JP2004338628A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2004338628A
JP2004338628A JP2003139231A JP2003139231A JP2004338628A JP 2004338628 A JP2004338628 A JP 2004338628A JP 2003139231 A JP2003139231 A JP 2003139231A JP 2003139231 A JP2003139231 A JP 2003139231A JP 2004338628 A JP2004338628 A JP 2004338628A
Authority
JP
Japan
Prior art keywords
tread
groove
tire
main groove
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003139231A
Other languages
Japanese (ja)
Other versions
JP4098668B2 (en
Inventor
Toshiharu Tanigawa
利晴 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2003139231A priority Critical patent/JP4098668B2/en
Priority to GB0410555A priority patent/GB2401588B/en
Priority to AU2004202040A priority patent/AU2004202040B2/en
Priority to DE200410024162 priority patent/DE102004024162A1/en
Publication of JP2004338628A publication Critical patent/JP2004338628A/en
Application granted granted Critical
Publication of JP4098668B2 publication Critical patent/JP4098668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/001Tyres requiring an asymmetric or a special mounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • B60C11/033Tread patterns characterised by special properties of the tread pattern by the void or net-to-gross ratios of the patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping

Abstract

<P>PROBLEM TO BE SOLVED: To further improve dry gripping performance, hydro-planing resistance performance and wear resistant performance. <P>SOLUTION: The groove area ratio L in the entire tread surface is set to 0.15 to 0.35 and the groove area ratio Li in the inner tread half section Si is set to be larger by 0.05 or more than the groove area ratio Lo in the outer tread half section So. A linear and peripheral direction main groove 10 with its tilting angle α to the groove wall surface being 30 to 50° is provided in the area Y away from the tire equator C by the distance of 20 to 55% of the tread half width TW/2 in the inner tread half section Si.In the outer tread half section So, outer tilting lateral main grooves 20 having lateral groove main sections 21 extending at a tilting angle β of 35° or more toward the tread edge Eo from the tire equator C is provided, without forming a peripheral groove. The lateral groove main sections 21 are connected to an inner communication sections 22i communicating with the peripheral direction main groove 10 or to an outer communication section 22o communicating with the tread edge E. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特に公道走行に際して優れたウエットグリップ性能(耐ハイドロプレーニング性能)を充分に確保しながら、例えばサーキット競技及びジムカーナ競技等のレース走行に際して高いドライグリップ性能と耐摩耗性能とを発揮しうる空気入りタイヤに関する。
