良くする測定することができる。このように簡単な設備で測定できるため、研削盤の近くで加工後の部品の円すい面を測定する用途にも適用することができる。
【0007】
この発明方法において、被測定物の円すい面における上記移動の方向に離れた3か所の測定を行い、そのうちの両端2か所の測定結果から円すい角度を求め、3か所の測定結果からクラウニング量を求めても良い。
この場合、3箇所という少ない測定箇所数で、各部品の円すい面に必要な形状である円すい角度とクラウニング量との両方を求めることができる。
【0008】
この発明において、被測定物が内輪である場合は、この内輪の大径側の端面を基準として円すい面を測定することが好ましい。
内輪の円すい面の研削加工時の基準面は大径側の端面であるので、この大径側の端面を基準として円すい面を測定することで、研削加工への測定結果の反映が行い易い。
【0009】
被測定物が外輪である場合は、外輪の小径側の端面を基準として円すい面を測定することが好ましい。
外輪の円すい面の研削加工時の基準面は小径側の端面であるので、この小径側の端面を基準として円すい面を測定することで、研削加工への測定結果の反映が行い易い。
【0010】
被測定物がころである場合は、ころの大端面における内輪大鍔面との接触点を基準として円すい面を測定することが好ましい。
円すいころ軸受において、各ころは内輪大鍔面と接触しながら転走するため、この接触点を基準とする形状精度が求められる。そのため、この接触点を基準として測定することで、動作上に必要な形状が精度良く求められる。
【0011】
この発明において、被測定物が内輪または外輪である場合は、被測定物を支持する治具として、例えば定盤と、上記被測定物の端面を当接させる傾斜した被測定物支持面を有し上記定盤上に上記被測定物支持面の法線の投影線に沿う方向に移動可能に設置される被測定物支持部品と、この被測定物支持部品の移動方向に対面して上記定盤上に設けられた位置決め基準体と、この位置決め基準体と上記被測定物支持部品との間に介在して上記位置決め基準体と被測定物支持部品との間隔を規制する複数のスペーサとを備えた治具を用いる。この場合に、上記複数のスペーサの介在個数を種々変えた状態で、上記変位計による上記被測定物の円すい面の測定を行う。
これにより、多数の内輪または外輪につき、それぞれ複数箇所、例えば両端付近と中央付近との3か所を測定するときに、スペーサの介在個数の変更だけで、常に一定の軸方向位置での測定が行え、作業効率良く測定が行える。
【0012】
この発明において、被測定物測定物がころである場合は、被測定物を支持する治具として、例えば定盤と、この定盤上に直線方向に移動可能に載置され、上記ころを軸心が上記直線方向と平行でかつ円すい面の最上位置の母線が定盤の上面と平行となるように上記ころを載せるころ載置台と、このころ載置台に設けられ上記ころの端面に接するころ端支持体と、上記ころ載置台の移動方向に対面して上記定盤上に設けられた位置決め基準体と、この位置決め基準体と上記ころ載置台との間に介在して上記位置決め基準体と上記ころ載置台との間隔を規制する複数のスペーサとを備えた治具を用いる。この場合に、上記複数のスペーサの介在個数を種々変えた状態で、上記変位計による上記被測定物の円すい面の測定を行う。
これにより、多数のころにつき、それぞれ複数箇所、例えば両端付近と中央付近との3か所を測定するときに、スペーサの介在個数の変更だけで、常に一定の軸方向位置での測定が行え、作業効率良く測定が行える。
【0013】
【発明の実施の形態】
この発明の第1の実施形態を図1ないし図3と共に説明する。この実施形態は被測定物が円すいころ軸受の内輪である場合の例である。円すいころ軸受は、例えば図8に示すように、内輪1と外輪2の間に、円周方向に沿って複数の円すい形のころ3を介在させたものである。各ころ3は保持器4に保持されている。内輪1は、転走面となる外径面部分が円すい面S1とされ、両端に大鍔1aおよび小鍔1bをそれぞれ有する。外輪2は転走面となる内径面が円すい面S2とされている。ころ3は、外周面が円すい面S3とされている。
【0014】
図1において、この測定方法は、内輪1の円すい面S1の測定方法であり、被測定物である内輪1を変位計6の測定方向Zに対する直角方向でかつ内輪1の円すい面S1の母線に沿う方向に直線的に移動させて、内輪円すい面S1の複数箇所を測定する。その複数箇所の測定結果から、テーパ角度、クラウニング高さ等の円すい面形状を求める。変位計6には例えばダイヤルゲージを用いる。変位計6には、この他に電気マイクロメータを用いても良い。変位計6の測定方向Zは測定する変位ないし長さの方向のことである。
【0015】
被測定物である内輪1は、次の治具7で支持する。この治具7は、定盤8と、この定盤8上に設置される被測定物支持部品9とを備える。図3のように、変位計6は、定盤8に立設された支柱16に、取付具16aを介して高さ調整自在に取付けられている。被測定物支持部品9は、内輪1の端面を当接させる傾斜した被測定物支持面Aを有し、定盤8上に被測定物支持面Aの法線Bの投影線bに沿う方向Xに移動可能に設置される。この移動の精度を確保するため、被測定物支持部品9は、定盤8上に固定されたガイド10に沿って移動可能とされる。被測定物支持部品9は、被測定物支持面Aの傾斜角度を可変とする角度変更固定手段11を有している。角度変更固定手段11は、被測定物支持面Aを構成する支持板12を、下端両側で支軸13回りに傾動可能なように支持部品本体9aに支持し、支持部品本体13の左右両端に立設された側板9bに、止め具14で固定可能としたものである。止め具14は、側板9bに設けられた円弧状孔15を貫通した止めねじであり、支持板12の端面のねじ孔(図示せず)にねじ込まれている。したがって止め具14の締め付けを緩めることで、支持板12が角度変更自在となり、止め具14を締めつけると、支持板12の傾斜角度θ(図1)が固定される。支持板12は、内輪1の内径面を受けて内輪1を被測定物支持面Aに接した状態に支持する支持片12aを有している。
【0016】
被測定物支持部品9の移動方向に対面して、定盤8上に位置決め基準体17が固定されており、この位置決め基準体17と被測定物支持部品9との間に、両者の間隔を規制する2つのスペーサ18,19が介在させられる。変位計6は上記のように支柱16を介して定盤8に設置されるため、位置決め基準体17に対する被測定物支持部品9の間隔により、変位計6に対する被測定物支持面S1の位置が調整されることになる。位置決め基準体17は、被測定物支持部品9と平行度が確保されたものとする。位置決め基準体17は、この実施形態では上記ガイド10と一体の部品からなる。
【0017】
上記構成の治具7を用いた測定方法を説明する。内輪1の測定に先立ち、内輪1の模範21を測定して変位計6の較正を行う。模範21は、例えば内輪1と同じ形状に精度良く作成した部品である。模範21の測定は、内輪1の測定時と同様に治具7に設置して行う。被測定物である内輪1は、円すい面S1の研削加工時の基準面が大径側端面であるので、模範21も大径側端面を被測定物支持部品9の角度調整時の基準面とし、円すい面S1を変位計6の測定方向に対して直角に設定して変位計6の指示目盛を零とする。
【0018】
円すいころ軸受の内輪1を模範21に置き換え、変位計6の測定値を読み取ることで、模範21に対する偏差δが測定できる。被測定物支持面9aの傾斜角度θは既知であるので、内輪1の直径の補正値はδcos θとなる。
内輪1の円すい角度を求めるためには軸方向位置2箇所の直径を測定する必要がある。また、クラウニング量の測定には最大クラウニング高さ位置の直径を測定する必要がある。軸方向位置の距離を移動するために上記スペーサ18,19を準備し、スペーサ18,19を被測定物支持部品9と位置決め基準体17との間に挟みこむ。この時に、変位計6により、円すい面S1の小径側の予め設定した測定位置の直径を模範21に対して相対的に測定する(図2(A))。
次に、スペーサ19を外し、被測定物支持部品9を位置決め基準体17側へ移動させてスペーサ18を挟みこみ、変位計6でクラウニング位置の直径を測定する(図2(B))。なお、スペーサ9の厚さは、小径側測定位置と、設計上や経験的にクラウニング量最大とされる位置との距離に等しくしておく。
