JP2004339999A - Multistage fluid machinery - Google Patents

Multistage fluid machinery Download PDF

Info

Publication number
JP2004339999A
JP2004339999A JP2003136217A JP2003136217A JP2004339999A JP 2004339999 A JP2004339999 A JP 2004339999A JP 2003136217 A JP2003136217 A JP 2003136217A JP 2003136217 A JP2003136217 A JP 2003136217A JP 2004339999 A JP2004339999 A JP 2004339999A
Authority
JP
Japan
Prior art keywords
guide
impeller
base
casing
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003136217A
Other languages
Japanese (ja)
Other versions
JP3869816B2 (en
Inventor
Sadao Uchida
貞雄 内田
Toshiyuki Sugamura
利行 菅村
Akihiro Wada
章弘 和田
Toshinobu Fukuda
年布 福田
Takashi Hara
貴司 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torishima Pump Manufacturing Co Ltd
Original Assignee
Torishima Pump Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torishima Pump Manufacturing Co Ltd filed Critical Torishima Pump Manufacturing Co Ltd
Priority to JP2003136217A priority Critical patent/JP3869816B2/en
Publication of JP2004339999A publication Critical patent/JP2004339999A/en
Application granted granted Critical
Publication of JP3869816B2 publication Critical patent/JP3869816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • F04D1/063Multi-stage pumps of the vertically split casing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • F04D17/125Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors the casing being vertically split
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce channel loss and enhance efficiency of multistage fluid machinery by appropriately setting a sectional shape of the channel ranging from one impeller to a next impeller. <P>SOLUTION: This multistage fluid machinery comprises: the impeller 13 fixed to a rotation shaft 12; and a guiding blade assembly 20. The guiding blade assembly 20 is provided, at its annular base 21 with, a plurality of guiding blades 22 each having a guiding blade part 22a and a return blade part 22b arranged contiguously to the guiding blade part 22a. A section of an outside wall surface 21e of the base 21 in a direction orthogonal to a flowing direction F of a fluid in a return channel 40 constituted by the pair of guiding blades 22 adjacent to each other and the outside wall surface 21e has a linear shape. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、送風機、圧縮機、ボイラ給水ポンプ等として使用される多段ポンプ等の多段流体機械に関する。
【0002】
【従来の技術】
従来、この種の多段流体機械としては、回転軸に固定された複数の羽根車を備え、一つの羽根車から出た高速流体を静圧回復させる案内羽根ないしはディヒューザ羽根と、静圧回復した流体を整流して次段の羽根車に導く戻り羽根とを有するものが知られている(例えば、特許文献1参照)。また、一つの羽根車から次段の羽根車へより円滑に流体を案内するために、図10及び図11に示すように、案内羽根に相当する部分と戻り羽根に相当する部分とを連続させて一体構造とした複数の案内羽根1を、リング状の基部2に設けてなる案内羽根アセンブリ3を備えるものも知られている。
【0003】
【特許文献1】
特許第3299638号公報(図1)
【0004】
【発明が解決しようとする課題】
前記一体構造の案内羽根1を備える従来の多段流体機械では、単に回転軸を含む断面(メリディアン断面)で決定されるU字型の流路断面形状を回転軸まわりに1回転して得られる空間が、一つの羽根車から次段の羽根車への戻り流路を形成している。図12を併せて参照すると、一つの羽根車から次段の羽根車への戻り流路5は、互いに隣接する一対の案内羽根1と、案内羽根1の基端が固定されている基部2の外側壁面2aと、案内羽根1の先端側に配置される壁面6とにより構成される。戻り流路5を前述のように決定すると、図10及び図11において矢印Fで示す流体の流れ方向に対して、戻り流路5の断面形状が滑らかに変化しない。詳細には、図12(A)〜(E)は、図10及び図11の位置▲1▼〜▲5▼における戻り流路5の断面形状を示しているが、図12(A),(B)に示す位置▲1▼、▲2▼と比較すると、図12(C)〜(E)に示す位置▲3▼〜▲5▼では、基部2の外側壁面2aが外向きに湾曲して突出している。このように流体の流れ方向Fでの戻り流路5の断面形状が部分的に急激に変化していると、流路損失が生じて多段流体機械の効率向上を阻害する。
【0005】
そこで、本発明は、一つの羽根車から次段の羽根車に至る流路の断面形状を適切に設定することで、流路損失を低減することを課題としている。
【0006】
【課題を解決するための手段】
本発明は、駆動源により回転駆動される回転軸と、この回転軸に固定され、中心側から流入した流体を外周から流出させる複数の羽根車と、羽根車から流出した流体の運動エネルギを圧力に変換するための案内羽根部と、この案内羽根部と連続して設けられて流体を次段の羽根車に案内するための戻り羽根部とを備える複数の案内羽根を環状の基部に設けてなる、複数の案内羽根アセンブリとを備える、多段流体機械において、少なくとも互いに隣接する一対の前記案内羽根と前記基部の外側壁面とにより構成される流路中の流体の流れ方向に直交する方向における、前記基部の外側壁面の断面が直線状であることを特徴とする、多段流体機械を提供する。
【0007】
本発明の多段流体機械では、案内羽根アセンブリの基部の外側壁面は、流路中の流体の流れ方向に直交する方向の断面形状が直線状であるので、流れ方向に対して流路の断面形状が円滑に変化する。よって、流路損失を低減し、多段流体機械の効率が向上する。
【0008】
【発明の実施の形態】
次に、添付図面を参照して本発明の実施形態を詳細に説明する。
【0009】
図1は、本発明の実施形態に係る輪切り型の多段ポンプを示している。多段ポンプのケーシング11を貫通して水平方向に延びる回転軸12が配置されている。また、ケーシング11内に、4個の羽根車13と、最終段の羽根車13を除く3個の羽根車13に対応する3個の案内羽根アセンブリ20とが収容されている。羽根車13は回転軸12に固定され、案内羽根アセンブリ20は後に詳述するようにケーシング11に対して固定されている。
【0010】
ケーシング11は、吸込口15が取り付けられた吸込側ケーシング14と、吐出口16aを備える吐出側ケーシング16とを備え、これら吸込側ケーシング14と吐出側ケーシングの間に、リング状の3個のナカケーシング17が配置されている。吸込側ケーシング14、吐出側ケーシング16、及び3個のナカケーシング17は、回転軸12と平行に延びるステーボルト31で締め付けることにより互いに固定されている。図1において、32はナカケーシング17を覆うラギングプレートである。
【0011】
吸込側ケーシング14と吐出側ケーシング16の外側には、それぞれのシール機構33A,33Bを収容したパッキンボックス34A,34Bが取り付けられている。また、各パッキンボックス34A,34Bの外側には、回転軸12を支持するすべり軸受35A,35Bを収容した軸受ブラケット36A,36Bが配置されている。軸受ブラケット36Aは吸込側ケーシング14に取り付けられ、軸受ブラケット36Bは吐出側ケーシング16に取り付けられている。吐出側ケーシング16側の軸受ブラケット36Bには、回転軸12を支持する転がり軸受37を収容した軸受ブラケット36Cがさらに取り付けられている。
【0012】
