JP2004340587A - バッテリの仮想電流演算方法及びその装置、バッテリの開回路電圧演算方法及びその装置、バッテリ充電状態演算方法及びその装置 - Google Patents

バッテリの仮想電流演算方法及びその装置、バッテリの開回路電圧演算方法及びその装置、バッテリ充電状態演算方法及びその装置 Download PDF

Info

Publication number
JP2004340587A
JP2004340587A JP2003134195A JP2003134195A JP2004340587A JP 2004340587 A JP2004340587 A JP 2004340587A JP 2003134195 A JP2003134195 A JP 2003134195A JP 2003134195 A JP2003134195 A JP 2003134195A JP 2004340587 A JP2004340587 A JP 2004340587A
Authority
JP
Japan
Prior art keywords
current
voltage
battery
polarization
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003134195A
Other languages
English (en)
Inventor
Yoichi Arai
洋一 荒井
Michihito Enomoto
倫人 榎本
Tomohiro Kawaguchi
智博 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2003134195A priority Critical patent/JP2004340587A/ja
Publication of JP2004340587A publication Critical patent/JP2004340587A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)

Abstract

【課題】バッテリの開回路電圧割り出し用の仮想電流を正確に演算すること。
【解決手段】充電側分極の解消に十分な電流値又は電気量による放電の放電電流及び端子電圧から分極影響特性割出手段23Aが求めた分極の影響を含んだ電圧−電流特性を、その特性上の基準電流値における電圧値が、バッテリ13の純抵抗成分のみに依存した分極の影響を含まない電圧−電流特性上の基準電流値における基準電圧値と一致するよう、シフト後分極影響特性割出手段23Bにより電圧軸方向にシフトさせ、このシフト後の電圧−電流特性上の、分極の影響を含まない電圧−電流特性上の放電電流=0における電圧値に対応する電流値を、分極の影響を含んだ電圧−電流特性式に代入することでバッテリ13の開回路電圧OCVを求めることのできる仮想電流Isの値として演算手段23Cが演算する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、車両等の負荷に電力を供給するバッテリの充電状態を演算する方法及びその装置や、バッテリの充電状態との間に直線的相関がある、バッテリの平衡状態における端子電圧に相当する開回路電圧を演算する方法及びその装置、並びに、この平衡状態における開回路電圧を演算するのに当たって必要となる、放電中のバッテリの端子電圧がバッテリの充電状態の変化に対して直線的に変化する特性を示すような仮想上の電流値である仮想電流を演算する方法及びその装置に関する。
【0002】
【従来の技術】
バッテリの電解液比重と開回路電圧(平衡状態にあるバッテリの開回路状態における端子電圧)との間にはほぼ直線的な相関があり、また、バッテリの電解液比重と充電状態との間にも直線的な相関がある。
【0003】
このため、バッテリの充電状態と開回路電圧との間には直線的な相関が成り立つはずであり、よって、この関係を利用すれば、バッテリの開回路電圧から充電状態を把握することができるはずである。
【0004】
ところが、バッテリの開回路電圧は、自然放電を除くと、充電状態に変化のない非放電時にしか測定できず、実際に充電状態に変化の生じる放電時には開回路電圧を測定できないので、バッテリの放電時に測定できるバッテリの端子電圧や放電電流から開回路電圧を推定する他にない。
【0005】
そこで、本出願人は過去に、放電中に測定されるバッテリの端子電圧や放電電流からその時点のバッテリの開回路電圧を推定する方法を提案した。
【0006】
この方法について説明すると、バッテリを10A刻みで10〜80(A)の各定電流にて放電させた場合の、放電時間(横軸)とバッテリの端子電圧(V:縦軸)との相関を示す、図20の特性図から、同じ充電状態であっても放電電流が高ければ高いほどバッテリの端子電圧がより大きく降下するのは明らかである。
【0007】
したがって、端子電圧と放電電流との間には、負の相関を示す電圧−電流特性(I−V特性)があり、また、この負の相関を示す電圧−電流特性は、バッテリの充電状態が変わると変化することが判る。
【0008】
そこで、バッテリの電圧−電流特性をバッテリの充電状態に応じて複数求めるために、次のような測定を行う。
【0009】
まず、そのバッテリが実際に使用される際の放電電流の上限値と下限値を設定して、この上限値Iと下限値Iとが周期的に交互に現れるパルス状の電流によるバッテリの放電を連続して行い、そのときに放電電流とは逆位相で現れるバッテリの端子電圧と放電電流との組(I,V)、(I,V)、(I,V)、(I,V),…を、放電電流のパルス周期(例えば1s)に同期し連続して所定数(例えば100サンプル)サンプリングする。
【0010】
そして、所定数サンプリングしたバッテリの端子電圧と放電電流との組(I,V01)、(I,V02)、(I,V03)、(I,V04),…から、最小二乗法により、V=aI+bなるバッテリの直線的な電圧−電流特性式における係数a,bを得て、この式V=aI+bを、上記したサンプリングの間における充電状態に対応したバッテリの電圧−電流特性として位置づける。
【0011】
次に、上記と同様の放電によって、パルス状の電流I,Iによるバッテリの放電を連続して行い、そのときに放電電流とは逆位相で現れるバッテリの端子電圧と放電電流との組(I,V11)、(I,V12)、(I,V13)、(I,V14),…を連続して所定数サンプリングし、これらから、最小二乗法により、V=aI+bなるバッテリの直線的な電圧−電流特性式における係数a,bを得て、この式V=aI+bを、上記したサンプリングの間における充電状態に対応したバッテリの電圧−電流特性として位置づける。
【0012】
以後、同様にして、V=aI+bなるバッテリの直線的な電圧−電流特性式における係数a,bを得て、この式V=aI+bを、バッテリの徐々に減少する互いに異なる充電状態に対応した電圧−電流特性として位置づけることで、100%から0%までの各充電状態(SOC%)に対応したバッテリの電圧−電流特性を得る。
【0013】
尚、各所定数サンプリングしたバッテリの端子電圧と放電電流との組(I,Vn1)、(I,Vn2)、(I,Vn3)、(I,Vn4),…と、これらに最小二乗法を適用して得られる直線的な電圧−電流特性式V=aI+bとの関係を、図21に模式的に示した。
【0014】
ここで、上述のようにして得た各充電状態に応じたバッテリの電圧−電流特性式に、仮想の定電流値である仮想電流値Isを各々代入し、それによって求まるVを、バッテリの定負荷放電状態における推定上の端子電圧である推定電圧Vnと定義すると、図22のグラフに示すような定電流放電特性が得られる。
【0015】
そして、仮想電流値Isとして正のいずれの値を代入しても、その仮想電流値Isによる定電流放電特性は、横軸に取った充電状態が図22中右側に進んで0に近づくにつれて推定電圧Vnが急激に低下するという、非直線的な特性となり、理論上開回路電圧を示すはずの仮想電流値Is=0Aの場合でさえも、定電流放電特性は同様の特性を示すことが判る。
【0016】
このように定電流放電特性が非直線的な特性となるのは、放電中のバッテリにおいて、純抵抗(バッテリのオーミック抵抗)の影響による電圧降下、つまり、純抵抗に放電電流を乗じたIR降下と共に発生する分極、即ち、電極の表面上で酸化還元反応を進行させるための活性化分極や、物質移動の結果として電極表面と溶液バルクとの間に生じた反応物や生成物の濃度差による濃度分極に起因する。
【0017】
そして、特に濃度分極は、放電電流の増減に対してかなり遅れて進行、解消するため、定電流で放電を行った場合であっても、当初はほぼ直線的に降下する端子電圧が、放電の進行に伴い濃度分極が徐々に進行し始めると急激に降下することになる。
【0018】
この分極による電圧降下が、放電時にサンプリングされる端子電圧にも現れることから、その端子電圧を用いたバッテリの直線的な電圧−電流特性式にも、分極による電圧降下の影響が現れ、その電圧−電流特性式を用いて求めた推定電圧Vnにもその影響が現れることから、図22のグラフに示すような非直線的な相関を示すことになるのである。
【0019】
尚、図22のグラフに示すように、先に説明したようにして求めた直線的な電圧−電流特性式V=aI+bに代入する仮想電流値Isが小さければ小さいほど、充電状態が0%に近づくにつれて推定電圧Vnが低下する度合いが小さくなっているのは、放電電流が低ければ低いほど濃度分極の発生する度合いが小さいからである。
【0020】
よって、あくまで仮想の領域であるが、上述のようにして得た各充電状態に応じたバッテリの電圧−電流特性式に、仮想電流値Isとして、現実にはない想像上の値である負の値をいくつか代入して、その負の値の仮想電流値Isによる定電流放電特性をグラフに示してみると、図23に示すように、この場合においては、仮想電流値Is=−10Aを境に、充電状態0%に近い領域の推定電圧Vnの特性変化が変極する。
【0021】
したがって、理論上では、仮想電流値Isを−10Aとすると、バッテリの放電中における端子電圧と放電電流から求めた、定電流放電における推定電圧Vnが、バッテリの平衡状態における端子電圧であるところの開回路電圧のように、バッテリの充電状態に対して直線的な特性を示すことになり、そうとすると、上記のようにして求めた推定電圧Vnは、実際には測定できないバッテリの開回路電圧と等価なものであると考えることができる。
【0022】
そこで、上述のようにして得た各充電状態に応じたバッテリの電圧−電流特性を、図24のグラフ上において、縦軸を放電電流Iとし横軸を端子電圧Vとした同一平面上に展開して、定電流放電における推定電圧Vnが、実際には測定できないバッテリの開回路電圧と同様に、バッテリの充電状態に対して直線的な特性を示すものであることを検証してみる。
【0023】
まず、各電圧−電流特性式の傾きを表す係数a,a,…,aが各々異なり、かつ、各電圧−電流特性式の切片を表す係数b,b,…,bも各々異なることから、図24中の現実に存在する正の放電電流領域においては、バッテリ充電状態の変化に対して端子電圧Vが直線的に変化する放電電流値Iは存在しない。
【0024】
しかし、図24中の想像上の領域である負の放電電流領域においては、放電電流値I=−10Aの時に、バッテリの充電状態に対して端子電圧Vが直線的に変化する特性を示すことになり、この放電電流値I=−10Aにおける各充電状態に対応するバッテリの端子電圧Vが、推定電圧Vnであるということになる。
【0025】
そこで、この仮想電流値Is=−10Aにおけるバッテリの充電状態とこれに対して直線的な相関を有する推定電圧Vnとの関係をグラフに表すと、図25に示すように、縦軸の満充電時の開回路電圧Vsと放電終止時の開回路電圧Veとの間に推定電圧Vnが存在することになり、この推定電圧Vnに対応する横軸の値が、バッテリの現在の充電状態、つまり、SOC(State of charge )ということになる。
【0026】
したがって、推定電圧Vnはバッテリの開回路電圧に代わるものであるということができ、開回路電圧が測定できない放電時においても、その放電が、電力を供給する負荷が放電中に変化しない定負荷放電であれば、その放電中に微妙に変動するバッテリの端子電圧と放電電流とを測定することで、その定負荷放電におけるバッテリの端子電圧と放電電流との相関である電圧−電流特性を求めて、その特性式(V=aI+b)に仮想電流値Is=−10Aを代入して推定電圧Vnを求めることができる。
【0027】
尚、推定電圧Vnからバッテリの充電状態SOCを求めるには、図25の縦軸上における推定電圧Vnと満充電時の開回路電圧Vsとの比に換算すればよく、具体的には、バッテリの現在の充電状態SOCは、満充電容量に対する比として、
SOC={(Vn−Ve)/(Vs−Ve)}×100(%)
により求めることができる。
【0028】
また、正確を期するならば、推定電圧Vnにおける電力と満充電時の電力(V×Ah)との比に換算してもよく、具体的には、バッテリの現在の充電状態SOCは、満充電容量時に対する電力比として、
Figure 2004340587
により求めることができる。
【0029】
【特許文献1】
特開2001−22158号公報
【特許文献2】
特開2001−317455号公報
【0030】
【発明が解決しようとする課題】
ところで、バッテリが実際に使用される際の放電電流の上限値と下限値は、そのバッテリから電力の供給を受ける負荷の内容や駆動パターン等によって、バッテリ毎にまちまちである。
【0031】
そして、先に説明したように、濃度分極の発生する度合いは放電電流が低ければ低いほど小さいことから、放電電流が低ければ低いほど分極による端子電圧の電圧降下量は小さく、放電電流が高ければ高いほど分極による端子電圧の電圧降下量は大きくなる。
【0032】
そのため、全てのバッテリについて、画一的な上限値Iと下限値Iとで放電を周期的に行わせた際の、実際に測定した端子電圧と放電電流との組から割り出した電圧−電流特性を用いて、推定電圧Vnを求めてしまうと、そのバッテリの実際の開回路電圧との間に誤差が生じてしまう可能性がある。
【0033】
つまり、そのバッテリが実際に使用される際の放電電流の上限値や下限値が、電圧−電流特性を割り出すためにバッテリの端子電圧を測定する目的で周期的な放電を行わせる際の、放電電流の上限値Iや下限値Iと異なる値であると、その差の分だけ、分極による電圧降下量に相違が生じるので、放電中に測定される端子電圧が、そのバッテリが実際に使用される際の端子電圧からずれてしまう。
【0034】
その結果、測定した端子電圧と放電電流との組から割り出した電圧−電流特性も、そのバッテリが実際に使用される際の電圧−電流特性からずれてしまい、よって、これを基にして求められる仮想電流値Isが妥当な値でなくなってしまい、この妥当でない値の仮想電流値Isを用いて求めた推定電圧Vnも、そのバッテリの実際の開回路電圧とは異なる値となってしまう、という訳である。
【0035】
本発明は前記事情に鑑みなされたもので、本発明の目的は、バッテリの充電状態の指標となるバッテリの平衡状態における端子電圧、即ち、開回路電圧を推定演算する際に必要となる、仮想上の放電電流値である仮想電流値を、バッテリ個々の特性の相違や、そのバッテリから電力の供給を受ける負荷の内容等によって定まる、個々のバッテリが現実に使用される際の放電電流値の相違を加味して、正確に演算することのできる、バッテリの仮想電流演算方法や、この正確に演算されたバッテリの仮想電流値を用いてバッテリの開回路電圧を正確に演算することのできるバッテリの開回路電圧演算方法、並びに、この正確に演算されたバッテリの開回路電圧を用いてバッテリの充電状態を正確に演算することのできるバッテリの充電状態演算方法と、これらの方法を実施する際に用いて好適なバッテリの仮想電流演算装置やバッテリの開回路電圧演算装置、並びに、バッテリの充電状態演算装置を提供することにある。
【0036】
【課題を解決するための手段】
前記目的を達成する請求項1乃至請求項4に記載した本発明は、バッテリの仮想電流演算方法に関するものであり、請求項5に記載した本発明は、バッテリの開回路電圧演算方法に関するものであり、請求項6に記載した本発明は、バッテリの充電状態演算方法に関するものであり、請求項7乃至請求項10に記載した本発明は、バッテリの仮想電流演算装置に関するものであり、請求項11に記載した本発明は、バッテリの開回路電圧演算装置に関するものであり、請求項12に記載した本発明は、バッテリの充電状態演算装置に関するものである。
【0037】
そして、請求項1に記載した本発明のバッテリの仮想電流演算方法は、負荷に電力を供給するバッテリの端子電圧と放電電流とを周期的に測定して求めた、これら端子電圧と放電電流との相関を示す電圧−電流特性式に、前記放電電流として代入して使用される、現実にはない理論上の仮定値であって、この仮定値を前記電圧−電流特性式に前記放電電流として代入することで、前記バッテリの平衡状態における端子電圧に相当する開回路電圧を、前記電圧−電流特性式の解として求めるのに用いられる仮想電流を演算する方法であって、前記バッテリが、少なくとも放電直前に該バッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量による放電を行った際に、該放電の放電電流が最大電流値から減少する間に周期的に測定した、前記バッテリの端子電圧と放電電流とから、分極の影響を含んだ前記バッテリの端子電圧と放電電流との相関を示す電圧−電流特性を求め、前記分極の影響を含んだ電圧−電流特性上の、前記最大電流値よりも低い基準電流値における電圧値が、前記バッテリの純抵抗成分のみに依存した端子電圧と放電電流との相関を示す分極の影響を含まない電圧−電流特性上の、前記基準電流値における基準電圧値と一致するように、前記分極の影響を含んだ電圧−電流特性を電圧軸方向にシフトさせ、前記分極の影響を含まない電圧−電流特性上の放電電流=0における電圧値に対応する、前記電圧軸方向にシフトさせた後の前記分極の影響を含んだ電圧−電流特性上の電流値を、前記仮想電流の値とするようにしたことを特徴とする。
【0038】
また、請求項2に記載した本発明のバッテリの仮想電流演算方法は、請求項1に記載した本発明のバッテリの仮想電流演算方法において、前記分極の影響を含んだ電圧−電流特性を二次の近似曲線式とするようにした。
【0039】
さらに、請求項3に記載した本発明のバッテリの仮想電流演算方法は、請求項1又は2に記載した本発明のバッテリの仮想電流演算方法において、前記バッテリが平衡状態から前記放電を行う毎に、該放電中に周期的に測定した前記バッテリの端子電圧と放電電流とから、最新の前記分極の影響を含まない電圧−電流特性を求め、以後、この最新の前記分極の影響を含まない電圧−電流特性上の、前記基準電流値における基準電圧値と一致するように、前記分極の影響を含んだ電圧−電流特性を電圧軸方向にシフトさせるようにした。
【0040】
また、請求項4に記載した本発明のバッテリの仮想電流演算方法は、請求項1、2又は3に記載した本発明のバッテリの仮想電流演算方法において、前記バッテリが車両に搭載されたものであり、前記放電の電流値を、前記バッテリからの電力の供給を受ける前記車両の負荷のうち単独での消費電力が最大である最大電力消費負荷の駆動に必要とする所定の大電流値とし、前記バッテリの放電電流が、前記所定の大電流値から減少し始めてから、該所定の大電流値よりも低く、かつ、前記最大電力消費負荷以外の前記車両の負荷が駆動されている際における最大放電電流値以上の、目標電流値に低下するまでの間に、周期的に測定した前記バッテリの端子電圧と放電電流とから、前記分極の影響を含んだ電圧−電流特性を求めるようにした。
【0041】
さらに、請求項5に記載した本発明のバッテリの開回路電圧演算方法は、負荷に電力を供給するバッテリの端子電圧と放電電流とを周期的に測定してこれら端子電圧と放電電流との相関を示す電圧−電流特性を求め、この電圧−電流特性を用いて前記バッテリの平衡状態における端子電圧に相当する開回路電圧を演算するに当たり、請求項1、2、3又は4記載のバッテリの仮想電流演算方法により前記仮想電流の値を予め求めておき、以後、前記バッテリが、少なくとも放電直前に該バッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量による放電を行う毎に、該放電中に周期的に測定した前記バッテリの端子電圧と放電電流とから、前記分極の影響を含んだ電圧−電流特性を新たに求め、前記新たに求めた分極の影響を含んだ電圧−電流特性上の前記仮想電流に対応する電圧値を、前記バッテリの現在の前記開回路電圧とするようにしたことを特徴とする。