最後に,スペーサ19を外し、被測定物支持部品9を位置決め基準体17側へ移動させて接触させ、円すい面S1の大径側の直径を変位計6で測定する。
【0019】
ここで、テーパ面S1における上記測定を行った小径側位置と大径側位置の距離をL、それぞれの直径をD1,D2とすると、円すい角度αはtan α=(D2−D1)/2Lで求められる。
また、小径側位置とクラウニング位置の距離をL3、クラウニング位置の直径をD3とすると、クラウニング量hは,h=1/2(d3−(D1+D2)×(L3/L))で求められる。
【0020】
この実施形態の円すい面形状測定方法によると、このようにダイヤルゲージ等からなる一つの変位計6を用いて、円すい面S1の角度、直径、並びにクラウニング量を測定できるようにしたので、円すい面S1に必要な形状機能を低コストで測定することができる。
【0021】
図4は、外輪2のテーパ面S2の測定方法を示す。外輪2のテーパ面S2は、内輪1に用いた上記測定用治具7および変位計6を用い、内輪1の場合と同様にして測定が行える。外輪2のテーパ面S2の測定に際しては、外輪2を高精度に仕上げた模範22を用い、内輪1の場合と同様に変位計6の較正を行う。その後に、外輪2のテーパ面S2の測定を行う。この測定に際しては、内輪1の測定の場合と同様に、2つのスペーサ18′、19′を介在させて位置決めした状態と、片方のスペーサ18′のみを介在させて位置決めした状態と、スペーサ18′,19′を介在させずに位置決めした状態とで、テーパ面S2の測定を行う。これにより、同図に符号▲1▼〜▲3▼でそれぞれ示す小径側位置、中間のクラウニング量最大位置、および大径側位置での測定が行われる。
【0022】
図5ないし図7は、被測定物がころ3である場合の測定方法を示す。この場合の治具7Aは、次の構成のものとなる。変位計6が定盤8Aに支柱(図示せず)を介して設置されることは、内輪1を測定する場合と同じである。
この治具7Aは、定盤8Aと、この定盤8A上に直線方向Xに移動可能に載置されたころ載置台9Aとを備える。ころ載置台9Aは、ころ3を軸心が上記直線方向Xと平行でかつ円すい面S3の最上位置の母線が定盤8Aの上面と平行となるように上記ころ3を載せるものである。これにより、変位計6の測定方向Zに直角の方向にころ円すい面S3の母線が向く。ころ載置台9Aは、定盤8A上に移動可能に設置された可動台31と、この可動体31上に設けられた2つのVブロック32a,32bとを有する。これらVブロック32a,32bは、V溝の高さ位置を互いに異ならせて隣接配置してある。各Vブロック32a,32bのV溝は、ころ軸方向のテーパは有しないため、円すい形のころ3は各Vブロック32a,32のV溝におけるころ大端側のエッジで支持されることになる。ころ載置台9Aは、可動台31にころ3の大端面3aに接してころ3の軸方向位置を定めるころ端支持体33が設けられている。ころ端支持体33のころ3と当接部は、セラミックボール33aで構成されている。ころ端支持体33によるころ3の大端面3aの支持位置は、図8のようにころ大端面3aが内輪1の大鍔面に接触する位置Pとしてある。
定盤8A上には、ころ載置台9Aの移動方向Xに対面して位置決め基準体17Aが設けられており、この位置決め基準体17Aところ載置台9Aとの間に、これら位置決め基準体17Aところ載置台9Aとの間隔を規制する2つのスペーサ18A,1Aを介在させる。
【0023】
ころ3の円すい面S3の測定に際しては、内輪1や外輪2の場合と同様に、ころ3の模範23の円すい面S3を測定し、変位計6の較正、例えば零点位置の調整を行う。模範23の測定は、ころ載置台9Aに載せて行う。
この後、模範23に変えて、ころ3をころ載置台9Aに載せ、変位計6によるころ3の円すい面S3の測定を行う。この測定は、内外輪の場合と同様に、2つのスペーサ19A,19Bを介在させた状態、1つのスペーサ19Aだけを介在させた状態、およびスペーサの介在無しの状態で行う。これにより、ころ3の軸方向に離れた3か所、例えば両端付近と中央付近の測定を行う。この測定結果から、円すい面S3の角度、クラウニング量を求める。この場合に、ころ3の軸方向の支持位置は大端面3aである。
円すいころ軸受において、各ころ3は内輪1の大鍔面と接触しながら転走するため、その接触点Pを基準とする形状精度が求められる。そのため、この接触点Pを基準として測定することで、動作上で必要な形状が、精度良く求められる。
【0024】
【発明の効果】
この発明の円すい面形状測定方法は、円すいころ軸受の内輪、外輪、およびころのいずれかである被測定物の円すい面形状を測定する円すい面形状測定方法において、模範を用いて較正した同じ変位計を用い、被測定物を上記変位計の測定方向に対する直角方向でかつ被測定物の円すい面の母線に沿う方向に直線的に移動させて被測定物の複数箇所を測定するため、各部品の円すい面に必要な形状を、簡易にかつ低コストで精度良く測定することができる。
【図面の簡単な説明】
【図1】この発明の第1の実施形態における円すいころ軸受の内輪の円すい面測定方法示す側面図である。
【図2】同測定方法の各測定過程を示す説明図である。
【図3】同測定方法に用いる治具および変位計の斜視図である。
【図4】この発明の他の実施形態における外輪の円すい面測定方法を示す破断側面図である。
【図5】この発明のさらに他の実施形態におけるころの円すい面測定方法を示す側面図である。
【図6】同測定方法における治具の全体の平面図である。
【図7】同測定方法における治具のVブロックところの関係を示す正面図である。
【図8】被測定物である円すいころ軸受の部分断面図である。
【符号の説明】
1…内輪(被測定物)
2…外輪(被測定物)
3…ころ(被測定物)
6…変位計
8…定盤
9…被測定物支持体
17,17A…位置決め基準体
18,18′,19,19′…スペーサ
18A,19A…スペーサ
21〜23…模範
A…被測定物支持面
S1〜S3…円すい面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the shape of a conical surface of a tapered roller bearing for measuring a shape related to a conical angle, a diameter, a crowning amount, and the like of a conical surface of an inner ring, an outer ring, a roller, and the like.
[0002]
[Prior art]
A general three-dimensional shape measuring device is a three-dimensional shape measuring device, and a three-dimensional shape measuring device may be used as a method for measuring the conical surface shape of a tapered roller bearing with high accuracy. As a method of measuring the angle of the conical surface, the conical surface may be parallel to the stylus of the surface roughness meter using a sine bar of JIS B-7523, and the conical angle may be calculated from the measurement result of the bus bar shape. Further, there has been proposed a method of arranging an object to be measured so as to be inclined such that the generatrix of the conical surface is horizontal, and measuring the angle of inclination with a stylus gauge (for example, a description section of a conventional technique in Patent Document 1). . At each grinding site, the cone angle and the diameter of the cone surface are measured. The inner ring is measured using a dial gauge to measure the cone angle and diameter individually. The outer ring measures the cone angle and diameter simultaneously using an air micrometer.