回転軸12は図1において概略的に示すモータ38(駆動源)によって、回転駆動される。羽根車13は回転軸12に固定されており、回転軸12と共に回転する。羽根車13の径方向の中心に位置する入口13aから流入した流体は、外周の出口13bから流出する。図2を併せて参照すると、羽根車13は回転軸12に固定されたボス部13cと一体である主板13dと、この主板13dと間隔をあけて配置された側板13eと、主板13dと側板13eとの間に設けられた複数の羽根13fとを備えている。
【0013】
次に、案内羽根アセンブリ20について詳細に説明する。図3から図6を併せて参照すると、案内羽根アセンブリ20は、回転軸12を挿通させる挿通孔21aを中央に備える円板状の基部21を備え、この基部21に一つの羽根車13の出口13bから次段の羽根車13に至る戻り流路40(図7及び図8参照)を構成するための複数の案内羽根22が一体に設けられている。詳細には、案内羽根22と基部21とは鋳造により一体成形されており、各案内羽根22の基端が基部21に固定されている。以下の説明で案内羽根アセンブリ20の基部21について前面21bとは、各案内羽根アセンブリ20が対応する羽根車13と対向する面をいう。例えば、図1において最も右側の案内羽根アセンブリ20の場合、基部21の前面21bとは吸込口15から1段目の羽根車13と対向する面をいう。また、案内羽根アセンブリ20の基部21について背面21fとは、次段の羽根車13と対応する面をいう。例えば、図1において最も右側の案内羽根アセンブリ20の場合、基部21の背面21fとは吸込口15から2段目の羽根車13と対向する面をいう。
【0014】
図3及び図4に示すように、各案内羽根アセンブリ20の基部21の前面21bでは縁部21cが厚み方向に突出しており、この縁部21cに囲まれた浅い凹部21dに対応する羽根車13の主板13dが配置されている。
【0015】
図3から図6に最も明瞭に表れているように、各案内羽根22は基部21の前面21bの縁部21cから、基部21の背面21fの挿通孔21aの付近まで延びている。案内羽根22は、基部21の前面21b側に位置して羽根車13の出口から流出した流体の運動エネルギを圧力に変換する案内羽根部22aと、基部21の背面21f側に位置して流体を次段の羽根車13に案内するための戻り羽根部22bとを備えている。また、案内羽根22は、基部21の前面21bの最外周縁近傍から基部21の背面21cの最外周円近傍に至るU字路羽根部22cを備えている。案内羽根部22aと戻り羽根部22bとは、U字路羽根部22cとより連結されている。換言すれば、各案内羽根22は、案内羽根部22a、U字路羽根部22c、及び戻り羽根部22bが連続して一体に設けられた構造である。
【0016】
図2から図6に示すように、各案内羽根アセンブリ20は案内羽根部22aにおける案内羽根22の先端を連結する前壁23を備えている。この前壁23は基部21及び案内羽根22と共に鋳造により一体成形されている。この前壁23を設けたことにより、案内羽根アセンブリ20の各案内羽根22は基端側が基部21に固定される一方、先端側がリング状の前壁23に固定される。換言すれば、各案内羽根22は両端支持構造で支持される。この両端支持構造により、各案内羽根22の剛性が向上する。図2を参照すると、前壁23の内側壁面23aは案内羽根部22aの先端に沿う曲面形状である。一方、前壁23の外側壁面23bは円筒状であり、後述するようにその最前面側はナカケーシング17との嵌合部23dを構成している。
【0017】
次に、ナカケーシング17及び案内羽根アセンブリ20の組み付け構造について説明する。まず、図1及び図2を参照して、ナカケーシング17について説明する。ナカケーシング17は回転軸12及び羽根車13のボス部13cを挿通させる挿通孔17aを中央に備えたリング状である。挿通孔17aにはウェアリング18が装着されている。ナカケーシング17の前面側には対応する案内羽根アセンブリ20を収容する収容凹部17bが設けられている。また、ナカケーシング17の前面側には環状の嵌合突起17cが設けられている。一方、ナカケーシング17の背面側には、最外周縁付近に設けられた環状の第1嵌合段部17dと、この第1嵌合段部17dよりも内側(回転軸12側)に設けられた環状の第2嵌合段部17eとが設けられている。
【0018】
図2を参照すると、ナカケーシング17の嵌合突起17cは前段のナカケーシング17の第1嵌合段部17dに嵌め込まれている。ナカケーシング17の収容凹部17bに配置された案内羽根アセンブリ20は、その前壁23がナカケーシング17から突出している。この前壁23のナカケーシング17から突出した部分の外側壁面23bが前段のナカケーシング17に第2嵌合段部17eに嵌め込まれている。換言すれば、前壁23の外側壁面23bのナカケーシング17から突出する部分が前段のナカケーシング17に嵌め込まれる嵌合部23dを構成している。案内羽根22は、案内羽根部22a、U字路羽根部22c、及び戻り羽根部22bを連続して設けているので三次元的形状である。従って、案内羽根22自体をナカケーシング17に嵌め込むには、ナカケーシング17の背面側を複雑な三次元的形状加工する必要が有り、組み付けも困難である。しかし、本実施形態では、前壁23にナカケーシング17との嵌合部23dを設けることにより、組み付けが容易となり製造性が向上する。
【0019】
次に、羽根車13の出口13bから次段の羽根車13の入口13aに至る戻り流路40について説明する。戻り流路40は、案内羽根アセンブリ20の互いに隣接する一対の案内羽根22、案内羽根アセンブリ20の基部21の外側壁面21e、案内羽根アセンブリ20の前壁23の内側壁面23a、及びナカケーシング17の収容凹部17bの壁面17fとにより構成されている。詳細には、戻り流路40のうち案内羽根22の案内羽根部22aに対応する領域では、互いに隣接する一対の案内羽根22と、基部21の外側壁面21eと、前壁23の内側壁面23aとにより、戻り流路40が構成されている。また、戻り流路40のうち案内羽根22のU字路羽根部22c及び戻り羽根部22bに対応する領域では、互いに隣接する一対の案内羽根22と、基部21の外側壁面21eと、収容凹部17bの壁面17fとにより戻り流路40が構成されている。
【0020】
図7及び図8を参照すると、案内羽根アセンブリ20の基部21の外側壁面21eは、矢印Fで示す戻り流路40中の流体の流れ方向に対して直交する方向における断面形状を直線状としている。この点について図10から図12に示す従来の戻り流路の断面と比較して説明すると、従来の多段流体機械では、特に図12(C)〜(D)に示す図10及び図11の位置▲3▼〜▲5▼において基部2の外側壁面2aが外向きに湾曲して突出しているので、流体の流れ方向Fでの戻り流路5の断面形状の変化が円滑でない。これに対して本実施形態では、図9(A)〜(E)に示すように、図7及び図8の位置▲1▼〜▲5▼のいずれにおいても、流れ方向Fに対して直交する方向での基部21の外側壁面21eが直線状であり、流れ方向Fでの戻り流路40の断面形状の変化が円滑である。そのため、戻り流路40での流路損失が低減され、それによって多段ポンプの効率を向上することができる。
【0021】
前述のように一つの羽根車13の出口13bから流出した流体は、戻り流路40を通って次段の羽根車13の入口13aへ流れるが、前壁23を設けたことにより、案内羽根アセンブリ20の各案内羽根は両端支持構造で支持されて高い剛性を有するので、戻り流路40中で旋回失速等の流体的不安定現象が生じた場合でも、案内羽根22の疲労破壊等を防止することができる。
【0022】
輪切り型の多段ポンプを例に本発明を説明したが、本発明は二重ケーシング型ないしはバレル型の多段ポンプを含む種々の多段流体機械に適用することができる。また、本発明の多段流体機械は、送風機、圧縮機、ボイラ給水ポンプ等の種々の用途に使用することができる。
【0023】
【発明の効果】
以上の説明から明らかなように、本発明の多段流体機械では、案内羽根部と戻り羽根部とを連続して設けた案内羽根が設けられている案内羽根アセンブリの基部の外側壁面は、案内羽根と基部の外側壁面により構成される流路中の流れ方向と直交する方向の断面形状が直線状である。そのため、流れ方向に対して流路の断面形状が円滑に変化し、流路損失が低減されるので、多段流体機械の効率を向上することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る多段ポンプを示す断面図である。
【図2】図1の部分拡大図である。
【図3】案内羽根アセンブリを前面側から見た斜視図である。
【図4】案内羽根アセンブリを前面側のやや側方から見た斜視図である。
【図5】案内羽根アセンブリを背面側から見た斜視図である。
【図6】案内羽根アセンブリを背面側のやや側方から見た斜視図である。
【図7】案内羽根アセンブリを前面側から見た部分拡大図である。
【図8】案内羽根アセンブリを背面側から見た部分拡大図である。
【図9】(A)、(B)、(C)、(D)、及び(E)は流路の断面形状を示す概略図である。
【図10】案内羽根アセンブリを前面側から見た部分拡大図である。
【図11】案内羽根アセンブリを背面側から見た部分拡大図である。
【図12】(A)、(B)、(C)、(D)、及び(E)は流路の断面形状を示す概略図である。
【符号の説明】
11 ケーシング
12 回転軸
13 羽根車
13a 入口
13b 出口
13c ボス部
13d 主板
13e 側板
13f 羽根
14 吸込側ケーシング
15 吸込口
16 吐出側ケーシング
16a 吐出口
17 ナカケーシング
17a ナカケーシング
17b 収容凹部
17c 嵌合突起
17d 第1嵌合段部
17e 第2嵌合段部
17f 壁面
18 ウェアリング
20 案内羽根アセンブリ
21 基部
21a 挿通孔
21b 前面
21c 背面
21c 縁部
21d 凹部
21e 外側壁面
22 案内羽根
22a 案内羽根部
22b 戻り羽根部
22c U字路羽根部
23 前壁
23a 内側壁面
23b 外側壁面
23d 嵌合部
31 ステーボルト
32 ラギングプレート
33A,33B シール機構
34A,34B パッキンボックス
35A,35B すべり軸受
36A,36B,36C 軸受ブラケット
37 転がり軸受
