JP2004339426A - Resin composition for heat radiating material - Google Patents

Resin composition for heat radiating material Download PDF

Info

Publication number
JP2004339426A
JP2004339426A JP2003140047A JP2003140047A JP2004339426A JP 2004339426 A JP2004339426 A JP 2004339426A JP 2003140047 A JP2003140047 A JP 2003140047A JP 2003140047 A JP2003140047 A JP 2003140047A JP 2004339426 A JP2004339426 A JP 2004339426A
Authority
JP
Japan
Prior art keywords
meth
resin composition
mass
acrylate
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003140047A
Other languages
Japanese (ja)
Other versions
JP4009224B2 (en
Inventor
Yuichi Kawada
雄一 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2003140047A priority Critical patent/JP4009224B2/en
Priority to US10/557,786 priority patent/US7589147B2/en
Priority to TW093114069A priority patent/TW200508379A/en
Priority to PCT/JP2004/007113 priority patent/WO2004101678A1/en
Priority to CNB2004800138459A priority patent/CN100386375C/en
Priority to KR1020057021364A priority patent/KR100731279B1/en
Publication of JP2004339426A publication Critical patent/JP2004339426A/en
Application granted granted Critical
Publication of JP4009224B2 publication Critical patent/JP4009224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for a heat radiating material, which is excellent in heat conductivity and flexibility and also effectively gives cured products of thermoconductive sheets with improved productivity and molding properties, and to provide the cured products. <P>SOLUTION: The composition for a heat radiating material comprises (metha)acrylic resin, which contains 10-80 mass% of a (meth)acrylic polymer and 20-90 mass% of a polymerizable monomer, and an inorganic filler with heat conductivity of at least 20 W/m×K. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、放熱用途に用いられる熱伝導性シートを得るための樹脂組成物に関し、より詳細には、熱伝導性、柔軟性、生産性、成形性に優れた熱伝導性シート、または硬化物を得ることのできる放熱材料用樹脂組成物に関するものである。
【0002】
【従来の技術】
柔軟性を有する樹脂に、例えばアルミナ、シリカなどの熱伝導性を高める無機充填剤を配合してなる樹脂組成物をシート状に成形したものは、例えば電気・電子部品などの発熱体と例えばヒートシンク、放熱フィン、金属放熱板等の放熱体の間に介在させ、電気・電子部品などの発熱を放熱させる用途に用いられている。一般的に発熱体や放熱体の表面はは平滑でないことが多く、これらとの接触面積を多くして発熱体から放熱体への熱伝導効率を高めるために、これらの用途に用いられる樹脂には柔軟性が求められている。従来より柔軟性を有する樹脂としてシリコーンゴムやシリコーンゲルが用いられてきたが、これらの樹脂は価格が高価であること、硬化に時間がかかり生産性の劣ること、また、低分子量のシロキサン発生により電子部品の接点不良が起こるなど問題があった。
【0003】
上記の問題を解決するために、炭素数2〜18のアルキル基を有するアクリル酸エステルモノマーを主成分とする重合性単量体に光重合開始剤と熱伝導性充填剤を含んだ非シリコン系の放熱材料用樹脂組成物が開示されている(例えば、特許文献1)。
【0004】
しかしながら、この特許文献1では、シリコーンゴムやシリコーンゲルを用いていないために低分子量のシロキサン発生による電子部品の接点不良問題については改良できるものの、生産性や成形性等には全く考慮が払われていない。本発明者等が検討した結果、例えば熱伝導性シートの成形性に劣ることが判明した。
【0005】
【特許文献1】
特開2002−155110号公報
【0006】
【発明が解決しようとする課題】
そこで本発明では、上記従来技術の問題を考慮して、熱伝導性、柔軟性に優れるだけでなく、例えば熱伝導性シートの生産性、成形性も良好な硬化物を効率よく得ることのできる放熱材料用樹脂組成物およびその硬化物の提供を課題として掲げている。
【0007】
【課題を解決するための手段】
上記課題を解決した本発明は、(メタ)アクリル系重合体10〜80質量%と重合性単量体20〜90質量%からなる(メタ)アクリル系樹脂と、熱伝導率が20W/m・K以上である無機充填剤とを含むことを特徴とする放熱材料用樹脂組成物であるところに特徴を有している。
【0008】
上記(メタ)アクリル系樹脂としては、好ましくは0℃以下のガラス転移点を有する(メタ)アクリル系重合体と、アルキル基の炭素数が2〜18である(メタ)アクリル酸アルキルエステルからなる(メタ)アクリル系樹脂が用いられる。
【0009】
また、上記放熱材料用樹脂組成物には、熱重合開始剤を含むことが好ましい。
【0010】
さらに本発明には、上記放熱材料用樹脂組成物を硬化させて得られる放熱材料硬化物も含まれる。
【0011】
【発明の実施の形態】
本発明の放熱材料用樹脂組成物(以下、単に樹脂組成物という)は、(メタ)アクリル系重合体10〜80質量%と重合性単量体(以下、単に単量体という)20〜90質量%からなる(メタ)アクリル系樹脂と、熱伝導率が20W/m・K以上である無機充填剤を必須成分とするものである。
【0012】
(メタ)アクリル系重合体を得るには、例えば従来公知の重合方法により(メタ)アクリル系単量体を(共)重合することによって得ることができる。
【0013】
(メタ)アクリル系重合体の製造に用いられる単量体としては、従来公知の(メタ)アクリル系単量体が使用できるが、中でも、得られた樹脂組成物の硬化物の柔軟性が向上することからアルキル基の炭素数が2〜18である(メタ)アクリル酸アルキルエステルが好ましい。具体的には、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、i−プロピル(メタ)アクリレート、n―ブチル(メタ)アクリレート、i―ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、n−アミル(メタ)アクリレート、i−アミル(メタ)アクリレート、オクチル(メタ)アクリレート、i−オクチル(メタ)アクリレート、i−ミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ノニル(メタ)アクリレート、i―ノニル(メタ)アクリレート、i―デシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、i―ステアリル(メタ)アクリレート等を挙げることができる。これらのアルキル基の炭素数が2〜18である(メタ)アクリル酸アルキルエステルは、単独で用いる他、2種以上併用してもよい。
【0014】
これらのアルキル基の炭素数が2〜18である(メタ)アクリル酸アルキルエステルの使用量は、(メタ)アクリル系重合体を構成する単量体成分100質量%中、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが最も好ましい。
【0015】
(メタ)アクリル系重合体のガラス転移点は0℃以下が好ましく、より好ましくは−30℃以下、更に好ましくは−40℃以下である。0℃を超えると得られた樹脂組成物の硬化物の柔軟性が十分でない場合がある。なお、(メタ)アクリル系重合体のガラス転移点は、示差走査熱量計を用いて、常法により測定することができる。
