JP2004339553A - Method of producing hot dip metal plated steel strip - Google Patents

Method of producing hot dip metal plated steel strip Download PDF

Info

Publication number
JP2004339553A
JP2004339553A JP2003135533A JP2003135533A JP2004339553A JP 2004339553 A JP2004339553 A JP 2004339553A JP 2003135533 A JP2003135533 A JP 2003135533A JP 2003135533 A JP2003135533 A JP 2003135533A JP 2004339553 A JP2004339553 A JP 2004339553A
Authority
JP
Japan
Prior art keywords
steel strip
temperature
hot
dip metal
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003135533A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ishida
信之 石田
Norio Inoue
紀夫 井上
Tadashi Nara
正 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
NKK Steel Sheet and Strip Corp
Original Assignee
JFE Steel Corp
NKK Steel Sheet and Strip Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, NKK Steel Sheet and Strip Corp filed Critical JFE Steel Corp
Priority to JP2003135533A priority Critical patent/JP2004339553A/en
Publication of JP2004339553A publication Critical patent/JP2004339553A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a hot dip metal plated steel strip which has excellent surface appearance by reducing the variation in the temperature of a steel strip dipped into a plating bath. <P>SOLUTION: As for the method of producing a hot dip metal plated steel strip, in continuous hot dip plating equipment provided with a heating furnace and a cooling furnace, the temperature of a steel strip subjected to annealing treatment is controlled to the one suitable for dipping into a plating bath, thereafter, the steel strip is dipped into a hot dip metal plating bath so as to be passed through and is subjected to hot dip metal plating, and successively, it is taken up from the hot dip metal plating bath to form a hot dip metal coating, the steel strip subjected to the annealing treatment is temporarily cooled to a temperature lower than that suitable for dipping into the plating bath, and is thereafter heated to a temperature suitable for dipping into the plating bath by induction heating. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は溶融金属めっき鋼帯の製造方法、特に、表面外観に優れる合金化溶融亜鉛めっき鋼帯の製造に好適な溶融金属めっき鋼帯の製造方法に関する。
【0002】
【従来の技術】
連続溶融めっき設備で、溶融金属めっき鋼帯を製造する方法について、合金化溶融亜鉛めっき鋼帯を製造する場合を例に挙げて説明する。合金化溶融亜鉛めっき鋼帯は、例えば図8に示すような加熱炉、冷却炉を備えた連続溶融めっき設備を用いて製造される。
【0003】
図8において、1は予熱炉、2は加熱炉で、直火加熱炉(DF)3と輻射管加熱炉(RT)4を備え、5は冷却炉で、ガスジェット冷却炉(JC)6と調整冷却炉7を備え、8はスナウト、9は溶融めっき槽、10は溶融亜鉛めっき浴、11はガスワイピングノズル、12は合金化炉、13は冷却装置である。ガスジェト冷却炉6は、低温の雰囲気ガスを鋼帯に直接吹き付けることで鋼帯を冷却する。調整冷却炉7は、空冷管と電気ヒータ(輻射式)を備える。
【0004】
直火加熱炉3出側、輻射管加熱炉4出側、ガスジェット冷却炉6出側、スナウト8に、前記各部における鋼帯温度を検出する温度計15、16、17、18が設置されている。
【0005】
図8の設備を用いて合金化溶融亜鉛めっき鋼板は次のようにして製造される。鋼帯Sは、予熱炉1で予熱され、直火加熱炉3で、温度計15で検出する鋼帯温度T1が所定温度T1aになるように制御され、輻射管加熱炉4で、温度計16で検出する鋼帯温度T2が所定焼鈍温度T2aになるように制御される。
【0006】
次に、鋼帯Sは、スナウト8の温度計18で検出される鋼帯温度T4がめっき浴に浸漬されるのに適した所定温度T4aになるように、冷却炉5で冷却される。前記所定温度T4aは、めっき品質に大きな影響を与える因子であり、通常、溶融亜鉛めっき浴温度に近似した温度に調整される。冷却炉5はガスジェット冷却炉6と調整冷却炉7を備えるが、調整冷却炉7は、加熱手段と冷却手段を備えるがその能力は小さく、鋼帯はほぼ一定温度に保熱される程度であり、または冷却されたとしてもその温度低下は少ない。そのため、冷却炉5における鋼帯温度は、実質的にガスジェット冷却炉6で制御され、ガスジェット冷却炉6出側の鋼帯温度T3の目標値T3aは、スナウト8の温度計18で検出する鋼帯温度が所定温度T4aになるように、鋼帯サイズ、通板速度等に基き、調整冷却炉7及びスナウト8部分における鋼帯の温度低下量を考慮して、前記所定温度T4aより高温に設定される。
【0007】
冷却炉5で冷却された鋼帯Sは、スナウト8を経て溶融亜鉛めっき浴10に浸漬通板されて亜鉛めっきされる。次いで溶融亜鉛めっき浴10から引き上げられ、ガスワイピングノズル11でめっき付着量が制御された後、合金化炉12で加熱されてめっき皮膜が合金化処理され、冷却装置13で冷却されて合金化溶融亜鉛めっき鋼帯が製造される。
【0008】
図9は、前記設備で合金化溶融亜鉛めっき鋼帯を製造する場合に、鋼帯Sが溶融亜鉛めっき浴10に浸漬される前のヒートサイクルを説明する概念図である。図9中、T1は直火加熱温度(直火加熱炉(DF)3出側鋼帯温度)、T2は焼鈍温度(輻射管加熱炉(RT)4出側鋼帯温度)、T3は冷却温度(ジェット冷却炉(JC)6出側鋼帯温度)、T4はスナウト8部鋼帯温度である。図9では、鋼帯温度T3は鋼帯温度T4より高温である。
【0009】
冷却炉5には、該炉体を構成する耐火物や該炉内に装備される搬送ロール等の付帯物がある。これらの熱慣性が大きいため、冷却炉5における鋼帯温度制御の応答性は劣る。そのため、ジェット冷却炉6出側の鋼帯温度T3の変動が大きく、その結果、冷却炉5で冷却後の鋼帯温度変動(スナウト8部の鋼帯温度T4の変動)が大きくなり、従って溶融亜鉛めっき浴10に浸漬される鋼帯温度変動が大きくなる。この温度変動は、鋼帯サイズや通板速度が変化したときに一層顕著になる。前記温度変動が大きいと以下の問題が発生しやすくなる。
【0010】
溶融亜鉛めっき浴10に浸漬される鋼帯温度が溶融亜鉛めっき浴温度に対して高くなりすぎると、鋼帯幅方向中央部にフリージンク(合金化不足に起因する欠陥)が発生する。また、溶融亜鉛めっき浴10に浸漬される鋼帯温度が溶融亜鉛めっき浴温度に対して低くなりすぎると、鋼帯端縁部にフリージンクが発生するようになる。浸漬される鋼帯温度が溶融亜鉛めっき浴温度に対して低くなりすぎることに起因して発生するフリージンクは、該鋼帯温度が高すぎることに起因して発生するフリージンクよりもより顕著であり、品質影響がより大きい。
【0011】
また、鋼帯Sが溶融亜鉛めっき浴10に浸漬される際、浸漬される鋼帯の温度変動が大きくなると、溶融めっき槽9に生成される浮遊ドロスに影響を来たし、鋼帯Sに付着してドロス欠陥が発生し易くなる。
【0012】
前記問題の発生を軽減、防止するには、溶融亜鉛めっき浴10に浸漬される鋼帯温度変動を小さくすることが必要である。
【0013】
特許文献1には、焼鈍熱処理後の鋼帯を溶融亜鉛浴に連続して浸漬通板させて亜鉛めっきするに際し、スナウト部内に設けられた誘導加熱装置によって鋼帯を加熱し、溶融亜鉛浴に侵入する直前の鋼帯温度を微調整することで、溶融亜鉛めっき浴へ侵入する鋼帯板温を調整する方法が提案されている。
【0014】
以下に先行技術文献情報について記載する。
【0015】
【特許文献1】
特開平4−329856号公報
【0016】
【発明が解決しようとする課題】