38 モータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-stage fluid machine such as a multi-stage pump used as a blower, a compressor, a boiler feed pump or the like.
[0002]
[Prior art]
Conventionally, a multi-stage fluid machine of this type includes a plurality of impellers fixed to a rotating shaft, a guide vane or a diffuser vane for restoring high-speed fluid from one impeller to static pressure, and a fluid with static pressure restoring. And a return blade that rectifies the current to a next-stage impeller (see, for example, Patent Document 1). Further, in order to guide the fluid more smoothly from one impeller to the next impeller, as shown in FIGS. 10 and 11, a portion corresponding to the guide blade and a portion corresponding to the return blade are continuously formed. There is also known a device provided with a guide blade assembly 3 in which a plurality of guide blades 1 having an integral structure are provided on a ring-shaped base 2.
[0003]
[Patent Document 1]
Japanese Patent No. 3299938 (FIG. 1)
[0004]
[Problems to be solved by the invention]
In the conventional multi-stage fluid machine including the guide vanes 1 having the integral structure, a space obtained by rotating the U-shaped flow path cross-sectional shape simply determined by a cross section including the rotation axis (meridian cross section) once around the rotation axis. However, the return flow path from one impeller to the next impeller is formed. Referring also to FIG. 12, the return flow path 5 from one impeller to the next stage impeller includes a pair of guide blades 1 adjacent to each other and a base 2 to which the base end of the guide blade 1 is fixed. It is composed of an outer wall surface 2a and a wall surface 6 arranged on the tip side of the guide blade 1. When the return flow path 5 is determined as described above, the cross-sectional shape of the return flow path 5 does not change smoothly with respect to the flow direction of the fluid indicated by the arrow F in FIGS. More specifically, FIGS. 12A to 12E show the cross-sectional shapes of the return flow path 5 at the positions (1) to (5) in FIGS. 10 and 11, and FIGS. In comparison with positions (1) and (2) shown in (B), at positions (3) to (5) shown in FIGS. 12 (C) to (E), the outer wall surface 2a of the base 2 is bent outward. It is protruding. If the cross-sectional shape of the return flow path 5 in the fluid flow direction F changes partly abruptly as described above, flow path loss occurs, which hinders improvement in efficiency of the multi-stage fluid machine.
[0005]
Therefore, an object of the present invention is to reduce the flow path loss by appropriately setting the cross-sectional shape of the flow path from one impeller to the next stage impeller.
[0006]
[Means for Solving the Problems]
The present invention provides a rotating shaft that is rotationally driven by a drive source, a plurality of impellers that are fixed to the rotating shaft and allow the fluid that has flowed in from the center side to flow out of the outer periphery, and the kinetic energy of the fluid that has flowed out of the impeller is A plurality of guide vanes having a guide vane portion for converting into a plurality of guide vanes and a return vane portion provided continuously with the guide vane portion and guiding fluid to the next stage impeller are provided on the annular base. In a multi-stage fluid machine, comprising a plurality of guide vane assemblies, at least in a direction orthogonal to a flow direction of a fluid in a flow path formed by a pair of guide vanes adjacent to each other and an outer wall surface of the base, A multi-stage fluid machine is provided, wherein a cross section of an outer wall surface of the base is linear.
[0007]
In the multi-stage fluid machine of the present invention, since the outer wall surface of the base of the guide vane assembly has a linear cross-sectional shape in a direction orthogonal to the flow direction of the fluid in the flow path, the cross-sectional shape of the flow path with respect to the flow direction is Changes smoothly. Therefore, the flow path loss is reduced, and the efficiency of the multi-stage fluid machine is improved.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0009]
FIG. 1 shows a ring-section type multi-stage pump according to an embodiment of the present invention. A rotary shaft 12 extending horizontally through a casing 11 of the multi-stage pump is provided. The casing 11 accommodates four impellers 13 and three guide blade assemblies 20 corresponding to the three impellers 13 except for the last stage impeller 13. The impeller 13 is fixed to the rotating shaft 12, and the guide blade assembly 20 is fixed to the casing 11 as described later in detail.