【0042】
また、請求項6に記載した本発明のバッテリの充電状態演算方法は、請求項5記載のバッテリの開回路電圧演算方法により演算した前記バッテリの現在の開回路電圧から、該バッテリの現在の充電状態を演算するようにしたことを特徴とする。
【0043】
さらに、請求項7に記載した本発明のバッテリの仮想電流演算装置は、図1の基本構成図に示すように、負荷に電力を供給するバッテリ13の端子電圧と放電電流とを周期的に測定して求めた、これら端子電圧と放電電流との相関を示す電圧−電流特性式に、前記放電電流として代入して使用される、現実にはない理論上の仮定値であって、この仮定値を前記電圧−電流特性式に前記放電電流として代入することで、前記バッテリ13の平衡状態における端子電圧に相当する開回路電圧OCVを、前記電圧−電流特性式の解として求めるのに用いられる仮想電流を演算するバッテリの仮想電流演算装置において、前記バッテリ13が行う、少なくとも放電直前に該バッテリ13に発生していた充電側分極を解消するのに十分な電流値又は電気量による放電において、前記バッテリ13の放電電流が最大電流値から減少し始めた後に、周期的に測定される前記バッテリ13の端子電圧と放電電流とから、分極の影響を含んだ前記バッテリ13の端子電圧Vと放電電流Iとの相関を示す電圧−電流特性を求める分極影響特性割出手段23Aと、前記分極影響特性割出手段23Aが求めた前記分極の影響を含んだ電圧−電流特性上の、前記最大電流値よりも低い基準電流値における電圧値が、前記バッテリ13の純抵抗成分のみに依存した端子電圧Vと放電電流Iとの相関を示す分極の影響を含まない電圧−電流特性上の、前記基準電流値における基準電圧値と一致するように、前記分極の影響を含んだ電圧−電流特性を電圧軸方向にシフトさせた、シフト後の前記分極の影響を含んだ電圧−電流特性を求めるシフト後分極影響特性割出手段23Bと、前記分極の影響を含まない電圧−電流特性上の放電電流=0における電圧値に対応する、前記シフト後分極影響特性割出手段23Bが求めた前記シフト後の分極の影響を含んだ電圧−電流特性上の電流値を、前記仮想電流の値として演算する演算手段23Cとを備えることを特徴とする。
【0044】
また、請求項8に記載した本発明のバッテリの仮想電流演算装置は、請求項7に記載した本発明のバッテリの仮想電流演算装置において、前記分極影響特性割出手段23Aが、前記分極の影響を含んだ電圧−電流特性を二次の近似曲線式として求めるものとした。
【0045】
さらに、請求項9に記載した本発明のバッテリの仮想電流演算装置は、請求項7又は8に記載した本発明のバッテリの仮想電流演算装置において、前記バッテリ13が平衡状態にあるか否かを判別する平衡状態判別手段23Dと、該平衡状態判別手段23Dにより平衡状態にあると判別された前記バッテリ13からの前記放電時に、当該放電中において周期的に測定される前記バッテリ13の端子電圧と放電電流とから、前記分極の影響を含まない電圧−電流特性を求める純抵抗特性割出手段23Eをさらに備えており、該純抵抗特性割出手段23Eが前記分極の影響を含まない電圧−電流特性を求めた以後、前記シフト後分極影響特性割出手段23Bが、前記分極影響特性割出手段23Aが求めた前記分極の影響を含んだ電圧−電流特性と、前記純抵抗特性割出手段23Eが求めた最新の前記分極の影響を含まない電圧−電流特性とを用いて、前記シフト後の分極の影響を含んだ電圧−電流特性を求めるものとした。
【0046】
また、請求項10に記載した本発明のバッテリの仮想電流演算装置は、請求項7、8又は9に記載した本発明のバッテリの仮想電流演算装置において、前記バッテリ13が車両に搭載されたものであり、前記放電の電流値が、前記バッテリ13からの電力の供給を受ける前記車両の負荷のうち単独での消費電力が最大である最大電力消費負荷5の駆動に必要とする所定の大電流値であり、前記分極影響特性割出手段23Aが、前記バッテリ13の放電電流が前記所定の大電流値から減少し始めた後、前記最大電力消費負荷5以外の前記車両の負荷が駆動されている際における最大放電電流値以上の目標電流値に低下するまでの間、前記周期的に測定される前記バッテリ13の端子電圧と放電電流とから、前記分極の影響を含んだ電圧−電流特性を求めるものとした。
【0047】
さらに、請求項11に記載した本発明のバッテリの開回路電圧演算装置は、負荷に電力を供給するバッテリ13の端子電圧と放電電流とを周期的に測定してこれら端子電圧と放電電流との相関を示す電圧−電流特性を求め、この電圧−電流特性を用いて前記バッテリ13の平衡状態における端子電圧に相当する開回路電圧を演算するバッテリの開回路電圧演算装置において、請求項7、8、9又は10記載のバッテリの仮想電流演算装置を備えていると共に、前記仮想電流を前記演算手段23Cが演算した後に前記分極影響特性割出手段23Aが求めた前記分極の影響を含んだ電圧−電流特性上の、前記演算手段23Cが演算した前記仮想電流に対応する電圧値を、前記バッテリ13の現在の前記開回路電圧として演算する第2演算手段23Fとを備えることを特徴とする。
【0048】
また、請求項12に記載した本発明のバッテリ充電状態演算装置は、請求項11記載のバッテリの開回路電圧演算装置を備えており、該バッテリの開回路電圧演算装置により演算した前記バッテリ13の現在の開回路電圧から、該バッテリ13の現在の充電状態を演算することを特徴とする。
【0049】
請求項1に記載した本発明のバッテリの仮想電流演算方法と、請求項7に記載した本発明のバッテリの仮想電流演算装置とによれば、バッテリが行う放電の放電電流が、少なくとも放電直前にバッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量に達すると、前回の放電において発生した放電側や充電側の分極による電圧降下や電圧上昇が仮に放電開始前に残存していても、その残存する電圧降下を上回る、放電電流値に応じた大きさの放電側分極が発生した状態となり、或は、その残存する電圧上昇が解消した上で、放電電流値に応じた大きさの放電側分極が新たに発生した状態となる。
【0050】
一方、平衡状態にあるバッテリが、少なくとも放電直前に該バッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量による放電を行っても、その放電電流値に達すると、その放電電流値に応じた大きさの放電側分極が発生した状態となる。
【0051】
したがって、バッテリが、少なくとも放電直前にバッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量による放電を行うと、その放電の開始前にバッテリが平衡状態にあったか、それとも、前回の放電において発生した放電側や充電側の分極状態が完全には解消しきれていない状態にあったかに拘わらず、少なくとも放電直前にバッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量から放電電流が減少している間のバッテリの端子電圧と放電電流とから求めた電圧−電流特性は、同様の特性となる。
【0052】
ところで、放電時にバッテリに発生する分極は、放電電流値が異なるか、或は、放電電流が最大値に達するまでに要する放電時間が異なると、発生量が異なるという特性を有している。
【0053】
したがって、放電の開始から放電電流が最大値に達するまでに要する放電時間が長ければ、たとえ放電電流の最大値が同じであっても、放電による分極に起因してバッテリに生じる端子電圧の電圧降下量は、放電時間が短い場合よりも大きくなり、また、放電電流の最大値が大きければ、たとえ放電時間が同じであっても、放電による分極に起因してバッテリに生じる端子電圧の電圧降下量は、放電電流の最大値が小さい場合よりも大きくなる。
【0054】
また、放電による分極に起因してバッテリに生じる端子電圧の電圧降下量は、放電電流が増加している間は、放電電流が増加するペースとほぼ同じペースで増加するものの、放電電流が最大値に達した後に減少に転じると、放電電流が減少するペースよりも鈍いペースでしか減少せず、その結果、放電が終了して放電電流が0になった後にも、分極による端子電圧の電圧降下の大半は暫く解消しない。
【0055】
以上の特性を総合すると、放電時に測定したバッテリの端子電圧と放電電流とから、両者の相関を示す分極の影響を含んだ電圧−電流特性を求めた場合に、放電電流値や放電時間の相違による電圧降下量の相違の影響は、放電電流の増加中における特性部分に顕著に現れ、放電電流の減少中における特性部分には殆ど現れないことになる。
【0056】
よって、分極の影響を含んだ電圧−電流特性のうち、放電電流の増加中における特性部分については、放電電流値や放電時間が異なると特性自体が変化するが、放電電流の減少中における特性部分については、放電電流値や放電時間が異なっても特性自体はほぼ変化せず、単に、特性を示す一般式における電圧軸上の切片を表す変数の値のみが変化して、ある放電電流値に対応する端子電圧値が変化するだけに過ぎない。
【0057】
したがって、放電中の放電電流と端子電圧とを測定して求められるバッテリの分極の影響を含んだ電圧−電流特性のうち、放電電流の減少中における特性部分については、放電電流値や放電時間が異なっても特性式自体には変化がないことになる。
【0058】
そのため、放電の放電電流が、少なくとも放電直前にバッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量から減少する間に周期的に測定したバッテリの端子電圧と放電電流とから求めた、分極の影響を含んだ電圧−電流特性を、バッテリの純抵抗成分のみに依存した分極の影響を含まない電圧−電流特性上の、少なくとも放電直前にバッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量よりも低い基準電流値における基準電圧値と一致するように電圧軸方向にシフトさせると、このシフト操作により、放電電流の減少中における分極の影響を含んだ電圧−電流特性が、放電電流の増加により発生量が増加した分極による電圧降下量の分だけ電圧軸方向に嵩上げされ、その結果、放電電流の増加中における電圧−電流特性部分の、放電電流値や放電時間による変化成分が、放電電流の減少中における分極の影響を含んだ電圧−電流特性から除去されることになる。
【0059】
ところで、電圧軸方向にシフトさせた後の分極の影響を含んだ電圧−電流特性は、放電電流の減少中における分極の発生量の増加分に応じた電圧降下量を含んでいることから、この電圧−電流特性上における放電電流=0における電圧値は、放電電流の減少中における分極の発生量の増加分に応じた電圧降下量に応じた分だけ、現在のバッテリの開回路電圧よりも低い値となり、現実には発生しない負の領域の放電電流値において、分極の影響を含まない電圧−電流特性上の放電電流=0における電圧値と同じ値、即ち、現在のバッテリの開回路電圧と同じ値となる。
【0060】
ということは、この現実には発生しない負の領域の放電電流値とは、電圧軸方向にシフトさせた後の分極の影響を含んだ電圧−電流特性という、放電電流の減少中における分極の発生量の増加分に応じた電圧降下量を含んでいる式の上においてであっても、現在のバッテリの開回路電圧と同じ値が対応づけられると言う、正に、従来の技術の欄において説明した仮想電流の概念に合致するものであることになる。
【0061】
そして、分極の影響を含んだ電圧−電流特性や、電圧軸方向にシフトさせた後の分極の影響を含んだ電圧−電流特性は、バッテリが実際に放電を行った際の端子電圧と放電電流から求めたものであることから、分極の影響を含んだ電圧−電流特性、電圧軸方向にシフトさせた後の分極の影響を含んだ電圧−電流特性、ひいては、仮想電流の値そのものにも、バッテリ個々の特性の相違や、そのバッテリから電力の供給を受ける負荷の内容等によって定まる、個々のバッテリが現実に使用される際の放電電流値の相違が加味されて、個々のバッテリに応じた内容となることになる。
【0062】
尚、請求項1に記載した本発明のバッテリの仮想電流演算方法により演算した仮想電流を用いる請求項5に記載した本発明のバッテリの開回路電圧演算方法や、請求項7に記載した本発明のバッテリの仮想電流演算装置により演算した仮想電流を用いる請求項11に記載した本発明のバッテリの開回路電圧演算装置とによれば、いずれも、演算された仮想電流を分極の影響を含んだ電圧−電流特性に代入して、この特性上における、分極の影響を含まない電圧−電流特性上の放電電流=0における電圧値を、現在のバッテリの開回路電圧として求めることから、この求められた現在のバッテリの開回路電圧も、個々のバッテリに応じた内容となることになる。
【0063】
また、請求項2に記載した本発明のバッテリの仮想電流演算方法によれば、請求項1に記載した本発明のバッテリの仮想電流演算方法において、また、請求項8に記載した本発明のバッテリの仮想電流演算装置によれば、請求項7に記載した本発明のバッテリの仮想電流演算装置において、いずれも、分極の影響を含んだ電圧−電流特性を二次の近似曲線式とすると、放電電流の減少のペースに対する、放電による分極に起因してバッテリに生じる端子電圧の電圧降下量の減少のペースの鈍さが、分極の影響を含んだ電圧−電流特性中により正確に反映されることになる。
【0064】
尚、請求項2に記載した本発明のバッテリの開回路電圧演算方法により演算した仮想電流を用いる請求項5に記載した本発明のバッテリの開回路電圧演算方法や、請求項8に記載した本発明のバッテリの開回路電圧演算装置により演算した仮想電流を用いる請求項11に記載した本発明のバッテリの開回路電圧演算装置によれば、いずれも、演算された仮想電流を分極の影響を含んだ電圧−電流特性に代入して、この特性上における、分極の影響を含まない電圧−電流特性上の放電電流=0における電圧値を、現在のバッテリの開回路電圧として求めることから、この求められた現在のバッテリの開回路電圧も、放電電流の減少のペースに対する、放電による分極に起因してバッテリに生じる端子電圧の電圧降下量の減少のペースの鈍さが、より正確に反映されて、その精度がより高くなることになる。
【0065】
さらに、請求項3に記載した本発明のバッテリの仮想電流演算方法によれば、請求項1又は2に記載した本発明のバッテリの仮想電流演算方法において、また、請求項9に記載した本発明のバッテリの仮想電流演算装置によれば、請求項7又は8に記載した本発明のバッテリの仮想電流演算装置において、いずれも、平衡状態となったバッテリが放電を行うと、その際に周期的に測定したバッテリの端子電圧及び放電電流から、最新の分極の影響を含まない電圧−電流特性が求められて、以後の、現在の開回路電圧の演算に供されることになる。
【0066】
尚、請求項3に記載した本発明のバッテリの開回路電圧演算方法により演算した仮想電流を用いる請求項5に記載した本発明のバッテリの開回路電圧演算方法や、請求項9に記載した本発明のバッテリの開回路電圧演算装置により演算した仮想電流を用いる請求項11に記載した本発明のバッテリの開回路電圧演算装置によれば、いずれも、演算された仮想電流を分極の影響を含んだ電圧−電流特性に代入して、この特性上における、分極の影響を含まない電圧−電流特性上の放電電流=0における電圧値を、現在のバッテリの開回路電圧として求めることから、平衡状態となったバッテリが放電を行った以後は、その際に周期的に測定した端子電圧及び放電電流から求めた、最新の分極の影響を含まない電圧−電流特性を用いて、現在のバッテリの開回路電圧が求められることになる。
【0067】
また、請求項4に記載した本発明のバッテリの仮想電流演算方法によれば、請求項1、2又は3に記載した本発明のバッテリの仮想電流演算方法において、また、請求項10に記載した本発明のバッテリの仮想電流演算装置によれば、請求項7、8又は9に記載した本発明のバッテリの仮想電流演算装置において、いずれも、車両の最大電力消費負荷の駆動に必要とする所定の大電流値は、その車両の他の負荷に対してバッテリからの電力が仮に複数同時に供給されている場合であっても、その場合の電流値を上回ることから、この最大電力消費負荷の駆動開始時に必要とする所定の大電流値を、少なくとも放電直前にバッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量とすることで、放電電流が所定の大電流値に達した際には既に、前回の放電によって発生した放電側分極による電圧降下を上回る電圧降下がバッテリの端子電圧に発生した状態に至る。
【0068】
一方、バッテリの放電電流値が所定の大電流値から減少して、最大電力消費負荷以外の車両の負荷が駆動されている際における最大放電電流値以上の目標電流値に低下すると、その状態でバッテリの端子電圧に残存している放電側分極による電圧降下には、最大電力消費負荷以外の車両の負荷に電力を供給することで発生した放電側分極による電圧降下成分は表面上現れず、所定の大電流値による放電を行ったことによって発生した放電側分極による電圧降下のうち、放電電流が目標電流値に低下したことにより解消した分を除く残存成分のみが、表面上現れた状態となる。
【0069】
したがって、所定の大電流値による放電を行ったバッテリの放電電流値が、所定の大電流値から減少し始めて目標電流値に低下するまでの間に、周期的に測定した端子電圧と放電電流とから、分極の影響を含んだ電圧−電流特性を求めると、この分極の影響を含んだ電圧−電流特性を用いて演算した仮想電流は、最大電力消費負荷以外の車両の負荷が今なお駆動されているとしても、所定の大電流値による放電を行ったことによって発生した放電側分極による電圧降下のうち、放電電流が目標電流値に低下したことにより解消した分を除く残存成分のみを、純粋に反映したものとなる。
【0070】
尚、請求項4に記載した本発明のバッテリの開回路電圧演算方法により演算した仮想電流を用いる請求項5に記載した本発明のバッテリの開回路電圧演算方法や、請求項10に記載した本発明のバッテリの開回路電圧演算装置により演算した仮想電流を用いる請求項11に記載した本発明のバッテリの開回路電圧演算装置によれば、いずれも、演算された仮想電流を分極の影響を含んだ電圧−電流特性に代入して、この特性上における、分極の影響を含まない電圧−電流特性上の放電電流=0における電圧値を、現在のバッテリの開回路電圧として求めることから、この求めた現在のバッテリの開回路電圧も、最大電力消費負荷以外の車両の負荷が今なお駆動されているとしても、所定の大電流値による放電を行ったことによって発生した放電側分極による電圧降下のうち、放電電流が目標電流値に低下したことにより解消した分を除く残存成分のみを、純粋に反映したものとなる。
【0071】
さらに、請求項6に記載した本発明のバッテリ充電状態演算方法や、請求項12に記載した本発明のバッテリ充電状態演算装置によれば、請求項5に記載した本発明のバッテリの開回路電圧演算方法や、請求項11に記載した本発明のバッテリの開回路電圧演算装置により演算した、分極に伴う電圧変動の放電電流値や放電時間の相違に起因するばらつきを含まない現在の開回路電圧を用いることで、この開回路電圧と直線的関係にあるバッテリの現在の充電状態が、分極による電圧変動の影響を含まずに演算されることになる。
【0072】
尚、以上の請求項に記載した本発明のバッテリの仮想電流演算方法やバッテリの開回路電圧演算方法、或は、バッテリ充電状態演算方法において、分極の影響を含まないバッテリの電圧−電流特性は、特定の方法に限定されないが、その一例として、次のような方法を採用することができる。
【0073】
即ち、まず、第1の方法として、前記バッテリが、少なくとも放電直前に該バッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量による放電を行った際に周期的に測定されるバッテリの端子電圧と放電電流とから、放電電流の増加中におけるバッテリの端子電圧と放電電流との相関を示す前記電圧−電流特性の第1の近似曲線式と、放電電流の減少中におけるバッテリの端子電圧と放電電流との相関を示す前記電圧−電流特性の第2の近似曲線式とを求め、前記第1の近似曲線式によって表される電圧−電流特性曲線上に第1の点を、前記第2の近似曲線式によって表される電圧−電流特性曲線上に第2の点をそれぞれ定め、前記第2の点に対応する第2の放電電流が流れたとき第2の電圧降下を生じさせる、バッテリの純抵抗と第2の分極抵抗成分からなる第2の合成抵抗と同一の抵抗値を有する第1の想定点を、前記第1の近似曲線式によって表される電圧−電流特性曲線上に想定すると共に、前記第1の点に対応する第1の放電電流が流れたとき第1の電圧降下を生じさせる、バッテリの純抵抗と第1の分極抵抗成分からなる第1の合成抵抗と同一の抵抗値を有する第2の想定点を、前記第2の近似曲線式によって表される電圧−電流特性曲線上に想定し、前記第2の点と前記第1の想定点とを結ぶ直線の第1の傾斜を、前記第2の放電電流と前記第1の想定点での放電電流とによってそれぞれ生じる、前記第2の分極抵抗成分による電圧降下の差分に相当する量補正して、前記第2の分極抵抗成分による電圧降下分を除いた第1の補正傾斜を求めると共に、前記第1の点と前記第2の想定点とを結ぶ直線の第2の傾斜を、前記第1の放電電流と前記第2の想定点での放電電流とによってそれぞれ生じる、前記第1の分極抵抗成分による電圧降下の差分に相当する量補正して、第1の分極抵抗成分による電圧降下分を除いた第2の補正傾斜を求め、該求めた前記第1及び第2の傾斜を加算平均して平均傾斜を求めることで、該求めた平均傾斜を前記バッテリの前記純抵抗、即ち、バッテリの分極の影響を含まない電圧−電流特性として求める方法を採用することができる。