しかし、特許文献1の方法は、スナウト部に搬送される鋼帯温度変動が大きい場合、例えば搬送される鋼帯サイズや通板速度変更時等でスナウト部に搬送される鋼帯温度変動が大きくなると、該鋼帯温度が所定温度より高めに変動するようになるため、めっき浴に浸漬される鋼帯温度変動を確実に低減できない。またスナウト内のめっき浴面から蒸発した亜鉛蒸気が誘導加熱装置内で凝縮して誘導加熱コイルが短絡しやすく、操業安定性に問題がある。
【0017】
本発明は、前記事情を考慮し、めっき浴に浸漬される鋼帯温度変動を小さくすることで、例えば合金化溶融亜鉛めっき鋼帯を製造する際に起こるフリージンクやドロス付着の問題を軽減できる、表面外観に優れる溶融金属めっき鋼帯の製造方法を提供することを目的とする。
【0018】
また、本発明は、さらに、操業安定性に優れる溶融金属めっき鋼帯の製造方法を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記課題を解決するための本発明の手段は以下の通りである。
【0020】
(1)加熱炉、冷却炉を備えた連続溶融めっき設備において、焼鈍処理した鋼帯をめっき浴に浸漬させるのに適した温度に調節した後溶融金属めっき浴に浸漬通板させて溶融金属めっきを行い、引き続き前記溶融金属めっき浴から引き上げて溶融金属被覆を形成する溶融金属めっき鋼帯の製造方法において、焼鈍処理した鋼帯を、一旦前記めっき浴に浸漬させるのに適した温度よりも低い温度に冷却した後、誘導加熱で前記めっき浴に浸漬させるのに適した温度に加熱することを特徴とする溶融金属めっき鋼帯の製造方法。
【0021】
(2)冷却炉後部に誘導加熱装置を設けて誘導加熱することを特徴とする前記(1)に記載の溶融金属めっき鋼帯の製造方法。
【0022】
(3)溶融金属は、溶融亜鉛であることを特徴とする前記(1)または(2)に記載の溶融金属めっき鋼帯の製造方法。
【0023】
(4)前記(3)に記載の溶融金属めっき鋼帯の製造方法において、前記溶融金属めっき浴から引き上げて溶融金属被覆を形成した後、引き続き加熱して合金化処理を行うことを特徴とする溶融金属めっき鋼帯の製造方法。
【0024】
【発明の実施の形態】
図1は、本発明の実施の形態の説明に参照する連続溶融めっき設備の要部を示す概略図である。図1において、説明済みの図8に示された部分と同じ作用の部分には同じ符号を付してその説明を省略する。図1では、図8に示した設備に対して、誘導加熱装置14及び制御装置19が追加されている。誘導加熱装置14は、冷却炉5出側(調整冷却炉7出側)に設置されている。
【0025】
以下、本発明の実施の形態について、図1の設備を用いて合金化溶融亜鉛めっき鋼帯を製造する場合を例に挙げて説明する。
【0026】
図2は、図1の設備を用いて合金化溶融亜鉛めっき鋼帯を製造する場合に、鋼帯が溶融亜鉛めっき浴に浸漬される前のヒートサイクルを説明する概念図である。図2中、T1は直火加熱温度(直火加熱炉(DF)3出側鋼帯温度)、T2は焼鈍温度(輻射管加熱炉(RT)4出側鋼帯温度)、T3は冷却温度(ガスジェット冷却炉(JC)6出側鋼帯温度)、T4はスナウト8部鋼帯温度である。図2では、鋼帯温度T3は鋼帯温度T4より低温である。
【0027】
鋼帯Sは、直火加熱炉(DF)3で、直火加熱炉3出側の温度計15で検出する鋼帯温度T1が所定直火加熱温度T1aになるように制御され、輻射管加熱炉(RT)4で、輻射管加熱炉4出側の温度計16で検出する鋼帯温度T2が所定焼鈍温度T2aになるように制御される。鋼帯温度T1a、T2aは、鋼帯Sの鋼成分、材質規格、鋼帯寸法、鋼帯通板速度等に基いて定められる。
【0028】
次に、鋼帯Sはガスジェット冷却炉(JC)6で、ガスジェット冷却炉6出側の温度計17で検出する鋼帯温度T3が所定温度T3bになるように冷却制御される。前記鋼帯温度T3bは、スナウト8における鋼帯温度T4aより低い温度に設定される。調整冷却炉7では、鋼帯温度はほぼ一定に保持するように制御され、または温度低下があってもその程度は少ないように制御される。
【0029】
ガスジェット冷却炉6出側の鋼帯温度T3の設定温度T3bを低くしすぎると、電力コストの上昇を招く。係る観点から、ガスジェット冷却炉6出側の鋼帯温度の設定温度T3bとスナウト8の鋼帯温度T4aの差ΔT(=T4a−T3b)は30℃以下とすることが好ましい。
【0030】
誘導加熱装置14を用いて、スナウト8の温度計18で検出する鋼帯温度T4が所定温度T4aとなるように加熱制御される。鋼帯温度T4aは、良好なめっき品質を得る観点から、めっき浴に浸漬される鋼帯温度がめっき浴温度とほぼ同程度の温度になるように、スナウト温度検出部からめっき浴に浸漬されるまでの間の鋼帯温度低下量を考慮して設定される。亜鉛めっきの場合、めっき浴温度は450〜480℃程度に設定され、鋼帯温度はT4a、通常、めっき浴温度に対して+20〜30℃程度である。
【0031】
誘導加熱装置14で所定温度T4aに加熱された鋼帯Sはスナウト8を経て溶融亜鉛めっき浴10に浸漬通板させて亜鉛めっきされる。次いで鋼帯は前記溶融亜鉛めっき浴10から引き上げられ、ガスワイピングノズル11でめっき付着量が制御された後、合金化炉12で加熱されてめっき層が合金化処理され、冷却装置13で冷却されて合金化溶融亜鉛めっき鋼帯が製造される。
【0032】
本発明では、冷却炉5の鋼帯温度T3を、一旦スナウト8部の鋼帯温度T4aよりも低温に調整した後、誘導加熱装置14を用いてスナウト8部の鋼帯温度T4を所要温度T4aに再加熱する。誘導加熱装置14は温度制御の応答性に優れるので、前記鋼帯温度T3が変動していても、誘導加熱装置14で再加熱後の鋼帯温度T4は所要温度T4aに精度よく制御される。その結果、溶融亜鉛めっき浴10に浸漬される鋼帯の温度変動が低減され、ドロス付着が低減され、また合金化処理時のフリージンクの発生が防止されることで、表面外観に優れた合金化溶融亜鉛めっき鋼帯が得られる。
【0033】
連続溶融めっき設備では、種々のサイズの鋼帯が接続されて連続的に通板される。鋼帯同士が接続される鋼帯接続部前後で、冷却炉5において鋼帯を冷却するための熱負荷が急激に変わる。そのため、従来技術では、該接続部近傍部分において、鋼帯温度T3の変動が特に大きくなり、これに対応して鋼帯温度T4の変動が大きくなることが不可避であった。誘導加熱装置14は、温度制御の応答性に優れるので、本発明では、鋼帯接続部近傍部分においても、鋼帯温度T4の変動を低減できることで、溶融亜鉛めっき浴10に浸漬される鋼帯の温度変動を、従来技術に比べて顕著に低減できる。
【0034】
また、接続部通過後冷却のための熱負荷が増加、例えば鋼帯厚が薄物から厚物に変更される場合、後行鋼帯の接続部近傍部分の鋼帯温度T3は上昇し、一方、前記熱負荷が減少、例えば鋼帯厚が厚物から薄物に変更される場合、後行鋼帯の接続部近傍部分の鋼帯温度T3は低下する傾向がある。従って、前記鋼帯温度T3の変動傾向を考慮し、接続部近傍部分について、予め設定した鋼帯温度T3の設定値T3bを変更することで、接続部近傍部分の鋼帯温度T4の温度変動をさらに低減することができる。例えば、鋼帯が薄物から厚物に移行するときは、先行鋼帯と後行鋼帯の接合部近傍部分について、ガスジェット冷却炉6出側の鋼帯温度T3の設定値を予め設定されている設定値T3bより低めに変更して冷却することで、接合部近傍部分におけるスナウト8での鋼帯温度T4の変動をより軽減できる。また、厚物から薄物に移行するときは、先行鋼帯と後行鋼帯の接合部近傍部分について、ガスジェット冷却炉6出側の鋼帯温度T3の設定値を予め設定されている設定値T3bより高めに変更して冷却するとよい。
【0035】
図1に示した設備では、調整冷却炉7通過後、誘導加熱装置14入側部における鋼帯温度を検出する温度計は設置されていない。該部分に温度計を設けてもよい。この場合、該温度計で検出する鋼帯温度が前記温度T3bになるように冷却炉5における温度制御を行っても良い。
【0036】
溶融亜鉛めっきを行うと、スナウト8内では、溶融亜鉛めっき浴10表面から亜鉛が蒸発する。蒸発した亜鉛が誘導加熱装置14内で凝縮すると、該誘導加熱装置14の誘導加熱コイルが短絡するおそれがある。
【0037】
蒸発した亜鉛蒸気の多くはスナウト8内で凝縮する。図1に示した設備では、誘導加熱装置14はスナウト8上流(鋼帯S通板方向に対して上流側)の冷却炉5出側(調整冷却炉7出側)に設けられているので、誘導加熱装置14で亜鉛蒸気が凝縮することによる誘導加熱コイル短絡の問題は大幅に緩和されている。
【0038】
誘導加熱装置14内での亜鉛蒸気の凝縮の問題を解消する観点からは、溶融亜鉛めっき浴面から蒸発した亜鉛蒸気を誘導加熱装置14側に流れないようにすることがより好ましい。
【0039】
係る観点からは、めっき浴面と誘導加熱装置14の間のスナウト8部分に排気口を設けて、溶融金属浴面から蒸発した亜鉛蒸気を該排気口からスナウト外に排出すること、また炉内を還元性雰囲気に保持するために供給される炉内ガス(H−Nガス)をスナウト内に設けられた排気口より上流側の炉内部分、より好ましくは冷却炉及びそれより上流側の炉内部分に供給することが好ましい。これによってめっき浴面から蒸発した亜鉛蒸気が誘導加熱装置14側に流れなくなり、誘導加熱装置内で亜鉛蒸気が凝縮することによる誘導加熱コイル短絡の問題が解消される。
【0040】
図3は、図1に示した連続溶融亜鉛めっき設備において、スナウト8下部のめっき浴面に近接した側の鋼帯表面に対面するスナウト壁面にめっき浴面から蒸発した亜鉛蒸気を排出するための排気口を設けて、めっき浴面から蒸発した亜鉛蒸気をスナウト外に速やかに排出させるようにしたものである。図3において、21は排気口、22は排気口に接続して立設された排気管、23は弁である。図3には、温度計18は記載されていない。また、炉内を還元性雰囲気に保持するために供給されるH−Nガスは、スナウト8内には供給されず、調整冷却炉7及びその上流の炉内部分に供給されている。
【0041】