[0010]
The casing 11 includes a suction-side casing 14 to which a suction port 15 is attached, and a discharge-side casing 16 having a discharge port 16a, and three ring-shaped nuts are provided between the suction-side casing 14 and the discharge-side casing. A casing 17 is provided. The suction side casing 14, the discharge side casing 16, and the three Naka casings 17 are fixed to each other by being tightened with stay bolts 31 extending parallel to the rotating shaft 12. In FIG. 1, reference numeral 32 denotes a lagging plate that covers the Naka casing 17.
[0011]
Outside the suction side casing 14 and the discharge side casing 16, packing boxes 34A, 34B accommodating the respective seal mechanisms 33A, 33B are attached. Outside the packing boxes 34A and 34B, bearing brackets 36A and 36B accommodating the slide bearings 35A and 35B for supporting the rotating shaft 12 are arranged. The bearing bracket 36A is attached to the suction side casing 14, and the bearing bracket 36B is attached to the discharge side casing 16. A bearing bracket 36C that accommodates a rolling bearing 37 that supports the rotating shaft 12 is further attached to the bearing bracket 36B on the discharge side casing 16 side.
[0012]
The rotating shaft 12 is rotationally driven by a motor 38 (drive source) schematically shown in FIG. The impeller 13 is fixed to the rotating shaft 12 and rotates together with the rotating shaft 12. The fluid flowing from the inlet 13a located at the radial center of the impeller 13 flows out of the outlet 13b on the outer periphery. 2, the impeller 13 includes a main plate 13d integral with a boss 13c fixed to the rotating shaft 12, a side plate 13e spaced from the main plate 13d, a main plate 13d and a side plate 13e. And a plurality of blades 13f provided between them.
[0013]
Next, the guide blade assembly 20 will be described in detail. 3 to 6, the guide blade assembly 20 includes a disk-shaped base 21 having an insertion hole 21 a in the center thereof through which the rotary shaft 12 is inserted, and the base 21 has an outlet of one impeller 13. A plurality of guide vanes 22 for constituting a return flow passage 40 (see FIGS. 7 and 8) from 13b to the next stage impeller 13 are provided integrally. Specifically, the guide blade 22 and the base 21 are integrally formed by casting, and the base end of each guide blade 22 is fixed to the base 21. In the following description, the front surface 21 b of the base 21 of the guide blade assembly 20 refers to the surface of each guide blade assembly 20 facing the corresponding impeller 13. For example, in the case of the rightmost guide blade assembly 20 in FIG. 1, the front surface 21 b of the base 21 refers to a surface facing the first impeller 13 from the suction port 15. Further, the back surface 21f of the base 21 of the guide blade assembly 20 refers to a surface corresponding to the impeller 13 at the next stage. For example, in the case of the guide blade assembly 20 on the rightmost side in FIG. 1, the back surface 21 f of the base 21 refers to a surface facing the second-stage impeller 13 from the suction port 15.
[0014]
As shown in FIGS. 3 and 4, an edge 21c protrudes in the thickness direction on the front surface 21b of the base 21 of each guide blade assembly 20, and the impeller 13 corresponding to the shallow recess 21d surrounded by the edge 21c. Main plate 13d is disposed.
[0015]
As shown most clearly in FIGS. 3 to 6, each guide blade 22 extends from the edge 21 c of the front surface 21 b of the base 21 to the vicinity of the insertion hole 21 a of the rear surface 21 f of the base 21. The guide vanes 22 are located on the front surface 21b side of the base 21 and convert the kinetic energy of the fluid flowing out of the outlet of the impeller 13 into pressure, and the guide vanes 22a are located on the back surface 21f side of the base 21 to transfer the fluid. A return blade portion 22b for guiding to the next stage impeller 13; Further, the guide blade 22 includes a U-shaped path blade portion 22c extending from the vicinity of the outermost periphery of the front surface 21b of the base 21 to the vicinity of the outermost circle of the back surface 21c of the base 21. The guide blade portion 22a and the return blade portion 22b are connected to a U-shaped road blade portion 22c. In other words, each guide blade 22 has a structure in which a guide blade 22a, a U-shaped path blade 22c, and a return blade 22b are continuously and integrally provided.