【0016】
(メタ)アクリル系重合体の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算での重量平均分子量が1万〜100万の範囲内が好ましく、3万〜80万の範囲内がより好ましく、5万〜50万の範囲内であることが最も好ましい。重量平均分子量が1万未満であると、得られた樹脂組成物の硬化物の耐溶剤性や耐熱性などの性能が低下し、一方、重量平均分子量が100万を超えると、得られる(メタ)アクリル樹脂の粘度が高くなり作業性に支障をきたす場合がある。
【0017】
本発明の(メタ)アクリル系重合体は、上記(メタ)アクリル系単量体を用い、塊状重合、溶液重合、乳化重合等の公知の重合方法で(共)重合することで得ることができる。塊状重合法においては、重合を途中で停止させる部分重合法を採用すれば、重合体と単量体成分との混合物が1工程で得られ、(メタ)アクリル系樹脂としてそのまま利用できるため簡便で好ましい。もちろん、この混合物に別途単量体を加えて調整してもよい。また、溶液重合法、乳化重合法においては、(メタ)アクリル系重合体の重合を完了させた後、水分や溶剤等を単量体に置換して(メタ)アクリル系樹脂を調整しても構わない。
【0018】
本発明の(メタ)アクリル系樹脂の第2の必須成分である重合性単量体は、ラジカル重合性二重結合を1個有する単量体であれば特に限定されないが、中でも(メタ)アクリル系重合体の製造に用いられる単量体で例示したアルキル基の炭素数が2〜18である(メタ)アクリル酸アルキルエステルが好ましい。これらは、2種以上を併用してもよい。
【0019】
これらのアルキル基の炭素数が2〜18である(メタ)アクリル酸アルキルエステルの使用量は、重合性単量体成分100質量%中、80質量%以上とすることが好ましい。
【0020】
また、必要に応じて、1分子中にラジカル重合性二重結合を分子内に2個以上有する単量体(以下、多官能単量体という)を用いることもできる。多官能単量体の使用によって、さらに耐熱性や耐薬品性、クリープ特性に優れた硬化物が得られるので、硬化物の要求性能に応じて使用の有無を決定すればよい。多官能単量体の使用量は、(メタ)アクリル系樹脂100質量部に対して、5質量部以下が好ましく、4質量部以下がより好ましく、3質量部以下がさらに好ましい。多官能単量体量が5質量部を超える場合は、得られた樹脂組成物の硬化物の柔軟性が低下する場合がある。
【0021】
多官能単量体の具体例としては、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9ナノンジオール(メタ)アクリレート、1,6ヘキサンジオール(メタ)アクリレート、1,4ブタンジオール(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、等の(メタ)アクリル系多官能単量体;ジビニルベンゼン、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート等が挙げられる。これらを使用するときは、2種以上を併用してもよい。
【0022】
本発明の樹脂組成物の主成分である(メタ)アクリル系樹脂は、上述の(メタ)アクリル系重合体が10〜80質量%、単量体成分が20〜90質量%からなるものである。より好ましい比率は、(メタ)アクリル系重合体が15〜70質量%、単量体成分が30〜85質量%、最も好ましい比率は、(メタ)アクリル系重合体が30〜60質量%、単量体成分が40〜70質量%である。(メタ)アクリル系重合体が10質量%未満、すなわち単量体成分が90質量%を超えると、無機充填剤との混練後、例えばシート状へのプリフォーム時や、成形時において樹脂と無機充填剤との分離が発生するため好ましくなく、(メタ)アクリル系重合体が80質量%を超える、すなわち単量体成分が20質量%未満になると、樹脂組成物の粘度が高くなり過ぎて作業性の低下や、例えば、プリフォーム時に得られたシートの表面平滑性の悪化や、成形時の表面平滑性の悪化が起こるために好ましくない。
【0023】
また、本発明では、説明の便宜上、(メタ)アクリル系樹脂が(メタ)アクリル系重合体と重合性単量体成分とからなり、他の成分を含まないものとして定義したが、例えば、後述する添加剤等を含んでいてももちろん構わない。
【0024】
本発明の樹脂組成物には、(メタ)アクリル系樹脂と共に、熱伝導率が20W/m・K以上である無機充填剤が含まれる。具体的には、例えば、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、炭化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素等が挙げられる。これらを使用するときは、2種以上を併用してもよい。使用する無機充填剤の熱伝導率は、その焼結品を用いて、京都電子工業社製のホットディスク法による熱伝導率測定装置 品番TPA−501を用いて測定することができる。
これらの熱伝導率が20W/m・K以上である無機充填剤は、(メタ)アクリル系樹脂100質量部に対して、100〜1500質量部含まれることが好ましく、200〜1300質量部含まれることがより好ましい。これらの無機充填剤は、(メタ)アクリル系樹脂に対する充填量が多いほど、得られる樹脂組成物の硬化物の熱伝導率が高くなり放熱性能としては向上するが、一方で、得られる樹脂組成物の硬化物の柔軟性は低下するので、例えば、硬化物に要求される熱伝導率や使用する(メタ)アクリル系樹脂の柔軟性により充填量を調整することが好ましい。
【0025】
上記無機充填剤は、必要に応じて、樹脂組成物中における分散性を高めたり、充填量を上げるために、シラン処理等により表面処理が行われてもよい。
【0026】
また、上記無機充填剤の形状としては、球状、繊維状、鱗片状、平面状、破砕状、不定形状などが挙げられるが、特に限定されるものではない。
【0027】
本発明の樹脂組成物には、重合開始剤を含むことが好ましい。重合開始剤を含むことにより、該樹脂組成物を速く硬化させることができ、生産性が向上するので好ましい。
【0028】
重合開始剤としては、例えば、従来公知の熱重合開始剤、光開始剤等を用いることができる。例えば熱により樹脂組成物を硬化させる場合には熱重合開始剤を、また、例えば紫外線により硬化させる場合には光開始剤を用いて硬化させればよく、硬化方法により、適宜、選択することができる。中でも、熱により樹脂組成物を硬化させる方が使用する硬化装置が簡便で、コスト的にも優れており、熱重合開始剤を用いて樹脂組成物を硬化させることがより好ましい。
【0029】
熱重合開始剤としては、例えば、従来公知のアゾ系開始剤や有機過酸化物等が使用できる。有機過酸化物としては、例えば、メチルエチルケトンパーオキサイド等のケトンパーオキサイド類、クメンハイドロパーオキサイド等のハイドロパーオキサイド類、ベンゾイルパーオキサイド、ラウリルパーオキサイド等のジアシルパーオキサイド類、ジクミルパーオキサイド等のジアルキルパーオキサイド類、1,1―ジ−t―ブチルパーオキシ3,3,5−トリメチルシクロヘキサン等のパーオキシケタール類、t−アミルパーオキシ2−エチルヘキサネート、t−ブチルパーオキシ2−エチルヘキサネート、t−アミルパーオキシ3,5,5−トリメチルヘキサネート、t−ブチルパーオキシ3,5,5−トリメチルヘキサネート等のアルキルパーエステル類、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ2−エチルヘキシルカーボネート、1,6―ビス(t−ブチルパーオキシカルボニロキシ)ヘキサン等のパーカーボネート類などが挙げられるが、特に限定されるものではない。これらを使用するときは、2種以上を併用してもよい。
【0030】
また、これらの熱重合開始剤の作用を促進するための公知の硬化促進剤、硬化促進助剤を使用してもよい。
【0031】
これらの熱重合開始剤は、(メタ)アクリル系樹脂100質量部に対し0.1〜5質量部、硬化促進剤は(メタ)アクリル系樹脂100質量部に対し0.05〜3質量部、硬化促進助剤は、(メタ)アクリル系樹脂100質量部に対し0.05〜2質量部が好ましい。
【0032】
本発明の樹脂組成物には、得られる樹脂組成物の硬化物の柔軟性をさらに向上させる場合は、可塑剤、軟化剤、熱軟化剤等を添加することが好ましい。可塑剤、軟化剤、熱軟化剤としては、例えば、プロセスオイル、ペースト状オイル、パラフィンワックス、マイクロクリスタリンワックス、流動性パラフィン、高級アルコール、脂肪油、塩素化パラフィン、フタル酸系可塑剤、トリメリット酸系可塑剤、アジピン酸系可塑剤、ポリエステル系可塑剤、エポキシ系可塑剤、液状ゴム、合成ゴム、ゴム用可塑剤等の従来公知のものが挙げられるが、特に限定されるものではない。これらの可塑剤、軟化剤、熱軟化剤等を使用するときは、2種以上を併用してもよく、得られる樹脂組成物の硬化物の柔軟性を長期にわたり安定的に発現させるために、耐熱性や耐寒性の高いものを使用することが好ましい。これらの可塑剤、軟化剤、熱軟化剤等は、(メタ)アクリル系樹脂100質量部に対して5〜100質量部添加することが好ましい。
【0033】
本発明の樹脂組成物は、従来公知の混練機を用いて得ることができる。例えば、ミキサー、ロールミル、バンバリーミキサー、ニーダー、加圧型ニーダー、二軸混練機等の連続混練機等が挙げられるが、特に限定されるものではない。また、必要に応じて、混練の際には、装置内を減圧、脱気してもかまわない。