図1の設備のスナウト8に図3に示した亜鉛蒸気排気手段を設けた場合、次のようにして亜鉛蒸気がスナウト外に排出される。調整冷却炉7及びその上流の炉内部分に供給されたH−Nガスは、上流側(鋼帯通板方向と逆方向)に流れ、直火加熱炉3に流出する。また直火加熱炉3では直火バーナから鋼帯Sを加熱するために大量の燃料ガスと空気が送気されるため、直火加熱炉3〜誘導加熱装置14が配置された炉内の各部及びスナウト8内の雰囲気はプラス圧に保持されている。さらに、立設された排気管22のドラフト作用もあることから、弁23を適度に開くことで、スナウト8内のめっき浴面から蒸発した亜鉛蒸気を含む雰囲気ガスは排気口21から排気管22を経てスナウト8外すなわち炉外に排気され、外気(大気)がスナウト8内に流入することもない。亜鉛蒸気が排気口21からスナウト8外に排出されるので、誘導加熱装置14での亜鉛蒸気凝縮の問題は解消される。また外気侵入に起因してめっき性が不良になることもない。
【0042】
【実施例】
(実施例1)
合金化溶融亜鉛めっき鋼帯を製造時において、鋼帯サイズが薄物から厚物に変更されたときの接合部(溶接部)近傍部分における鋼帯温度の変動状況及びフリージンクの発生状況を示す。図4は本発明法による例、図5は従来法による例であり、いずれも鋼帯サイズが0.6mm×1219mm(先行鋼帯)から0.8mm×1219mm(後行鋼帯)に変更された場合である。
【0043】
本発明法では、図1の設備を用い、図2に示されるヒートサイクルのように、ガスジェット冷却炉6の鋼帯温度T3の目標値T3bをスナウト8部における鋼帯温度T4の目標値T4a(=480℃)より低温にして冷却した後、調整冷却炉7ではガスジェット冷却炉6出側鋼帯温度をほぼ保持するように炉温を設定し、誘導加熱装置14でスナウト8部の鋼帯温度T4が前記所定温度T4aになるように制御した。
【0044】
従来法では、図8の設備を用い、図9に示されるヒートサイクルのように、ガスジェット冷却炉6の鋼帯温度T3の設定値T3aを、スナウト8部の鋼帯温度T4が前記所要温度T4aになるように、鋼帯温度T4aより高めに設定して冷却制御した。なお、何れもめっき浴温度は460℃である。
【0045】
従来法(図5)では、後行鋼帯の溶接部近傍部分で鋼帯温度T4の目標温度T4aに対する偏差が大きくなり、図5中、ハッチングで示される領域でフリージンクが発生した。一方、本発明法(図4)では、後行鋼帯の溶接部近傍部分の鋼帯温度T4の目標温度T4aに対する偏差は従来法に比べて小さく、フリージンクは発生しなかった。
【0046】
(実施例2)
合金化溶融亜鉛めっき鋼帯を製造時において、鋼帯サイズが厚物から薄物に変更されたときの接合部(溶接部)近傍部分における鋼帯温度の変動状況及びフリージンクの発生状況を示す。図6は本発明法による例、図7は従来法による例であり、いずれも鋼帯サイズが1.2mm×914mm(先行鋼帯)から0.8mm×914mm(後行鋼帯)に変更された場合である。本発明法、従来法とも、実施例1同様に温度制御され、めっき浴温度も実施例1と同様である。
【0047】
従来法(図7)では、後行鋼帯の溶接部近傍部分で鋼帯温度T4は目標温度T4aに対して低下し、その偏差が大きかったことで、図7中、ハッチングで示される領域で鋼帯温度低下に起因するフリージンクが発生した。一方、本発明法(図6)では、後行鋼帯の溶接部近傍部分(図6中、ハッチングで示される領域)で不可避的に発生しやすいフリージンクが発生したが、従来法に比べて、その長さは短く、程度も軽かった。また、後行鋼帯の溶接部近傍部分の鋼帯温度T4は目標温度T4aに対して低下したがその偏差は従来法に比べて小さかったため、鋼帯温度低下に起因するフリージンクは発生しなかった。
【0048】
【発明の効果】
本発明によれば、めっき浴に浸漬される鋼帯温度の変動が低減され、めっき浴に浸漬されるのに適した温度に制御できるので、表面外観に優れる溶融金属めっき鋼帯が得られる。本発明は、フリージンクの発生やドロス付着の発生を防止し、表面外観に優れる合金化溶融亜鉛めっき鋼帯を製造する方法として好適である。
【0049】
また、本発明では、誘導加熱コイル短絡の問題が解消され、操業安定性にも優れる。
【図面の簡単な説明】
【図1】本発明に係る合金化溶融亜鉛めっき鋼帯の製造方法の実施の形態の説明に参照した連続溶融めっき設備の要部を示す概略図。
【図2】本発明法で製造される合金化溶融亜鉛めっき鋼帯の溶融亜鉛めっき浴に浸漬される前の鋼帯のヒートサイクルを説明する概念図。
【図3】図1の連続溶融亜鉛めっき設備において、溶融亜鉛めっき浴面から蒸発した亜鉛蒸気をスナウト外に排出するための排気口をスナウト下部に設けた場合のスナウト近傍の要部配置を示す図。
【図4】本発明法において、鋼帯寸法が0.6mm×1219mm→0.8mm×1219mmに変更されたときの溶接部近傍部分における鋼帯温度T3及びT4の変動状態を示す図。
【図5】従来法において、鋼帯寸法が0.6mm×1219mm→0.8mm×1219mmに変更されたときの溶接部近傍部分における鋼帯温度T3及びT4の変動状態を示す図。
【図6】本発明法において、1.2mm×914mm→0.8mm×914mmに変更されたときの溶接部近傍部分における鋼帯温度T3及びT4の変動状態を示す図。
【図7】従来法において、1.2mm×914mm→0.8mm×914mmに変更されたときの溶接部近傍部分における鋼帯温度T3及びT4の変動状態を示す図。
【図8】従来技術の合金化溶融亜鉛めっき鋼帯の製造方法の説明に参照した連続溶融めっき設備の要部を示す概略図。
【図9】従来技術の合金化溶融亜鉛めっき鋼帯の製造方法において、溶融亜鉛めっき浴に浸漬される前の鋼帯のヒートサイクルを説明する概念図。
【符号の説明】
S 鋼帯
1 予熱炉
2 加熱炉
3 直火加熱炉(DF)
4 輻射管加熱炉(RT)
5 冷却炉
6 ガスジェット冷却炉(JC)
7 調整冷却炉
8 スナウト
9 溶融めっき槽
10 溶融亜鉛めっき浴
11 ガスワイピングノズル
12 合金化炉
13 冷却装置
14 誘導加熱装置
15〜18 温度計
19 制御装置
21 排気口
22 排気管
23 弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a hot-dip galvanized steel strip, and more particularly to a method for producing a hot-dip galvanized steel strip suitable for producing an alloyed hot-dip galvanized steel strip having excellent surface appearance.
[0002]
[Prior art]
A method for producing a hot-dip galvanized steel strip in a continuous hot-dip galvanizing facility will be described with reference to an example in which a galvannealed steel strip is produced. The alloyed hot-dip galvanized steel strip is manufactured using, for example, a continuous hot-dip galvanizing facility provided with a heating furnace and a cooling furnace as shown in FIG.
[0003]
8, reference numeral 1 denotes a preheating furnace, 2 denotes a heating furnace, which includes an open flame heating furnace (DF) 3 and a radiation tube heating furnace (RT) 4. Reference numeral 5 denotes a cooling furnace, and a gas jet cooling furnace (JC) 6 An adjustment cooling furnace 7 is provided, 8 is a snout, 9 is a hot-dip galvanizing bath, 10 is a hot-dip galvanizing bath, 11 is a gas wiping nozzle, 12 is an alloying furnace, and 13 is a cooling device. The gas jet cooling furnace 6 cools the steel strip by directly blowing a low-temperature atmosphere gas onto the steel strip. The conditioning cooling furnace 7 includes an air cooling tube and an electric heater (radiation type).
[0004]
Thermometers 15, 16, 17, and 18 for detecting the temperature of the steel strip in each of the above-mentioned parts are installed at the outlet of the direct fire heating furnace 3, the outlet of the radiation tube heating furnace 4, the outlet of the gas jet cooling furnace 6, and the snout 8. I have.
[0005]