【0002】
【従来の技術、発明が解決しようとする課題】
公道での走行に加え、サーキット競技及びジムカーナ競技等のレース走行も前提とした高性能タイヤのトレッドパターンとして、図7(A)に例示する如く、ドライグリップ性能の向上を主目的としたS字状パターン、及び図7(B)に例示する如く、ウエットグリップ性能とドライグリップ性能との双方を向上させたV字状パターンが広く使用されている(例えば特許文献1参照)。
【0003】
【特許文献1】
特開2000−127715号公報(図2、図8)
【0004】
しかし前記S字状パターンのものは、横向き加速度(横G)に対するパターン剛性が高いため、ドライグリップ性能(特に横グリップ性)に優れるものの、トレッド溝aのタイヤ周方向に対する角度θが小さくなる部分P1において、摩耗が早く進行する傾向がある。しかも、前記トレッド溝aのほとんどの部分で、前記角度θが35°以上と大きく傾斜しており、耐ハイドロプレーニング性能が良好とはいえない。
【0005】
これに対し、前記V字状パターンのものは、ウエットグリップ性能は良好なものの、摩擦係数μの高い路面、例えば競技コースなどを高い横向き加速度(横G)でレース走行する場合には、車両外側となる外のトレッド半部分toにおける横剛性が高くなく、トレッドゴムの配合、構造の変更によっても、走破タイムのさらなる短縮を難しいものとしている。又外のトレッド半部分toに配されるトレッド溝aにおいて、前記角度θが35°以下となる部分P2で摩耗が早くなるという問題がある。
【0006】
そこで本発明は、優れた排水性を確保しながらパターン剛性を適正に高めることができ、ドライグリップ性能、ウエットグリップ性能、並びに耐摩耗性能の一層の向上を図りうる空気入りタイヤを提供することを目的としている。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本願請求項1の発明は、トレッド面に、タイヤ赤道の両側でトレッドパターンを異ならせた非対称パターンを設けた空気入りタイヤであって、
前記トレッド面をタイヤ赤道を中心として、タイヤの車両装着状態において、車両内側となる内のトレッド半部分と、車両外側となる外のトレッド半部分とに仮想区分し、かつ内のトレッド半部分におけるトレッドパターンの溝面積比Liを、車両外側となる外のトレッド半部分におけるトレッドパターンの溝面積比Loよりも0.05以上大、かつトレッド面全体のトレッドパターンの溝面積比Lを0.15〜0.35の範囲とし、
前記内のトレッド半部分は、タイヤ赤道からトレッド端までのトレッド半巾の20〜55%の距離をタイヤ赤道から隔たる領域Yに、タイヤ周方向に連続してのびる直線状の周方向主溝を設け、かつ該周方向主溝の溝壁面のトレッド面への法線に対する傾斜角度αを30〜50°とするとともに、
前記外のトレッド半部分には、タイヤ周方向に連続してのびる周方向溝を設けることなく、
しかも該外のトレッド半部分は、内端をタイヤ赤道としてトレッド端に向かってのびかつタイヤ周方向に対してなす傾斜角度βを35°以上とした横溝主部を有する外の傾斜横主溝を具え、
かつ該外の傾斜横主溝は、前記横溝主部の内端に連なり前記タイヤ赤道を越えて前記周方向主溝に連通する内の連通部、又は前記横溝主部の外端に連なりトレッド端に連通する外の連通部を有するとともに、各連通部の連通位置における前記傾斜角度βを75〜90°としたことを特徴としている。
【0008】
又請求項2の発明では、前記外の傾斜横主溝は、前記横溝主部に外の連通部を接続した第1の外の傾斜横主溝のみからなることを特徴としている。
【0009】
又請求項3の発明では、前記外の傾斜横主溝は、前記横溝主部に外の連通部を接続した第1の外の傾斜横主溝と、横溝主部に前記内の連通部を接続した第2の外の傾斜横主溝とを含むことを特徴としている。
【0010】
又請求項4の発明では、前記外の傾斜横主溝は、前記第1の外の傾斜横主溝と、前記第2の外の傾斜横主溝とを周方向に交互に配したことを特徴としている。
【0011】
又請求項5の発明では、前記トレッド面は、前記内のトレッド半部分のトレッド端のタイヤ赤道点からの半径方向距離Hiと、外のトレッド半部分のトレッド端のタイヤ赤道点からの半径方向距離Hoとの比Hi/Hoを1.02〜1.20としたことを特徴としている。
【0012】
【発明の実施の形態】
以下、本発明の実施の一形態を、図示例とともに説明する。図1は本発明の空気入りタイヤの子午断面を示し、図2はそのトレッドパターンを示す。
図1において、空気入りタイヤ1は、公道走行と、サーキット競技及びジムカーナ競技等のレース走行との双方を前提とした高性能タイヤであって、トレッド部2からサイドウォール部3をへてビード部4のビードコア5に至るラジアル構造のカーカス6を具える。
【0013】
又該カーカス6の外側かつトレッド部2の内方には、ベルト層7が巻装され、そのタガ効果によって、タイヤ断面高さHとタイヤ巾Wとの比である偏平率H/Wを、本例では、50%以下例えば40%に拘束している。これによって、タイヤ剛性を高める一方、トレッド巾TWを拡大して、高速性能及び操縦安定性を向上している。
【0014】
ここで、前記「トレッド巾TW」は、トレッド端E、E間のタイヤ軸方向距離であり、又前記「トレッド端E」とは、トレッド面2Sの輪郭を軸方向外側に延長した仮想線と、バットレス表面3Sの輪郭を半径方向外側に延長した仮想線との交点をJとしたとき、この交点Jを通る半径方向線がタイヤ表面と交わる点を意味する。
【0015】
そして、本発明の空気入りタイヤ1では、トレッド面2Sを、タイヤ赤道Cを中心として、車両装着状態において車両内側となる内のトレッド半部分Siと、車両外側となる外のトレッド半部分Soとに仮想区分したとき、内のトレッド半部分Siのトレッドパターンと、外のトレッド半部分Soのトレッドパターンとを互いに相違させた非対称パターンで形成している。