【0074】
その上で、第2の方法として、上述した第1の方法又は第2の方法に加えて、前記第1の点と前記第2の点とを、前記第1の近似曲線式と前記第2の近似曲線式を求めるため測定した前記バッテリの端子電圧と放電電流の存在する範囲内の任意の点とするようにしてもよい。
【0075】
さらに、第3の方法として、上述した第1の方法又は第2の方法に加えて、前記第1の点と前記第2の点とを、前記第1の近似曲線式及び前記第2の近似曲線式上の、これら第1の近似曲線式及び第2の近似曲線式を求めるため測定した前記バッテリの放電電流の最大電流値に相当する上の点とするようにしてもよい。
【0076】
また、第4の方法として、上述した第1の方法乃至第3の方法のいずれかに加えて、前記第1の近似曲線式と前記第2の近似曲線式とを求めるに当たって、周期的に測定した前記バッテリの端子電圧と放電電流とを最新の所定時間分収集して格納、記憶しておくようにしてもよい。
【0077】
そして、上述した第1の方法によれば、バッテリの、少なくとも放電直前に該バッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量による放電時に周期的に測定したバッテリの端子電圧と放電電流とから、放電電流の増加中におけるバッテリの端子電圧と放電電流との相関を示す電圧−電流特性の第1の近似曲線式と、放電電流の減少中におけるバッテリの端子電圧と放電電流との相関を示す電圧−電流特性の第2の近似曲線式とを求める。
【0078】
次に、第1の近似曲線式によって表される電圧−電流特性曲線上に第1の点を、第2の近似曲線式によって表される電圧−電流特性曲線上に第2の点をそれぞれ定める。
【0079】
そして、第2の点に対応する第2の放電電流が流れたとき第2の電圧降下を生じさせる、バッテリの純抵抗と第2の分極抵抗成分からなる第2の合成抵抗と同一の抵抗値を有する第1の想定点を、前記第1の近似曲線式によって表される電圧−電流特性曲線上に想定すると共に、第1の点に対応する第1の放電電流が流れたとき第1の電圧降下を生じさせる、バッテリの純抵抗と第1の分極抵抗成分からなる第1の合成抵抗と同一の抵抗値を有する第2の想定点を、前記第2の近似曲線式によって表される電圧−電流特性曲線上に想定する。
【0080】
その後、第2の点と第1の想定点とを結ぶ直線の第1の傾斜を、第2の放電電流と第1の想定点での放電電流とによってそれぞれ生じる、第2の分極抵抗成分による電圧降下の差分に相当する量補正して、第2の分極抵抗成分による電圧降下分を除いた第1の補正傾斜を求めると共に、第1の点と前記第2の想定点とを結ぶ直線の第2の傾斜を、第1の放電電流と第2の想定点での放電電流とによってそれぞれ生じる、第1の分極抵抗成分による電圧降下の差分に相当する量補正して、第1の分極抵抗成分による電圧降下分を除いた第2の補正傾斜を求める。
【0081】
このようにして求めた第1の補正傾斜と第2の補正傾斜とを加算平均することで、これら2つの補正傾斜の平均傾斜をバッテリの純抵抗として求めることから、所定の大電流による定電流放電時に周期的に測定したバッテリの端子電圧と放電電流とから得られるデータを処理するだけで、バッテリの純抵抗を求めることができる。
【0082】
また、上述した第2の方法によれば、第1の点と第2の点とを、第1の近似曲線式と第2の近似曲線式を求めるため測定したバッテリの端子電圧と放電電流の存在する範囲内の任意の点としているので、傾斜を求めるための少なくとも一方の点が実データに基づくものとなり、実際から大きく外れた点を使用することをなくすることができる。
【0083】
さらに、上述した第3の方法によれば、第1の点と第2の点とを、第1の近似曲線式及び第2の近似曲線式上の、これら第1の近似曲線式及び第2の近似曲線式を求めるため測定したバッテリの放電電流の最大電流値に相当する上の点としているので、傾斜を求めるための少なくとも一方の点が実データに基づくものとなり、実際から大きく外れた点を使用することをなくすることができると共に、両方の点が共通のものとなり、異なるデータを使用するものに比べて誤差の入ることを少なくすることができる。
【0084】
また、上述した第4の方法によれば、第1の近似曲線式と第2の近似曲線式とを求めるに当たって、周期的に測定したバッテリの端子電圧と放電電流とを最新の所定時間分収集して格納、記憶しているので、この記憶した実データを用いて、第1の近似曲線式と第2の近似曲線式とを求めるのに必要な放電電流が流れたことを確認してから、第1の近似曲線式と第2の近似曲線式とを求めることができる。
【0085】
一方、以上の請求項に記載した本発明のバッテリの仮想電流演算装置やバッテリの開回路電圧演算装置、或は、バッテリ充電状態演算装置において、バッテリ13の分極の影響を含まない電圧−電流特性や、平衡状態のバッテリ13の分極の影響を含まない電圧−電流特性を求める装置は、特定の装置に限定されないが、その一例として、次のような装置を採用することができる。
【0086】
即ち、まず、第1の装置として、図2の基本構成図に示すように、前記バッテリ13の、少なくとも放電直前に該バッテリ13に発生していた充電側分極を解消するのに十分な電流値又は電気量による放電時に周期的に測定された、該バッテリ13の端子電圧と放電電流とから、放電電流の増加中におけるバッテリ13の端子電圧と放電電流との相関を示す前記電圧−電流特性の第1の近似曲線式と、放電電流の減少中におけるバッテリ13の端子電圧と放電電流との相関を示す前記電圧−電流特性の第2の近似曲線式とを求める近似曲線式算出手段23Kと、前記第2の近似曲線式によって表される電圧−電流特性曲線上に定めた第2の点に対応する第2の放電電流が流れたとき第2の電圧降下を生じさせる、前記バッテリ13の純抵抗と第1の分極抵抗成分からなる第1の合成抵抗と同一の抵抗値を有する第1の想定点を、前記第1の近似曲線式によって表される電圧−電流特性曲線上に想定すると共に、前記第1の近似曲線式によって表される電圧−電流特性曲線上に定めた第1の点に対応する第1の放電電流が流れたとき第1の電圧降下を生じさせるバッテリ13の純抵抗と第2の分極抵抗成分からなる第2の合成抵抗と同一の抵抗値を有する第2の想定点を、前記第2の近似曲線式によって表される電圧−電流特性曲線上に想定し、前記第2の点と前記第1の想定点とを結ぶ直線の第1の傾斜を、前記第2の放電電流と前記第2の想定点での放電電流とによってそれぞれ生じる、前記第2の分極抵抗成分による電圧降下の差分に相当する量補正して、前記第2の分極抵抗成分による電圧降下分を除いた第1の補正傾斜を求めると共に、前記第1の点と前記第2の想定点とを結ぶ直線の第2の傾斜を、前記第1の放電電流と前記第2の想定点での放電電流とによってそれぞれ生じる、前記第1の分極抵抗成分による電圧降下の差分に相当する量補正して、前記第1の分極抵抗成分による電圧降下分を除いた第2の補正傾斜を求め、該求めた前記第1の補正傾斜と第2の補正傾斜とを加算平均して平均傾斜を求める平均傾斜演算手段23Lとを備えており、該平均傾斜演算手段23Lによって求めた前記平均傾斜を前記バッテリ13の前記純抵抗として求める装置を、バッテリの純抵抗、即ち、バッテリの分極の影響を含まない電圧−電流特性を求める装置として用いることができる。
【0087】
その上で、第2の装置として、上述した第1の装置の構成に加えて、前記第1の点と前記第2の点とを、前記第1の近似曲線式と前記第2の近似曲線式を求めるため測定した前記バッテリ13の端子電圧と放電電流の存在する範囲内の任意の点とするように構成した装置を採用してもよい。
【0088】
さらに、第3の装置として、上述した第1の装置又は第2の装置の構成に加えて、前記第1の点と前記第2の点とを、前記第1の近似曲線式及び前記第2の近似曲線式上の、これら第1の近似曲線式及び第2の近似曲線式を求めるため測定した前記バッテリ13の放電電流の最大電流値に相当する上の点とするように構成した装置を採用してもよい。
【0089】
また、第4の装置として、上述した第1の装置の構成乃至第3の装置のいずれかの構成に加えて、前記近似曲線式算出手段23Kを、前記第1の近似曲線式と前記第2の近似曲線式を求めるために、前記バッテリ13の前記所定の大電流値による放電時に周期的に測定した前記バッテリ13の端子電圧と放電電流とを、最新の所定時間分収集して格納、記憶する記憶手段23bAを有するように構成した装置を採用してもよい。
【0090】
そして、上述した第1の装置の構成によれば、バッテリ13の、少なくとも放電直前にバッテリ13に発生していた充電側分極を解消するのに十分な電流値又は電気量による放電時に周期的に測定したバッテリ13の端子電圧と放電電流とから、放電電流の増加中におけるバッテリ13の端子電圧と放電電流との相関を示す電圧−電流特性の第1の近似曲線式と、放電電流の減少中におけるバッテリの端子電圧と放電電流との相関を示す電圧−電流特性の第2の近似曲線式とを近似曲線式算出手段23Kが求める。
【0091】
また、バッテリ13の純抵抗を求めるに当たって、平均傾斜演算手段23Lが、まず、第2の近似曲線式によって表される電圧−電流特性曲線上に定めた第2の点に対応する第2の放電電流が流れたとき第2の電圧降下を生じさせる、バッテリ13の純抵抗と第1の分極抵抗成分からなる第1の合成抵抗と同一の抵抗値を有する第1の想定点を、前記第1の近似曲線式によって表される電圧−電流特性曲線上に想定すると共に、前記第1の近似曲線式によって表される電圧−電流特性曲線上に定めた第1の点に対応する第1の放電電流が流れたとき第1の電圧降下を生じさせるバッテリ13の純抵抗と第2の分極抵抗成分からなる第2の合成抵抗と同一の抵抗値を有する第2の想定点を、前記第2の近似曲線式によって表される電圧−電流特性曲線上に想定する。
【0092】
次に、平均傾斜演算手段23Lが、第2の点と第1の想定点とを結ぶ直線の第1の傾斜を、第2の放電電流と第2の想定点での放電電流とによってそれぞれ生じる、第2の分極抵抗成分による電圧降下の差分に相当する量補正して、第2の分極抵抗成分による電圧降下分を除いた第1の補正傾斜を求めると共に、第1の点と第2の想定点とを結ぶ直線の第2の傾斜を、第1の放電電流と第2の想定点での放電電流とによってそれぞれ生じる、第1の分極抵抗成分による電圧降下の差分に相当する量補正して、第1の分極抵抗成分による電圧降下分を除いた第2の補正傾斜を求める。
【0093】
そして最後に、平均傾斜演算手段23Lが、この求めた第1の補正傾斜と第2の補正傾斜とを加算平均することで、これら2つの補正傾斜の平均傾斜をバッテリ13の純抵抗として求めることから、所定の大電流による定電流放電時に周期的に測定したバッテリ13の端子電圧と放電電流とから近似曲線式算出手段23Kにより得られるデータを、平均傾斜演算手段23Lで処理するだけで、バッテリ13の純抵抗を求め、この純抵抗から、分極の影響を含まない電圧−電流特性を求めることができる。
【0094】
また、上述した第2の装置の構成によれば、第1の点と第2の点とを、第1の近似曲線式と第2の近似曲線式を求めるため測定したバッテリの端子電圧と放電電流の存在する範囲内の任意の点としているので、傾斜を求めるための少なくとも一方の点が実データに基づくものとなり、実際から大きく外れた点を使用することをなくすることができる。
【0095】
さらに、上述した第3の装置の構成によれば、第1の点と第2の点とを、第1の近似曲線式及び第2の近似曲線式上の、これら第1の近似曲線式及び第2の近似曲線式を求めるため測定したバッテリの放電電流の所定の大電流値に相当する上の点としているので、傾斜を求めるための少なくとも一方の点が実データに基づくものとなり、実際から大きく外れた点を使用することをなくすることができると共に、両方の点が共通のものとなり、異なるデータを使用するものに比べて誤差の入ることを少なくすることができる。
【0096】
また、上述した第4の方法によれば、記憶手段23bAが、第1の近似曲線式と第2の近似曲線式を求めるために、周期的に測定したバッテリ13の端子電圧と放電電流とを、最新の所定時間分収集して格納、記憶しているので、この記憶手段23bAが記憶している実データを用いて、第1の近似曲線式と第2の近似曲線式とを求めるに必要な放電電流が流れたことを確認してから、第1の近似曲線式と前記第2の近似曲線式とを求めることができる。
【0097】
【発明の実施の形態】
以下、本発明によるバッテリの仮想電流演算方法、バッテリの開回路電圧演算方法、及び、バッテリ充電状態演算方法を、本発明によるバッテリの仮想電流演算装置、バッテリの開回路電圧演算装置、及び、バッテリ充電状態演算装置と共に、図面を参照して説明するが、その前に、バッテリそのものの特性について検討する。
【0098】
ちなみに、12V車、42V車、EV車、HEV車には、スタータモータ、モータジェネレータ、走行用モータなどの大電流を必要とする負荷を搭載されており、これらの負荷に電力を供給するバッテリの電圧−電流(V−I)特性の例は、図3及び図4に示すようになる。
【0099】
V−I特性は図3に示すように、1次式V=aI+bで近似することもできるが、図5に示す分極抵抗成分の非直線形の特性の影響も考慮して、本実施形態においてバッテリ13の純抵抗による近似V−I特性を求める際には、図4に示すように、V=aI +bI+cなる2次式の近似曲線式を最小二乗法によって得ることによって、高い相関を有する近似曲線式を用いるようにする。
【0100】
上述したような大電流を必要とする負荷を駆動したときには、負荷への最大供給電力値に相当する所定の大電流値による定負荷放電が行われる。このときのバッテリの端子電圧と放電電流とを周期的に測定してこれら端子電圧と放電電流との相関を示す実データに基づいて、図6のグラフ中に示すように、放電電流の増加中におけるバッテリのV−I特性の第1の近似曲線式M1と、放電電流の減少中におけるバッテリのV−I特性の第2の近似曲線式M2の2つの式が得られる。なお、図6中に記載の式は実データによって得られた具体的な近似曲線式の一例である。これらの2つの近似曲線式M1と近似曲線式M2との違いを以下分析する。
【0101】
一方の近似曲線式M1の場合、放電開始時点での分極抵抗成分を基準にすると、放電が開始し電流が増加すると、分極抵抗成分は徐々に増加していく。その後、電流が最大値になったところで、分極抵抗成分がピークに達し、電流の減少に伴って分極が解消していくはずである。しかし、実際には、電流の減少に比例して分極抵抗成分は解消するのではなく反応が遅れて現れるため、近似曲線式M2の場合、増加方向と同じV−I特性を示さず、増加方向よりも大きな電圧降下を発生させることになり、電流の増加と減少時にそれぞれ対応する2つの近似曲線式M1及びM2が得られることになる。
【0102】
上述したV−I特性の2つの近似曲線式M1及びM2で表される近似曲線を用いて、バッテリの純抵抗Rを測定する方法を、図7乃至図9を参照して、以下具体的に説明する。
【0103】
まず、図7に示すように、上記近似曲線式の一方M1で表される近似曲線上の実データの範囲内に任意の点Aを選択し、式M1の近似曲線の縦軸に対する切片C1から近似曲線上の点Aまでの電圧降下ΔV1を求める。このΔV1を点Aでの電流I1で除算した値は、純抵抗Rに純抵抗を除くその他の抵抗成分である分極抵抗成分のその時点での値Rpol1を加算した合成抵抗である。すなわち、
R+Rpol1=ΔV1/I1
である。
【0104】
同様に、図7に示すように、上記近似曲線式の他方M2で表される近似曲線上の実データの範囲内に任意の点Bを選択し、式M2の近似曲線の縦軸に対する切片C2から近似曲線上の点Bまでの電圧降下ΔV2を求める。このΔV2を点Bでの電流I2で除算した値は、純抵抗Rに純抵抗を除くその他の抵抗成分である分極抵抗成分のその時点での値Rpol2を加算した合成抵抗である。すなわち、
R+Rpol2=ΔV2/I2
である。
【0105】
上記2点A及びBの合成抵抗の値の差ΔRは
ΔR=R+Rpol1−(R+Rpol2)=Rpol1−Rpol2
となり、点A及びBにおける分極抵抗成分の差となる。これは、1回の放電中の純抵抗Rは変化しないことから明らかである。
【0106】
なお、式M1で表される近似曲線上には、図8に示すように、式M2の近似曲線上に選択した任意の点Bにおける合成抵抗(R+Rpol2)に等しい値(R+Rpol1′)をもった点A′が存在する。また、式M2で表される近似曲線上にも、図8に示すように、式M1の近似曲線上に選択した任意の点Aにおける合成抵抗(R+Rpol1)に等しい値(R+pol2′)をもった点B′が存在する。すなわち、
R+Rpol1′=R+Rpol2
となる点A′が式M1で表される近似曲線上に存在し、
R+Rpol1=R+Rpol2′
となる点B′が式M2で表される近似曲線上に存在する。
【0107】
要するに、点A′における電流及び電圧をそれぞれI1′及びV1′とし、点B′における電流及び電圧をそれぞれI2′及びV2′とすると、点A′の座標(I1′、V1′)と点Bの座標(I2、V2)の分極抵抗成分の値が互いに等しく、また点Aの座標(I1、V1)と点B′(I2′、V2′)の分極抵抗成分の値も互いに等しいことがわかる。
【0108】
まず、B点を基準とし、この点Bの合成抵抗の値(R+Rpol2)と等しい値を持つ点A′の電流I1′と電圧V1′の算出の仕方を以下説明する。
【0109】
今、式1で表される近似曲線の縦軸に対する切片C1からこの点A′までの電圧降下をΔV1′とすると、これは
ΔV1′=C1−(a1I1′+b1I1′+C1)=(R+Rpol2)I1′
となり、この式を整理すると、
−(a1I1′ +b1)=R+Rpol2
となり、点A′の電流I1′は
I1′=−(b1+R+Rpol2)/a1
となる。なお、
R+Rpol2(=R+pol1′)=ΔV2/I2(=ΔV1′/I1′)であるので、
Figure 2004340587
となる。また、点A′の電圧V1′は、上記式から明らかなように、
V1′=a1I1′+b1I1′+C1
であるので、点A′の座標(I1′、V1′)は既知の値から定められる。
【0110】
同様にして、A点を基準とし、この点Aの抵抗値(R+Rpol1)と等しい値を持つ点B′の電流I2′と電圧V2′も、
Figure 2004340587
により既知の値から算出できる。なお、ΔV2′は、式2で表される近似曲線の縦軸に対する切片C2からこの点B′までの電圧降下である。
【0111】
上述のようにして、点A′の座標(I1′、V1′)が定まったら、図8に示すように、点A′の座標(I1′、V1′)と点Bの座標(I2、V2)とを結ぶ直線L1の傾斜を求めることによって合成抵抗の値R1が求められる。この合成抵抗の値R1は、純抵抗と分極抵抗成分Rpol2とからなる合成抵抗によって生じる電圧降下の差(V1′−V2)を各点において流れる電流の差(I1′−I2)によって除算することによって求められる。すなわち、
R1=(V1′−V2)/(I1′−I2)
となる。
【0112】
同様にして、点B′の座標(I2′、V2′)が定まったら、図9に示すように、点B′の座標(I2′、V2′)と点Aの座標(I1、V1)とを結ぶ直線L2の傾斜を求めることによって合成抵抗の値R2が求められる。この合成抵抗の値R2は、純抵抗と分極抵抗成分Rpol1とからなる合成抵抗によって生じる電圧降下の差(V1−V2′)を各点において流れる電流の差(I1−I2′)によって除算することによって求められる。すなわち、
R2=(V1−V2′)/(I1−I2′)
となる。
【0113】