[0003]
[Patent Document 1]
JP 2000-230816 A
[Problems to be solved by the invention]
However, since the three-dimensional shape measuring device and the surface roughness measuring device are precise measuring devices, it is necessary to control the vibration of the installation place, the atmosphere such as temperature and mist. Therefore, it cannot be used for the purpose of measuring the conical surface of the processed part near the grinder of the tapered roller bearing. At the processing site, since the cone angle and diameter of the inner ring are individually measured using a dial gauge, a plurality of measurement jigs are required, but there is no appropriate jig. The measurement of the rollers at the processing site is the same as that of the inner ring. Further, the tapered surface of the tapered roller bearing is crowned so as to have a smooth pressure distribution, but a method for measuring the crowning amount of the inner ring, the roller, and the outer ring at a processing site has not been established. In the method of the conventional example of Patent Document 1, the measurement is performed by moving the stylus gauge, but the movement lowers the measurement accuracy. In addition, a method of calibrating the stylus gauge has not been established.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to propose a method for measuring the shape of a conical surface of a tapered roller bearing, which can easily and accurately measure a shape required for a conical surface of each component at low cost.
[0006]
[Means for Solving the Problems]
The method for measuring the tapered surface shape of a tapered roller bearing of the present invention is based on an example in the method for measuring the tapered surface shape of an object to be measured which is one of an inner ring, an outer ring, and a roller of a tapered roller bearing. Using the same calibrated displacement meter, the object to be measured is moved linearly in a direction perpendicular to the measuring direction of the displacement meter and in a direction along the generatrix of the conical surface of the object to be measured to measure a plurality of points on the object to be measured. Is the way.
According to this method, the object to be measured is moved linearly in a direction perpendicular to the measuring direction of the displacement meter and in a direction along the generatrix of the conical surface of the object to be measured, and the tapered roller is used to measure a plurality of points of the object to be measured. The diameter at any axial position on the conical surface of the bearing component can be measured. Diameter dimensions can be measured by relative comparison with the above example. In addition, since the object to be measured is moved, the measurement can be performed with simple equipment and with higher accuracy than when the displacement meter is moved and measured. Since the same displacement meter calibrated using the model is used for the measurement at the plurality of locations, more accurate measurement can be performed. Since measurement can be performed with such simple equipment, the present invention can also be applied to an application for measuring a conical surface of a processed part near a grinding machine.