[0016]
As shown in FIGS. 2 to 6, each guide blade assembly 20 includes a front wall 23 that connects the tip of the guide blade 22 in the guide blade portion 22a. The front wall 23 is integrally formed with the base 21 and the guide blades 22 by casting. By providing the front wall 23, the guide blades 22 of the guide blade assembly 20 are fixed at the base end to the base 21, while the front end is fixed to the ring-shaped front wall 23. In other words, each guide blade 22 is supported by the both-ends support structure. With the support structure at both ends, the rigidity of each guide blade 22 is improved. Referring to FIG. 2, the inner wall surface 23a of the front wall 23 has a curved shape along the tip of the guide blade 22a. On the other hand, the outer wall surface 23b of the front wall 23 has a cylindrical shape, and the foremost side thereof forms a fitting portion 23d with the Naka casing 17 as described later.
[0017]
Next, an assembly structure of the Naka casing 17 and the guide blade assembly 20 will be described. First, the Naka casing 17 will be described with reference to FIGS. The Naka casing 17 has a ring shape provided with an insertion hole 17a at the center for inserting the boss 13c of the rotating shaft 12 and the impeller 13. A wear ring 18 is mounted on the insertion hole 17a. An accommodation recess 17b for accommodating the corresponding guide blade assembly 20 is provided on the front side of the Naka casing 17. An annular fitting projection 17c is provided on the front side of the Naka casing 17. On the other hand, on the back side of the Naka casing 17, an annular first fitting step 17d provided near the outermost peripheral edge and an inner side (on the rotating shaft 12 side) of the first fitting step 17d are provided. And a second annular fitting step 17e.
[0018]
Referring to FIG. 2, the fitting projection 17c of the Naka casing 17 is fitted into the first fitting step 17d of the preceding Naka casing 17. The front wall 23 of the guide blade assembly 20 disposed in the accommodation recess 17 b of the Naka casing 17 projects from the Naka casing 17. An outer wall surface 23b of a portion of the front wall 23 protruding from the Naka casing 17 is fitted into the second fitting step 17e in the Naka casing 17 in the preceding stage. In other words, a portion of the outer wall surface 23b of the front wall 23 protruding from the Naka casing 17 constitutes a fitting portion 23d to be fitted into the Naka casing 17 at the preceding stage. The guide blade 22 has a three-dimensional shape because the guide blade 22a, the U-shaped road blade 22c, and the return blade 22b are provided continuously. Therefore, in order to fit the guide blades 22 into the Naka casing 17, it is necessary to form a complicated three-dimensional shape on the back side of the Naka casing 17, and it is difficult to assemble. However, in the present embodiment, by providing the front wall 23 with the fitting portion 23d for fitting with the Naka casing 17, the assembling is facilitated and the manufacturability is improved.
[0019]
Next, the return flow path 40 from the outlet 13b of the impeller 13 to the inlet 13a of the next stage impeller 13 will be described. The return flow path 40 includes a pair of guide blades 22 adjacent to each other of the guide blade assembly 20, an outer wall surface 21 e of the base 21 of the guide blade assembly 20, an inner wall surface 23 a of the front wall 23 of the guide blade assembly 20, and a hollow casing 17. It is constituted by the wall surface 17f of the accommodation recess 17b. Specifically, in a region of the return flow path 40 corresponding to the guide blade portion 22a of the guide blade 22, a pair of guide blades 22 adjacent to each other, an outer wall surface 21e of the base 21, and an inner wall surface 23a of the front wall 23 are provided. Thus, the return flow path 40 is configured. In a region of the return flow path 40 corresponding to the U-shaped path blade portion 22c and the return blade portion 22b of the guide blade 22, a pair of guide blades 22 adjacent to each other, an outer wall surface 21e of the base 21, and the accommodation recess 17b The return flow path 40 is constituted by the wall surface 17f of the second member.
[0020]