【0034】
本発明の樹脂組成物を硬化させることで、放熱材料硬化物を得ることができる。また、該樹脂組成物は所望の形状に硬化させることができ、その形状、硬化方法、硬化装置は特に限定されるものではない。例えば、放熱材料硬化物は、射出成形金型やバッチ式金型に上記樹脂組成物を投入し所望の形状に硬化させて得ても良く、押出し機や注型などの方法によりシート状に成形し、その後硬化させて得ても良い。硬化温度は、例えば、使用する熱重合開始剤の10時間半減期温度を目安にすると良い。使用する熱重合開始剤の10時間半減期温度よりも10〜50℃高い温度で硬化させることで、硬化速度が速くなり生産性を向上させることができる。
【0035】
本発明の樹脂組成物には、得られる硬化物の強度等を高めるために、樹脂または無機繊維、有機繊維等を、硬化物の表面に、含浸または付着させてもよい。
【0036】
本発明の樹脂組成物には、成形材料分野等で従来公知の、例えば、強化繊維、無機・有機充填材、重合禁止剤、低収縮化剤、離型剤、増粘剤、泡消剤、揺変化剤、紫外線吸収剤、紫外線安定剤、酸化防止剤、難燃化剤、カップリング剤、顔料、染料、磁性体、帯電防止剤、電磁波吸収剤、他の熱硬化性樹脂(不飽和ポリエステル、ビニルエステル、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート)等、本発明の目的を阻害しない限りは、いずれも使用可能である。
【0037】
添加量の目安としては、本発明の目的に反しない程度の量が好ましく、具体的には、(メタ)アクリル系樹脂100質量部に対し、添加剤の合計として1000質量部以下とするのが望ましい。より好ましい添加量の上限値は900質量部、さらに好ましい上限値は800質量部である。これらの添加剤は、(メタ)アクリル系樹脂に混合して樹脂組成物とすることもできるし、予め(メタ)アクリル系樹脂に混合して使用することもできる。
【0038】
【実施例】
以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術範囲に包含される。なお実施例および比較例において特に断らない限り「部」とあるのは「質量部」、「%」とあるのは「質量%」である。
【0039】
合成例1(アクリル系樹脂Aの合成)
温度計、撹拌機、ガス導入管および還流冷却器を備えた容器に、ラウリルメタクリレート100部を仕込み、容器内を窒素ガスで置換した。80℃に昇温し、連鎖移動剤としてのメルカプトプロピオン酸0.2部と重合開始剤としてのアゾイソブチロニトリル0.01部を添加して、窒素雰囲気下で3.0時間塊状重合を行った。重合完了前に、空気を吹き込むのと同時に重合禁止剤ハイドロキノンを0.1部加えた後、系を冷却して重合を途中で終了させた。得られたアクリル系樹脂Aの中の重合体成分であるポリラウリルメタクリレートは50.0%、重合性単量体成分であるラウリルメタクリレートは50.0%であった。得られたアクリル系樹脂Aの25℃での粘度は、4980mPa・sであった。アクリル系樹脂Aの中の重合体成分であるポリラウリルメタクリレートは、GPC(ゲルパーミエーションクロマトグラフィー)により測定した分子量が、重量平均分子量Mw=13.6万、数平均分子量Mn=5.8万であり、示差走査熱量計を用い常法により測定したガラス転移点温度が、−65℃であった。
【0040】
合成例2(アクリル系樹脂Bの合成)
温度計、撹拌機、ガス導入管、還流冷却器および滴下ロートを備えた容器に、2―エチルヘキシルアクリレート40部、トルエン50部、連鎖移動剤としてのα―メチルスチレン0.3部を仕込み、容器内を窒素ガスで置換した。80℃に昇温し、重合開始剤としてのアゾイソブチロニトリル0.05部、トルエン10部を混合したものを滴下ロートに仕込み、2時間かけて容器内に滴下した。更にアゾイソブチロニトリル0.01部を添加して、90℃に昇温し3時間重合を行った。重合完了前に、空気を吹き込み、系を冷却して重合を終了させた。次に、系内を減圧にしてトルエンを留去し、固形状の重合体を得た。
【0041】
得られた重合体を50部、重合性単量体として2―エチルヘキシルアクリレート50部、重合禁止剤ハイドロキノン0.05部を混合し、アクリル系樹脂Bを得た。
得られたアクリル系樹脂Bの25℃での粘度は4280mPa・sであった。GPC(ゲルパーミエーションクロマトグラフィー)を用いた重合体の分子量は、重量平均分子量Mwが10.6万、数平均分子量Mnが5.1万であった。また、示差走査熱量計を用いて、常法により測定した重合体のガラス転移点温度は、−60℃であった。
【0042】
実施例1
アクリル系樹脂A100部、熱重合開始剤として10時間半減期温度が95℃であるt−アミルパーオキシ3,5,5−トリメチルヘキサネート2部(化薬アクゾ社製;商品名「カヤエステルAN」)、熱伝導率が30W/m・kである酸化アルミニウム1300部(昭和電工社製;品番AS−40)を、加圧型ニーダーを用いて混練した。その後、押出し機を用いて2枚のPETフィルムの間に1mm厚み設定で押し出して、シート状の放熱材料用樹脂組成物を得た。得られたシート状の放熱材料用樹脂組成物を下記基準で評価を行い、結果を表1に示した。
【0043】
次に、得られたシート状の放熱材料用樹脂組成物の周囲に、シリコン製の厚み1mmのスペーサーを取り付け、該シートを120℃に加熱された平板金型の上に20分間、10kg/cmの圧力でプレス成形した。得られたシート状硬化物を、下記基準で評価を行い、結果を表1に示した。
【0044】
[プリフォーム性]
得られた放熱材料用樹脂組成物を押出し機を用いて2枚のPETフィルムの間に1mm厚み設定で押し出したときに、得られるシートの表面状態を目視で観察し、下記基準で評価した。
<表面状態>
○;アクリル系樹脂と無機充填剤の分離がなく、均一なシートが得られた。
×;アクリル系樹脂と無機充填剤の分離が発生し、不均一なシートが得られた。
<泡の存在>
○;泡の存在がなく、シート表面の凹凸がなく表面性が良好である。
×;泡が存在し、シート表面に凹凸が発生した。
【0045】
[成形性]
シート状の放熱材料用樹脂組成物を上記成形条件で成形したとき、得られたシート状硬化物の表面状態を目視で観察し、下記基準で評価した。
○;シート表面の凹凸や欠陥がなく、表面性が良好である。
×;シート表面の凹凸が発生した。または、アクリル樹脂と無機充填剤の分離が発生し、不均一なシートが得られた。
【0046】
[熱伝導性]
京都電子工業製 迅速熱伝導率計 品番QTM−500により測定した。
【0047】
[柔軟性]
JIS K6253に準じ、上島製作所製アスカーゴム硬度計A型を用いて測定した。
得られた数値は、小さいほど柔軟性に富んでいる。
【0048】
実施例2
アクリル系樹脂A100部、多官能単量体としてのポリエチレングリコールジメタクリレート1部(共栄社化学社製;商品名「ライトエステル9EG」)、熱重合開始剤として10時間半減期温度が95℃であるt−アミルパーオキシ3,5,5−トリメチルヘキサネート2部(化薬アクゾ社製;商品名「カヤエステルAN」)、酸化アルミニウム1300部(昭和電工製;品番AS−40)を、加圧型ニーダーを用いて混練した以外、実施例1同様にしてシート状放熱材料用樹脂組成物、及びその硬化物を得た。評価結果を表1に示した。
【0049】
実施例3
酸化アルミニウムを熱伝導率が50W/m・kである窒化ホウ素250部(共立マテリアル社製;品番BN−100)に変更した以外、実施例2と同様にしてシート状放熱材料用樹脂組成物、及びその硬化物を得た。評価結果を表1に示した。
【0050】
実施例4
酸化アルミニウムを熱伝導率が120W/m・kである窒化アルミニウム700部(東洋アルミニウム社製;品番R−15)に変更した以外、実施例2と同様にしてシート状放熱材料用樹脂組成物、及び硬化物を得た。評価結果を表1に示した。
【0051】
実施例5
アクリル系樹脂A100部を、アクリル樹脂系A70部、フタル酸系可塑剤30部(花王製;商品名「ビニサイザー124」)に変更した以外、実施例2と同様にしてシート状放熱材料用樹脂組成物、及びその硬化物を得た。評価結果を表1に示した。
【0052】
実施例6
アクリル系樹脂A100部を、アクリル系樹脂A70部、重合性単量体である2―エチルヘキシルアクリレート30部に変更した以外、実施例2と同様にして放熱材料用樹脂組成物、及び硬化物そのを得た。評価結果を表1に示した。
【0053】
実施例7
アクリル系樹脂A100部を、アクリル系樹脂A70部、重合性単量体であるn―ブチルアクリレート30部に変更した以外、実施例2と同様にしてシート状放熱材料用樹脂組成物、及びその硬化物を得た。評価結果を表1に示した。
実施例8
アクリル系樹脂A100部をアクリル系樹脂B100部に変更した以外、実施例2と同様にしてシート状放熱材料用樹脂組成物、及びその硬化物を得た。評価結果を表1に示した。
【0054】
比較例1
アクリル系樹脂A100部を、重合性単量体2―エチルヘキシルアクリレート100部(すなわち必須成分である(メタ)アクリル系重合体を含まない)に変更した以外、実施例2と同様にしてシート状放熱材料用樹脂組成物、及びその硬化物を得た。評価結果を表1に示した。
【0055】
なお、表1で用いた略号は、以下の意味である。
2EHA:2―エチルヘキシルアクリレート
BA:n―ブチルアクリレート
9EG:ポリエチレングリコールジメタクリレート 共栄社化学社製;商品名「ライトエステル9EG」
【0056】
【表1】