[0007]
In the method of the present invention, measurements are made at three locations on the conical surface of the object to be measured, which are separated in the direction of the movement, and the cone angle is determined from the measurement results at two locations at both ends, and crowning is determined from the three measurement results. The quantity may be determined.
In this case, it is possible to obtain both the cone angle and the crowning amount, which are the shapes required for the conical surface of each component, with a small number of measurement points of three.
[0008]
In the present invention, when the object to be measured is an inner ring, it is preferable to measure the conical surface with reference to the end face on the large diameter side of the inner ring.
Since the reference surface at the time of grinding the conical surface of the inner ring is the end surface on the large diameter side, by measuring the conical surface with reference to the end surface on the large diameter side, it is easy to reflect the measurement result on the grinding process.
[0009]
When the object to be measured is an outer ring, it is preferable to measure the conical surface with reference to the end surface on the smaller diameter side of the outer ring.
Since the reference surface at the time of grinding the conical surface of the outer ring is the end surface on the small diameter side, measuring the conical surface with reference to the small diameter side end surface makes it easy to reflect the measurement result on the grinding process.
[0010]
When the object to be measured is a roller, it is preferable to measure the conical surface on the basis of the contact point of the large end surface of the roller with the inner ring large flange surface.
In a tapered roller bearing, since each roller rolls while being in contact with the inner ring large flange surface, a shape accuracy based on the contact point is required. Therefore, by measuring the contact point as a reference, the shape required for the operation can be obtained with high accuracy.
[0011]
In the present invention, when the object to be measured is an inner ring or an outer ring, the jig for supporting the object to be measured includes, for example, a platen and an inclined object support surface that makes an end surface of the object to be contacted. An object support part movably mounted on the surface plate in a direction along a projection line of a normal line of the object support surface, and the fixed part facing the movement direction of the object support part; A positioning reference body provided on a board, and a plurality of spacers interposed between the positioning reference body and the DUT support part to regulate a distance between the positioning reference body and the DUT support part. Use the provided jig. In this case, the measurement of the conical surface of the object to be measured by the displacement meter is performed with the number of intervening spacers being variously changed.
With this, when measuring a plurality of locations for each of a large number of inner races or outer races, for example, at three locations near both ends and near the center, measurement at a fixed axial position can be always performed only by changing the number of intervening spacers. Measurement can be performed with high working efficiency.
[0012]
In the present invention, when the object to be measured is a roller, for example, a jig for supporting the object to be measured is, for example, a surface plate, and the jig is mounted on the surface plate so as to be movable in a linear direction. A roller mounting table on which the rollers are mounted so that the center is parallel to the linear direction and the uppermost generatrix of the conical surface is parallel to the upper surface of the surface plate; and a roller provided on the roller mounting table and in contact with an end face of the rollers. End support, a positioning reference body provided on the surface plate facing the moving direction of the roller mounting table, and the positioning reference body interposed between the positioning reference body and the roller mounting table. A jig provided with a plurality of spacers for regulating the distance from the roller mounting table is used. In this case, the measurement of the conical surface of the object to be measured by the displacement meter is performed with the number of intervening spacers being variously changed.
With this, when measuring a plurality of locations for each of a large number of rollers, for example, three locations near both ends and near the center, measurement can always be performed at a fixed axial position only by changing the number of intervening spacers. Measurement can be performed with high work efficiency.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. This embodiment is an example in which the object to be measured is an inner ring of a tapered roller bearing. As shown in FIG. 8, for example, a tapered roller bearing has a plurality of tapered rollers 3 interposed between an inner ring 1 and an outer ring 2 along a circumferential direction. Each roller 3 is held by a holder 4. The inner ring 1 has a conical surface S1 at an outer diameter surface portion serving as a rolling surface, and has a large flange 1a and a small flange 1b at both ends. The outer ring 2 has a conical surface S2 with an inner diameter surface serving as a rolling surface. The outer peripheral surface of the roller 3 is a conical surface S3.
[0014]
In FIG. 1, this measuring method is a method for measuring the conical surface S1 of the inner ring 1. A plurality of points on the inner ring cone surface S1 are measured by linearly moving in the direction along the axis. From the measurement results at the plurality of locations, a conical surface shape such as a taper angle and a crowning height is obtained. For example, a dial gauge is used for the displacement meter 6. An electric micrometer may be used for the displacement meter 6 in addition to the above. The measuring direction Z of the displacement meter 6 is the direction of the displacement or length to be measured.
[0015]
The inner ring 1, which is an object to be measured, is supported by the following jig 7. The jig 7 includes a surface plate 8 and an object-to-be-measured part 9 installed on the surface plate 8. As shown in FIG. 3, the displacement gauge 6 is mounted on a support 16 erected on the surface plate 8 via a fixture 16a so as to be freely adjustable in height. The DUT support component 9 has a tilted DUT support surface A that makes the end surface of the inner ring 1 abut, and a direction along the projection line b of the normal B of the DUT support surface A on the surface plate 8. It is installed movably on X. In order to ensure the accuracy of this movement, the DUT support component 9 is movable along a guide 10 fixed on the surface plate 8. The device under test support 9 has an angle change fixing unit 11 that makes the tilt angle of the device support surface A variable. The angle change fixing means 11 supports the support plate 12 constituting the measured object support surface A on the support component main body 9a so as to be tiltable around the support shaft 13 on both lower ends, and is provided on both left and right ends of the support component main body 13. It can be fixed to the standing side plate 9b with a stopper 14. The stopper 14 is a set screw that penetrates an arc-shaped hole 15 provided in the side plate 9b, and is screwed into a screw hole (not shown) on the end face of the support plate 12. Therefore, the angle of the support plate 12 can be freely changed by loosening the tightening of the stopper 14, and when the stopper 14 is tightened, the inclination angle θ (FIG. 1) of the support plate 12 is fixed. The support plate 12 has a support piece 12a that receives the inner diameter surface of the inner ring 1 and supports the inner ring 1 in a state of being in contact with the support surface A of the workpiece.