An alloyed hot-dip galvanized steel sheet is manufactured using the equipment of FIG. 8 as follows. The steel strip S is preheated in the preheating furnace 1 and is controlled in the direct heating furnace 3 so that the steel strip temperature T1 detected by the thermometer 15 becomes the predetermined temperature T1a. Is controlled so that the steel strip temperature T2 detected by the above becomes the predetermined annealing temperature T2a.
[0006]
Next, the steel strip S is cooled in the cooling furnace 5 so that the steel strip temperature T4 detected by the thermometer 18 of the snout 8 becomes a predetermined temperature T4a suitable for being immersed in the plating bath. The predetermined temperature T4a is a factor that greatly affects the plating quality, and is usually adjusted to a temperature close to the hot-dip galvanizing bath temperature. The cooling furnace 5 includes a gas jet cooling furnace 6 and a conditioning cooling furnace 7, and the conditioning cooling furnace 7 includes heating means and cooling means but has a small capacity, and the steel strip is kept at a substantially constant temperature. Or, even if cooled, the temperature drop is small. Therefore, the steel strip temperature in the cooling furnace 5 is substantially controlled by the gas jet cooling furnace 6, and the target value T3a of the steel strip temperature T3 on the exit side of the gas jet cooling furnace 6 is detected by the thermometer 18 of the snout 8. The steel strip temperature is set to be higher than the predetermined temperature T4a so that the steel strip temperature becomes the predetermined temperature T4a, based on the steel strip size, the passing speed, etc., and taking into account the temperature reduction amount of the steel strip in the adjusted cooling furnace 7 and the snout 8 portion. Is set.
[0007]
The steel strip S cooled in the cooling furnace 5 is immersed in a hot-dip galvanizing bath 10 through a snout 8 and galvanized. Next, after being pulled up from the hot-dip galvanizing bath 10 and controlling the amount of coating by a gas wiping nozzle 11, the coating film is heated by an alloying furnace 12 to be alloyed, and cooled by a cooling device 13 to be alloyed and melted. Galvanized steel strip is manufactured.
[0008]
FIG. 9 is a conceptual diagram for explaining a heat cycle before the steel strip S is immersed in the hot-dip galvanizing bath 10 when the alloyed hot-dip galvanized steel strip is manufactured by the above-mentioned equipment. In FIG. 9, T1 is the direct heating temperature (the temperature of the steel strip on the exit side of the direct heating furnace (DF) 3), T2 is the annealing temperature (the temperature of the steel strip on the exit side of the radiation tube heating furnace (RT) 4), and T3 is the cooling temperature. (Jet cooling furnace (JC) 6 outlet steel strip temperature), T4 is the snout 8 part steel strip temperature. In FIG. 9, the steel strip temperature T3 is higher than the steel strip temperature T4.
[0009]
The cooling furnace 5 includes refractories constituting the furnace body and incidental objects such as transport rolls provided in the furnace. Due to the large thermal inertia, the response of the steel strip temperature control in the cooling furnace 5 is poor. Therefore, the fluctuation of the steel strip temperature T3 on the exit side of the jet cooling furnace 6 is large, and as a result, the fluctuation of the steel strip temperature after cooling in the cooling furnace 5 (the fluctuation of the steel strip temperature T4 of the snout 8 part) becomes large, and accordingly, the melting The temperature fluctuation of the steel strip immersed in the galvanizing bath 10 increases. This temperature fluctuation becomes more remarkable when the steel strip size or the passing speed changes. If the temperature fluctuation is large, the following problems are likely to occur.
[0010]
If the temperature of the steel strip immersed in the hot-dip galvanizing bath 10 is too high with respect to the hot-dip galvanizing bath temperature, free zinc (defect due to insufficient alloying) is generated at the center in the width direction of the steel strip. When the temperature of the steel strip immersed in the hot-dip galvanizing bath 10 is too low with respect to the hot-dip galvanizing bath temperature, free zinc is generated at the edge of the steel strip. The free zinc generated due to the steel strip temperature being immersed being too low with respect to the hot dip galvanizing bath temperature is more remarkable than the free zinc generated due to the steel strip temperature being too high. Yes, quality impact is greater.