【0016】
詳しくは、図2に示すように、前記内のトレッド半部分Siは、トレッド半巾TW/2(前記トレッド巾TWの1/2)の20〜55%の距離をタイヤ赤道Cから隔たる領域Yに、タイヤ周方向に連続してのびる直線状の1本の周方向主溝10を設けている。
【0017】
この周方向主溝10は、その溝巾GW0を14mm以上、好ましくは18mmとした排水効果の高いストレート溝であって、その溝中心線を前記領域Y内に配置、即ち溝中心線のタイヤ赤道Cからの距離L0をトレッド半巾TW/2の20〜55%としている。
【0018】
なお周方向主溝10が前記領域Yよりも車両外側に配された場合には、外のトレッド半部分Soにおけるパターン剛性を充分に確保できなくなり、レース走行で要求される高いドライグリップ性能及び耐摩耗性能を高レベルで満足させることが難しくなる。逆に、周方向主溝10が前記領域Yよりも車両内側に配された場合には、公道走行で要求されるウエットグリップ性能が充分に確保できなくる。
【0019】
又前記周方向主溝10は、ドライグリップ性能及び耐摩耗性の観点から、図3に示す如く、溝中心線と直角な溝断面において、その溝壁面gを、溝側縁で立てたトレッド面2Sへの法線に対して30〜50°の大きな傾斜角度αで傾斜させることが必要である。特に旋回時、車両外側には車両内側に比して大きな横力が作用することから、前記角度範囲内で、車両外側の溝壁面goの傾斜角度αoを車両内側の溝壁面giの傾斜角度αiよりも大(αo>αi)に設定するのが好ましい。前記傾斜角度αが30°未満では、溝側縁近傍での剛性が不十分となって、軌道摩耗等の偏摩耗を招くなど耐摩耗性を低下する。逆に傾斜角度αが50°を越えると、溝容積が減じ排水性の低下を招く。
【0020】
なお図4(A)の如く、前記溝壁面gが凸円状の湾曲面の場合、該湾曲面の各位置における接線の傾斜角度αが夫々30〜50°の範囲であり、図4(B)の如く、前記溝壁面gが複数の面部からなる屈曲面の場合、各面部の傾斜角度αが夫々30〜50°の範囲である。又傾斜角度αi、αoを比較するときは、湾曲面の場合、接線の傾斜角度αの最大値と最小値との平均値で比較し、又屈曲面の場合、各面部の傾斜角度αの平均値で比較する。
【0021】
又前記内のトレッド半部分Siには、前記周方向主溝10と内のトレッド端Eiとの間に、内の傾斜横主溝11を付設することができる。この内の傾斜横主溝11は、本例では、内端が前記周方向主溝10に連通しかつ外端が内のトレッド端Eiからタイヤ軸方向に距離L1を隔てて途切れる第1の内の傾斜横主溝11Aを含んで形成される。
【0022】
特に本例では、内の傾斜横主溝11が、前記第1の内の傾斜横主溝11Aと、外端が内のトレッド端Eiに連通しかつ内端が周方向主溝10からタイヤ軸方向に距離L2を隔てて途切れる第2の内の傾斜横主溝11Bとから形成される場合を例示している。このとき、第1、第2の内の傾斜横主溝11A、11Bを周方向に交互に配置するのが、均一性の観点から好ましい。
【0023】
なお前記距離L1、L2は、トレッド巾TWの7%〜14%が好ましく、7%未満では剛性低下によってドライグリップ性能および耐摩耗性を減じる傾向となる。逆に14%を越えるとウエットグリップ性能を減じる傾向となる。なお、ウエットグリップ性能のためには、前記第1、第2の内の傾斜横主溝11A、11Bがタイヤ周方向で相互に重なり合う重なり部12を有して形成されるのが好ましい。
【0024】
又前記内の傾斜横主溝11の、周方向に対してなす傾斜角度γは、35°以上であるのが好ましく、特に、周方向主溝10および内のトレッド端Eiとの連通位置での傾斜角度γ1を75〜90°とするのが望ましい。これにより、連通位置での過度の剛性低下を抑え、耐摩耗性の低下を抑制できる。
【0025】
これに対して、前記外のトレッド半部分Soには、旋回時により大きな横力が作用することから、より高い横剛性が必要である。そのために、図2の如く、外のトレッド半部分Soには、タイヤ周方向に連続してのびる周方向溝を設けることなく、タイヤ周方向に対して傾斜してのびる外の傾斜横主溝20を形成している。
【0026】
ここで、「タイヤ周方向に連続してのびる周方向溝を設けない」とは、パターン横剛性の低下原因となる全ての周方向溝を排除することを意味し、例えば、排水性を主目的とした溝巾3mm以上の主溝、排水性とパターン剛性の適正化を主目的とした、溝巾1.0〜3mmの細溝、及びパターン剛性の適正化とエッジ効果などを主目的とした溝巾1.0mm未満のサイピングがその対象となる。又図5に略示する如く、タイヤ周方向に隣り合う外の傾斜横主溝20、20間を順次連結する連結溝30A等も、ジグザグ状の1本の周方向溝30と見なすことができ、排除の対象となる。
【0027】
又前記外の傾斜横主溝20は、タイヤ周方向に対して35°以上の傾斜角度βを有してタイヤ赤道C上の内端21Eiから外のトレッド端Eoに向かってのびる横溝主部21を少なくとも具えるとともに、この横溝主部21には、その前記内端21Eiに連なり前記タイヤ赤道Cを越えて前記周方向主溝10に連通する内の連通部22i、又は前記横溝主部21の外端21Eoに連なり外のトレッド端Eoに連通する外の連通部22oを連設している。
【0028】
本例では、前記外の傾斜横主溝20が、前記横溝主部21に、外の連通部22oを接続した第1の外の傾斜横主溝20Aと、横溝主部21に、内の連通部22iを接続した第2の外の傾斜横主溝20Bとから構成される場合を例示している。このとき、前記第1、第2の外の傾斜横主溝20A、20Bを周方向に交互に配置するのが均一性の観点から好ましい。なお要求により、第1の外の傾斜横主溝20Aとして、横溝主部21の内端21Eiからタイヤ赤道Cを越えてのびかつ前記周方向主溝10からタイヤ軸方向に距離L3を隔てて途切れる縁出部24(一点鎖線で示す)を設けることもできる。
【0029】