しかしながら、上述のようにして求められる合成抵抗の値R1及びR2は、純抵抗と分極抵抗成分とからなる合成抵抗によって生じる電圧降下の差を各点において流れる電流の差によって除算して求めたもので、純抵抗とは一致しない。2点間の傾きを純抵抗と一致させるには、分極抵抗成分によって生じる電圧降下分を除いた電圧降下の差を電流差によって除算してやればよい。
【0114】
先ず、点Bを基準にした場合について説明すると、今、合成抵抗の値R1を
R1=R1′+Rpol2=R1′+Rpol1′
とすると、抵抗R1′に点A′の電流I1′と点Bの電流I2との差に相当する電流が流れることによって生じる電圧降下は、分極抵抗成分Rpol1′(又はRpol2)に点A′の電流I1′と点Bの電流I2の差に相当する電流が流れることによって生じる電圧降下分だけ、点A′の電圧を持ち上げて補正してやればよく、次式が成立する。
R1′(I1′−I2)=〔V1′+Rpol1′(I1′−I2)〕−V2
【0115】
この式を整理すると、
R1′(I1′−I2)=(V1′−V2)+Rpol1′(I1′−I2)となる。ここで、Rpol1′=ΔV1′/I1′−R1′であるので、
R1′(I1′−I2)=(V1′−V2)+(ΔV1′/I1′−R1′)×(I1′−I2)
2R1′(I1′−I2)=(V1′−V2)+ΔV1′/I1′(I1′−I2)
となり、結果として、
R1′=〔(V1′−V2)+(ΔV1′/I1′)×(I1′−I2)〕/2(I1′−I2)
が求められる。なお、(ΔV1′/I1′)は(ΔV2/I2)と置き換えることができる。
【0116】
次に、点Aを基準にした場合にも同様にして
R2=R2′+Rpol1=R2′+Rpol2′
とすると、この抵抗R2′に点Aの電流I1と点B′の電流I2′の差に相当する電流が流れることによって生じる電圧降下は、分極抵抗成分Rpol12′(又はRpol1)に点Aの電流I1と点B′の電流I2′との差に相当する電流が流れることによって生じる電圧降下分、点B′の電圧を引き下げて補正してやればよく、次式が成立する。
R2′(I1−I2′)=V1−〔V2′−Rpol2′(I1−I2′)〕
【0117】
この式を整理すると、
R2′(I1−I2′)=(V1−V2′)+Rpol2′(I1−I2′)となる。ここで、Rpol2′=ΔV2′/I2′−R2′であるので、
R2′(I1−I2′)=(V1−V2′)+(ΔV2′/I2′−R2′)(I1−I2′)
2R2′(I1−I2′)=(V1−V2′)+ΔV2′/I2′(I1−I2′)
となり、結果として、
R2′=〔(V1−V2′)+(ΔV2′/I2′)(I1−I2′)〕/2(I1−I2′)
が求められる。なお、(ΔV2′/I2′)は(ΔV1/I1)と置き換えることができる。
【0118】
上述したように求められた2つの値R1′及びR2′は、2つの点A及びBを基準にし、異なる分極抵抗成分(Rpol1′=Rpol2)と(Rpol1=Rpol2′)を用い、しかも異なる切片C1からの電圧降下Δ1′(ΔV1)と切片C2からの電圧降下Δ2′(ΔV2)を用いて求めたものであるので、真の純抵抗Rとなり得ない。したがって、両者の加算平均
R=(R1′+R2′)/2
をとることによって、真の純抵抗Rが求められる。
【0119】
そこで、バッテリの純抵抗を求める具体的な方法を図7乃至図9を参照して先ず説明する。車両の負荷に電力を供給するため車両に搭載された、例えばスタータモータ、モータジェネレータ、走行用モータなどの大電流を必要とする負荷が動作されると、バッテリによって、負荷への最大供給電力値に相当する所定の大電流値による定負荷放電が行われる。このときのバッテリの端子電圧と放電電流とを、例えば1msの周期にてサンプリングすることで、周期的に測定することによって、バッテリの端子電圧と放電電流との組が多数得られる。
【0120】
このようにして得られたバッテリの端子電圧と放電電流との組の最新のものを、所定時間分、例えばRAMなどの書換可能な記憶手段としてのメモリに格納、記憶して収集する。メモリに格納、記憶して収集した端子電圧と放電電流との組を用いて、最小二乗法により、放電電流の増加中におけるバッテリの端子電圧と放電電流との相関を示す電圧−電流特性である、例えばV1(I)=a1I+b1+C1なる2次式で表される第1の近似曲線式M1と、減少する放電電流に対する電圧−電流特性の例えばV2(I)=a2I+b2I+C2なる2次式で表される第2の近似曲線式M2とを求める。
【0121】
次に、第1の近似曲線式M1によって表される電圧−電流特性曲線上に第1の点Aを定めると共に、第2の近似曲線式M2によって表される電圧−電流特性曲線上に第2の点Bを定める。このとき、第1の近似曲線式M1によって表される電圧−電流特性曲線上に定められる第1の点Aと、第2の近似曲線式M2によって表される電圧−電流特性曲線上に定められる第2の点Bとは、各近似曲線式を求める際に使用された端子電圧と放電電流の実データの存在する範囲内に好ましく定められる。このように定めることによって、その後、各点に対応する想定点を想定する際に、想定点が大きく外れた位置に想定されることがなくなる。また、好ましくは、第1の点Aと第2の点Bは、分極抵抗成分が最大となる点の両側に定められるのがよい。このように定めることによって、最大点の両側に想定点が定められるようになるようになり、その後、純抵抗を求める際の精度が高まるようになる。
【0122】
そして、第2の点Bに対応する第2の放電電流I2が流れたとき第2の電圧降下ΔV2を生じさせる、バッテリの純抵抗と第2の分極抵抗成分Rpol2からなる第2の合成抵抗R2と同一の抵抗値を有する第1の想定点A′を、第1の近似曲線式M1上に想定すると共に、第1の点Aに対応する第1の放電電流I1が流れたとき第1の電圧降下ΔV1を生じさせる、バッテリの純抵抗と第1の分極抵抗成分Rpol1からなる第1の合成抵抗R1と同一の抵抗値を有する第2の想定点B′を、第2の近似曲線式M2上に想定する。
【0123】
2つの想定点A′及びB′が想定できたら、第2の点Bと第1の想定点A′とを結ぶ直線L1の第1の傾斜R1を、第2の放電電流I2と第1の想定点A′での放電電流I1′とによってそれぞれ生じる、第2の分極抵抗成分Rpol2による電圧降下の差分Rpol2(I1′−I2)により補正した上で、第2の分極抵抗成分Rpol2による電圧降下分を除いた第1の補正傾斜R1′を求めると共に、前記第1の点と前記第2の想定点B′とを結ぶ直線L2の第2の傾斜R2を、第1の放電電流I1と第2の想定点B′での放電電流I2′とによってそれぞれ生じる、第1の分極抵抗成分Rpol1による電圧降下の差分Rpol1(I1−I2′)により補正した上で、第1の分極抵抗成分Rpol1による電圧降下分を除いた第2の補正傾斜R2′を求める。
【0124】
このようにして求めた第1の補正傾斜R1′と第2の補正傾斜R2′とを加算平均することで、これら第1の補正傾斜R1′と第2の補正傾斜R2′との平均傾斜を、バッテリの純抵抗Rとして求め、この加算平均した傾斜の式を、バッテリの分極の影響を含まない電圧−電流特性式とする。
【0125】
上述したようなことを可能にしてバッテリの純抵抗乃至分極の影響を含まない電圧−電流特性を求める方法を実施する装置は、以下に説明する、本発明の一実施形態に係るバッテリ充電状態演算装置に包含されている。
【0126】
図10は本発明のバッテリの仮想電流演算方法、バッテリの開回路電圧演算方法、及び、バッテリ充電状態演算方法を適用した本発明の一実施形態に係るバッテリ充電状態演算装置の概略構成を一部ブロックにて示す説明図であり、図10中引用符号1で示す本実施形態のバッテリ充電状態演算装置は、エンジン3に加えてモータジェネレータ5(最大電力消費負荷に相当。)を有するハイブリッド車両に搭載されている。
【0127】
そして、このハイブリッド車両は、通常時はエンジン3の出力のみをドライブシャフト7からディファレンシャルケース9を介して車輪11に伝達して走行させ、高負荷時には、バッテリ13からの電力によりモータジェネレータ5をモータとして機能させて、エンジン3の出力に加えてモータジェネレータ5の出力をドライブシャフト7から車輪11に伝達し、アシスト走行を行わせるように構成されている。
【0128】
また、このハイブリッド車両は、減速時や制動時にモータジェネレータ5をジェネレータ(発電機)として機能させ、運動エネルギを電気エネルギに変換してバッテリ13を充電させるように構成されている。
【0129】
尚、モータジェネレータ5はさらに、不図示のスタータスイッチのオンに伴うエンジン3の始動時に、エンジン3のフライホイールを強制的に回転させるセルモータとして用いられるが、その場合にモータジェネレータ5は、このハイブリッド車両に搭載された他の電動負荷が同時に複数動作している状態よりも多くの電力を単独で消費する。
【0130】
ちなみに、本実施形態のハイブリッド車両においては、不図示のキーシリンダに差し込んだキー(図示せず。)を1段階目までひねると、それまでオフ状態であった不図示のアクセサリスイッチがオンとなって、エアコン、オーディオ機器、パワーウィンド、ヘッドライト、並びに、ルームランプ(いずれも図示せず。)等の電装品がそれらのスイッチ(図示せず。)のオン操作により作動可能な状態となる。
【0131】
また、キーシリンダに差し込んだキーを2段階目までひねると、アクセサリスイッチはオン状態のまま、それまでオフ状態であった不図示のイグニッションスイッチがオンとなって、メータ及びインジケータといった計器類が作動する。
【0132】
さらに、キーシリンダに差し込んだキーを3段階目までひねると、アクセサリスイッチ及びイグニッションスイッチはオン状態のまま、それまでオフ状態であった前記スタータスイッチがオンとなる。
【0133】
尚、3段階目までひねったキーから手を離すと、キーが自動的に2段階目まで戻ってスタータスイッチがオフとなるが、2段階目では逆向きにひねらない限りキーがその位置で止まってアクセサリスイッチ及びイグニッションスイッチはオン状態のままとなり、同様に、1段階目でも逆向きにひねらない限りキーがその位置で止まってアクセサリスイッチはオン状態のままとなる。
【0134】
そして、本実施形態のハイブリッド車両においては、イグニッションスイッチのオン状態で計器類にバッテリ13から流れる放電電流や、アクセサリスイッチのオン状態において、モータジェネレータ5以外の電装品(負荷)のスイッチオンによりそれらにバッテリ13から流れる放電電流は、最大でも35A(アンペア)に満たない。
【0135】
逆に、アクセサリスイッチがオンされ、その上でスタータスイッチがオンされて、エンジン3を始動させるためにモータジェネレータ5をセルモータとして作動させる際には、例え他の電装品が何も作動していなくても、およそ250A(アンペア)に達する放電電流がバッテリ9から瞬時的に流れる。
【0136】
したがって、本実施形態のバッテリ充電状態演算装置1においては、バッテリ13の放電電流が目標電流値=35A(下限)から最大電流値=250A(上限)までの間にあるかどうかが、モータジェネレータ5をセルモータとして作動させるための定負荷放電が行われていることを見分けるための目安となる。
【0137】
話を構成の説明に戻して、本実施形態のバッテリ充電状態演算装置1は、上述したバッテリ13の充電状態を演算するもので、アシスト走行用のモータやセルモータとして機能するモータジェネレータ5等、電装品に対するバッテリ13の放電電流Iや、ジェネレータとして機能するモータジェネレータ5からのバッテリ13に対する充電電流を検出する電流センサ15と、バッテリ13に並列接続した無限大抵抗を有し、バッテリ13の端子電圧Vを検出する電圧センサ17とを備えている。
【0138】
尚、上述した電流センサ15及び電圧センサ17は、イグニッションスイッチのオン状態によって閉回路状態となる回路上に配置されている。
【0139】
また、本実施形態のバッテリ充電状態演算装置1は、上述した電流センサ15、電圧センサ17、及び、温度センサ19の出力がインタフェース回路(以下、「I/F」と略記する。)21におけるA/D変換後に取り込まれるマイクロコンピュータ(以下、「マイコン」と略記する。)23と、このマイコン23に接続された不揮発性メモリ(以下、「NVM」と略記する。)25とをさらに備えている。
【0140】
そして、前記マイコン23は、CPU23a、RAM23b、及び、ROM23cを有しており、このうち、CPU23aには、RAM23b及びROM23cの他、前記I/F21及びNVM25が各々接続されており、また、上述した不図示のイグニッションスイッチのオンオフ状態を示す信号が入力される。
【0141】
前記RAM23bは、各種データ記憶用のデータエリア及び各種処理作業に用いるワークエリアを有しており、前記ROM23cには、CPU23aに各種処理動作を行わせるための制御プログラムが格納されている。
【0142】
そして、前記マイコン23は、不図示のイグニッションスイッチのオフ状態では、バッテリ13から供給される暗電流により必要最小限の処理のみを行うスリープモードとなり、イグニッションスイッチのオンによりウェイクアップして通常のアクティブモードとなる。
【0143】
前記NVM25には、充電状態の変化に応じて変化する前記バッテリ13の平衡状態、即ち、充放電時の分極による電圧上昇や電圧降下が完全に解消して残っていない状態における端子電圧Vである、バッテリ13の開回路電圧OCVを、バッテリ13の放電中における端子電圧V及び放電電流Iの相関から演算するために必要な、現実にはない理論上の仮定値であるところの、負の領域に存在する仮想電流Isの値と、放電中におけるバッテリ13の純抵抗成分による電圧降下分と放電電流Iとの相関を示す、バッテリ13の分極の影響を含まない直線的な電圧−電流特性式V=a+bとが、格納、記憶される。
【0144】
尚、バッテリ13の分極の影響を含まない直線的な電圧−電流特性式V=a+bは、ハイブリッド車両が製造された当初の時点では、実装時に別途純抵抗を求めて割り出された式、或は、そのバッテリ13の新品時の値として定義された純抵抗の値から割り出された式が、デフォルトの式としてNVM25に予め格納、記憶されている。
【0145】
また、上述した電流センサ15及び電圧センサ17の出力は、不図示のイグニッションスイッチのオン中において、I/F21を介して常時マイコン23のCPU23aに取り込まれる。この電流センサ15及び電圧センサ17の出力である電流値及び電圧値は、短い周期で高速にサンプリングされてI/F21を介して常時マイコン23のCPU23aに取り込まれ、取り込まれた電流値及び電圧値は前記RAM23bのデータエリア(記憶手段23bAに相当。)に所定期間前のものから最新のものまでの分、格納、記憶される。この記憶された実データは、バッテリ13の電圧−電流特性の2次の近似曲線式を求めるために利用される。
【0146】
次に、前記ROM23cに格納された制御プログラムに従いCPU23aが行う処理を、図11乃至図13のフローチャートを参照して説明する。
【0147】
バッテリ13からの給電を受けてマイコン23が起動しプログラムがスタートすると、CPU23aは、まず、図11にメインルーチンのフローチャートで示すように、RAM23bのワークエリアに設けられたフラグエリアのフラグのリセットやタイマエリアの格納値をクリアする等の初期設定を行い(ステップS1)、次に、RAM23bの平衡状態フラグエリアのフラグF1が「0」であるか否かを確認する(ステップS3)。
【0148】
平衡状態フラグF1が「0」でない場合は(ステップS3でN)、後述するステップS9に進み、「0」である場合は(ステップS3でY)、RAM23bのスイッチオフ時刻エリアに格納された時刻と、内部のタイムカウンタにおいて計時されている現在時刻との差値で示される連続非通電時間Tが、最大分極発生状態からの分極解消に必要な所定時間Thを超えているか否かを確認する(ステップS5)。
【0149】
連続非通電時間Tが所定時間Thを超えた場合は(ステップS5でY)、平衡状態フラグF1を「1」に設定した後(ステップS7)、ステップS3にリターンし、超えていない場合は(ステップS5でN)、ステップS9に進む。
【0150】
ステップS3において平衡状態フラグF1が「0」でない場合(N)と、ステップS5で計測時間tが平衡状態回復時間T1に達していない場合(N)とに各々進むステップS9では、不図示のイグニッションスイッチがオンになるか、或は、不図示のアクセサリスイッチのオン状態における不図示の電装品のスイッチオンにより発生するスイッチオン信号の入力を待ち受ける。
【0151】
そして、スイッチオン信号の入力がない場合は(ステップS9でN)、ステップS3にリターンし、スイッチオン信号の入力があった場合は(ステップS9でY)、不図示のスタータスイッチがオンされたか否かを確認する(ステップS11)。
【0152】
スタータスイッチがオンされていない場合は(ステップS11でN)、後述するステップS19に進み、オンされた場合は(ステップS11でY)、不図示のスタータスイッチがオンされた後の、放電電流Iが増加しピーク値に達してから減少しゼロに戻るまでの間の、電流センサ15の検出したバッテリ13の放電電流IのA/D変換値と、電圧センサ17の検出したバッテリ13の端子電圧VのA/D変換値とを、対にしてI/F21を介して収集し、収集した実データをRAM23bのデータエリアに格納、記憶する実データ収集処理を行い(ステップS13)、その後、純抵抗特性演算処理を行う(ステップS15)。
【0153】
このステップS15の純抵抗特性演算処理においては、図12にサブルーチンのフローチャートで示すように、平衡状態フラグF1が「0」であるか否かを確認し(ステップS15a)、「0」である場合は(ステップS17dでY)、純抵抗特性演算処理を終了して図11のメインルーチンにリターンし、「0」でない場合は(ステップS15aでN)、ステップS13において収集された放電電流Iと端子電圧Vとの最新の所定時間分の実データを分析し、最小二乗法を適用して、電圧−電流特性の2次の近似曲線式を求めるのに適当なものであるかどうかを、バッテリ13から所定の大電流値による定負荷放電が行われているかどうかによって分析する、分析処理を行う(ステップS15b)。
【0154】
次に、ステップS15bにおける分析の結果、電圧−電流特性の2次の近似曲線式を求めるのに適当なものが収集されているか否かを確認し(ステップS15c)、適当なものが収集されていない場合(N)は、純抵抗特性演算処理を終了して図11のメインルーチンにリターンし、適当なものが収集されている場合(Y)は、放電電流の増加中におけるバッテリ13の電圧−電流特性の、例えばV1(I)=a1I+b1+C1なる2次式で表される第1の近似曲線式M1と、放電電流の減少中におけるバッテリ13の電圧−電流特性の、例えばV2(I)=a2I+b2I+C2なる2次式で表される第2の近似曲線式M2とを求める近似曲線式算出処理を実行する(ステップS15d)。
【0155】
ステップS15dの近似曲線式算出処理によって、2つの近似曲線式M1及びM2が求まった後、次に、バッテリ13の純抵抗を求めるための演算処理を実行する(ステップS15e)。ステップS15eにおける演算処理では、近似曲線式M2によって表される電圧−電流特性曲線上に定めた点に対応する放電電流が流れたとき電圧降下を生じさせる、バッテリ13の純抵抗と第1の分極抵抗成分からなる合成抵抗と同一の抵抗値を有する第1の想定点を、第1の近似曲線式M1によって表される電圧−電流特性曲線上に想定する。また、第1の近似曲線式M1によって表される電圧−電流特性曲線上に定めた点に対応する放電電流が流れたとき電圧降下を生じさせるバッテリの純抵抗と第2の分極抵抗成分からな合成抵抗と同一の抵抗値を有する第2の想定点を、第2の近似曲線式M2によって表される電圧−電流特性曲線上に想定する。
【0156】
ステップS15eにおける演算処理では、また、近似曲線式M2によって表される電圧−電流特性曲線上に定めた点と第1の想定点とを結ぶ直線の第1の傾斜を、第2の近似曲線式によって表される電圧−電流特性曲線上に定めた点に対応する放電電流と第2の想定点での放電電流とによってそれぞれ生じる、第2の分極抵抗成分による電圧降下の差分により補正した上で、第2の分極抵抗成分による電圧降下分を除いた第1の補正傾斜を求める。
【0157】
ステップS15eにおける演算処理では、さらに、近似曲線式M1によって表される電圧−電流特性曲線上に定めた点と第2の想定点とを結ぶ直線の第2の傾斜を、第1の近似曲線式によって表される電圧−電流特性曲線上に定めた点に対応する放電電流と第2の想定点での放電電流とによってそれぞれ生じる、第1の分極抵抗成分による電圧降下の差分により補正した上で、第1の分極抵抗成分による電圧降下分を除いた第2の補正傾斜を求める。そして、ステップS15eにおいて求めた第1の補正傾斜と第2の補正傾斜とを加算平均することで、これら2つの補正傾斜の平均傾斜をバッテリ13の純抵抗として求める(ステップS15f)。