[0011]
Further, when the steel strip S is immersed in the hot-dip galvanizing bath 10, if the temperature fluctuation of the steel strip immersed becomes large, it affects the floating dross generated in the hot-dip galvanizing bath 9 and adheres to the steel strip S. Dross defects easily occur.
[0012]
In order to reduce or prevent the above-mentioned problem, it is necessary to reduce the temperature fluctuation of the steel strip immersed in the hot-dip galvanizing bath 10.
[0013]
In Patent Literature 1, when the steel strip after the annealing heat treatment is continuously immersed and passed through a molten zinc bath to perform galvanization, the steel strip is heated by an induction heating device provided in a snout part, and the steel strip is heated. A method has been proposed in which the temperature of a steel strip entering a hot-dip galvanizing bath is adjusted by finely adjusting the temperature of the steel strip immediately before the penetration.
[0014]
The prior art document information is described below.
[0015]
[Patent Document 1]
JP-A-4-329856
[Problems to be solved by the invention]
However, when the temperature of the steel strip conveyed to the snout portion is large, the temperature of the steel strip conveyed to the snout portion is large when, for example, the size of the conveyed steel strip or the passing speed is changed. Then, since the steel strip temperature fluctuates higher than the predetermined temperature, the fluctuation of the temperature of the steel strip immersed in the plating bath cannot be reliably reduced. In addition, zinc vapor evaporated from the plating bath surface in the snout is condensed in the induction heating device, and the induction heating coil is likely to be short-circuited, resulting in a problem in operational stability.
[0017]
The present invention, in consideration of the above circumstances, reduces the temperature fluctuation of a steel strip immersed in a plating bath, thereby reducing the problem of free zinc and dross adhesion that occurs, for example, when manufacturing an alloyed hot-dip galvanized steel strip. Another object of the present invention is to provide a method for producing a hot-dip metal-plated steel strip having excellent surface appearance.
[0018]
Another object of the present invention is to provide a method for producing a hot-dip metal-plated steel strip having excellent operation stability.
[0019]
[Means for Solving the Problems]
Means of the present invention for solving the above problems are as follows.
[0020]
(1) In a continuous hot-dip plating facility equipped with a heating furnace and a cooling furnace, the annealed steel strip is adjusted to a temperature suitable for immersion in a plating bath, and then immersed in a hot-dip metal plating bath to pass hot-dip metal plating. Performing, in the method of manufacturing a hot-dip metal-plated steel strip to subsequently withdraw from the hot-dip metal plating bath to form a hot-dip metal coating, the annealed steel strip is lower than a temperature suitable for once immersing in the hot-dip bath. A method for producing a hot-dip galvanized steel strip, comprising cooling to a temperature, and then heating to a temperature suitable for being immersed in the plating bath by induction heating.
[0021]
(2) The method for producing a hot-dip galvanized steel strip according to the above (1), wherein an induction heating device is provided at a rear portion of the cooling furnace to perform induction heating.
[0022]
(3) The method according to (1) or (2), wherein the molten metal is molten zinc.
[0023]
(4) The method for producing a hot-dip metal-plated steel strip according to the above (3), wherein the hot-dip-metal coating is pulled up from the hot-dip metal plating bath to form a hot-dip metal coating. Manufacturing method of hot-dip metal-plated steel strip
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic diagram showing a main part of a continuous hot-dip plating facility referred to in describing an embodiment of the present invention. In FIG. 1, the same reference numerals are given to the portions having the same operations as the portions shown in FIG. 8 already described, and the description thereof will be omitted. 1, an induction heating device 14 and a control device 19 are added to the equipment shown in FIG. The induction heating device 14 is installed on the outlet side of the cooling furnace 5 (the outlet side of the regulated cooling furnace 7).
[0025]
Hereinafter, an embodiment of the present invention will be described with reference to an example in which an alloyed hot-dip galvanized steel strip is manufactured using the equipment shown in FIG.
[0026]
FIG. 2 is a conceptual diagram illustrating a heat cycle before the steel strip is immersed in a hot-dip galvanizing bath when a galvannealed steel strip is manufactured using the equipment of FIG. 1. In FIG. 2, T1 is an open flame heating temperature (direct fire furnace (DF) 3 outlet steel strip temperature), T2 is an annealing temperature (radiation tube heating furnace (RT) 4 outlet steel strip temperature), and T3 is a cooling temperature. (Gas jet cooling furnace (JC) 6 outlet steel strip temperature), T4 is the steel strip temperature of the snout 8 part. In FIG. 2, the steel strip temperature T3 is lower than the steel strip temperature T4.
[0027]
The steel strip S is controlled by a direct heating furnace (DF) 3 so that the steel strip temperature T1 detected by the thermometer 15 on the outlet side of the direct heating furnace 3 becomes a predetermined direct heating temperature T1a. In the furnace (RT) 4, the steel strip temperature T2 detected by the thermometer 16 on the exit side of the radiation tube heating furnace 4 is controlled so as to become a predetermined annealing temperature T2a. The steel strip temperatures T1a and T2a are determined based on the steel composition of the steel strip S, material specifications, steel strip dimensions, steel strip passing speed, and the like.
[0028]
Next, the steel strip S is controlled to be cooled by the gas jet cooling furnace (JC) 6 so that the steel strip temperature T3 detected by the thermometer 17 on the outlet side of the gas jet cooling furnace 6 becomes the predetermined temperature T3b. The steel strip temperature T3b is set to a temperature lower than the steel strip temperature T4a in the snout 8. In the controlled cooling furnace 7, the steel strip temperature is controlled so as to be kept substantially constant, or the temperature is controlled so that even if there is a temperature drop, the degree thereof is small.
[0029]
If the set temperature T3b of the steel strip temperature T3 on the outlet side of the gas jet cooling furnace 6 is too low, an increase in power cost is caused. From this viewpoint, the difference ΔT (= T4a−T3b) between the set temperature T3b of the steel strip temperature on the outlet side of the gas jet cooling furnace 6 and the steel strip temperature T4a of the snout 8 is preferably set to 30 ° C. or less.
[0030]
The heating is controlled using the induction heating device 14 so that the steel strip temperature T4 detected by the thermometer 18 of the snout 8 becomes the predetermined temperature T4a. From the viewpoint of obtaining good plating quality, the steel strip temperature T4a is immersed in the plating bath from the snout temperature detection unit so that the steel strip temperature immersed in the plating bath is substantially the same as the plating bath temperature. The temperature is set in consideration of the steel strip temperature decrease during the period. In the case of zinc plating, the plating bath temperature is set to about 450 to 480 ° C., and the steel strip temperature is T4a, usually about +20 to 30 ° C. with respect to the plating bath temperature.
[0031]
The steel strip S heated to the predetermined temperature T4a by the induction heating device 14 is immersed in the hot-dip galvanizing bath 10 through the snout 8 and galvanized. Next, the steel strip is pulled up from the hot-dip galvanizing bath 10, and the amount of coating is controlled by a gas wiping nozzle 11. Then, the steel strip is heated in an alloying furnace 12 to alloy the plated layer, and cooled in a cooling device 13. To produce an alloyed hot-dip galvanized steel strip.
[0032]
In the present invention, after the steel strip temperature T3 of the cooling furnace 5 is once adjusted to be lower than the steel strip temperature T4a of the eight parts of the snout, the steel strip temperature T4 of the eight parts of the snout is changed to the required temperature T4a by using the induction heating device 14. Reheat. Since the induction heating device 14 has excellent responsiveness in temperature control, even if the steel strip temperature T3 fluctuates, the steel strip temperature T4 after reheating by the induction heating device 14 is accurately controlled to the required temperature T4a. As a result, the temperature fluctuation of the steel strip immersed in the hot-dip galvanizing bath 10 is reduced, the dross adhesion is reduced, and the generation of free zinc during the alloying treatment is prevented. A galvannealed steel strip is obtained.