ここで外の傾斜横主溝20では、前記傾斜角度βを35°以上とすることが必要であり、35°未満では、旋回時の横力に対してのパターン横剛性が不十分となる。その結果、レース走行でのドライグリップ性能(特に横グリップ性)が不足し、走破タイムの向上が達成できなくなるとともに、外の傾斜横主溝20の溝側縁近傍での耐摩耗性を低下させる。
【0030】
特に外の傾斜横主溝20では、外のトレッド端Eo、及び周方向主溝10との連通位置において剛性が減じて耐摩耗性を損ねる傾向がある。従って、各連通部22i、22oの連通位置における前記傾斜角度β1を、夫々75〜90°の範囲とし、剛性低下を抑えることも重要である。
【0031】
なお前記傾斜角度β、γは、前記内、外の傾斜横主溝11、20が曲線の場合にはその接線の傾斜角度で示す。
【0032】
又第2の外の傾斜横主溝20Bは、その外端と外のトレッド端Eoとの距離L4を、トレッド巾TWの10%〜20%とするのが好ましく、10%未満では剛性低下によってドライグリップ性能および耐摩耗性を減じる傾向となる。逆に20%を越えるとウエットグリップ性能を減じる傾向となる。又第1の外の傾斜横主溝20Aにおいて前記縁出部24を設ける場合には、周方向主溝10との前記距離L3をトレッド巾TWの12%以上確保するのが、ドライグリップ性能および耐摩耗性を確保する上で好ましい。
【0033】
次に、本発明の空気入りタイヤ1では、トレッド面2S全体におけるトレッドパターンの溝面積比Lを0.15〜0.35の範囲とするとともに、外のトレッド半部分Soでは、パターン剛性を高めてより大きな横グリップが得られるように、そのトレッドパターンの溝面積比Loを、内のトレッド半部分Siにおけるトレッドパターンの溝面積比Liよりも0.05以上小(Li−Lo≧0.05)に設定している。なお溝面積比とは、トレッド面に占めるトレッド溝の開口面積の割合を意味する。
【0034】
前記溝面積比Lが0.15未満では、必要なウエットグリップ性能を確保するのが難しく、又溝面積比Lが0.35より大、及び溝面積比の差Li−Loが0.05未満では、レース走行で要求される高いドライグリップ性能及び耐摩耗性能を高レベルで満足させることが難しくなる。なおウエットグリップ性能の観点から前記溝面積比の差Li−Loは0.12以下が好ましい。
【0035】
なお前記内、外の傾斜横主溝11、20は、その溝巾GW1、GW2を夫々3mm以上とした排水用の主溝であって、各溝巾GW0、GW1、GW2の上限値、及び内、外の傾斜横主溝11、20の形成ピッチなどは、前述の溝面積比L、及び溝面積比の差Li−Loに応じて適宜設定される。
【0036】
次に本発明の空気入りタイヤ1では、前記優れた横グリップ性を充分に活かして、旋回性能を大幅に向上させるために、図1に示すように、内のトレッド端Eiのタイヤ赤道点COからの半径方向距離Hiと、外のトレッド端Eoのタイヤ赤道点COからの半径方向距離Hoとの比Hi/Hoを1.02〜1.20とした、非対称のトレッド輪郭形状を有している。
【0037】
旋回中の車両において旋回中心側に装着のタイヤでは、接地中心が内のトレッド半部分Siの側となり、旋回中心とは反対側に装着の夕イヤでは、接地中心が外のトレッド半部分Soの側となる。このとき、前記比Hi/Hoを1.02〜1.20とすることにより、旋回中心側の夕イヤの実転動半径、即ち内のトレッド半部分Siの側の実転動半径を、旋回中心とは反対側の夕イヤの実転動半径、即ち外のトレッド半部分Soの側の実転動半径よりも小とすることができ、スム一ズな旋回が可能となる。なお、比Hi/Hoが1.02未満では、前記効果が発揮されず、逆に1.20を越えると、直進走行性能を損ねるとともに、接地圧分布が不均一化し摩耗性能を悪化させる傾向となる。
【0038】
図6にトレッドパターンの他の実施例を例示する。図において、内のトレッド半部分Siには、第1の内の傾斜横主溝11Aのみから構成される内の傾斜横主溝11が配されるとともに、外のトレッド半部分Soには、第1の外の傾斜横主溝20Aのみから構成される外の傾斜横主溝20が配されている。
【0039】
以上、本発明の特に好ましい実施形態について詳述したが、本発明は一般の乗用車用タイヤとして採用しうるなど、図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【0040】
【実施例】
図1の構造をなしかつ図2、6、7に示すトレッドパターンを有する空気入りタイヤ(255/40ZR17)を表1の仕様で試作するとともに、各試供タイヤのウエットグリップ性能、及びジムカーナ競技での走破タイムを測定し、その結果を表1に記載した。なお表1以外の仕様は実質的に同一である。
【0041】
(1) ウエットグリップ性能(耐直線ハイドロプレーニング性能):
試供タイヤを、リム(9J×17)、内圧(230kPa)の条件で全輪に装着した乗用車両(2600cc)を用い、水深10mmの直線路において加速していき、加速限界速度を計測し、比較例1を100とした指数で表示した。数値が大きい程良好である。
【0042】
(2) ウエットグリップ性能(耐ラテラルハイドロプレーニング性能):
前記車両を用い、半径100mのアスファルト路面に、水深5mm、長さ20mの水たまりを設けたコース上を、速度を段階的に増加させながら進入させ、横加速度(横G)を計測し、50〜80km/hの速度における前輪の平均横Gを算出した。そして平均横Gを、比較例1を100とした指数で表示した。数値が大きい程良好である。
【0043】
【表1】

Figure 2004338628
【0044】
実施例のタイヤは、ウエットグリップ性能とドライグリップ性能との双方を両立した高めうるのが確認できる。
【0045】
【発明の効果】
本発明は叙上の如く構成しているため、優れた排水性を確保しながらパターン剛性を適正に高めることができ、ドライグリップ性能、耐ハイドロプレーニング性能、及び耐摩耗性能を向上できる。
【図面の簡単な説明】
【図1】本発明の空気入りタイヤの一実施例を示す断面図である。