[0016]
A positioning reference body 17 is fixed on the surface plate 8 so as to face the moving direction of the DUT support component 9, and a distance between the positioning reference body 17 and the DUT support component 9 is set. Two regulating spacers 18 and 19 are interposed. Since the displacement gauge 6 is installed on the surface plate 8 via the column 16 as described above, the position of the workpiece support surface S1 with respect to the displacement gauge 6 depends on the distance between the workpiece support component 9 and the positioning reference body 17. Will be adjusted. It is assumed that the positioning reference body 17 has a degree of parallelism with the workpiece support component 9. In this embodiment, the positioning reference body 17 is made of a component integrated with the guide 10.
[0017]
A measuring method using the jig 7 having the above configuration will be described. Prior to the measurement of the inner ring 1, the displacement meter 6 is calibrated by measuring the model 21 of the inner ring 1. The model 21 is, for example, a component that is accurately formed in the same shape as the inner ring 1. The measurement of the model 21 is performed by installing the jig 7 in the same manner as the measurement of the inner ring 1. Since the reference surface of the inner ring 1 which is the object to be measured is the large-diameter end surface when the conical surface S1 is ground, the model 21 also uses the large-diameter side end surface as the reference surface when adjusting the angle of the object-supporting part 9. , assuming no indication scale displacement meter 6 set at a right angle conical surface S1 M the measuring direction of the displacement meter 6.
[0018]
The deviation δ from the model 21 can be measured by replacing the inner ring 1 of the tapered roller bearing with the model 21 and reading the measurement value of the displacement meter 6. Since the inclination angle θ of the support surface 9a is known, the correction value of the diameter of the inner ring 1 is δcos θ.
In order to determine the cone angle of the inner ring 1, it is necessary to measure the diameter at two axial positions. In addition, it is necessary to measure the diameter of the maximum crowning height position in order to measure the crowning amount. The spacers 18 and 19 are prepared to move the distance in the axial direction, and the spacers 18 and 19 are sandwiched between the workpiece support part 9 and the positioning reference body 17. At this time, the diameter of the preset measurement position on the small diameter side of the conical surface S1 is measured relative to the model 21 by the displacement meter 6 (FIG. 2A).
Next, the spacer 19 is removed, the object-to-be-measured part 9 is moved toward the positioning reference body 17, the spacer 18 is sandwiched, and the diameter of the crowning position is measured by the displacement meter 6 (FIG. 2B). The thickness of the spacer 9 is set to be equal to the distance between the small-diameter side measurement position and the position where the crowning amount is maximized from the viewpoint of design or experience.
Finally, the spacer 19 is removed, the object-to-be-measured part 9 is moved toward the positioning reference body 17 and brought into contact therewith, and the diameter of the conical surface S1 on the large diameter side is measured by the displacement meter 6.
[0019]
Here, assuming that the distance between the small-diameter position and the large-diameter position where the above measurement is performed on the tapered surface S1 is L and their diameters are D1 and D2, the cone angle α is tan α = (D2−D1) / 2L. Desired.
Further, assuming that the distance between the small diameter side position and the crowning position is L3 and the diameter of the crowning position is D3, the crowning amount h is obtained by h == (d3− (D1 + D2) × (L3 / L)).
[0020]
According to the conical surface shape measuring method of this embodiment, the angle, diameter, and the amount of crowning of the conical surface S1 can be measured by using one displacement gauge 6 such as a dial gauge as described above. The shape function required for S1 can be measured at low cost.
[0021]
FIG. 4 shows a method of measuring the tapered surface S2 of the outer ring 2. The taper surface S2 of the outer ring 2 can be measured in the same manner as in the case of the inner ring 1 using the measurement jig 7 and the displacement meter 6 used for the inner ring 1. When measuring the tapered surface S2 of the outer ring 2, the displacement meter 6 is calibrated similarly to the case of the inner ring 1 using the model 22 in which the outer ring 2 is finished with high accuracy. Thereafter, the measurement of the tapered surface S2 of the outer ring 2 is performed. At the time of this measurement, as in the case of the measurement of the inner ring 1, a state where the two spacers 18 ′ and 19 ′ are interposed, a state where only one spacer 18 ′ is interposed, and a state where the spacer 18 ′ is interposed. , 19 'are measured without the intervention of the taper surface S2. As a result, the measurement is performed at the small-diameter side position, the middle crowning amount maximum position, and the large-diameter side position indicated by reference numerals (1) to (3) in FIG.
[0022]
FIG. 5 to FIG. 7 show a measuring method when the object to be measured is the roller 3. The jig 7A in this case has the following configuration. The displacement gauge 6 is installed on the base 8A via a support (not shown) in the same manner as when the inner ring 1 is measured.
The jig 7A includes a surface plate 8A, and a roller mounting table 9A mounted on the surface plate 8A so as to be movable in the linear direction X. The roller mounting table 9A mounts the rollers 3 so that the rollers 3 have their axes parallel to the linear direction X and the generatrix at the uppermost position of the conical surface S3 is parallel to the upper surface of the surface plate 8A. As a result, the generatrix of the roller cone S3 faces in a direction perpendicular to the measurement direction Z of the displacement gauge 6. The roller mounting table 9A has a movable table 31 movably installed on the surface plate 8A, and two V blocks 32a and 32b provided on the movable body 31. These V blocks 32a and 32b are arranged adjacent to each other with different height positions of the V grooves. Since the V-groove of each V-block 32a, 32b does not have a taper in the roller axis direction, the conical roller 3 is supported by the edge of the V-groove of each V-block 32a, 32 on the roller large end side. . The roller mounting table 9 </ b> A is provided with a roller end support 33 that is in contact with the large end surface 3 a of the roller 3 on the movable table 31 and determines the axial position of the roller 3. The roller 3 and the contact portion of the roller end support 33 are formed of ceramic balls 33a. The support position of the large end surface 3a of the roller 3 by the roller end support 33 is a position P at which the roller large end surface 3a contacts the large collar surface of the inner ring 1 as shown in FIG.