Referring to FIGS. 7 and 8, the outer wall surface 21 e of the base 21 of the guide blade assembly 20 has a straight cross-sectional shape in a direction orthogonal to the flow direction of the fluid in the return flow path 40 indicated by the arrow F. . This point will be described in comparison with the cross section of the conventional return flow path shown in FIGS. 10 to 12. In the conventional multi-stage fluid machine, in particular, the positions of FIGS. 10 and 11 shown in FIGS. In (3) to (5), since the outer wall surface 2a of the base 2 is curved outward and protrudes, the cross-sectional shape of the return channel 5 in the fluid flow direction F is not smooth. On the other hand, in the present embodiment, as shown in FIGS. 9A to 9E, at any of the positions (1) to (5) in FIGS. The outer wall surface 21e of the base 21 in the direction is straight, and the cross-sectional shape of the return flow path 40 in the flow direction F changes smoothly. Therefore, the flow path loss in the return flow path 40 is reduced, thereby improving the efficiency of the multi-stage pump.
[0021]
As described above, the fluid that has flowed out of the outlet 13b of one impeller 13 flows through the return flow passage 40 to the inlet 13a of the next stage impeller 13. However, the provision of the front wall 23 makes the guide blade assembly Since each guide blade 20 is supported by the both-ends support structure and has high rigidity, even if a fluid instability phenomenon such as a rotating stall occurs in the return passage 40, the guide blade 22 is prevented from being fatigued and broken. be able to.
[0022]
Although the present invention has been described by taking a ring-section type multi-stage pump as an example, the present invention can be applied to various multi-stage fluid machines including a double casing type or barrel type multi-stage pump. Further, the multi-stage fluid machine of the present invention can be used for various applications such as a blower, a compressor, and a boiler feed pump.
[0023]
【The invention's effect】
As is apparent from the above description, in the multi-stage fluid machine of the present invention, the outer wall surface of the base of the guide vane assembly provided with the guide vane provided with the guide vane and the return vane continuously is provided with the guide vane. The cross-sectional shape in a direction orthogonal to the flow direction in the flow path formed by the outer wall surface of the base and the base is linear. Therefore, the cross-sectional shape of the flow path changes smoothly in the flow direction, and the flow path loss is reduced, so that the efficiency of the multi-stage fluid machine can be improved.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a multi-stage pump according to an embodiment of the present invention.
FIG. 2 is a partially enlarged view of FIG.
FIG. 3 is a perspective view of the guide blade assembly as viewed from the front side.
FIG. 4 is a perspective view of the guide vane assembly as viewed from a slightly front side.
FIG. 5 is a perspective view of the guide blade assembly as viewed from the rear side.
FIG. 6 is a perspective view of the guide blade assembly as viewed from a slightly rear side.
FIG. 7 is a partially enlarged view of the guide vane assembly as viewed from the front side.
FIG. 8 is a partially enlarged view of the guide vane assembly as viewed from the rear side.
FIGS. 9A, 9B, 9C, 9D, and 9E are schematic diagrams showing the cross-sectional shape of the flow channel.
FIG. 10 is a partially enlarged view of the guide blade assembly as viewed from the front side.
FIG. 11 is a partially enlarged view of the guide blade assembly as viewed from the rear side.
FIGS. 12 (A), (B), (C), (D), and (E) are schematic diagrams showing a cross-sectional shape of a flow channel.
[Explanation of symbols]
Reference Signs List 11 Casing 12 Rotary shaft 13 Impeller 13a Inlet 13b Outlet 13c Boss 13d Main plate 13e Side plate 13f Blade 14 Suction side casing 15 Suction port 16 Discharge side casing 16a Discharge port 17 Naka casing 17a Naka casing 17b Housing recess 17c Fitting projection 17d 1 fitting step 17e second fitting step 17f wall 18 wear ring 20 guide blade assembly 21 base 21a insertion hole 21b front 21c back 21c edge 21d recess 21e outer wall 22 guide blade 22a guide blade 22b return blade 22c U-shaped road blade part 23 Front wall 23a Inner wall surface 23b Outer wall surface 23d Fitting part 31 Stay bolt 32 Lagging plate 33A, 33B Seal mechanism 34A, 34B Packing box 35A, 35B Sliding bearing 36A, 36B, 36C Bearing bracket Set 37 Rolling bearing 38 Motor