【0158】
ステップS15fで純抵抗を求めたら、ここで求められたバッテリ13の純抵抗の値に、ステップS13において収集された最新の所定時間分の実データにおける放電電流Iを乗じて、この放電電流Iのサンプル数と同数の、純抵抗成分による電圧降下のみが生じた場合のバッテリ13の放電中における端子電圧Vを求め(ステップS15g)、求めた複数の端子電圧VとステップS13において収集された複数の放電電流Iとの対に、最小二乗法を適用して、純抵抗によるバッテリ13の分極の影響を含まない直線的な電圧−電流特性式V=a+bを割り出して(ステップS15h)、NVM25に格納されているバッテリ13の分極の影響を含まない直線的な電圧−電流特性式V=a+bをステップS15hで割り出したものに更新した後(ステップS15j)、純抵抗特性演算処理を終了して図11のメインルーチンにリターンする。
【0159】
ステップS15の純抵抗特性演算処理が済んだならば、次に、図11に示すように、充電状態演算処理を行う(ステップS17)。
【0160】
このステップS17の充電状態演算処理では、図13にサブルーチンのフローチャートで示すように、ステップS13において収集された実データのうち、250A(アンペア)のピーク値から35A(アンペア)まで減少する間の実データについて、そのデータの相関性を確認するための相関係数rを算出してその値が−0.9≧r≧−1.0の許容範囲内にあるか否かを確認する(ステップS17a)。
【0161】
相関係数rが許容範囲内になく相関がOKでない場合は(ステップS17aでN)、充電状態演算処理を終了して図11のメインルーチンにリターンし、相関係数rが許容範囲内にあって相関がOKである場合は(ステップS17aでY)、ステップS13において収集された実データに最小二乗法を適用して、直線的な電圧−電流特性式V=aI+bを割り出す(ステップS17b)。
【0162】
次に、NVM25に格納されている、バッテリ13の分極の影響を含まない直線的な電圧−電流特性式V=a+b上の、最大電流値=250Aよりも低く目標電流値=35Aよりも高い、モータジェネレータ5をセルモータとして作動させる際に必ず流れる電流値(I)とそのときの電圧値(V)とからなる座標値(V,I)を通るように、ステップS17bで割り出した電圧−電流特性式V=aI+bを電圧軸方向にシフトさせた、シフト後電圧−電流特性式V´=aI+b´を求める(ステップS17c)。
【0163】
続いて、平衡状態フラグF1が「0」であるか否かを確認し(ステップS17d)、「0」である場合は(ステップS17dでY)、後述するステップS17gに進み、「0」でない場合は(ステップS17dでN)、ステップS17cで求めたシフト後電圧−電流特性式V´=aI+b´におけるV´の値が、NVM25に格納されているバッテリ13の分極の影響を含まない直線的な電圧−電流特性式V=a+bにおける、I=0となる際の電圧値V=+bと同じ値になるような、シフト後電圧−電流特性式V´=aI+b´における「I」の値を、仮想電流Isとして演算し(ステップS17e)、NVM25に格納されている仮想電流Is(アンペア)を、ステップS17eで求めた仮想電流Isに更新した後(ステップS17f)、ステップS17gに進む。
【0164】
ステップS17dにおいて平衡状態フラグF1が「0」である場合(Y)と、ステップS17fにおいてNVM25に格納されている仮想電流Isの更新を行った後とに各々進むステップS17gでは、NVM25に格納されている仮想電流Is(アンペア)を、ステップS17bで求めた電圧−電流特性式V=aI+bの「I」に代入して、バッテリ13の開回路電圧OCVを演算する。
【0165】
そして、ステップS17gにおいて演算した開回路電圧OCVを、電圧比による算出式、
SOC={(OCV−Ve)/(Vs−Ve)}×100(%)
又は、電力比による算出式、
Figure 2004340587
(但し、Vsは満充電時の開回路電圧、Veは放電終止時の開回路電圧)
のいずれかの式に代入して、バッテリ13の充電状態SOCを演算する(ステップS17h)。
【0166】
バッテリ13の充電状態SOCを演算したならば、充電状態演算処理を終了して図11のメインルーチンにリターンする。
【0167】
尚、ステップS17dにおいて演算されたバッテリ13の開回路電圧OCVや、ステップS17gにおいて演算されたバッテリ13の充電状態SOCは、バッテリ13の充電状態の表示や残量管理のため等に使用される。
【0168】
ステップS11においてスタータスイッチがオンされていない場合(N)と、ステップS17の充電状態演算処理が済んだ後とに各々進むステップS19では、図11に示すように、スイッチオン信号の入力が継続しているか否かを確認し、入力が継続している場合は(ステップS19でY)、ステップS11にリターンし、入力がなくなった場合は(ステップS19でN)、RAM23bのスイッチオフ時刻エリアに、内部のタイムカウンタにおいて計時されている現在時刻を格納した後(ステップS21)、ステップS3にリターンする。
【0169】
以上の説明からも明らかなように、本実施形態のバッテリ充電状態演算装置1では、図13のフローチャートにおけるステップS17bが、請求項中の分極影響特性割出手段23Aに対応する処理となっていると共に、図13中のステップS17cが、請求項中のシフト後分極影響特性割出手段23Bに対応する処理となっており、図13中のステップS17eが、請求項中の演算手段23Cに対応する処理となっている。
【0170】
また、本実施形態のバッテリ充電状態演算装置1では、図11のフローチャートにおけるステップS5が、請求項中の平衡状態判別手段23Dに対応する処理となっていると共に、図12のフローチャートにおけるステップS15hが、請求項中の純抵抗特性割出手段23Dに対応する処理となっており、図13中のステップS17gが、請求項中の第2演算手段23Fに対応する処理となっている。
【0171】
次に、上述のように構成された本実施形態のバッテリ充電状態演算装置1の動作(作用)について説明する。
【0172】
まず、ハイブリッド車両のモータジェネレータ5以外の電装品(負荷)が作動したり、モータジェネレータ5がモータとして機能するように作動していて、それに伴いバッテリ13が放電を行っている状態、或は、モータジェネレータ5がジェネレータとして機能するように作動していて、それに伴いバッテリ13が充電を行っている状態では、仮想電流Isの演算、更新や、これを用いたバッテリ13の開回路電圧OCVの演算、並びに、これを用いたバッテリ13の充電状態SOCの演算は、いずれも行われない。
【0173】
次に、スタータスイッチのオンに伴って、ハイブリッド車両のモータジェネレータ5がセルモータとして機能するように作動し、これに伴いバッテリ13が250A(アンペア)を超える所定の大電流値による定負荷放電を行うと、その放電におけるバッテリ13の放電電流Iが対となって周期的に収集され、収集された放電電流Iと端子電圧Vとの最新の所定時間分の実データが分析され、最小二乗法を適用して、電圧−電流特性の2次の近似曲線式を求めるのに適当なものであるかどうかが判定される。
【0174】
そして、分析の結果適当なものであると判定されると、収集された最新の所定時間分の実データから、放電電流の増加中におけるバッテリ13の電圧−電流特性の、例えばV1(I)=a1I+b1+C1なる2次式で表される第1の近似曲線式M1と、放電電流の減少中におけるバッテリ13の電圧−電流特性の、例えばV2(I)=a2I+b2I+C2なる2次式で表される第2の近似曲線式M2とが求められる。
【0175】
さらに、これら第1の近似曲線式M1及び第2の近似曲線式M2と、第2の近似曲線式M2に応じた第1の想定点及び第1の近似曲線式M1に応じた第2の想定点から、第1の補正傾斜及び第2の補正傾斜が各々求められて、これら第1の補正傾斜及び第2の補正傾斜の加算平均からバッテリ13の純抵抗が求められ、この純抵抗と、先に収集された所定の大電流値による定負荷放電中に周期的に放電電流Iとを用いて、図14のグラフで示すような、バッテリ13の純抵抗成分のみに依存した分極の影響を含まない直線的な電圧−電流特性式V=a+bが求められる。
【0176】
また、スタータスイッチのオンに伴って、ハイブリッド車両のモータジェネレータ5がセルモータとして機能するように作動し、これに伴いバッテリ13が250A(アンペア)を超える所定の大電流値による定負荷放電を行うと、その放電におけるバッテリ13の放電電流Iが35A(アンペア)という目標電流値に低下するまでの間、電流センサ15及び電圧センサ17により検出されたバッテリ13の放電電流I及び端子電圧Vが、対となって周期的に収集され、一定の相関関係を満たすものであった場合には、これらに最小二乗法を適用して、図15のグラフで示すような、分極の影響を含むバッテリ13の直線的な電圧−電流特性式V=aI+bが割り出される。
【0177】
そして、図16のグラフで示すように、分極の影響を含まないバッテリ13の純抵抗成分のみに依存した電圧−電流特性式V=a+b上の、最大電流値よりも低く目標電流値よりも高い、モータジェネレータ5をセルモータとして作動させる際に必ず流れる電流値とそのときの電圧値とからなる座標値(V,I)を通るように、分極の影響を含むバッテリ13の電圧−電流特性式V=aI+bを電圧軸方向にシフトさせることで、シフト後電圧−電流特性式V´=aI+b´が求められる。
【0178】
このシフト後電圧−電流特性式V´=aI+b´は、図16のグラフ上で見れば、放電電流Iの増加中においてバッテリ13の純抵抗による電圧降下のみの影響を受けてVに下がった端子電圧Vが、電流値Iまで達して放電電流Iが増加から減少に転じた後に、純抵抗による電圧降下の影響に加えて分極による電圧降下の影響を含んで、放電電流Iの減少に伴い増加して行く様を表していることになる。
【0179】
よって、放電電流値や放電時間の相違によって発生量が異なる、放電電流Iの増加中における端子電圧Vの電圧降下の成分は、シフト後電圧−電流特性式V´=aI+b´には含まれていないことになる。
【0180】
しかも、上述した図16の分極の影響を含まないバッテリ13の電圧−電流特性式V=a+bは、バッテリ13の分極による電圧降下成分を全く含んでおらず、この電圧−電流特性式V=a+b上の電流=0の時の電圧値は取りも直さずバッテリ13の開回路電圧OCVと言うことになることから、この分極の影響を含まない電圧−電流特性式V=a+bはまさに、平衡状態にあったバッテリ13が所定の大電流値による定負荷放電を行った際の、分極による電圧降下の影響を全く排除した電圧−電流特性と言うことになる。
【0181】
したがって、分極の影響を含んだ電圧−電流特性式V=aI+bを、分極の影響を含まない電圧−電流特性式V=a+b上の座標値(V,I)において交わるように電圧軸方向にシフトさせたシフト後電圧−電流特性式V´=aI+b´は、平衡状態にあったバッテリ13が所定の大電流値による定負荷放電を行った際の、放電電流Iの減少中における電圧−電流特性と言うことになる。
【0182】
よって、このシフト後電圧−電流特性式V´=aI+b´の基となる、分極の影響を含んだ電圧−電流特性式V=aI+bや、分極の影響を含まない電圧−電流特性式V=a+bを求めるのに用いた、バッテリ13の放電電流I及び端子電圧Vが、平衡状態にあったバッテリ13からの放電時のものであるか否かに関係なく、求められるシフト後電圧−電流特性式V´=aI+b´は、常に同じ内容になることになる。
【0183】
そして、放電電流値や放電時間による放電電流Iの増加中における端子電圧Vの電圧降下量の相違の影響を含まず、かつ、放電開始前のバッテリ13が平衡状態にあったか否かに拘わらず内容が変わらない、シフト後電圧−電流特性式V´=aI+b´が、上述のようにして求められると、分極の影響を含まないバッテリ13の電圧−電流特性式V=a+b上の電流=0の時の電圧値、つまり、バッテリ13の開回路電圧OCVが、求めたシフト後電圧−電流特性式V´=aI+b´におけるV´の値と等しくなるような放電電流Iの値が、仮想電流Isの値として求められて、NVM25に格納された仮想電流Isの値が最新の値に更新される。
【0184】
さらに、求めた最新の仮想電流Isの値は、分極の影響を含むバッテリ13の直線的な電圧−電流特性式V=aI+bの「I」に代入されて、その解が、バッテリ13の開回路電圧OCVとして求められ、この開回路電圧OCVを、電圧比又は電力比のいずれかの算出式に代入することで、バッテリ13の充電状態SOCが演算されて、その結果が、表示や容量管理のデータとして提供される。
【0185】
この場合、仮想電流Isを用いて開回路電圧OCVを演算するのに用いるバッテリ13の電圧−電流特性式V=aI+bを求めるために、対となって周期的に収集される、バッテリ13の放電電流I及び端子電圧Vは、250A(アンペア)という、ハイブリッド車両における最大の負荷であるセルモータとして機能させるモータジェネレータ5に対する放電の際に収集されたものであり、しかも、他の負荷に複数同時にバッテリ13の電力が供給されていても到達しない35A(アンペア)を超える放電電流Iが流れている状態で収集されたものである。
【0186】
このため、モータジェネレータ5以外の負荷にバッテリ13の電力が同時に供給されていて、それによる放電側分極による電圧降下が既に生じていても、その電圧降下を上回る電圧降下が生じて電圧−電流特性式V=aI+bに反映されることから、バッテリ13の開回路電圧OCVを正確に演算し、ひいては、充電状態SOCを正確に演算することができる。
【0187】
そして、本実施形態のバッテリ充電状態演算装置1では、上述したように、所定の大電流値による定負荷放電の放電電流Iが減少する間の放電電流I及び端子電圧Vの対から求めたバッテリ13の、放電電流Iの減少中における分極の影響を含んだ電圧−電流特性式V=aI+bを、分極の影響を含まないバッテリ13の純抵抗成分のみに依存した電圧−電流特性式V=a+b上の座標値(V,I)を通るように、電圧軸方向にシフトさせてシフト後電圧−電流特性式V´=aI+b´を求め、分極の影響を含まないバッテリ13の電圧−電流特性式V=a+b上の電流値=0となる電圧値における、シフト後電圧−電流特性式V´=aI+b´上の電流値を、仮想電流Isの値として求める構成としている。
【0188】
そのため、放電前のバッテリ13が平衡状態にあったか否かを問わず、かつ、どのような放電電流値や放電時間によってバッテリ13が放電したかを問わず、一律の条件の下で仮想電流の値Isを正確に演算することができ、ひいては、これを用いてバッテリ13の開回路電圧OCVや充電状態SOCを常に正確に演算することができる。
【0189】
また、本実施形態のバッテリ充電状態演算装置1では、スタータスイッチのオンに伴って、バッテリ13が250A(アンペア)を超える定負荷放電を行った場合、その放電開始前の段階で、最大分極発生状態からの分極解消に必要な所定時間Thを超えて、バッテリ13が充放電を行っていなかった場合には、前回にバッテリ13が充放電を行った際に発生した分極による電圧変動(電圧上昇又は電圧降下)が完全に解消し尽くして平衡状態に至っているものとして、NVM25に格納、記憶されている、バッテリ13の純抵抗成分のみに依存した分極の影響を含まない電圧−電流特性式V=a+bが、この定負荷放電の際に測定された端子電圧V及び放電電流Iから求められた電圧−電流特性式V=a+bに更新される。
【0190】
このため、充放電の繰り返しによりバッテリ13の純抵抗、乃至、純抵抗成分による電圧降下量が変動しても、バッテリ13が平衡状態となる毎に、NVM25に格納、記憶される電圧−電流特性式V=a+bを最新の式に更新して、その直後に行われるバッテリ13の所定の大電流値による定負荷放電時に、更新した電圧−電流特性式V=a+bから仮想電流Isの値を求め直して、純抵抗乃至純抵抗成分による電圧降下量の変動後のバッテリ13の開回路電圧OCVを正確に演算し、充電状態SOCの演算精度を高く維持することができる。
【0191】
ちなみに、開回路電圧OCVや仮想電流Isを演算するのに用いるバッテリ13の電圧−電流特性式V=aI+bを求めるために、バッテリ13の放電電流I及び端子電圧Vを対にして周期的に収集する期間は、本実施形態のバッテリ充電状態演算装置1のように、バッテリ13が250A(アンペア)を超える定負荷放電を行った場合、その放電電流Iが250A(アンペア)から減少し始めた後、35A(アンペア)までの間に限らなくても良い。
【0192】
また、分極の影響を含まないバッテリ13の電圧−電流特性式V=a+bの求め方や、その前提となるバッテリ13の純抵抗の求め方は、本実施形態中で説明した方式に限らず、例えば、放電中の極めて僅かな特定の期間におけるバッテリ13の放電電流I及び端子電圧Vの挙動をサンプリングして求める等、任意である。
【0193】
さらに、本実施形態では、所定の大電流値による定負荷放電の放電電流Iが減少する間の放電電流I及び端子電圧Vの対から求める、放電電流Iの減少中における分極の影響を含んだバッテリ13の電圧−電流特性を、1次の電圧−電流特性式V=aI+bとしているが、これに代えて、バッテリ13の純抵抗を求める際に用いる、先に説明した第2の近似曲線式M2、即ち、V2(I)=a2I+b2I+C2で表される2次式を、所定の大電流値による定負荷放電の放電電流Iが減少する間の放電電流I及び端子電圧Vの対から求めるようにしてもよい。
【0194】
そして、そのようにした場合は、この第2の近似曲線式M2を、分極の影響を含まないバッテリ13の純抵抗成分のみに依存した電圧−電流特性式V=a+b上の座標値(V,I)を通るように、電圧軸方向にシフトさせることで、シフト後電圧−電流特性式V2´(I)=a2I+b2I+C2´を求め、分極の影響を含まないバッテリ13の電圧−電流特性式V=a+b上の電流値=0となる電圧値における、シフト後電圧−電流特性式V2´(I)=a2I+b2I+C2´上の電流値を、仮想電流Isの値として求めたり、求めた仮想電流Isの値を第2の近似曲線式M2に「I」の値として代入して、バッテリ13の開回路電圧OCVを演算することになる。
【0195】
このように、放電電流Iの減少中における分極の影響を含んだバッテリ13の電圧−電流特性を2次式である第2の近似曲線式M2とすれば、放電電流Iの減少のペースに対する、放電による分極に起因してバッテリ13に生じる端子電圧Vの電圧降下量の減少のペースの鈍さが、1次の電圧−電流特性式V=aI+bよりも一層正確に、第2の近似曲線式M2中に反映されて、この第2の近似曲線式M2をシフトさせたシフト後電圧−電流特性式V2´(I)=a2I+b2I+C2´を用いて推定される推定電圧Vnの精度や、この推定電圧Vnを用いて演算される開回路電圧の精度を、より高めることができるので、有利である。
【0196】
また、本実施形態では、単独で最も多くの電力を消費するモータジェネレータ5の作動時における、250A(アンペア)を超える定負荷放電時のバッテリ13の放電電流I及び端子電圧Vを用いて、分極の影響を含んだ電圧−電流特性式V=aI+bの割り出しを行ったが、少なくとも放電直前にバッテリ13に発生していた充電側分極を解消するのに十分な電流値又は電気量であれば、放電電流の最大値が250A(アンペア)に遠く及ばないような、モータジェネレータ5以外の負荷の動作に伴うバッテリ13の放電電流I及び端子電圧Vを用いて、分極の影響を含んだ電圧−電流特性式V=aI+bや、V−I特性の2つの近似曲線式M1及びM2の割り出しを行ってもよい。
【0197】
そして、本実施形態では、以上に説明したような方式で求めた仮想電流Isを用いてバッテリ13の開回路電圧OCVや充電状態SOCを演算する場合について説明したが、充電状態SOC以外の値を演算する目的でバッテリ13の開回路電圧OCVを演算する形態で実施してもよく、同様に、充電状態SOCや開回路電圧OCV以外の値を演算する目的でバッテリ13の仮想電流Isの値を演算する形態で実施してもよいのは、勿論のことである。
【0198】