A positioning reference body 17A is provided on the surface plate 8A so as to face the moving direction X of the roller mounting table 9A. The positioning reference body 17A is mounted between the positioning reference body 17A and the mounting table 9A. Two spacers 18A and 1A for regulating the distance from the table 9A are interposed.
[0023]
In the measurement of the rollers 3 of the conical surface S3, as in the case of the inner ring 1 and outer ring 2, by measuring the conical surface S3 M of rollers 3 of the model 23 performs displacement meter 6 calibration, for example, the adjustment of the zero point position. The measurement of the model 23 is performed on the roller mounting table 9A.
Thereafter, instead of the model 23, the roller 3 is mounted on the roller mounting table 9A, and the displacement meter 6 measures the conical surface S3 of the roller 3. This measurement is performed in a state where two spacers 19A and 19B are interposed, a state where only one spacer 19A is interposed, and a state where no spacer is interposed, as in the case of the inner and outer rings. Thereby, measurement is performed at three locations separated in the axial direction of the roller 3, for example, near both ends and near the center. From this measurement result, the angle of the conical surface S3 and the crowning amount are obtained. In this case, the axial support position of the roller 3 is the large end face 3a.
In the tapered roller bearing, since each roller 3 rolls while contacting the large flange surface of the inner ring 1, the shape accuracy based on the contact point P is required. Therefore, by measuring the contact point P as a reference, the shape required for operation can be obtained with high accuracy.
[0024]
【The invention's effect】
The conical surface shape measuring method of the present invention is the same as the conical surface shape measuring method for measuring the conical surface shape of an object to be measured which is one of an inner ring, an outer ring, and a roller of a tapered roller bearing, wherein the same displacement calibrated by using an example is used. In order to measure a plurality of points of the object to be measured by moving the object to be measured linearly in a direction perpendicular to the measurement direction of the displacement meter and in a direction along the bus line of the conical surface of the object to be measured using a gauge, The shape required for the conical surface can be easily and accurately measured at low cost.
[Brief description of the drawings]
FIG. 1 is a side view showing a method for measuring a conical surface of an inner ring of a tapered roller bearing according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram showing each measurement process of the measurement method.
FIG. 3 is a perspective view of a jig and a displacement meter used in the measurement method.
FIG. 4 is a cutaway side view showing a method for measuring a conical surface of an outer race in another embodiment of the present invention.
FIG. 5 is a side view showing a method for measuring a conical surface of a roller according to still another embodiment of the present invention.
FIG. 6 is a plan view of the entire jig in the measurement method.
FIG. 7 is a front view showing the relationship between the V-blocks of the jig in the measurement method.
FIG. 8 is a partial sectional view of a tapered roller bearing which is an object to be measured.
[Explanation of symbols]
1: Inner ring (measured object)
2: Outer ring (measured object)
3: Roller (measurement object)
6 Displacement gauge 8 Surface plate 9 Workpiece support 17, 17A Positioning reference bodies 18, 18 ', 19, 19' Spacers 18A, 19A Spacers 21 to 23 Model A Workpiece support surface S1 to S3: Conical surface

Claims (7)

円すいころ軸受の内輪、外輪、およびころのいずれかである被測定物の円すい面形状を測定する円すい面形状測定方法において、模範を用いて較正した同じ変位計を用い、被測定物を上記変位計の測定方向に対する直角方向でかつ被測定物の円すい面の母線に沿う方向に直線的に移動させて被測定物の複数箇所を測定する円すいころ軸受の円すい面形状測定方法。In the conical surface shape measuring method for measuring the conical surface shape of the object to be measured, which is one of the inner ring, the outer ring, and the rollers of the tapered roller bearing, the same displacement meter calibrated using an example is used, and the object to be measured is subjected to the above displacement. A method for measuring the shape of a tapered roller bearing, which measures a plurality of points on an object to be measured by linearly moving the object to be measured in a direction perpendicular to a measuring direction of the meter and along a generatrix of a surface of the object to be measured. 請求項1において、被測定物の円すい面における上記移動の方向に離れた3か所の測定を行い、そのうちの両端2か所の測定結果から円すい角度を求め、3か所の測定結果からクラウニング量を求める円すいころ軸受の円すい面形状測定方法。2. The method according to claim 1, wherein three points on the conical surface of the object to be measured are measured away from each other in the direction of the movement, and a cone angle is obtained from two points on both ends of the measurement, and crowning is obtained from the three points. A tapered roller shape measurement method for tapered roller bearings to determine the amount. 請求項1または請求項2において、被測定物が内輪であり、この内輪の大径側端面を基準として円すい面を測定する円すいころ軸受の円すい面形状測定方法。3. The method for measuring the shape of a conical surface of a tapered roller bearing according to claim 1, wherein the object to be measured is an inner ring, and the conical surface is measured based on a large-diameter end surface of the inner ring. 請求項1または請求項2において、被測定物が外輪であり、この外輪の小径側端面を基準として円すい面を測定する円すいころ軸受の円すい面形状測定方法。3. The method for measuring the shape of a conical surface of a tapered roller bearing according to claim 1 or 2, wherein the object to be measured is an outer ring, and the conical surface is measured based on a small-diameter end surface of the outer ring. 