【図2】そのトレッドパターンを示す展開図である。
【図3】周方向主溝の横断面図である。
【図4】(A)、(B)は、周方向主溝の溝壁面の傾斜角度を説明する線図である。
【図5】外のトレッド半部分から排除する周方向溝の一例を示す線図である。
【図6】本発明で用いるトレッドパターンの他の実施例を示す展開図である。
【図7】(A)、(B)は、従来タイヤのトレッドパターンの一例を示す展開図である。
【符号の説明】
2S トレッド面
10 周方向主溝
20 外の傾斜横主溝
20A 第1の外の傾斜横主溝
20B 第2の外の傾斜横主溝
21 横溝主部
22i 内の連通部
22o 外の連通部
C タイヤ赤道
E、Ei、Eo トレッド端
g 溝壁面
Si 内のトレッド半部分
So 外のトレッド半部分[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention can exhibit high dry grip performance and abrasion resistance when racing, for example, in a circuit competition or gymkhana competition, while sufficiently ensuring excellent wet grip performance (hydroplaning resistance performance) particularly on public roads. Related to pneumatic tires.
[0002]
2. Description of the Related Art
As shown in FIG. 7A, an S-shaped tread pattern mainly for improving dry grip performance as a tread pattern of a high-performance tire premised on race driving such as circuit competition and gym khana competition in addition to traveling on public roads. As illustrated in FIG. 7B, a V-shaped pattern in which both wet grip performance and dry grip performance are improved is widely used (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2000-127715 (FIGS. 2 and 8)
[0004]
However, the S-shaped pattern has a high pattern rigidity with respect to the lateral acceleration (lateral G), and thus has excellent dry grip performance (particularly, lateral grip performance), but has a small angle θ of the tread groove a with respect to the tire circumferential direction. At P1, wear tends to progress quickly. In addition, the angle θ is largely inclined at 35 ° or more in most of the tread groove a, and the hydroplaning resistance is not good.
[0005]
On the other hand, the V-shaped pattern has a good wet grip performance, but when racing on a road surface having a high coefficient of friction μ, for example, a race course at a high lateral acceleration (lateral G), the vehicle has an outer side. The lateral stiffness of the outer tread half part to is not high, and it is difficult to further reduce the running time even by changing the composition and structure of the tread rubber. Further, in the tread groove a disposed in the outer tread half portion to, there is a problem that wear is accelerated in a portion P2 where the angle θ is 35 ° or less.
[0006]
Therefore, the present invention provides a pneumatic tire that can appropriately increase the pattern rigidity while securing excellent drainage performance, and can further improve dry grip performance, wet grip performance, and wear resistance performance. The purpose is.