さらに、本実施形態では、バッテリの純抵抗Rを測定するのに当たって、V−I特性の2つの近似曲線式M1及びM2で表される近似曲線上の実データの存在する範囲内に任意の点A及びBを選択しているが、これらの点を2つの近似曲線式M1及びM2上の、これらの式を求めるため測定したバッテリの放電電流の最大値に相当する点Pに選択し、両方の点を共通のデータを使用して特定することで、誤差の入ることを少なくすることができ、図17乃至図19を参照して、以下具体的に説明する。
【0199】
まず、図17に示すように、2つの近似曲線式M1及びM2上のバッテリの放電電流の最大値に相当する点Pを選択する。そして、式M1の近似曲線の縦軸に対する切片C1から近似曲線上の点Pまでの電圧降下ΔV1を求める。このΔV1を点Pでの電流Ipで除算した値は、純抵抗Rに純抵抗を除くその他の抵抗成分である分極抵抗成分のその時点での値Rpol1を加算した合成抵抗である。すなわち、
R+Rpol1=ΔV1/Ip
である。
【0200】
次に、同図に示すように、式M2の近似曲線の縦軸に対する切片C2から近似曲線上の点Pまでの電圧降下ΔV2を求める。このΔV2を点Pでの電流Ipで除算した値は、純抵抗Rに純抵抗を除くその他の抵抗成分である分極抵抗成分のその時点での値Rpol2を加算した合成抵抗である。すなわち、
R+Rpol2=ΔV2/Ip
である。
【0201】
上記式M1の近似曲線上の点Pと式M2の近似曲線上の点Pの合成抵抗の値の差ΔRは
ΔR=R+Rpol1−(R+Rpol2)=Rpol1−Rpol2
となり、異なる近似曲線上の点Pにおける分極抵抗成分の差となる。これは、1回の放電中の純抵抗Rは変化しないことから明らかである。
【0202】
なお、式M1で表される近似曲線上には、図18に示すように、式M2の近似曲線上に選択した任意の点Pにおける合成抵抗(R+Rpol2)に等しい値(R+Rpol1′)をもった点P1が存在する。また、式M2で表される近似曲線上にも、図18に示すように、式M1の近似曲線上に選択した任意の点Pにおける合成抵抗(R+Rpol1)に等しい値(R+pol2′)をもった点P2が存在する。すなわち、R+Rpol1′=R+Rpol2となる点P1が式M1で表される近似曲線上に、R+Rpol1=R+Rpol2′となる点P2が式M2で表される近似曲線上にそれぞれ存在する。
【0203】
要するに、点P1における電流及び電圧をそれぞれIp1及びVp1とし、点P2における電流及び電圧をそれぞれIp2及びVp2とすると、点P1の座標(Ip1、Vp1)と点Pの座標(Ip、Vp)の分極抵抗成分の値が互いに等しく、また点Pの座標(Ip、Vp)と点P2(Ip2、Vp2)の分極抵抗成分の値も互いに等しいことがわかる。
【0204】
まず、式M2の近似曲線上の点Pを基準とし、この点Pの合成抵抗の値(R+Rpol2)と等しい値(R+Rpol1′)を持つ点P1の電流Ip1と電圧Vp1の算出の仕方を以下説明する。
【0205】
今、式M1で表される近似曲線の縦軸に対する切片C1からこの点P1までの電圧降下をΔVp1とすると、これは
ΔVp1=C1−(a1Ip1+b1p1+C1)=(R+Rpol2)Ip1
となり、この式を整理すると、
−(a1Ip1 +b1)=R+Rpol2
となり、点P1の電流Ip1は
Ip1=−(b1+R+Rpol2)/a1
となる。なお、R+Rpol2(=R+pol1′)=ΔVp/Ip(=ΔVp1/Ip1)であるので、
Figure 2004340587
となる。また、点P1の電圧Vp1は、上記式から明らかなように、
Vp1=a1Ip1+b1Ip1+C1
であるので、点P1の座標(Ip1、Vp1)は既知の値から定められる。
【0206】
同様にして、式M1の近似曲線上の点Pを基準とし、P点を基準とし、この点Pの抵抗値(R+Rpol1)と等しい値(R+Rpol2′)を持つ点P2の電流Ip2と電圧Vp2も、
Figure 2004340587
により既知の値から算出できる。なお、ΔVp2は、式M2で表される近似曲線の縦軸に対する切片C2からこの点P2までの電圧降下である。
【0207】
上述のようにして、点P1の座標(Ip1、Vp1)が定まったら、図18に示すように、点P1の座標(Ip1、Vp1)と点Pの座標(Ip、Vp)とを結ぶ直線L1の傾斜を求めることによって合成抵抗の値R1が求められる。この合成抵抗の値R1は、純抵抗と分極抵抗成分Rpol2とからなる合成抵抗によって生じる電圧降下の差(Vp1−Vp)を各点において流れる電流の差(Ip1−Ip)によって除算することによって求められる。すなわち、
R1=(Vp1−Vp)/(Ip1−Ip)
となる。
【0208】
同様にして、点P2の座標(Ip2、Vp2)が定まったら、図19に示すように、点P2の座標(Ip2、Vp2)と点Pの座標(Ip、Vp)とを結ぶ直線L2の傾斜を求めることによって合成抵抗の値R2が求められる。この合成抵抗の値R2は、純抵抗と分極抵抗成分Rpol1とからなる合成抵抗によって生じる電圧降下の差(Vp−Vp2)を各点において流れる電流の差(Ip−Ip2)によって除算することによって求められる。すなわち、
R2=(Vp−Vp2)/(Ip−Ip2)
となる。
【0209】
しかしながら、上述のようにして求められる合成抵抗の値R1及びR2は、純抵抗と分極抵抗成分とからなる合成抵抗によって生じる電圧降下の差を各点において流れる電流の差によって除算して求めたもので、純抵抗とは一致しない。2点間の傾きを純抵抗と一致させるには、分極抵抗成分によって生じる電圧降下分を除いた電圧降下の差を電流差によって除算してやればよい。
【0210】
先ず、式M2の近似曲線上の点Pを基準にした場合について説明すると、今、合成抵抗の値R1を
R1=R1′+Rpol2=R1′+Rpol1′
とすると、抵抗R1′に点P1の電流Ip1と点Pの電流Ipとの差に相当する電流が流れることによって生じる電圧降下は、分極抵抗成分Rpol1′(又はRpol2)に点P1の電流Ip1と点P2の電流Ipの差に相当する電流が流れることによって生じる電圧降下分だけ、点P1の電圧を持ち上げて補正してやればよく、次式が成立する。
R1′(Ip1−Ip)=〔Vp1+Rpol1′(Ip1−Ip)〕−V2
【0211】
この式を整理すると、
R1′(Ip1−Ip)=(Vp1−Vp)+Rpol1′(Ip1−Ip)となる。ここで、Rpol1′=ΔVp1/Ip1−R1′であるので、
R1′(Ip1−Ip)=(Vp1−Vp)+(ΔVp1/Ip1−R1′)(Ip1−Ip)
2R1′(Ip1−Ip)=(Vp1−Vp)+ΔVp1/Ip1(Ip1−Ip)
となり、結果として、
R1′=〔(Vp1−Vp)+(ΔVp1/Ip1)(Ip1−Ip)〕/2(Ip1−Ip)
が求められる。なお、(ΔVp1/Ip1)は(ΔV2/Ip)と置き換えることができる。
【0212】
次に、式M1の近似曲線上の点Pを基準にした場合にも同様にして
R2=R2′+Rpol1=R2′+Rpol2′
とすると、この抵抗R2′に点Pの電流Ipと点P2の電流Ip2の差に相当する電流が流れることによって生じる電圧降下は、分極抵抗成分Rpol2′(又はRpol1)に点Pの電流Ipと点P2の電流Ip2との差に相当する電流が流れることによって生じる電圧降下分、点P2の電圧を引き下げて補正してやればよく、次式が成立する。
R2′(Ip−Ip2)=Vp−〔Vp2−Rpol2′(Ip−Ip2)〕
【0213】
この式を整理すると、
R2′(Ip−Ip2)=(Vp−Vp2)+Rpol2′(Ip−Ip2)となる。ここで、Rpol2′=ΔVp2/Ip2−R2′であるので、
R2′(Ip−Ip2)=(Vp−Vp2)+(ΔVp2/Ip2−Rp2)(Ip−Ip2)
2R2′(Ip−Ip2)=(Vp−Vp2)+ΔVp2/Ip2(Ip−Ip2)
となり、結果として、
R2′=〔(Vp−Vp2)+(ΔVp2/Ip2)(Ip−Ip2)〕/2(Ip−Ip2)
が求められる。なお、(ΔVp2/Ip2)は(ΔVp/Ip)と置き換えることができる。
【0214】
上述したように求められた2つの値R1′及びR2′は、2つの点A及びBを基準にし、異なる分極抵抗成分(Rpol1′=Rpol2)と(Rpol1=Rpol2′)を用い、しかも異なる切片C1からの電圧降下ΔVp1(ΔVp)と切片C2からの電圧降下ΔVp2(ΔVp)を用いて求めたものであるので、真の純抵抗Rとなり得ない。したがって、両者の加算平均
R=(R1′+R2′)/2
をとることによって、真の純抵抗Rが求められる。
【0215】
図17乃至図19を参照して説明したバッテリの純抵抗測定方法では、2つの近似曲線式M1及びM2上のバッテリの放電電流の最大値に相当する点に点Pをそれぞれ定め、共通のデータを使用して特定しているので、誤差の入ることを少なくすることができる。
【0216】
そして、第2の近似曲線式M2で表される曲線上の点Pに対応する放電電流Ipが流れたとき第2の電圧降下ΔV2を生じさせる、バッテリの純抵抗と第2の分極抵抗成分Rpol2からなる第2の合成抵抗R2と同一の抵抗値を有する第1の想定点P1を第1の近似曲線式M1上に、第1の近似曲線M1で表される曲線上の点Pに対応する放電電流Ipが流れたとき第1の電圧降下ΔV1を生じさせる、バッテリの純抵抗と第1の分極抵抗成分Rpol1からなる第1の合成抵抗R1と同一の抵抗値を有する第2の想定点P2を第2の近似曲線式M2上にそれぞれ想定する。
【0217】
2つの想定点P1及びP2が想定できたら、点Pと第1の想定点P1とを結ぶ直線L1の第1の傾斜R1を、放電電流Ipと第1の想定点P1での放電電流Ip1とによってそれぞれ生じる、第2の分極抵抗成分Rpol2による電圧降下の差分Rpol2(Ip1−Ip)に相当する量補正して、第2の分極抵抗成分Rpol2による電圧降下分を除いた第1の補正傾斜R1′を求めるとともに、前記点Pと前記第2の想定点P2とを結ぶ直線L2の第2の傾斜R2を、放電電流Ipと第2の想定点P2での放電電流Ip2とによってそれぞれ生じる、第1の分極抵抗成分Rpol1による電圧降下の差分Rpol1(Ip−Ip2)に相当する量補正して、第1の分極抵抗成分Rpol1による電圧降下分を除いた第2の補正傾斜R2′を求める。
【0218】
このようにして求めた第1の補正傾斜R1′と第2の補正傾斜R2′とを加算平均して平均傾斜を求め、この求めた平均傾斜をバッテリの純抵抗Rとして測定する。
【0219】
このようにして純抵抗を測定する具体的な手順は、2つの近似曲線式M1及びM2上のバッテリの放電電流の最大値に相当する共通の点Pに2点を定めている点を除き、図7乃至図9について上述した純抵抗の測定手順と同じで、図12のフローチャートに示した処理とほぼ同じ処理にて実行可能であるので、本手順のフローチャートを示すことを省略する。
【0220】
【発明の効果】
以上に説明したように請求項1に記載した本発明のバッテリの仮想電流演算方法と、請求項7に記載した本発明のバッテリの仮想電流演算装置によれば、いずれも、バッテリの端子電圧と放電電流との相関を示す電圧−電流特性式に放電電流として代入することで、バッテリの平衡状態における端子電圧、即ち、開回路電圧を演算できる、現実にはない理論上の仮定値である仮想電流を、バッテリが実際に放電を行った際の端子電圧と放電電流から求める、分極の影響を含んだ電圧−電流特性や、電圧軸方向にシフトさせた後の分極の影響を含んだ電圧−電流特性を用いて求めるようにしたので、バッテリ個々の特性の相違や、そのバッテリから電力の供給を受ける負荷の内容等によって定まる、個々のバッテリが現実に使用される際の放電電流値の相違が加味された、個々のバッテリに応じた内容の仮想電流を得て、個々のバッテリに応じた開回路電圧が仮想電流から正確に演算されるようにすることができる。
【0221】
そして、請求項1に記載した本発明のバッテリの仮想電流演算方法により演算した仮想電流を用いる請求項5に記載した本発明のバッテリの開回路電圧演算方法や、請求項7に記載した本発明のバッテリの仮想電流演算装置により演算した仮想電流を用いる請求項11に記載した本発明のバッテリの開回路電圧演算装置とによれば、いずれも、演算された仮想電流を用いて、バッテリ個々の特性の相違や、そのバッテリから電力の供給を受ける負荷の内容等によって定まる、個々のバッテリが現実に使用される際の放電電流値の相違が加味された、個々のバッテリに応じた内容の開回路電圧を、正確に演算することができる。
【0222】
また、請求項2に記載した本発明のバッテリの仮想電流演算方法によれば、請求項1に記載した本発明のバッテリの仮想電流演算方法において、また、請求項8に記載した本発明のバッテリの仮想電流演算装置によれば、請求項7に記載した本発明のバッテリの仮想電流演算装置において、いずれも、放電電流の減少中における分極による端子電圧の電圧降下量の変化を、分極の影響を含んだ電圧−電流特性中により正確に反映させて、この分極の影響を含んだ電圧−電流特性を用いて演算される仮想電流の精度をより高めることができる。
【0223】
そして、請求項2に記載した本発明のバッテリの開回路電圧演算方法により演算した仮想電流を用いる請求項5に記載した本発明のバッテリの開回路電圧演算方法や、請求項8に記載した本発明のバッテリの開回路電圧演算装置により演算した仮想電流を用いる請求項11に記載した本発明のバッテリの開回路電圧演算装置によれば、いずれも、放電電流の減少中における分極による端子電圧の電圧降下量の変化が正確に反映されて精度良く演算された仮想電流を用いて、バッテリの開回路電圧をより精度良く演算することができる。
【0224】
さらに、請求項3に記載した本発明のバッテリの仮想電流演算方法によれば、請求項1又は2に記載した本発明のバッテリの仮想電流演算方法において、また、請求項9に記載した本発明のバッテリの仮想電流演算装置によれば、請求項7又は8に記載した本発明のバッテリの仮想電流演算装置において、いずれも、充放電の繰り返しに伴う劣化によって、分極の影響を含まない電圧−電流特性が変化しても、バッテリが平衡状態から放電を行う毎に、分極の影響を含まない電圧−電流特性を最新のものに更新設定させて、最新の分極の影響を含まない電圧−電流特性及び残存電圧降下値により仮想電流を、バッテリの劣化状態等の変化に対応して常に正確に演算することができる。
【0225】
そして、請求項3に記載した本発明のバッテリの開回路電圧演算方法により演算した仮想電流を用いる請求項5に記載した本発明のバッテリの開回路電圧演算方法や、請求項9に記載した本発明のバッテリの開回路電圧演算装置により演算した仮想電流を用いる請求項11に記載した本発明のバッテリの開回路電圧演算装置によれば、いずれも、バッテリが平衡状態から放電を行う毎に最新のものに更新設定される分極の影響を含まない電圧−電流特性により、バッテリの劣化状態等の変化に対応して常に正確に演算された仮想電流を用いて、バッテリの開回路電圧をバッテリの劣化状態等の変化に対応して常に正確に演算することができる。
【0226】
また、請求項4に記載した本発明のバッテリの仮想電流演算方法によれば、請求項1、2又は3に記載した本発明のバッテリの仮想電流演算方法において、また、請求項10に記載した本発明のバッテリの仮想電流演算装置によれば、請求項7、8又は9に記載した本発明のバッテリの仮想電流演算装置において、いずれも、最大電力消費負荷以外の車両の負荷が駆動されている状態で、所定の大電流値による放電が行われても、最大電力消費負荷以外の車両の負荷に対する電力供給による影響を排除した、分極の影響を含んだ電圧−電流特性を取得して、この分極の影響を含んだ電圧−電流特性を用いて演算される仮想電流の精度をより高めることができる。
【0227】
そして、請求項4に記載した本発明のバッテリの開回路電圧演算方法により演算した仮想電流を用いる請求項5に記載した本発明のバッテリの開回路電圧演算方法や、請求項10に記載した本発明のバッテリの開回路電圧演算装置により演算した仮想電流を用いる請求項11に記載した本発明のバッテリの開回路電圧演算装置によれば、いずれも、最大電力消費負荷以外の車両の負荷が駆動されている状態で所定の大電流値による放電が行われても、その影響が排除された分極の影響を含んだ電圧−電流特性により、最大電力消費負荷以外の車両の負荷に対する電力供給の影響を排除し正確に演算された仮想電流を用いて、バッテリの開回路電圧を、最大電力消費負荷以外の車両の負荷に対する電力供給の影響を排除し正確に演算することができる。
【0228】
さらに、請求項6に記載した本発明のバッテリの充電状態演算方法と、請求項12に記載した本発明のバッテリの充電状態演算装置によれば、いずれも、請求項5に記載した本発明のバッテリの開回路電圧演算方法や、請求項11に記載した本発明のバッテリの開回路電圧演算装置により演算した、分極に伴う電圧変動の放電電流値や放電時間の相違に起因するばらつきを含まない現在の開回路電圧を用いて、この開回路電圧と直線的関係にあるバッテリの現在の充電状態を、分極による電圧変動の影響を含まずに正確に精度良く演算することができる。
【図面の簡単な説明】
【図1】本発明のバッテリの仮想電流演算装置、バッテリの開回路電圧演算装置、及び、バッテリ充電状態演算装置の基本構成図である。
【図2】本発明のバッテリの仮想電流演算装置、バッテリの開回路電圧演算装置、及び、バッテリ充電状態演算装置において一例として採用可能な、分極の影響を含まないバッテリの電圧−電流特性を、バッテリの純抵抗として求める装置の基本構成図である。
【図3】1次近似式で表したバッテリの電圧−電流特性の一例を示すグラフである。
【図4】2次近似式で表したバッテリの電圧−電流特性の一例を示すグラフである。
【図5】電流に対する分極の変化の一例を示すグラフである。
【図6】1回の放電によって得られる2つの2次の近似曲線式で表される近似特性曲線の一例を示すグラフである。
【図7】2つの近似特性曲線上への2つの任意の点の定め方を説明するためのグラフである。
【図8】一方の近似特性曲線に定めた点に対する想定点の定め方と2点間の傾斜の補正の仕方とを説明するためのグラフである。
【図9】他方の近似特性曲線に定めた点に対する想定点の定め方と2点間の傾斜の補正の仕方とを説明するためのグラフである。
【図10】本発明のバッテリの端子電圧推定方法、バッテリの開回路電圧演算方法、及び、バッテリ充電状態演算方法を適用した本発明の一実施形態に係るバッテリ充電状態演算装置の概略構成を一部ブロックにて示す説明図である。
【図11】図10のマイクロコンピュータのROMに格納された制御プログラムに従いCPUが行う処理のメインルーチンを示すフローチャートである。
【図12】図11の純抵抗特性演算処理を示すサブルーチンのフローチャートである。
【図13】図11の充電状態演算処理を示すサブルーチンのフローチャートである。
【図14】図10のバッテリの純抵抗成分のみに依存した分極の影響を含まない電圧−電流特性を示すグラフである。
【図15】図10のバッテリの放電電流減少中における分極の影響を含む電圧−電流特性を示すグラフである。
【図16】図15の電圧−電流特性を図14の電圧−電流特性に重なるように電圧軸方向にシフトさせた分極の影響を含む電圧−電流特性を示すグラフである。
【図17】バッテリの純抵抗を測定する他の手順において、2つの近似特性曲線上への2つの点の定め方を説明するためのグラフである。
【図18】バッテリの純抵抗を測定する他の手順において、一方の近似特性曲線に定めた点に対する想定点の定め方と2点間の傾斜の補正の仕方とを説明するためのグラフである。
【図19】バッテリの純抵抗を測定する他の手順において、他方の近似特性曲線に定めた点に対する想定点の定め方と2点間の傾斜の補正の仕方とを説明するためのグラフである。
【図20】バッテリの定電流放電における端子電圧と放電時間との相関を示すグラフである。
【図21】バッテリの定電流放電中にサンプリングした所定数の端子電圧及び放電電流の組と、これらに最小二乗法を適用して得られる直線的な電圧−電流特性式との関係を模式的に示すグラフである。
【図22】図21に示す電圧−電流特性から推定した推定電圧により得られる複数の定電流放電特性を示すグラフである。
【図23】図21に示す電圧−電流特性から推定した推定電圧により得られる複数の仮想上の定電流放電特性を示すグラフである。
【図24】各容量に応じたバッテリの電圧−電流特性を同一平面上に展開したグラフである。
【図25】図23のグラフにおいて直線的特性を示す仮想上の放電電流値におけるバッテリの容量と図21に示す電圧−電流特性から推定した推定電圧との関係を示すグラフである。
【符号の説明】
5 最大電力消費負荷
13 バッテリ
23 マイクロコンピュータ
23a CPU
23b RAM
23c ROM
23A 分極影響特性割出手段
23B シフト後分極影響特性割出手段
23C 演算手段
23D 平衡状態判別手段
23E 純抵抗特性割出手段
23F 第2演算手段