Figure 2004339426
【0057】
表1から明らかなように、本発明例は、熱伝導性、柔軟性に優れるだけでなく、例えば熱伝導性シートの生産性、成形性も良好な硬化物を効率よく得ることができる。一方、重合性単量体のみを用いた比較例では、実施例に比べて劣っていることが明らかとなった。
【0058】
【発明の効果】
本発明の樹脂組成物およびその硬化物は、(メタ)アクリル系重合体10〜80質量%と重合性単量体20〜90質量%からなる(メタ)アクリル系樹脂と、熱伝導率が20W/m・K以上である無機充填剤を含み、熱伝導性、柔軟性に優れるだけでなく、例えば熱伝導性シートの生産性、成形性も良好な硬化物を効率よく得ることに成功した。従って、例えば、電気・電子部品などの発熱体と例えばヒートシンク、放熱フィン、金属放熱板等の放熱体の間に介在させ、電気・電子部品などの発熱を放熱させる用途に用いることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to, for example, a resin composition for obtaining a heat conductive sheet used for heat dissipation, and more specifically, a heat conductive sheet having excellent heat conductivity, flexibility, productivity, and moldability, or The present invention relates to a resin composition for a heat radiation material from which a cured product can be obtained.
[0002]
[Prior art]
For a resin having flexibility, for example, a resin composition obtained by blending an inorganic filler such as alumina and silica to enhance the thermal conductivity is formed into a sheet shape, for example, a heating element such as an electric / electronic component and a heat sink, for example. It is used between heat radiators such as heat radiating fins and metal heat radiating plates to dissipate heat generated by electric and electronic components. In general, the surfaces of heating elements and heat radiators are often not smooth, and to increase the contact area with these elements and increase the efficiency of heat conduction from the heating elements to the heat radiator, the resin used in these applications must be Needs flexibility. Conventionally, silicone rubber and silicone gel have been used as flexible resins.However, these resins are expensive, require a long time to cure, are inferior in productivity, and generate low molecular weight siloxane. There have been problems such as poor contact of electronic components.
[0003]
In order to solve the above-mentioned problems, a non-silicon based polymerizable polymerizable monomer mainly containing an acrylate ester monomer having an alkyl group having 2 to 18 carbon atoms, containing a photopolymerization initiator and a thermally conductive filler. Are disclosed (for example, Patent Document 1).
[0004]
However, in Patent Document 1, although the problem of poor contact of electronic components due to generation of low molecular weight siloxane can be improved because no silicone rubber or silicone gel is used, productivity, moldability, etc. are completely taken into consideration. Not. As a result of the study by the present inventors, it has been found that, for example, the moldability of the heat conductive sheet is poor.
[0005]
[Patent Document 1]
JP-A-2002-155110
[Problems to be solved by the invention]
Therefore, in the present invention, it is possible to efficiently obtain a cured product that is not only excellent in heat conductivity and flexibility but also has good productivity and moldability, for example, in consideration of the problems of the conventional technology. An object is to provide a resin composition for a heat dissipation material and a cured product thereof.
[0007]
[Means for Solving the Problems]
The present invention that has solved the above-mentioned problems provides a (meth) acrylic resin composed of 10 to 80% by mass of a (meth) acrylic polymer and 20 to 90% by mass of a polymerizable monomer, and a thermal conductivity of 20 W / m · It is characterized in that it is a resin composition for a heat dissipation material, characterized by containing an inorganic filler of K or more.
[0008]
The (meth) acrylic resin preferably comprises a (meth) acrylic polymer having a glass transition point of 0 ° C. or lower and an alkyl (meth) acrylate having an alkyl group having 2 to 18 carbon atoms. (Meth) acrylic resin is used.
[0009]
In addition, it is preferable that the resin composition for a heat radiation material contains a thermal polymerization initiator.
[0010]
Furthermore, the present invention also includes a cured product of the heat radiation material obtained by curing the resin composition for a heat radiation material.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The resin composition for a heat radiation material of the present invention (hereinafter, simply referred to as a resin composition) comprises 10 to 80% by mass of a (meth) acrylic polymer and 20 to 90 of a polymerizable monomer (hereinafter, simply referred to as a monomer). An essential component is a (meth) acrylic resin composed by mass% and an inorganic filler having a thermal conductivity of 20 W / m · K or more.
[0012]
The (meth) acrylic polymer can be obtained, for example, by (co) polymerizing a (meth) acrylic monomer by a conventionally known polymerization method.
[0013]
As the monomer used in the production of the (meth) acrylic polymer, a conventionally known (meth) acrylic monomer can be used. Among them, the flexibility of the cured product of the obtained resin composition is improved. Therefore, alkyl (meth) acrylate having 2 to 18 carbon atoms in the alkyl group is preferable. Specifically, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate , N-hexyl (meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, octyl (meth) acrylate, i-octyl (meth) acrylate, i-myristyl (meth) acrylate, lauryl (meth) A) acrylate, nonyl (meth) acrylate, i-nonyl (meth) acrylate, i-decyl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, i-stearyl (meth) acrylate, and the like. . These (meth) acrylic acid alkyl esters having 2 to 18 carbon atoms may be used alone or in combination of two or more.
[0014]
The amount of the alkyl (meth) acrylate having 2 to 18 carbon atoms in the alkyl group is 50% by mass or more in 100% by mass of the monomer components constituting the (meth) acrylic polymer. Is preferably 70% by mass or more, and most preferably 80% by mass or more.
[0015]
The glass transition point of the (meth) acrylic polymer is preferably 0 ° C or lower, more preferably -30 ° C or lower, and still more preferably -40 ° C or lower. If it exceeds 0 ° C., the flexibility of the obtained cured product of the resin composition may not be sufficient. The glass transition point of the (meth) acrylic polymer can be measured by a conventional method using a differential scanning calorimeter.
[0016]
As for the molecular weight of the (meth) acrylic polymer, the weight average molecular weight in terms of polystyrene by gel permeation chromatography (GPC) is preferably in the range of 10,000 to 1,000,000, and more preferably in the range of 30,000 to 800,000. Most preferably, it is in the range of 50,000 to 500,000. When the weight-average molecular weight is less than 10,000, the cured product of the obtained resin composition deteriorates in properties such as solvent resistance and heat resistance. On the other hand, when the weight-average molecular weight exceeds 1,000,000, it is obtained (meth) ) In some cases, the viscosity of the acrylic resin is increased, which may hinder workability.
[0017]
The (meth) acrylic polymer of the present invention can be obtained by (co) polymerizing the above (meth) acrylic monomer by a known polymerization method such as bulk polymerization, solution polymerization, and emulsion polymerization. . In the bulk polymerization method, if a partial polymerization method in which the polymerization is stopped in the middle is adopted, a mixture of the polymer and the monomer component can be obtained in one step, and can be used as it is as a (meth) acrylic resin. preferable. Of course, the mixture may be adjusted by adding a monomer separately. In addition, in the solution polymerization method and the emulsion polymerization method, after completing the polymerization of the (meth) acrylic polymer, the (meth) acrylic resin may be prepared by substituting the water or the solvent with the monomer. I do not care.
[0018]
The polymerizable monomer that is the second essential component of the (meth) acrylic resin of the present invention is not particularly limited as long as it is a monomer having one radical polymerizable double bond. Alkyl (meth) acrylates having 2 to 18 carbon atoms in the alkyl groups exemplified in the monomers used for the production of the polymer are preferred. These may be used in combination of two or more.
[0019]
The amount of the alkyl (meth) acrylate having 2 to 18 carbon atoms in the alkyl group is preferably 80% by mass or more based on 100% by mass of the polymerizable monomer component.
[0020]
If necessary, a monomer having two or more radical polymerizable double bonds in one molecule (hereinafter, referred to as a polyfunctional monomer) can also be used. By using a polyfunctional monomer, a cured product having more excellent heat resistance, chemical resistance, and creep characteristics can be obtained. Therefore, the use or non-use may be determined according to the required performance of the cured product. The amount of the polyfunctional monomer to be used is preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and still more preferably 3 parts by mass or less, based on 100 parts by mass of the (meth) acrylic resin. When the amount of the polyfunctional monomer exceeds 5 parts by mass, the flexibility of a cured product of the obtained resin composition may decrease.
[0021]
Specific examples of the polyfunctional monomer include (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and 1,9 nanon diol (meth) Acrylate, 1,6 hexanediol (meth) acrylate, 1,4 butanediol (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipenta (Meth) acrylic polyfunctional monomers such as erythritol hexa (meth) acrylate; and divinylbenzene, diallyl phthalate, triallyl cyanurate, triallyl isocyanurate and the like. When using these, you may use 2 or more types together.
[0022]