[0033]
In continuous hot-dip plating equipment, steel strips of various sizes are connected and continuously passed. The heat load for cooling the steel strip in the cooling furnace 5 changes rapidly before and after the steel strip connection part where the steel strips are connected. Therefore, in the related art, the fluctuation of the steel strip temperature T3 becomes particularly large in the vicinity of the connection portion, and it is inevitable that the fluctuation of the steel strip temperature T4 becomes large correspondingly. Since the induction heating device 14 is excellent in responsiveness of temperature control, in the present invention, the fluctuation of the steel strip temperature T4 can be reduced even in the vicinity of the steel strip connection part, so that the steel strip immersed in the hot-dip galvanizing bath 10 can be reduced. Can be remarkably reduced as compared with the prior art.
[0034]
Further, when the heat load for cooling after passing through the connection portion increases, for example, when the steel strip thickness is changed from a thin material to a thick material, the steel strip temperature T3 in the vicinity of the connection portion of the following steel strip increases, while When the heat load decreases, for example, when the thickness of the steel strip is changed from a thick one to a thin one, the steel strip temperature T3 in the vicinity of the connection part of the subsequent steel strip tends to decrease. Therefore, by taking into account the fluctuation tendency of the steel strip temperature T3, by changing the preset value T3b of the steel strip temperature T3 in the vicinity of the connection part, the temperature fluctuation of the steel strip temperature T4 in the vicinity of the connection part is reduced. It can be further reduced. For example, when the steel strip shifts from a thin to a thick one, the set value of the steel strip temperature T3 on the exit side of the gas jet cooling furnace 6 is set in advance for the vicinity of the joint between the preceding steel strip and the following steel strip. By changing the temperature to a value lower than the set value T3b and cooling, the fluctuation of the steel strip temperature T4 in the snout 8 in the vicinity of the joint can be further reduced. When shifting from a thick material to a thin material, the set value of the steel strip temperature T3 on the exit side of the gas jet cooling furnace 6 is set to a predetermined set value in the vicinity of the joint between the preceding steel strip and the following steel strip. It is preferable to change the temperature to be higher than T3b and cool it.
[0035]
In the equipment shown in FIG. 1, a thermometer for detecting the temperature of the steel strip at the inlet side of the induction heating device 14 after passing through the conditioning cooling furnace 7 is not installed. A thermometer may be provided in this part. In this case, the temperature in the cooling furnace 5 may be controlled so that the steel strip temperature detected by the thermometer becomes the temperature T3b.
[0036]
When hot dip galvanizing is performed, zinc evaporates from the surface of the hot dip galvanizing bath 10 in the snout 8. If the evaporated zinc condenses in the induction heating device 14, the induction heating coil of the induction heating device 14 may be short-circuited.
[0037]
Most of the evaporated zinc vapor condenses in the snout 8. In the equipment shown in FIG. 1, the induction heating device 14 is provided on the outlet side of the cooling furnace 5 (the outlet side of the regulated cooling furnace 7) upstream of the snout 8 (upstream side with respect to the steel strip S passing direction). The problem of induction heating coil short circuit due to the condensation of zinc vapor in the induction heating device 14 is greatly reduced.
[0038]
From the viewpoint of solving the problem of the condensation of zinc vapor in the induction heating device 14, it is more preferable to prevent the zinc vapor evaporated from the hot-dip galvanizing bath from flowing to the induction heating device 14 side.
[0039]
From this viewpoint, an exhaust port is provided in the snout 8 between the plating bath surface and the induction heating device 14 to discharge zinc vapor evaporated from the molten metal bath surface to the outside of the snout from the exhaust port. Furnace gas (H 2 -N 2 gas) supplied to maintain the gas in a reducing atmosphere, a furnace section upstream of an exhaust port provided in the snout, more preferably a cooling furnace and an upstream side thereof Is preferably supplied to a portion inside the furnace. As a result, the zinc vapor evaporated from the plating bath surface does not flow to the induction heating device 14 side, and the problem of the induction heating coil short circuit due to the condensation of the zinc vapor in the induction heating device is solved.
[0040]
FIG. 3 shows the continuous hot-dip galvanizing equipment shown in FIG. 1 for discharging zinc vapor evaporated from the plating bath surface to the snout wall surface facing the steel strip surface on the side close to the plating bath surface below the snout 8. An exhaust port is provided to quickly discharge zinc vapor evaporated from the plating bath surface to the outside of the snout. In FIG. 3, 21 is an exhaust port, 22 is an exhaust pipe connected to the exhaust port, and 23 is a valve. FIG. 3 does not show the thermometer 18. In addition, the H 2 -N 2 gas supplied to maintain the inside of the furnace in a reducing atmosphere is not supplied into the snout 8 but is supplied to the conditioning cooling furnace 7 and a furnace part upstream thereof.
[0041]
When the zinc vapor exhaust means shown in FIG. 3 is provided in the snout 8 of the facility shown in FIG. 1, zinc vapor is discharged out of the snout as follows. The H 2 -N 2 gas supplied to the conditioning cooling furnace 7 and the upstream part of the furnace flows upstream (in a direction opposite to the steel strip passing direction) and flows out to the direct heating furnace 3. Further, since a large amount of fuel gas and air are supplied from the direct fire burner to heat the steel strip S from the direct fire burner, each part in the furnace where the direct fire heating furnace 3 to the induction heating device 14 are arranged is provided. The atmosphere in the snout 8 is maintained at a positive pressure. Furthermore, since there is also a draft function of the exhaust pipe 22 that is erected, by opening the valve 23 appropriately, the atmospheric gas containing zinc vapor evaporated from the plating bath surface in the snout 8 can be discharged from the exhaust port 21 through the exhaust pipe 22. Then, the air is exhausted outside the snout 8, that is, outside the furnace, and the outside air (atmosphere) does not flow into the snout 8. Since the zinc vapor is discharged out of the snout 8 from the exhaust port 21, the problem of the zinc vapor condensation in the induction heating device 14 is eliminated. Further, the plating property does not become poor due to the invasion of the outside air.
[0042]
【Example】
(Example 1)
FIG. 4 shows the fluctuation of the steel strip temperature and the occurrence of free zinc in the vicinity of the joint (weld) when the size of the steel strip is changed from thin to thick when manufacturing the alloyed hot-dip galvanized steel strip. FIG. 4 is an example according to the method of the present invention, and FIG. 5 is an example according to the conventional method. In each case, the steel strip size was changed from 0.6 mm × 1219 mm (leading steel strip) to 0.8 mm × 1219 mm (following steel strip). Is the case.
[0043]
In the method of the present invention, the target value T3b of the steel strip temperature T3 of the gas jet cooling furnace 6 is set to the target value T4a of the steel strip temperature T4 in the snout 8 part by using the equipment of FIG. 1 and the heat cycle shown in FIG. (= 480 ° C.), and after cooling at a lower temperature, the furnace temperature was set in the controlled cooling furnace 7 so as to substantially maintain the temperature of the steel strip on the exit side of the gas jet cooling furnace 6. The zone temperature T4 was controlled so as to be the predetermined temperature T4a.
[0044]
In the conventional method, the set value T3a of the steel strip temperature T3 of the gas jet cooling furnace 6 is changed by using the equipment shown in FIG. 8 and the steel strip temperature T4 of the snout 8 is set to the required temperature as in the heat cycle shown in FIG. The cooling was controlled by setting the steel strip temperature to be higher than T4a so as to be T4a. Note that the plating bath temperature is 460 ° C. in each case.
[0045]
In the conventional method (FIG. 5), the deviation of the steel strip temperature T4 from the target temperature T4a becomes large in the vicinity of the welded portion of the succeeding steel strip, and free zinc occurs in the area indicated by hatching in FIG. On the other hand, in the method of the present invention (FIG. 4), the deviation of the steel strip temperature T4 in the vicinity of the welded portion of the subsequent steel strip from the target temperature T4a was smaller than that of the conventional method, and free zinc did not occur.