Claims (12)

  1. 負荷に電力を供給するバッテリの端子電圧と放電電流とを周期的に測定して求めた、これら端子電圧と放電電流との相関を示す電圧−電流特性式に、前記放電電流として代入して使用される、現実にはない理論上の仮定値であって、この仮定値を前記電圧−電流特性式に前記放電電流として代入することで、前記バッテリの平衡状態における端子電圧に相当する開回路電圧を、前記電圧−電流特性式の解として求めるのに用いられる仮想電流を演算する方法であって、
    前記バッテリが、少なくとも放電直前に該バッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量による放電を行った際に、該放電の放電電流が最大電流値から減少する間に周期的に測定した、前記バッテリの端子電圧と放電電流とから、分極の影響を含んだ前記電圧−電流特性を求め、
    前記分極の影響を含んだ電圧−電流特性上の、前記最大電流値よりも低い基準電流値における電圧値が、前記バッテリの純抵抗成分のみに依存した分極の影響を含まない前記電圧−電流特性上の、前記基準電流値における基準電圧値と一致するように、前記分極の影響を含んだ電圧−電流特性を電圧軸方向にシフトさせ、
    前記分極の影響を含まない電圧−電流特性上の放電電流=0における電圧値に対応する、前記電圧軸方向にシフトさせた後の前記分極の影響を含んだ電圧−電流特性上の電流値を、前記仮想電流の値とするようにした、
    ことを特徴とするバッテリの仮想電流演算方法。
  2. 前記分極の影響を含んだ電圧−電流特性を二次の近似曲線式とするようにした請求項1記載のバッテリの仮想電流演算方法。
  3. 前記バッテリが平衡状態から前記放電を行う毎に、該放電中に周期的に測定した前記バッテリの端子電圧と放電電流とから、最新の前記分極の影響を含まない電圧−電流特性を求め、以後、この最新の前記分極の影響を含まない電圧−電流特性上の、前記基準電流値における基準電圧値と一致するように、前記分極の影響を含んだ電圧−電流特性を電圧軸方向にシフトさせるようにした請求項1又は2記載のバッテリの仮想電流演算方法。
  4. 前記バッテリは車両に搭載されたものであり、前記放電の電流値を、前記バッテリからの電力の供給を受ける前記車両の負荷のうち単独での消費電力が最大である最大電力消費負荷の駆動に必要とする所定の大電流値とし、前記バッテリの放電電流が、前記所定の大電流値から減少し始めてから、該所定の大電流値よりも低く、かつ、前記最大電力消費負荷以外の前記車両の負荷が駆動されている際における最大放電電流値以上の、目標電流値に低下するまでの間に、周期的に測定した前記バッテリの端子電圧と放電電流とから、前記分極の影響を含んだ電圧−電流特性を求めるようにした請求項1、2又は3記載のバッテリの仮想電流演算方法。
  5. 負荷に電力を供給するバッテリの端子電圧と放電電流とを周期的に測定してこれら端子電圧と放電電流との相関を示す電圧−電流特性を求め、この電圧−電流特性を用いて前記バッテリの平衡状態における端子電圧に相当する開回路電圧を演算するに当たり、
    請求項1、2、3又は4記載のバッテリの仮想電流演算方法により前記仮想電流の値を予め求めておき、
    以後、前記バッテリが、少なくとも放電直前に該バッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量による放電を行う毎に、該放電中に周期的に測定した前記バッテリの端子電圧と放電電流とから、前記分極の影響を含んだ電圧−電流特性を新たに求め、
    前記新たに求めた分極の影響を含んだ電圧−電流特性上の前記仮想電流に対応する電圧値を、前記バッテリの現在の前記開回路電圧とするようにした、
    ことを特徴とするバッテリの開回路電圧演算方法。
  6. 請求項5記載のバッテリの開回路電圧演算方法により演算した前記現在の開回路電圧から、前記バッテリの現在の充電状態を演算するようにした、
    ことを特徴とするバッテリ充電状態演算方法。
  7. 負荷に電力を供給するバッテリの端子電圧と放電電流とを周期的に測定して求めた、これら端子電圧と放電電流との相関を示す電圧−電流特性式に、前記放電電流として代入して使用される、現実にはない理論上の仮定値であって、この仮定値を前記電圧−電流特性式に前記放電電流として代入することで、前記バッテリの平衡状態における端子電圧に相当する開回路電圧を、前記電圧−電流特性式の解として求めるのに用いられる仮想電流を演算するバッテリの仮想電流演算装置において、
    前記バッテリが行う、少なくとも放電直前に該バッテリに発生していた充電側分極を解消するのに十分な電流値又は電気量による放電において、前記バッテリの放電電流が最大電流値から減少し始めた後に、周期的に測定される前記バッテリの端子電圧と放電電流とから、分極の影響を含んだ前記電圧−電流特性を求める分極影響特性割出手段と、
    前記分極影響特性割出手段が求めた前記分極の影響を含んだ電圧−電流特性上の、前記最大電流値よりも低い基準電流値における電圧値が、前記バッテリの純抵抗成分のみに依存した分極の影響を含まない前記電圧−電流特性上の、前記基準電流値における基準電圧値と一致するように、前記分極の影響を含んだ電圧−電流特性を電圧軸方向にシフトさせた、シフト後の前記分極の影響を含んだ電圧−電流特性を求めるシフト後分極影響特性割出手段と、
    前記分極の影響を含まない電圧−電流特性上の放電電流=0における電圧値に対応する、前記シフト後分極影響特性割出手段が求めた前記シフト後の分極の影響を含んだ電圧−電流特性上の電流値を、前記仮想電流の値として演算する演算手段と、
    を備えることを特徴とするバッテリの仮想電流演算装置。
  8. 前記分極影響特性割出手段は、前記分極の影響を含んだ電圧−電流特性を二次の近似曲線式として求める請求項7記載のバッテリの仮想電流演算装置。
  9. 前記バッテリが平衡状態にあるか否かを判別する平衡状態判別手段と、該平衡状態判別手段により平衡状態にあると判別された前記バッテリからの前記放電時に、当該放電中において周期的に測定される前記バッテリの端子電圧と放電電流とから、前記分極の影響を含まない電圧−電流特性を求める純抵抗特性割出手段をさらに備えており、該純抵抗特性割出手段が前記分極の影響を含まない電圧−電流特性を求めた以後、前記シフト後分極影響特性割出手段は、前記分極影響特性割出手段が求めた前記分極の影響を含んだ電圧−電流特性と、前記純抵抗特性割出手段が求めた最新の前記分極の影響を含まない電圧−電流特性とを用いて、前記シフト後の分極の影響を含んだ電圧−電流特性を求める請求項7又は8記載のバッテリの開回路電圧演算装置。
  10. 前記バッテリは車両に搭載されたものであり、前記放電の電流値は、前記バッテリからの電力の供給を受ける前記車両の負荷のうち単独での消費電力が最大である最大電力消費負荷の駆動に必要とする所定の大電流値であり、前記分極影響特性割出手段は、前記バッテリの放電電流が前記所定の大電流値から減少し始めた後、前記最大電力消費負荷以外の前記車両の負荷が駆動されている際における最大放電電流値以上の目標電流値に低下するまでの間、前記周期的に測定される前記バッテリの端子電圧と放電電流とから、前記分極の影響を含んだ電圧−電流特性を求める請求項7、8又は9記載のバッテリの仮想電流演算装置。
  11. 負荷に電力を供給するバッテリの端子電圧と放電電流とを周期的に測定してこれら端子電圧と放電電流との相関を示す電圧−電流特性を求め、この電圧−電流特性を用いて前記バッテリの平衡状態における端子電圧に相当する開回路電圧を演算するバッテリの開回路電圧演算装置において、
    請求項7、8、9又は10記載のバッテリの仮想電流演算装置を備えていると共に、
    前記仮想電流を前記演算手段が演算した後に前記分極影響特性割出手段が求めた前記分極の影響を含んだ電圧−電流特性上の、前記演算手段が演算した前記仮想電流に対応する電圧値を、前記バッテリの現在の前記開回路電圧として演算する第2演算手段をさらに備える、
    ことを特徴とするバッテリの開回路電圧演算装置。
  12. 請求項11記載のバッテリの開回路電圧演算装置を備えており、該バッテリの開回路電圧演算装置により演算した前記現在の開回路電圧から、前記バッテリの現在の充電状態を演算する、
    ことを特徴とするバッテリ充電状態演算装置。
JP2003134195A 2003-05-13 2003-05-13 バッテリの仮想電流演算方法及びその装置、バッテリの開回路電圧演算方法及びその装置、バッテリ充電状態演算方法及びその装置 Withdrawn JP2004340587A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003134195A JP2004340587A (ja) 2003-05-13 2003-05-13 バッテリの仮想電流演算方法及びその装置、バッテリの開回路電圧演算方法及びその装置、バッテリ充電状態演算方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003134195A JP2004340587A (ja) 2003-05-13 2003-05-13 バッテリの仮想電流演算方法及びその装置、バッテリの開回路電圧演算方法及びその装置、バッテリ充電状態演算方法及びその装置