請求項1または請求項2において、被測定物がころであり、ころの大端面における内輪大鍔面との接触点を基準として円すい面を測定する円すいころ軸受の円すい面形状測定方法。3. The method for measuring the shape of a tapered roller bearing according to claim 1 or 2, wherein the object to be measured is a roller, and the tapered surface is measured based on a contact point of the large end surface of the roller with the inner ring large flange surface. 請求項1または請求項2において、被測定物測定物が内輪または外輪であり、被測定物を支持する治具として、定盤と、上記被測定物の端面を当接させる傾斜した被測定物支持面を有し上記定盤上に上記被測定物支持面の法線の投影線に沿う方向に移動可能に設置される被測定物支持部品と、この被測定物支持部品の移動方向に対面して上記定盤上に設けられた位置決め基準体と、この位置決め基準体と上記被測定物支持部品との間に介在して上記位置決め基準体と被測定物支持部品との間隔を規制する複数のスペーサとを備えた治具を用い、上記複数のスペーサの介在個数を種々変えた状態で、上記変位計による上記被測定物の円すい面の測定を行う円すいころ軸受の円すい面形状測定方法。3. The object to be measured according to claim 1 or 2, wherein the object to be measured is an inner ring or an outer ring, and a jig for supporting the object to be measured is an inclined object to be brought into contact with a surface plate and an end surface of the object to be measured. An object support part having a support surface and movably installed on the surface plate in a direction along a projection line of a normal line of the object support surface, and facing the moving direction of the object support part A positioning reference body provided on the surface plate, and a plurality of positioning reference bodies interposed between the positioning reference body and the DUT to restrict the distance between the positioning reference body and the DUT. A conical surface shape measuring method of a tapered roller bearing, wherein the conical surface of the object to be measured is measured by the displacement meter while using a jig provided with the spacers and changing the number of intervening plural spacers. 請求項1または請求項2において、被測定物がころであり、被測定物を支持する治具として、定盤と、この定盤上に直線方向に移動可能に設置され、上記ころを軸心が上記直線方向と平行でかつ円すい面の最上位置の母線が定盤の上面と平行となるように上記ころを載せるころ載置台と、このころ載置台に設けられ上記ころの端面に接するころ端支持体と、上記ころ載置台の移動方向に対面して上記定盤上に設けられた位置決め基準体と、この位置決め基準体と上記ころ載置台との間に介在して上記位置決め基準体と上記ころ載置台との間隔を規制する複数のスペーサとを備えた治具を用い、上記複数のスペーサの介在個数を種々変えた状態で、上記変位計による上記被測定物の円すい面の測定を行う円すいころ軸受の円すい面形状測定方法。3. The device according to claim 1, wherein the object to be measured is a roller, and a jig for supporting the object to be measured is provided on a surface plate, and is mounted on the surface plate so as to be movable in a linear direction. A roller mounting table on which the rollers are mounted such that the generatrix at the uppermost position of the conical surface is parallel to the linear direction and parallel to the upper surface of the surface plate; and a roller end provided on the roller mounting table and in contact with an end surface of the roller. A support, a positioning reference body provided on the surface plate facing the moving direction of the roller mounting table, and the positioning reference body interposed between the positioning reference body and the roller mounting table, and Using a jig provided with a plurality of spacers for regulating the distance from the roller mounting table, the displacement meter measures the conical surface of the object to be measured by the displacement meter while variously interposing the plurality of spacers. Measuring method of tapered surface of tapered roller bearing
JP2003135291A 2003-05-14 2003-05-14 Measuring method of tapered surface shape of tapered roller bearing Expired - Lifetime JP4376545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135291A JP4376545B2 (en) 2003-05-14 2003-05-14 Measuring method of tapered surface shape of tapered roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135291A JP4376545B2 (en) 2003-05-14 2003-05-14 Measuring method of tapered surface shape of tapered roller bearing

Publications (2)

Publication Number Publication Date
JP2004340653A true JP2004340653A (en) 2004-12-02
JP4376545B2 JP4376545B2 (en) 2009-12-02

Family

ID=33525587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135291A Expired - Lifetime JP4376545B2 (en) 2003-05-14 2003-05-14 Measuring method of tapered surface shape of tapered roller bearing

Country Status (1)

Country Link
JP (1) JP4376545B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021046A1 (en) * 2008-08-21 2010-02-25 徳真電機工業株式会社 Crowning measurement device and crowning measurement method using the same
CN102679941A (en) * 2012-05-09 2012-09-19 西安交通大学 Device for detecting taper of outer cone of conical ring
CN103615997A (en) * 2013-11-01 2014-03-05 苏州恩斯克轴承有限公司 A method for measuring the grinding degree of the end face of a conical roller bearing outer ring
CN104132599A (en) * 2014-08-14 2014-11-05 陕西法士特齿轮有限责任公司 Conical surface bouncing detection tool
CN105509676A (en) * 2016-01-19 2016-04-20 浙江爱易特智能技术有限公司 Bearing detecting device
WO2017018177A1 (en) * 2015-07-27 2017-02-02 Ntn株式会社 Pitch cone angle measurement method and pitch cone angle measurement device
CN107063046A (en) * 2017-05-25 2017-08-18 浙江辛子精工机械股份有限公司 A kind of band straight flange deep groove ball bearing circle composite detection tool
CN107421480A (en) * 2017-05-19 2017-12-01 洛阳Lyc轴承有限公司 The length detecting method and device of a kind of taper roller
CN109458921A (en) * 2018-12-21 2019-03-12 河南卫创轴承精工科技有限公司 A kind of comprehensive amount instrument of taper roller
CN110608656A (en) * 2019-09-27 2019-12-24 贵州群建精密机械有限公司 Method and device for detecting taper of central hole
CN113358078A (en) * 2021-04-30 2021-09-07 中车青岛四方机车车辆股份有限公司 Bearing size detection system
CN113884041A (en) * 2021-08-31 2022-01-04 中国船舶重工集团公司第七0七研究所 Measuring device and measuring method for rapidly measuring rotor shaft sleeve
CN114739345A (en) * 2022-05-19 2022-07-12 洛阳Lyc轴承有限公司 Measuring device and method for large tapered roller rolling surface modification curve

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116813U (en) * 1981-11-24 1982-07-20
JPH01121701A (en) * 1987-09-25 1989-05-15 Timken Co:The Object measuring apparatus