The (meth) acrylic resin which is a main component of the resin composition of the present invention is such that the above (meth) acrylic polymer is 10 to 80% by mass and the monomer component is 20 to 90% by mass. . A more preferable ratio is 15 to 70% by mass of the (meth) acrylic polymer, 30 to 85% by mass of the monomer component, and the most preferable ratio is 30 to 60% by mass of the (meth) acrylic polymer, The monomer component is 40 to 70% by mass. If the (meth) acrylic polymer is less than 10% by mass, that is, the monomer component exceeds 90% by mass, after kneading with an inorganic filler, for example, at the time of preform into a sheet or at the time of molding, resin and When the (meth) acrylic polymer exceeds 80% by mass, that is, when the amount of the monomer component is less than 20% by mass, the viscosity of the resin composition becomes too high, so that the separation from the filler is not preferable. It is not preferable because of the deterioration of the surface properties, for example, the deterioration of the surface smoothness of the sheet obtained at the time of preform and the deterioration of the surface smoothness at the time of molding.
[0023]
Further, in the present invention, for the sake of convenience of description, the (meth) acrylic resin is defined as comprising a (meth) acrylic polymer and a polymerizable monomer component and containing no other components. Of course, it may contain an additive or the like.
[0024]
The resin composition of the present invention contains, together with the (meth) acrylic resin, an inorganic filler having a thermal conductivity of 20 W / m · K or more. Specific examples include aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, aluminum nitride, boron nitride, silicon nitride, and the like. When using these, you may use 2 or more types together. The thermal conductivity of the inorganic filler to be used can be measured using the sintered product and a thermal conductivity measuring device (product number TPA-501, manufactured by Kyoto Electronics Manufacturing Co., Ltd.) by the hot disk method.
The inorganic filler having a thermal conductivity of 20 W / m · K or more is preferably contained in an amount of 100 to 1500 parts by mass, more preferably 200 to 1300 parts by mass, based on 100 parts by mass of the (meth) acrylic resin. Is more preferable. These inorganic fillers have a higher thermal conductivity of a cured product of the obtained resin composition and a higher heat radiation performance as the filling amount of the (meth) acrylic resin is larger, but on the other hand, the obtained resin composition Since the flexibility of the cured product decreases, it is preferable to adjust the filling amount according to, for example, the thermal conductivity required for the cured product and the flexibility of the (meth) acrylic resin to be used.
[0025]
If necessary, the inorganic filler may be subjected to a surface treatment such as a silane treatment in order to increase dispersibility in the resin composition or increase the filling amount.
[0026]
Examples of the shape of the inorganic filler include spherical, fibrous, scaly, flat, crushed, and irregular shapes, but are not particularly limited.
[0027]
It is preferable that the resin composition of the present invention contains a polymerization initiator. The addition of a polymerization initiator is preferred because the resin composition can be cured quickly and productivity is improved.
[0028]
As the polymerization initiator, for example, conventionally known thermal polymerization initiators, photoinitiators and the like can be used. For example, when the resin composition is cured by heat, a thermal polymerization initiator may be used, and when the resin composition is cured by, for example, ultraviolet rays, it may be cured using a photoinitiator, and the curing method may be appropriately selected. it can. Above all, a curing apparatus used for curing the resin composition by heat is simple and excellent in cost, and it is more preferable to cure the resin composition using a thermal polymerization initiator.
[0029]
As the thermal polymerization initiator, for example, conventionally known azo-based initiators and organic peroxides can be used. Examples of the organic peroxide include ketone peroxides such as methyl ethyl ketone peroxide, hydroperoxides such as cumene hydroperoxide, diacyl peroxides such as benzoyl peroxide and lauryl peroxide, and dicumyl peroxide. Dialkyl peroxides, peroxy ketals such as 1,1-di-t-butylperoxy 3,3,5-trimethylcyclohexane, t-amyl peroxy 2-ethylhexanate, t-butyl peroxy 2-ethyl Alkyl peresters such as hexanate, t-amyl peroxy 3,5,5-trimethyl hexanate, t-butyl peroxy 3,5,5-trimethyl hexanate, t-butyl peroxy isopropyl carbonate, t-butyl Peroxy - ethylhexyl carbonate, 1,6-bis (t-butyl peroxycarbonate Niro carboxymethyl) but such percarbonates such as hexane and the like, but is not particularly limited. When using these, you may use 2 or more types together.
[0030]
Further, known curing accelerators and curing accelerators for promoting the action of these thermal polymerization initiators may be used.
[0031]
These thermal polymerization initiators are 0.1 to 5 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin, and the curing accelerator is 0.05 to 3 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin. The curing accelerator is preferably used in an amount of 0.05 to 2 parts by mass based on 100 parts by mass of the (meth) acrylic resin.
[0032]
In order to further improve the flexibility of a cured product of the obtained resin composition, it is preferable to add a plasticizer, a softener, a heat softener, and the like to the resin composition of the present invention. Examples of the plasticizer, softener, and heat softener include process oil, paste oil, paraffin wax, microcrystalline wax, liquid paraffin, higher alcohol, fatty oil, chlorinated paraffin, phthalate plasticizer, and trimellit. Conventionally known ones such as an acid plasticizer, an adipic acid plasticizer, a polyester plasticizer, an epoxy plasticizer, a liquid rubber, a synthetic rubber, and a plasticizer for rubber are exemplified, but are not particularly limited. When using these plasticizers, softeners, heat softeners and the like, two or more kinds may be used in combination, and in order to stably develop the flexibility of the cured product of the obtained resin composition for a long time, It is preferable to use a material having high heat resistance and cold resistance. These plasticizers, softeners, heat softeners, and the like are preferably added in an amount of 5 to 100 parts by mass based on 100 parts by mass of the (meth) acrylic resin.
[0033]
The resin composition of the present invention can be obtained using a conventionally known kneader. For example, a continuous kneader such as a mixer, a roll mill, a Banbury mixer, a kneader, a pressurized kneader, a twin-screw kneader, and the like are exemplified, but are not particularly limited. Further, if necessary, the inside of the apparatus may be depressurized and degassed during kneading.
[0034]
By curing the resin composition of the present invention, a cured product of the heat radiation material can be obtained. In addition, the resin composition can be cured into a desired shape, and the shape, curing method, and curing device are not particularly limited. For example, a cured product of a heat radiation material may be obtained by charging the above resin composition into an injection mold or a batch mold and curing the resin composition to a desired shape, and then forming the sheet into a sheet by a method such as an extruder or casting. And then cured. The curing temperature may be, for example, based on the 10-hour half-life temperature of the thermal polymerization initiator used. By curing at a temperature 10 to 50 ° C. higher than the 10-hour half-life temperature of the thermal polymerization initiator to be used, the curing speed is increased and the productivity can be improved.
[0035]
The resin composition of the present invention may be impregnated or adhered with a resin, an inorganic fiber, an organic fiber, or the like on the surface of the cured product in order to increase the strength or the like of the obtained cured product.
[0036]
In the resin composition of the present invention, conventionally known in the molding material field and the like, for example, reinforcing fibers, inorganic and organic fillers, polymerization inhibitors, low shrinkage agents, mold release agents, thickeners, defoamers, Thixotropic agents, UV absorbers, UV stabilizers, antioxidants, flame retardants, coupling agents, pigments, dyes, magnetic materials, antistatic agents, electromagnetic wave absorbers, other thermosetting resins (unsaturated polyester , Vinyl ester, urethane (meth) acrylate, polyester (meth) acrylate, etc., as long as the object of the present invention is not hindered.
[0037]
As a standard for the amount of addition, an amount that does not violate the object of the present invention is preferable. Specifically, the total amount of the additives is 1000 parts by mass or less based on 100 parts by mass of the (meth) acrylic resin. desirable. A more preferable upper limit of the addition amount is 900 parts by mass, and a still more preferable upper limit is 800 parts by mass. These additives can be mixed with the (meth) acrylic resin to form a resin composition, or can be used by being mixed with the (meth) acrylic resin in advance.
[0038]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples.However, the following examples do not limit the present invention, and all modifications and alterations that do not depart from the spirit of the preceding and the following are included in the technical scope of the present invention. You. In Examples and Comparative Examples, “parts” means “parts by mass” and “%” means “% by mass” unless otherwise specified.
[0039]
Synthesis Example 1 (Synthesis of acrylic resin A)