[0007]
[Means for Solving the Problems]
In order to achieve the object, the invention of claim 1 of the present application is a pneumatic tire provided with an asymmetric pattern in which a tread pattern is different on both sides of a tire equator on a tread surface,
The tread surface is centered on the tire equator, and when the tire is mounted on the vehicle, the tread half portion on the inside of the vehicle and the outer tread half portion on the outside of the vehicle are virtually divided, and the inner tread half portion is The groove area ratio Li of the tread pattern is 0.05 or more larger than the groove area ratio Lo of the tread pattern in the outer half of the tread outside the vehicle, and the groove area ratio L of the tread pattern on the entire tread surface is 0.15. ~ 0.35,
The inner tread half portion has a linear circumferential main groove extending continuously in the tire circumferential direction in a region Y separated from the tire equator by a distance of 20 to 55% of a tread half width from the tire equator to the tread edge. And the inclination angle α of the groove wall surface of the circumferential main groove with respect to the normal to the tread surface is set to 30 to 50 °,
In the outer tread half, without providing a circumferential groove extending continuously in the tire circumferential direction,
Moreover, the outer half of the tread extends from the inner end to the tire equator toward the tread end and has an outer inclined lateral main groove having an inclined angle β of 35 ° or more with respect to the tire circumferential direction. Yes,
And the outer inclined horizontal main groove is connected to the inner end of the horizontal groove main portion and communicates with the circumferential main groove beyond the tire equator, or the outer end of the horizontal groove main portion and the tread end. , And the inclination angle β at the communication position of each communication portion is set to 75 to 90 °.
[0008]
According to a second aspect of the present invention, the outer inclined horizontal main groove comprises only a first outer inclined horizontal main groove in which an outer communicating portion is connected to the horizontal groove main portion.
[0009]
In the invention of claim 3, the outer inclined horizontal main groove includes a first outer inclined horizontal main groove having an outer communicating portion connected to the lateral groove main portion, and the inner communicating portion having a lateral groove main portion. And a second outer inclined horizontal main groove connected thereto.
[0010]
Further, in the invention according to claim 4, the outer inclined horizontal main groove is such that the first outer inclined horizontal main groove and the second outer inclined horizontal main groove are alternately arranged in a circumferential direction. Features.
[0011]
Further, in the invention of claim 5, the tread surface has a radial distance Hi from the tire equatorial point at the tread end of the inner tread half and a radial distance from the tire equatorial point at the tread end of the outer tread half. The ratio Hi / Ho to the distance Ho is set to 1.02 to 1.20.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to illustrated examples. FIG. 1 shows a meridional section of the pneumatic tire of the present invention, and FIG. 2 shows its tread pattern.
In FIG. 1, a pneumatic tire 1 is a high-performance tire premised on both running on a public road and running in a race such as a circuit competition and a gym khana competition. 4 has a radially structured carcass 6 leading to a bead core 5.
[0013]
A belt layer 7 is wound around the outside of the carcass 6 and inside the tread portion 2, and the flatness H / W, which is the ratio of the tire cross-sectional height H to the tire width W, is determined by the tagging effect. In the present example, it is restricted to 50% or less, for example, 40%. Thereby, while increasing the tire rigidity, the tread width TW is increased, and the high-speed performance and the steering stability are improved.
[0014]
Here, the “tread width TW” is a tire axial distance between the tread ends E, E, and the “tread end E” is a virtual line that extends the contour of the tread surface 2S outward in the axial direction. When an intersection with a virtual line extending outwardly in the radial direction from the contour of the buttress surface 3S is defined as J, a radial line passing through the intersection J intersects the tire surface.
[0015]
Then, in the pneumatic tire 1 of the present invention, the tread surface 2S is, with the tire equator C as a center, the inner tread half Si that is inside the vehicle and the outer tread half So that is outside the vehicle when the vehicle is mounted. When the tread pattern is virtually divided into two, the tread pattern of the inner tread half Si and the tread pattern of the outer tread half So are formed in an asymmetric pattern different from each other.
[0016]
Specifically, as shown in FIG. 2, the tread half portion Si in the region Y is separated from the tire equator C by a distance of 20 to 55% of the tread half width TW / 2 (1 / of the tread width TW). A single circumferential main groove 10 extending continuously in the circumferential direction of the tire is provided.
[0017]
The circumferential main groove 10 is a straight groove having a high drainage effect with a groove width GW0 of 14 mm or more, preferably 18 mm, and the groove center line is arranged in the region Y, that is, the tire equator at the groove center line. The distance L0 from C is set to 20 to 55% of the half width TW / 2 of the tread.