JPH0378610A (en) * 1989-08-23 1991-04-03 Brother Ind Ltd Apparatus and method for measuring shape of surface
JPH0450712A (en) * 1990-06-19 1992-02-19 Agency Of Ind Science & Technol Shape measuring instrument for cylinder body
JPH05157550A (en) * 1991-12-02 1993-06-22 Nippon Steel Corp Method and apparatus for measuring shape of steel plate
JPH11271048A (en) * 1998-03-20 1999-10-05 Mitsubishi Heavy Ind Ltd Method for measuring roll profile
JP2000087963A (en) * 1998-09-16 2000-03-28 Nippon Seiko Kk Roller bearing
JP2000230816A (en) * 1999-02-08 2000-08-22 Koyo Seiko Co Ltd Angle measuring instrument
JP2000241153A (en) * 1999-02-22 2000-09-08 Ntn Corp Control method for crowning shape of roller and device thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116813U (en) * 1981-11-24 1982-07-20
JPH01121701A (en) * 1987-09-25 1989-05-15 Timken Co:The Object measuring apparatus
JPH0378610A (en) * 1989-08-23 1991-04-03 Brother Ind Ltd Apparatus and method for measuring shape of surface
JPH0450712A (en) * 1990-06-19 1992-02-19 Agency Of Ind Science & Technol Shape measuring instrument for cylinder body
JPH05157550A (en) * 1991-12-02 1993-06-22 Nippon Steel Corp Method and apparatus for measuring shape of steel plate
JPH11271048A (en) * 1998-03-20 1999-10-05 Mitsubishi Heavy Ind Ltd Method for measuring roll profile
JP2000087963A (en) * 1998-09-16 2000-03-28 Nippon Seiko Kk Roller bearing
JP2000230816A (en) * 1999-02-08 2000-08-22 Koyo Seiko Co Ltd Angle measuring instrument
JP2000241153A (en) * 1999-02-22 2000-09-08 Ntn Corp Control method for crowning shape of roller and device thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021046A1 (en) * 2008-08-21 2010-02-25 徳真電機工業株式会社 Crowning measurement device and crowning measurement method using the same
CN102679941A (en) * 2012-05-09 2012-09-19 西安交通大学 Device for detecting taper of outer cone of conical ring
CN103615997A (en) * 2013-11-01 2014-03-05 苏州恩斯克轴承有限公司 A method for measuring the grinding degree of the end face of a conical roller bearing outer ring
CN104132599A (en) * 2014-08-14 2014-11-05 陕西法士特齿轮有限责任公司 Conical surface bouncing detection tool
WO2017018177A1 (en) * 2015-07-27 2017-02-02 Ntn株式会社 Pitch cone angle measurement method and pitch cone angle measurement device
JP2017026544A (en) * 2015-07-27 2017-02-02 Ntn株式会社 Pitch circle cone angle measurement method and measurement device
CN105509676A (en) * 2016-01-19 2016-04-20 浙江爱易特智能技术有限公司 Bearing detecting device
CN107421480A (en) * 2017-05-19 2017-12-01 洛阳Lyc轴承有限公司 The length detecting method and device of a kind of taper roller
CN107063046A (en) * 2017-05-25 2017-08-18 浙江辛子精工机械股份有限公司 A kind of band straight flange deep groove ball bearing circle composite detection tool
CN107063046B (en) * 2017-05-25 2023-08-11 浙江辛子精工机械股份有限公司 Composite gauge for straight-edge deep groove ball bearing ring
CN109458921A (en) * 2018-12-21 2019-03-12 河南卫创轴承精工科技有限公司 A kind of comprehensive amount instrument of taper roller
CN110608656A (en) * 2019-09-27 2019-12-24 贵州群建精密机械有限公司 Method and device for detecting taper of central hole
CN110608656B (en) * 2019-09-27 2023-11-21 贵州群建精密机械有限公司 Method and device for detecting taper of central hole
CN113358078A (en) * 2021-04-30 2021-09-07 中车青岛四方机车车辆股份有限公司 Bearing size detection system
CN113358078B (en) * 2021-04-30 2023-01-20 中车青岛四方机车车辆股份有限公司 Bearing size detection system
CN113884041A (en) * 2021-08-31 2022-01-04 中国船舶重工集团公司第七0七研究所 Measuring device and measuring method for rapidly measuring rotor shaft sleeve
CN114739345A (en) * 2022-05-19 2022-07-12 洛阳Lyc轴承有限公司 Measuring device and method for large tapered roller rolling surface modification curve

Also Published As

Publication number Publication date
JP4376545B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
JP4376545B2 (en) Measuring method of tapered surface shape of tapered roller bearing
CN106568387B (en) A kind of big L/D ratio hollow thin-wall elongated shaft precision checking equipment and detection method
JP5215866B2 (en) Device for determining measurable variables for a measurement object
US9316476B2 (en) Profile measuring instrument, adjusting method for profile measuring instrument, and profile measuring method
CN101435696B (en) Device and method for measuring light sheet thickness
CN105716554B (en) A kind of high-precision positioner for the measurement of straight-tooth master gear helix
JP2000501505A (en) Surface shape measurement
JP6336488B2 (en) Method and apparatus for determining a machining axis
JP6649013B2 (en) Probe head rotation mechanism
JP2016206193A (en) Holding apparatus for optical measurement device
CN106895773A (en) A kind of ultra precise measurement platform
KR100723757B1 (en) apparatus and method for measuring roundness
CN202129667U (en) Positioning device for correcting offset of inner and outer circles of hollow shaft
JP4174955B2 (en) Device for measuring radial clearance of rolling bearings
JP2013142431A (en) Hydrostatic gas bearing device
US4447962A (en) Adjustable bore target and gage
KR20170049711A (en) Clearance measuring apparatus for bearing and method of the same
KR20210111172A (en) Fine adjustment screw assembly and machining apparatus
CN104308110B (en) Alignment table centering contact mechanism precision micromatic setting and method
JP3169080U (en) Film thickness angle gauge
JP7324900B2 (en) Inside diameter measuring device
US5522664A (en) Slide assembly
RU2451275C1 (en) Device for monitoring rotation accuracy of two-row roller bearing at simulation of working preload
JPH07280546A (en) Roll crown measuring apparatus
KR100246306B1 (en) Tool set device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent or registration of utility model

Ref document number: 4376545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term