[0046]
(Example 2)
The manufacturing situation of the steel strip temperature in the vicinity of a joint part (welding part) when the steel strip size is changed from a thick thing to a thin thing at the time of manufacturing an alloyed hot-dip galvanized steel strip, and the generation situation of free zinc are shown. FIG. 6 shows an example according to the method of the present invention, and FIG. 7 shows an example according to the conventional method. In each case, the steel strip size was changed from 1.2 mm × 914 mm (leading steel strip) to 0.8 mm × 914 mm (following steel strip). Is the case. In both the method of the present invention and the conventional method, the temperature is controlled as in Example 1, and the plating bath temperature is also the same as in Example 1.
[0047]
In the conventional method (FIG. 7), the steel strip temperature T4 is lower than the target temperature T4 a in the vicinity of the welded portion of the succeeding steel strip, and the deviation is large. Free zinc was generated due to a drop in steel strip temperature. On the other hand, in the method of the present invention (FIG. 6), free zinc, which is inevitably generated in the vicinity of the welded portion of the succeeding steel strip (the area indicated by hatching in FIG. 6), occurred. , Its length was short and light. In addition, the steel strip temperature T4 in the vicinity of the welded portion of the succeeding steel strip decreased with respect to the target temperature T4a, but the deviation was smaller than in the conventional method, so that free zinc caused by the decrease in the steel strip temperature did not occur. Was.
[0048]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, since the fluctuation | variation of the temperature of the steel strip immersed in a plating bath is reduced and it can control to the temperature suitable for immersion in a plating bath, the hot-dip metal-plated steel strip excellent in surface appearance is obtained. INDUSTRIAL APPLICABILITY The present invention is suitable as a method for producing an alloyed hot-dip galvanized steel strip which prevents the occurrence of free zinc and the attachment of dross and has an excellent surface appearance.
[0049]
Further, in the present invention, the problem of the induction heating coil short circuit is solved, and the operation stability is excellent.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a main part of a continuous hot-dip galvanizing facility referred to for describing an embodiment of a method for producing a galvannealed steel strip according to the present invention.
FIG. 2 is a conceptual diagram illustrating a heat cycle of an alloyed hot-dip galvanized steel strip manufactured by the method of the present invention before the steel strip is immersed in a hot-dip galvanizing bath.
FIG. 3 shows a main portion arrangement near the snout when an exhaust port for discharging zinc vapor evaporated from the hot dip galvanizing bath to the outside of the snout is provided at the lower portion of the snout in the continuous galvanizing equipment of FIG. FIG.
FIG. 4 is a diagram showing the fluctuation state of the steel strip temperatures T3 and T4 in the vicinity of the weld when the steel strip dimensions are changed from 0.6 mm × 1219 mm → 0.8 mm × 1219 mm in the method of the present invention.
FIG. 5 is a view showing a variation state of steel strip temperatures T3 and T4 in a portion near a weld when a steel strip dimension is changed from 0.6 mm × 1219 mm → 0.8 mm × 1219 mm in a conventional method.
FIG. 6 is a view showing the fluctuation state of the steel strip temperatures T3 and T4 in the vicinity of the weld when the diameter is changed from 1.2 mm × 914 mm → 0.8 mm × 914 mm in the method of the present invention.
FIG. 7 is a diagram showing the fluctuation state of the steel strip temperatures T3 and T4 in the vicinity of the weld when the diameter is changed from 1.2 mm × 914 mm → 0.8 mm × 914 mm in the conventional method.
FIG. 8 is a schematic view showing a main part of a continuous hot-dip galvanizing facility referred to for describing a method for producing a galvannealed steel strip of the prior art.
FIG. 9 is a conceptual diagram illustrating a heat cycle of a steel strip before being immersed in a hot-dip galvanizing bath in a conventional method for producing a galvannealed steel strip.
[Explanation of symbols]
S Steel strip 1 Preheating furnace 2 Heating furnace 3 Open flame heating furnace (DF)
4 Radiation tube heating furnace (RT)
5 Cooling furnace 6 Gas jet cooling furnace (JC)
Reference Signs List 7 Regulated cooling furnace 8 Snout 9 Hot-dip galvanizing bath 10 Hot-dip galvanizing bath 11 Gas wiping nozzle 12 Alloying furnace 13 Cooling device 14 Induction heating device 15-18 Thermometer 19 Control device 21 Exhaust port 22 Exhaust pipe 23 Valve

Claims (4)

加熱炉、冷却炉を備えた連続溶融めっき設備において、焼鈍処理した鋼帯をめっき浴に浸漬させるのに適した温度に調節した後溶融金属めっき浴に浸漬通板させて溶融金属めっきを行い、引き続き前記溶融金属めっき浴から引き上げて溶融金属被覆を形成する溶融金属めっき鋼帯の製造方法において、焼鈍処理した鋼帯を、一旦前記めっき浴に浸漬させるのに適した温度よりも低い温度に冷却した後、誘導加熱で前記めっき浴に浸漬させるのに適した温度に加熱することを特徴とする溶融金属めっき鋼帯の製造方法。In a continuous hot-dip plating equipment equipped with a heating furnace and a cooling furnace, after the steel strip subjected to the annealing treatment is adjusted to a temperature suitable for immersing in the plating bath, the steel strip is immersed in the hot-dip metal plating bath to perform hot-dip metal plating, Subsequently, in the method for producing a hot-dip metal-plated steel strip which is pulled up from the hot-dip metal plating bath to form a hot-dip metal coating, the annealed steel strip is cooled to a temperature lower than a temperature suitable for temporarily immersing the steel strip in the hot-dip bath. And then heating to a temperature suitable for being immersed in the plating bath by induction heating. 冷却炉後部に誘導加熱装置を設けて誘導加熱することを特徴とする請求項1に記載の溶融金属めっき鋼帯の製造方法。The method for producing a hot-dip metal-plated steel strip according to claim 1, wherein an induction heating device is provided at a rear portion of the cooling furnace to perform induction heating. 溶融金属は、溶融亜鉛であることを特徴とする請求項1または2に記載の溶融金属めっき鋼帯の製造方法。3. The method according to claim 1, wherein the molten metal is molten zinc. 請求項3に記載の溶融金属めっき鋼帯の製造方法において、前記溶融金属めっき浴から引き上げて溶融金属被覆を形成した後、引き続き加熱して合金化処理を行うことを特徴とする溶融金属めっき鋼帯の製造方法。4. The method for producing a hot-dip metal-coated steel strip according to claim 3, wherein the hot-dip metal-coated steel strip is pulled up from the hot-dip metal plating bath to form a hot-dip metal coating, and then is heated and alloyed. The production method of the belt.