Claims (1)

駆動源により回転駆動される回転軸と、
この回転軸に固定され、中心側から流入した流体を外周から流出させる複数の羽根車と、
羽根車から流出した流体の運動エネルギを圧力に変換するための案内羽根部と、この案内羽根部と連続して設けられて流体を次段の羽根車に案内するための戻り羽根部とを備える複数の案内羽根を環状の基部に設けてなる、複数の案内羽根アセンブリとを備える、多段流体機械において、
少なくとも互いに隣接する一対の前記案内羽根と前記基部の外側壁面とにより構成される流路中の流体の流れ方向に直交する方向における、前記基部の外側壁面の断面が直線状であることを特徴とする、多段流体機械。
A rotating shaft that is rotationally driven by a driving source;
A plurality of impellers fixed to the rotating shaft and configured to allow the fluid flowing in from the center side to flow out from the outer periphery;
A guide blade for converting the kinetic energy of the fluid flowing out of the impeller into pressure, and a return blade provided continuously with the guide blade for guiding the fluid to the next stage impeller. A plurality of guide vanes, wherein the plurality of guide vanes are provided on an annular base, and a plurality of guide vane assemblies.
The cross section of the outer wall surface of the base is linear in a direction orthogonal to the flow direction of the fluid in the flow path formed by at least a pair of the guide blades adjacent to each other and the outer wall surface of the base. A multi-stage fluid machine.
JP2003136217A 2003-05-14 2003-05-14 Multistage fluid machinery Expired - Lifetime JP3869816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136217A JP3869816B2 (en) 2003-05-14 2003-05-14 Multistage fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136217A JP3869816B2 (en) 2003-05-14 2003-05-14 Multistage fluid machinery