[0018]
If the circumferential main groove 10 is arranged on the outside of the vehicle with respect to the area Y, the pattern rigidity in the outer tread half portion So cannot be sufficiently ensured, so that the high dry grip performance and the high durability required for racing. It becomes difficult to satisfy wear performance at a high level. Conversely, when the circumferential main groove 10 is disposed on the inner side of the vehicle with respect to the area Y, the wet grip performance required for traveling on a public road cannot be sufficiently secured.
[0019]
Further, from the viewpoint of dry grip performance and abrasion resistance, the circumferential main groove 10 has, as shown in FIG. 3, a tread surface in which a groove wall surface g is formed by a groove side edge in a groove cross section perpendicular to the groove center line. It is necessary to incline at a large inclination angle α of 30 to 50 ° with respect to the normal to 2S. In particular, when turning, a larger lateral force acts on the outside of the vehicle than on the inside of the vehicle. It is preferable to set the value larger than (αo> αi). If the inclination angle α is less than 30 °, the rigidity in the vicinity of the groove side edge becomes insufficient, resulting in reduced wear resistance such as uneven wear such as track wear. Conversely, if the inclination angle α exceeds 50 °, the groove volume decreases and the drainage property decreases.
[0020]
In addition, as shown in FIG. 4 (A), when the groove wall surface g is a convexly curved surface, the inclination angle α of the tangent at each position of the curved surface is in the range of 30 to 50 °, and FIG. ), When the groove wall surface g is a curved surface composed of a plurality of surface portions, the inclination angle α of each surface portion is in the range of 30 to 50 °. When comparing the inclination angles αi and αo, in the case of a curved surface, the average of the maximum value and the minimum value of the inclination angle α of the tangent is compared. Compare by value.
[0021]
Further, the inner tread half portion Si may be provided with an inner inclined horizontal main groove 11 between the circumferential main groove 10 and the inner tread end Ei. In this example, the inclined horizontal main groove 11 has an inner end communicating with the circumferential main groove 10 and an outer end separated from the inner tread end Ei by a distance L1 in the tire axial direction. Is formed including the inclined horizontal main groove 11A.
[0022]
In particular, in this example, the inner inclined horizontal main groove 11 communicates with the first inner inclined horizontal main groove 11A, the outer end communicates with the inner tread end Ei, and the inner end extends from the circumferential main groove 10 to the tire shaft. A case is illustrated in which it is formed from a second inner slanted horizontal main groove 11B interrupted by a distance L2 in the direction. At this time, it is preferable from the viewpoint of uniformity that the first and second inclined horizontal main grooves 11A and 11B are alternately arranged in the circumferential direction.
[0023]
Note that the distances L1 and L2 are preferably 7% to 14% of the tread width TW. If the distance L1 and L2 are less than 7%, the rigidity is reduced and the dry grip performance and wear resistance tend to decrease. Conversely, if it exceeds 14%, the wet grip performance tends to decrease. In addition, for wet grip performance, it is preferable that the first and second inclined horizontal main grooves 11A and 11B have an overlapping portion 12 that overlaps each other in the tire circumferential direction.
[0024]
Further, the inclination angle γ of the inner inclined horizontal main groove 11 with respect to the circumferential direction is preferably 35 ° or more, and particularly at the communication position with the circumferential main groove 10 and the inner tread end Ei. It is desirable that the inclination angle γ1 be 75 to 90 °. Thereby, an excessive decrease in rigidity at the communication position can be suppressed, and a decrease in wear resistance can be suppressed.
[0025]
On the other hand, a higher lateral rigidity is required on the outer half tread So, because a larger lateral force acts on the outer tread half during turning. For this purpose, as shown in FIG. 2, the outer tread half portion So is not provided with a circumferential groove extending continuously in the tire circumferential direction, and the outer inclined main groove 20 is inclined and extends in the tire circumferential direction. Is formed.
[0026]
Here, "do not provide a circumferential groove extending continuously in the tire circumferential direction" means to eliminate all circumferential grooves that cause a decrease in pattern lateral rigidity. Main grooves with a groove width of 3 mm or more, with a main purpose of optimizing drainage and pattern rigidity, narrow grooves with a groove width of 1.0 to 3 mm, and main purposes of optimizing pattern rigidity and edge effects Siping with a groove width of less than 1.0 mm is targeted. Further, as schematically shown in FIG. 5, a connecting groove 30 </ b> A or the like that sequentially connects the outer inclined main grooves 20 adjacent to each other in the tire circumferential direction can be regarded as one zigzag circumferential groove 30. , Subject to exclusion.