A container equipped with a thermometer, a stirrer, a gas inlet tube and a reflux condenser was charged with 100 parts of lauryl methacrylate, and the inside of the container was replaced with nitrogen gas. The temperature was raised to 80 ° C., 0.2 part of mercaptopropionic acid as a chain transfer agent and 0.01 part of azoisobutyronitrile as a polymerization initiator were added, and bulk polymerization was carried out under a nitrogen atmosphere for 3.0 hours. went. Before the completion of the polymerization, 0.1 part of a polymerization inhibitor hydroquinone was added at the same time as air was blown, and the system was cooled to terminate the polymerization halfway. In the obtained acrylic resin A, polylauryl methacrylate as a polymer component was 50.0%, and lauryl methacrylate as a polymerizable monomer component was 50.0%. The viscosity at 25 ° C. of the obtained acrylic resin A was 4980 mPa · s. Polylauryl methacrylate, which is a polymer component in the acrylic resin A, has a molecular weight measured by GPC (gel permeation chromatography) of which weight average molecular weight Mw is 136,000 and number average molecular weight Mn is 58,000. And the glass transition temperature measured by a conventional method using a differential scanning calorimeter was -65 ° C.
[0040]
Synthesis Example 2 (Synthesis of acrylic resin B)
A container equipped with a thermometer, a stirrer, a gas inlet tube, a reflux condenser, and a dropping funnel was charged with 40 parts of 2-ethylhexyl acrylate, 50 parts of toluene, and 0.3 part of α-methylstyrene as a chain transfer agent. The inside was replaced with nitrogen gas. The temperature was raised to 80 ° C., and a mixture of 0.05 part of azoisobutyronitrile as a polymerization initiator and 10 parts of toluene was charged into a dropping funnel and dropped into the container over 2 hours. Further, 0.01 parts of azoisobutyronitrile was added, the temperature was raised to 90 ° C., and polymerization was performed for 3 hours. Before the completion of the polymerization, air was blown in, and the system was cooled to terminate the polymerization. Next, the pressure inside the system was reduced and toluene was distilled off to obtain a solid polymer.
[0041]
An acrylic resin B was obtained by mixing 50 parts of the obtained polymer, 50 parts of 2-ethylhexyl acrylate as a polymerizable monomer, and 0.05 part of a polymerization inhibitor hydroquinone.
The viscosity at 25 ° C. of the obtained acrylic resin B was 4280 mPa · s. As for the molecular weight of the polymer using GPC (gel permeation chromatography), the weight average molecular weight Mw was 106,000, and the number average molecular weight Mn was 51,000. The glass transition temperature of the polymer measured by a conventional method using a differential scanning calorimeter was −60 ° C.
[0042]
Example 1
100 parts of acrylic resin A, 2 parts of t-amyl peroxy 3,5,5-trimethylhexanate having a 10-hour half-life temperature of 95 ° C. as a thermal polymerization initiator (manufactured by Kayaku Akzo Co., Ltd .; trade name “Kayaester AN”) )), And 1300 parts of aluminum oxide having a thermal conductivity of 30 W / mk (manufactured by Showa Denko KK; product number AS-40) were kneaded using a pressurized kneader. Then, it was extruded at a thickness of 1 mm between two PET films using an extruder to obtain a sheet-like resin composition for a heat radiation material. The obtained sheet-like resin composition for a heat dissipation material was evaluated according to the following criteria, and the results are shown in Table 1.
[0043]
Next, a 1 mm thick spacer made of silicon was attached around the obtained sheet-shaped resin composition for heat radiation material, and the sheet was placed on a flat mold heated to 120 ° C. for 20 minutes at 10 kg / cm. Press molding at a pressure of 2 . The obtained sheet-shaped cured product was evaluated according to the following criteria, and the results are shown in Table 1.
[0044]
[Preform properties]
When the obtained resin composition for heat radiation material was extruded between two PET films at a thickness of 1 mm using an extruder, the surface state of the obtained sheet was visually observed and evaluated according to the following criteria.
<Surface condition>
;: A uniform sheet was obtained without separation of the acrylic resin and the inorganic filler.
X: Separation of the acrylic resin and the inorganic filler occurred, and a non-uniform sheet was obtained.
<Existence of bubbles>
;: Good surface properties with no bubbles and no irregularities on the sheet surface.
×: Bubbles were present, and irregularities occurred on the sheet surface.
[0045]
[Moldability]
When the sheet-like resin composition for heat radiation material was molded under the above molding conditions, the surface state of the obtained sheet-like cured product was visually observed and evaluated according to the following criteria.
;: Good surface properties with no irregularities or defects on the sheet surface.
X: Unevenness of the sheet surface occurred. Alternatively, separation of the acrylic resin and the inorganic filler occurred, and a non-uniform sheet was obtained.
[0046]
[Thermal conductivity]
It was measured by a quick thermal conductivity meter manufactured by Kyoto Electronics Industry Co., Ltd., part number QTM-500.
[0047]
[Flexibility]
According to JIS K6253, it was measured using an Asker rubber hardness meter A manufactured by Ueshima Seisakusho.
The smaller the value obtained, the more flexible.
[0048]
Example 2
100 parts of acrylic resin A, 1 part of polyethylene glycol dimethacrylate as a polyfunctional monomer (manufactured by Kyoeisha Chemical Co., Ltd .; trade name “Light Ester 9EG”), and a 10-hour half-life temperature of 95 ° C. as a thermal polymerization initiator 2 parts of amyl peroxy 3,5,5-trimethylhexanate (manufactured by Kayaku Akzo Co., Ltd .; trade name "Kayaester AN") and 1300 parts of aluminum oxide (manufactured by Showa Denko; product number AS-40) were added to a pressurized kneader. A resin composition for a sheet-like heat radiation material and a cured product thereof were obtained in the same manner as in Example 1 except that the mixture was kneaded using the same. Table 1 shows the evaluation results.
[0049]
Example 3
Except that aluminum oxide was changed to 250 parts of boron nitride having a thermal conductivity of 50 W / m · k (manufactured by Kyoritsu Materials Co., Ltd .; product number BN-100), a resin composition for a sheet-like heat radiation material was prepared in the same manner as in Example 2. And a cured product thereof. Table 1 shows the evaluation results.
[0050]
Example 4
A sheet-like resin composition for a heat-dissipating material was prepared in the same manner as in Example 2 except that aluminum oxide was changed to 700 parts of aluminum nitride having a thermal conductivity of 120 W / m · k (manufactured by Toyo Aluminum Co., Ltd .; product number R-15). And a cured product were obtained. Table 1 shows the evaluation results.
[0051]
Example 5
Resin composition for sheet-like heat radiation material in the same manner as in Example 2 except that 100 parts of acrylic resin A was changed to 70 parts of acrylic resin A and 30 parts of phthalic acid plasticizer (manufactured by Kao; trade name "Vinicizer 124"). And a cured product thereof. Table 1 shows the evaluation results.
[0052]
Example 6
Acrylic resin A100 parts, acrylic resin A70 parts, polymerizable monomer 2-ethylhexyl acrylate 30 parts, except that in the same manner as in Example 2, the heat-dissipating material resin composition, and the cured product Obtained. Table 1 shows the evaluation results.
[0053]
Example 7
A sheet-like heat-dissipating material resin composition and its curing were performed in the same manner as in Example 2, except that the acrylic resin A100 part was changed to the acrylic resin A70 and the polymerizable monomer n-butyl acrylate 30 parts. I got something. Table 1 shows the evaluation results.
Example 8
A sheet-like resin composition for a heat dissipation material and a cured product thereof were obtained in the same manner as in Example 2, except that 100 parts of the acrylic resin A was changed to 100 parts of the acrylic resin B. Table 1 shows the evaluation results.
[0054]
Comparative Example 1
Sheet-shaped heat radiation was performed in the same manner as in Example 2 except that 100 parts of the acrylic resin A was changed to 100 parts of a polymerizable monomer, 2-ethylhexyl acrylate (that is, excluding the (meth) acrylic polymer as an essential component). A resin composition for a material and a cured product thereof were obtained. Table 1 shows the evaluation results.
[0055]
The abbreviations used in Table 1 have the following meanings.
2EHA: 2-ethylhexyl acrylate BA: n-butyl acrylate 9EG: polyethylene glycol dimethacrylate manufactured by Kyoeisha Chemical Co .; trade name “Light Ester 9EG”
[0056]
[Table 1]
Figure 2004339426
[0057]
As is clear from Table 1, the examples of the present invention not only have excellent thermal conductivity and flexibility, but also can efficiently obtain a cured product having good thermal conductive sheet productivity and moldability, for example. On the other hand, it was revealed that the comparative example using only the polymerizable monomer was inferior to the example.
[0058]
【The invention's effect】
The resin composition of the present invention and a cured product thereof have a (meth) acrylic resin composed of 10 to 80% by mass of a (meth) acrylic polymer and 20 to 90% by mass of a polymerizable monomer, and a thermal conductivity of 20 W / M · K or more, it has succeeded in efficiently obtaining a cured product having not only excellent thermal conductivity and flexibility but also excellent productivity and moldability of a thermal conductive sheet, for example. Therefore, for example, it can be interposed between a heat generating body such as an electric / electronic component and a heat radiating body such as a heat sink, a radiating fin, or a metal heat radiating plate to be used for a purpose of dissipating heat generated from the electric / electronic component.