Publications (2)

Publication Number Publication Date
JP2004339999A true JP2004339999A (en) 2004-12-02
JP3869816B2 JP3869816B2 (en) 2007-01-17

Family

ID=33526254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136217A Expired - Lifetime JP3869816B2 (en) 2003-05-14 2003-05-14 Multistage fluid machinery

Country Status (1)

Country Link
JP (1) JP3869816B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683582A (en) * 2013-08-19 2016-06-15 动力推进系统有限公司 Diffuser for a forward-swept tangential flow compressor
CN114483642A (en) * 2022-02-15 2022-05-13 上海工业泵制造有限公司 Centrifugal pump with adjustable stator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683582A (en) * 2013-08-19 2016-06-15 动力推进系统有限公司 Diffuser for a forward-swept tangential flow compressor
US10174766B2 (en) 2013-08-19 2019-01-08 Dynamic Boosting Systems Limited Diffuser for a forward-swept tangential flow compressor
CN114483642A (en) * 2022-02-15 2022-05-13 上海工业泵制造有限公司 Centrifugal pump with adjustable stator

Also Published As

Publication number Publication date
JP3869816B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
US7338251B2 (en) Turbo compressor
US7488151B2 (en) Vortical flow rotor
EP1707822A2 (en) Centrifugal fan
JP6442407B2 (en) High efficiency low specific speed centrifugal pump
US8029237B2 (en) Centrifugal fan and housing thereof
TWI768293B (en) Fan motor and manufacturing method thereof
US20140079543A1 (en) Regenerative-type fluid machinery having a guide vane on a channel wall
EP0602007A2 (en) Vacuum cleaner having an impeller and diffuser
JP2006257978A (en) Fluid pump
US20150337855A1 (en) Installation structure for drive motor of double suction blower
US7278822B2 (en) Turbomolecular pump
EP2053250B1 (en) Turbo-molecular pump
JP3872447B2 (en) Multistage fluid machinery
JP6065509B2 (en) Centrifugal compressor
JP2004339999A (en) Multistage fluid machinery
JP2001073993A (en) Centrifugal fluid machinery
WO2018011970A1 (en) Motor-integrated fluid machine
EP0477924B1 (en) Turbo vacuum pump
KR0171871B1 (en) Integrated centrifugal pump and motor
JP2004515696A (en) Feed pump
JP2000154796A (en) Impeller
JP2018066355A (en) Impeller and rotating machine
US20100322799A1 (en) Turbomolecular pump
KR102571417B1 (en) Turbo compressor
JP3115724B2 (en) Full-circulation type double suction pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

R150 Certificate of patent or registration of utility model

Ref document number: 3869816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term