Publications (1)

Publication Number Publication Date
JP2004340587A true JP2004340587A (ja) 2004-12-02

Family

ID=33524827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134195A Withdrawn JP2004340587A (ja) 2003-05-13 2003-05-13 バッテリの仮想電流演算方法及びその装置、バッテリの開回路電圧演算方法及びその装置、バッテリ充電状態演算方法及びその装置

Country Status (1)

Country Link
JP (1) JP2004340587A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507722A (ja) * 2012-11-29 2016-03-10 エルジー・ケム・リミテッド 混合正極材を含む二次電池の出力推定装置及び方法
CN116381512A (zh) * 2023-06-06 2023-07-04 宁德时代新能源科技股份有限公司 电池电压计算方法、装置、电子设备及可读存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507722A (ja) * 2012-11-29 2016-03-10 エルジー・ケム・リミテッド 混合正極材を含む二次電池の出力推定装置及び方法
US9389278B2 (en) 2012-11-29 2016-07-12 Lg Chem, Ltd. Apparatus and method for estimating power of secondary blended comprising blended cathode material
CN116381512A (zh) * 2023-06-06 2023-07-04 宁德时代新能源科技股份有限公司 电池电压计算方法、装置、电子设备及可读存储介质
CN116381512B (zh) * 2023-06-06 2023-10-27 宁德时代新能源科技股份有限公司 电池电压计算方法、装置、电子设备及可读存储介质

Similar Documents

Publication Publication Date Title
EP1111399B1 (en) Method and apparatus for measuring the state-of-charge of a battery
JP6490414B2 (ja) 二次電池状態検出装置および二次電池状態検出方法
US7352156B2 (en) State-of-charge estimating device of secondary battery
US6624636B2 (en) Method and apparatus for estimating terminal voltage of battery, method and apparatus for computing open circuit voltage of battery, and method and apparatus for computing battery capacity
JP6647111B2 (ja) 二次電池劣化推定装置および二次電池劣化推定方法
KR20060022712A (ko) 배터리의 열화 판정 방법 및 장치
WO2003061055A1 (fr) Evaluation de la capacite restante d'un accumulateur et dispositif a cet effet, systeme de bloc-batterie, et vehicule electrique
EP1208389A1 (en) Method and apparatus for evaluating stored charge in an electrochemical cell or battery
JP6520124B2 (ja) 二次電池の劣化状態推定装置
KR20150019190A (ko) 배터리 충전 상태 추정 방법 및 이를 위한 장치
JP2010203854A (ja) 二次電池の内部状態推定装置
JP2004045375A (ja) バッテリ状態監視装置、飽和分極検出方法及び放電可能容量検出方法
US20070170892A1 (en) Method and apparatus for estimating remaining capacity of electric storage
JP2000306613A (ja) バッテリ状態監視装置
EP1610138A1 (en) Method and device for estimating battery's dischargeable capacity
JP2002243814A (ja) 車両用バッテリ純抵抗測定方法及び装置
US20060197503A1 (en) Battery state monitoring device and its method, and dischargeable capacity detecting method
JP2008053126A (ja) バッテリ劣化判定装置
JP3551767B2 (ja) バッテリの放電量測定装置
JP3930777B2 (ja) バッテリの劣化度演算方法及びその装置
JP2002303658A (ja) バッテリの充電容量状態検出用補正係数算出方法及びその装置
US9939495B2 (en) Voltage detecting circuit and voltage detecting method
US20060273763A1 (en) Battery status monitoring apparatus and method
JP2004340587A (ja) バッテリの仮想電流演算方法及びその装置、バッテリの開回路電圧演算方法及びその装置、バッテリ充電状態演算方法及びその装置
JP3817141B2 (ja) 車両用バッテリの劣化度判定方法及び装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801