Claims (4)

(メタ)アクリル系重合体10〜80質量%と重合性単量体20〜90質量%からなる(メタ)アクリル系樹脂と、熱伝導率が20W/m・K以上である無機充填剤とを含むことを特徴とする放熱材料用樹脂組成物。(Meth) acrylic resin composed of 10 to 80% by mass of a (meth) acrylic polymer and 20 to 90% by mass of a polymerizable monomer, and an inorganic filler having a thermal conductivity of 20 W / m · K or more. A resin composition for a heat dissipation material, comprising: 上記(メタ)アクリル系重合体が0℃以下のガラス転移点を有し、上記重合性単量体がアルキル基の炭素数が2〜18である(メタ)アクリル酸アルキルエステルであることを特徴とする請求項1記載の放熱材料用樹脂組成物。The (meth) acrylic polymer has a glass transition point of 0 ° C. or lower, and the polymerizable monomer is an alkyl (meth) acrylate having an alkyl group having 2 to 18 carbon atoms. The resin composition for a heat radiation material according to claim 1. さらに熱重合開始剤を含むことを特徴とする請求項1または2に記載の放熱材料用樹脂組成物。The resin composition for a heat dissipation material according to claim 1, further comprising a thermal polymerization initiator. 請求項1〜3記載の放熱材料用樹脂組成物から得られることを特徴とする放熱材料硬化物。A cured product of a heat dissipation material, which is obtained from the resin composition for a heat dissipation material according to claim 1.
JP2003140047A 2003-05-19 2003-05-19 Resin composition for heat dissipation material Expired - Lifetime JP4009224B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003140047A JP4009224B2 (en) 2003-05-19 2003-05-19 Resin composition for heat dissipation material
US10/557,786 US7589147B2 (en) 2003-05-19 2004-05-19 Resin composition for thermal conductive material and thermal conductive material
TW093114069A TW200508379A (en) 2003-05-19 2004-05-19 Resin composition for thermally conductive material and thermally conductive material
PCT/JP2004/007113 WO2004101678A1 (en) 2003-05-19 2004-05-19 Resin composition for thermally conductive material and thermally conductive material
CNB2004800138459A CN100386375C (en) 2003-05-19 2004-05-19 Resin composition for thermally conductive material and thermally conductive material
KR1020057021364A KR100731279B1 (en) 2003-05-19 2004-05-19 Resin composition for thermally conductive material and thermally conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140047A JP4009224B2 (en) 2003-05-19 2003-05-19 Resin composition for heat dissipation material