JP2003135533A 2003-05-14 2003-05-14 Method of producing hot dip metal plated steel strip Pending JP2004339553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003135533A JP2004339553A (en) 2003-05-14 2003-05-14 Method of producing hot dip metal plated steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135533A JP2004339553A (en) 2003-05-14 2003-05-14 Method of producing hot dip metal plated steel strip

Publications (1)

Publication Number Publication Date
JP2004339553A true JP2004339553A (en) 2004-12-02

Family

ID=33525770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135533A Pending JP2004339553A (en) 2003-05-14 2003-05-14 Method of producing hot dip metal plated steel strip

Country Status (1)

Country Link
JP (1) JP2004339553A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099970A1 (en) 2007-02-14 2008-08-21 Jfe Steel Corporation Continuous annealing equipment
JP2011511165A (en) * 2008-02-08 2011-04-07 シーメンス ヴェ メタルス テクノロジーズ エスアーエス Dipping galvanizing method for steel strip
JP2013221212A (en) * 2012-04-19 2013-10-28 Nippon Steel & Sumikin Engineering Co Ltd Snout of continuous hot dip galvanizing device, and control method thereof
CN105154806A (en) * 2015-10-27 2015-12-16 中冶赛迪工程技术股份有限公司 Method and device for accurately controlling evenness of pre-hot-dip-coating temperature of steel band
JP2016113661A (en) * 2014-12-15 2016-06-23 Jfeスチール株式会社 Continuous hot-dip galvanizing method, and continuous hot-dip galvanizing apparatus
JP2017002361A (en) * 2015-06-11 2017-01-05 Jfeスチール株式会社 Production method of molten metal plated steel strip, and production line of molten metal plated steel strip

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293051A (en) * 1988-09-28 1990-04-03 Nippon Steel Corp Production of aging resistant galvanized steel sheet by hot dip type continuous galvanizing method
JPH03243750A (en) * 1990-02-21 1991-10-30 Nippon Steel Corp Production of galvanized high strength cold-rolled steel sheet by continuous hot dipping line
JPH04329856A (en) * 1991-04-26 1992-11-18 Nkk Corp Method for controlling infiltrating sheet temperature into galvanizing bath in continuous galvanizing for steel strip
JPH0688194A (en) * 1992-09-08 1994-03-29 Japan Ajax Magnethermic Co Ltd Induction heating and alloying furnace of galvanizing equipment
JPH06179955A (en) * 1992-12-12 1994-06-28 Daido Steel Co Ltd Continuous annealing furnace for galvanizing metallic strip
JPH06272006A (en) * 1993-03-17 1994-09-27 Nippon Steel Corp Device for removing zinc fume in snout in hot-dip metal coating line
JPH08302453A (en) * 1995-05-09 1996-11-19 Sumitomo Metal Ind Ltd In-snout zinc vapor remover for hot dip coating line
JPH1088304A (en) * 1996-09-09 1998-04-07 Nkk Corp Continuous hot dip coating device
JPH10176523A (en) * 1996-12-18 1998-06-30 Nissan Motor Co Ltd Exhaust purifying device for internal combustion engine
JPH10176253A (en) * 1996-12-18 1998-06-30 Nkk Corp Production of unrecrystallized hot dip galvanized steel sheet in continuous type hot dip galvanizing line
JP2000290761A (en) * 1999-04-06 2000-10-17 Nkk Corp Continuous hot-dipping metal coating facility and using method thereof
JP2001152288A (en) * 1999-11-19 2001-06-05 Kobe Steel Ltd Hot dip galvanized steel sheet excellent in ductility and producing method therefor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293051A (en) * 1988-09-28 1990-04-03 Nippon Steel Corp Production of aging resistant galvanized steel sheet by hot dip type continuous galvanizing method
JPH03243750A (en) * 1990-02-21 1991-10-30 Nippon Steel Corp Production of galvanized high strength cold-rolled steel sheet by continuous hot dipping line
JPH04329856A (en) * 1991-04-26 1992-11-18 Nkk Corp Method for controlling infiltrating sheet temperature into galvanizing bath in continuous galvanizing for steel strip
JPH0688194A (en) * 1992-09-08 1994-03-29 Japan Ajax Magnethermic Co Ltd Induction heating and alloying furnace of galvanizing equipment
JPH06179955A (en) * 1992-12-12 1994-06-28 Daido Steel Co Ltd Continuous annealing furnace for galvanizing metallic strip
JPH06272006A (en) * 1993-03-17 1994-09-27 Nippon Steel Corp Device for removing zinc fume in snout in hot-dip metal coating line
JPH08302453A (en) * 1995-05-09 1996-11-19 Sumitomo Metal Ind Ltd In-snout zinc vapor remover for hot dip coating line
JPH1088304A (en) * 1996-09-09 1998-04-07 Nkk Corp Continuous hot dip coating device
JPH10176523A (en) * 1996-12-18 1998-06-30 Nissan Motor Co Ltd Exhaust purifying device for internal combustion engine
JPH10176253A (en) * 1996-12-18 1998-06-30 Nkk Corp Production of unrecrystallized hot dip galvanized steel sheet in continuous type hot dip galvanizing line
JP2000290761A (en) * 1999-04-06 2000-10-17 Nkk Corp Continuous hot-dipping metal coating facility and using method thereof
JP2001152288A (en) * 1999-11-19 2001-06-05 Kobe Steel Ltd Hot dip galvanized steel sheet excellent in ductility and producing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099970A1 (en) 2007-02-14 2008-08-21 Jfe Steel Corporation Continuous annealing equipment
US8097205B2 (en) 2007-02-14 2012-01-17 Jfe Steel Corporation Continuous annealing equipment
JP2011511165A (en) * 2008-02-08 2011-04-07 シーメンス ヴェ メタルス テクノロジーズ エスアーエス Dipping galvanizing method for steel strip
US9238859B2 (en) 2008-02-08 2016-01-19 Primetals Technologies France SAS Method for the hardened galvanization of a steel strip
JP2013221212A (en) * 2012-04-19 2013-10-28 Nippon Steel & Sumikin Engineering Co Ltd Snout of continuous hot dip galvanizing device, and control method thereof
JP2016113661A (en) * 2014-12-15 2016-06-23 Jfeスチール株式会社 Continuous hot-dip galvanizing method, and continuous hot-dip galvanizing apparatus
JP2017002361A (en) * 2015-06-11 2017-01-05 Jfeスチール株式会社 Production method of molten metal plated steel strip, and production line of molten metal plated steel strip
CN105154806A (en) * 2015-10-27 2015-12-16 中冶赛迪工程技术股份有限公司 Method and device for accurately controlling evenness of pre-hot-dip-coating temperature of steel band

Similar Documents

Publication Publication Date Title
KR101011897B1 (en) Method of continous annealing/hot-dipping of steel sheet containing silicon and apparatus for continuous annealing/hot-dipping
JP5796142B2 (en) Hot dipping method for steel sheet
JP2004339553A (en) Method of producing hot dip metal plated steel strip
JP5167895B2 (en) Method for producing hot-dip steel strip
JPH08176773A (en) Method and device for preventing adhesion of fume in snout for continuous hot dip metal coating
JPH10176253A (en) Production of unrecrystallized hot dip galvanized steel sheet in continuous type hot dip galvanizing line
JPS63121644A (en) Heating furnace
JP7140706B2 (en) snout equipment
JP4306471B2 (en) Method for controlling temperature of metal strip entering plate to hot dipping bath
JPH0892712A (en) Control of temperature of steel strip immersing into galvanizing bath
JP6354069B2 (en) Manufacturing method of molten metal plated steel strip and production line of molten metal plated steel strip
JP6696495B2 (en) Method for manufacturing hot dip galvanized steel sheet
EP4324946A1 (en) Steel sheet non-plating defect prediction method, steel sheet defect reduction method, method for manufacturing hot-dip galvanized steel sheet, and method for generating steel sheet non-plating defect prediction model
JP2004315901A (en) Hot dip zinc coating method
US20220213574A1 (en) Processing line for the continuous processing of metal strips having a dual purpose of producing strips that are annealed and dip-coated or not coated, and corresponding cooling tower and method for switching from one configuration to the other
JP2001234251A (en) Method for controlling temperature in thickness direction of continuous strip
JP2002275544A (en) Method and equipment for continuously cooling steel strip
JP2005206879A (en) Hot-dip galvanizing facility and controlling method thereof
JP2545653B2 (en) Heat input control method for alloying furnace of hot-dip galvanized steel strip
JP2005256060A (en) Method for controlling advancing sheet temperature of metallic band into hot-dip coating bath
JP2010037611A (en) Hearth-roll for heat-treatment furnace, method for cooling hearth-roll for heat-treatment furnace, and method for producing metallic strip
JPH03277756A (en) Method for suppressing generation of foreign matter in snout of galvanizing device and snout device
JPH11100649A (en) Continuous plating method for molten aluminum-zinc alloy and apparatus therefor
JPH073416A (en) Continuous plating equipment
JP2003328097A (en) Apparatus and method for producing alloyed hot-dip galvanized steel plate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609