Publications (2)

Publication Number Publication Date
JP2004339426A true JP2004339426A (en) 2004-12-02
JP4009224B2 JP4009224B2 (en) 2007-11-14

Family

ID=33528890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140047A Expired - Lifetime JP4009224B2 (en) 2003-05-19 2003-05-19 Resin composition for heat dissipation material

Country Status (2)

Country Link
JP (1) JP4009224B2 (en)
CN (1) CN100386375C (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009084A (en) * 2005-06-30 2007-01-18 Asahi Kasei Chemicals Corp Resin composition excellent in heat dissipation and heat-dissipating resin sheet
JP2008163126A (en) * 2006-12-27 2008-07-17 Nippon Shokubai Co Ltd Resin composition for heat-release material
JP2008280496A (en) * 2007-04-11 2008-11-20 Hitachi Chem Co Ltd Heat-conductive sheet, method for producing the same, and heat radiator using the same
US7589147B2 (en) 2003-05-19 2009-09-15 Nippon Shokubai Co., Ltd. Resin composition for thermal conductive material and thermal conductive material
JP2011162642A (en) * 2010-02-09 2011-08-25 Hitachi Chem Co Ltd Thermally conductive sheet, method for manufacturing the same and heat-dissipating device using thermally conductive sheet
WO2015045918A1 (en) * 2013-09-26 2015-04-02 日本ゼオン株式会社 Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like article, method for producing same, and electronic equipment
WO2015045919A1 (en) * 2013-09-26 2015-04-02 日本ゼオン株式会社 Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like article, method for producing same, and electronic equipment
JPWO2021039749A1 (en) * 2019-08-30 2021-03-04
JP7501225B2 (en) 2020-08-21 2024-06-18 株式会社レゾナック Composition containing (meth)acrylate having a mesogenic skeleton

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282125B1 (en) * 2012-01-18 2013-07-04 주식회사 지앤씨에스 Back-light assembly and display device having the same
PL3147317T3 (en) * 2015-09-28 2018-01-31 Evonik Degussa Gmbh Tripentylester of trimellitic acid
JP6259064B2 (en) * 2016-01-14 2018-01-10 デクセリアルズ株式会社 HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE
WO2017122817A1 (en) 2016-01-14 2017-07-20 デクセリアルズ株式会社 Thermal conducting sheet, method for manufacturing thermal conducting sheet, heat dissipation member, and semiconductor device
JP7099704B2 (en) * 2018-11-05 2022-07-12 北川工業株式会社 Thermal conductive material
CN112877025B (en) * 2021-02-04 2022-07-26 浙江荣泰科技企业有限公司 Heat-conducting resin composition and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2793559B2 (en) * 1996-05-30 1998-09-03 日東電工株式会社 Pressure-sensitive adhesives having excellent heat resistance and heat conductivity, their adhesive sheets, and methods for fixing electronic components and heat radiation members using these adhesives
CN1107694C (en) * 1996-11-29 2003-05-07 日东电工株式会社 Thermally conductive pressure-sensitive adhesive and adhesive sheet containing same
DE19817193B4 (en) * 1998-04-17 2006-04-13 Robert Bosch Gmbh Radiation and / or thermosetting adhesive with high thermal conductivity and its use
JP2003133490A (en) * 2001-10-19 2003-05-09 Achilles Corp Heat conductive composition and heat conductive forming body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589147B2 (en) 2003-05-19 2009-09-15 Nippon Shokubai Co., Ltd. Resin composition for thermal conductive material and thermal conductive material
JP2007009084A (en) * 2005-06-30 2007-01-18 Asahi Kasei Chemicals Corp Resin composition excellent in heat dissipation and heat-dissipating resin sheet
JP2008163126A (en) * 2006-12-27 2008-07-17 Nippon Shokubai Co Ltd Resin composition for heat-release material
JP2008280496A (en) * 2007-04-11 2008-11-20 Hitachi Chem Co Ltd Heat-conductive sheet, method for producing the same, and heat radiator using the same
JP2011162642A (en) * 2010-02-09 2011-08-25 Hitachi Chem Co Ltd Thermally conductive sheet, method for manufacturing the same and heat-dissipating device using thermally conductive sheet
WO2015045918A1 (en) * 2013-09-26 2015-04-02 日本ゼオン株式会社 Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like article, method for producing same, and electronic equipment
WO2015045919A1 (en) * 2013-09-26 2015-04-02 日本ゼオン株式会社 Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like article, method for producing same, and electronic equipment
JPWO2021039749A1 (en) * 2019-08-30 2021-03-04
WO2021039749A1 (en) * 2019-08-30 2021-03-04 株式会社日本触媒 Two-component-type resin composition for heat-radiating material
JP7227386B2 (en) 2019-08-30 2023-02-21 株式会社日本触媒 Two-component resin composition for heat dissipation materials
JP7501225B2 (en) 2020-08-21 2024-06-18 株式会社レゾナック Composition containing (meth)acrylate having a mesogenic skeleton

Also Published As

Publication number Publication date
CN1791636A (en) 2006-06-21
CN100386375C (en) 2008-05-07
JP4009224B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP4009224B2 (en) Resin composition for heat dissipation material
JP5101862B2 (en) Sheet-forming monomer composition, thermally conductive sheet and process for producing the same
JP5727628B2 (en) Unsaturated polyester resin composition and encapsulated motor
KR20110005290A (en) (meth)acrylic pressure-sensitive adhesive foam and method for producing the same
US7956116B2 (en) Electronic device containing a thermally conductive sheet
JP2002128931A (en) Thermally conductive resin sheet
JP4652916B2 (en) Resin composition for heat dissipation material
WO2013047145A1 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molded body, method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like molded body, and electronic component
JP2005354002A (en) Thermoconductive multilayer sheet
KR100731279B1 (en) Resin composition for thermally conductive material and thermally conductive material
JP3875664B2 (en) Resin composition for heat dissipation material and cured product thereof
JP2002322449A (en) Heat conductive, pressure sensitive adhesive
KR20130028691A (en) Thermal conductive sheet and producing method thereof
JP4343016B2 (en) Acrylic sealant and sealant
JP4280200B2 (en) Resin composition for heat dissipation material
JP2002155110A (en) Polymerizable composition and heat conductive sheet
JP2012131855A (en) Powdery and granular composition, heat-conductive pressure-sensitive adhesive composition, heat-conductive pressure-sensitive adhesive sheet-like molding, method for producing them, and electronic component
JP2018090695A (en) Arc resistant bmc
JP4344192B2 (en) Resin composition for heat dissipation material and cured product thereof
JP5636169B2 (en) Thermosetting resin composition and electric / electronic component
KR20140088092A (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-form molded body, manufacturing method of these, and electronic component
JP2002338927A (en) Thermocomductive pressure-sensitive adhesive agent and thermocomductive pressure-sensitive adhesive sheet
WO2022239224A1 (en) Method for producing solid object
JP2004211003A (en) (meth)acrylic resin composition
JP3999751B2 (en) Method for producing (meth) acrylic polymerizable liquid resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4009224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

EXPY Cancellation because of completion of term