[0027]
The outer inclined lateral main groove 20 has an inclination angle β of 35 ° or more with respect to the tire circumferential direction, and extends from the inner end 21Ei on the tire equator C toward the outer tread end Eo. The main portion of the lateral groove 21 is provided with a communication portion 22i which is continuous with the inner end 21Ei and communicates with the circumferential main groove 10 beyond the tire equator C, or the main portion of the lateral groove 21. An outer communication portion 22o is provided to communicate with the outer end 21Eo and communicate with the outer tread end Eo.
[0028]
In the present example, the outer inclined horizontal main groove 20 is connected to the first outer inclined main groove 20A in which the outer communicating main part 21 is connected to the outer communicating main part 21 and the first outer inclined horizontal main groove 20A. In this case, a case is shown in which the second main portion 20i is connected to a second outer inclined main groove 20B to which the portion 22i is connected. At this time, it is preferable from the viewpoint of uniformity that the first and second outer inclined main grooves 20A and 20B are alternately arranged in the circumferential direction. As required, the first outer inclined main groove 20 </ b> A extends beyond the tire equator C from the inner end 21 </ b> Ei of the main main portion 21 and is separated from the circumferential main groove 10 by a distance L <b> 3 in the tire axial direction. An edge 24 (shown by a dashed line) can also be provided.
[0029]
Here, in the outer inclined horizontal main groove 20, the inclination angle β needs to be 35 ° or more, and if it is less than 35 °, the pattern lateral rigidity against the lateral force during turning becomes insufficient. As a result, the dry grip performance (especially the lateral grip performance) during the race running is insufficient, so that the running time cannot be improved, and the wear resistance near the groove side edge of the outer inclined main groove 20 is reduced. .
[0030]
In particular, the outer inclined lateral main groove 20 tends to have reduced rigidity at the communication position with the outer tread end Eo and the circumferential main groove 10, thereby deteriorating wear resistance. Therefore, it is also important to set the inclination angle β1 at the communication position of each of the communication portions 22i and 22o in the range of 75 to 90 °, respectively, and to suppress a decrease in rigidity.
[0031]
When the inner and outer slanted horizontal main grooves 11 and 20 are curved, the slant angles β and γ are indicated by the slant angles of their tangents.
[0032]
Further, the distance L4 between the outer end and the outer tread end Eo of the second outer inclined main groove 20B is preferably set to 10% to 20% of the tread width TW. It tends to reduce dry grip performance and abrasion resistance. Conversely, if it exceeds 20%, the wet grip performance tends to decrease. In the case where the edge portion 24 is provided in the first outer inclined main groove 20A, it is necessary to secure the distance L3 to the circumferential main groove 10 at 12% or more of the tread width TW to improve the dry grip performance. It is preferable for ensuring abrasion resistance.
[0033]
Next, in the pneumatic tire 1 of the present invention, the groove area ratio L of the tread pattern in the entire tread surface 2S is set in the range of 0.15 to 0.35, and the pattern rigidity is increased in the outer tread half portion So. In order to obtain a larger lateral grip, the groove area ratio Lo of the tread pattern is 0.05 or more smaller than the groove area ratio Li of the tread pattern in the inner tread half Si (Li−Lo ≧ 0.05). ). The groove area ratio means the ratio of the opening area of the tread groove to the tread surface.
[0034]
When the groove area ratio L is less than 0.15, it is difficult to secure necessary wet grip performance, and the groove area ratio L is larger than 0.35, and the difference Li-Lo of the groove area ratio is less than 0.05. Then, it becomes difficult to satisfy a high level of high dry grip performance and abrasion resistance performance required for racing. From the viewpoint of wet grip performance, the difference Li-Lo in the groove area ratio is preferably 0.12 or less.
[0035]
The inner and outer inclined horizontal main grooves 11 and 20 are main grooves for drainage whose groove widths GW1 and GW2 are each 3 mm or more, and the upper limit of each groove width GW0, GW1, and GW2, and And the pitch of the outer inclined horizontal main grooves 11 and 20 are appropriately set according to the above-described groove area ratio L and the difference Li-Lo of the groove area ratio.
[0036]
Next, in the pneumatic tire 1 of the present invention, as shown in FIG. 1, the tire equator point CO of the inner tread end Ei is used in order to sufficiently utilize the excellent lateral grip property and greatly improve the turning performance. Has an asymmetrical tread profile in which the ratio Hi / Ho of the radial distance Hi from the tire to the radial distance Ho of the outer tread end Eo from the tire equatorial point CO is 1.02 to 1.20. I have.
[0037]
In the tire mounted on the turning center side of the turning vehicle, the ground contact center is on the inner tread half Si side, and in the evening ear mounted on the opposite side to the turning center, the ground contact center is on the outer tread half So. Side. At this time, by setting the ratio Hi / Ho to 1.02 to 1.20, the actual rolling radius of the evening ear on the turning center side, that is, the actual rolling radius on the inner tread half Si side is turned. It can be smaller than the actual rolling radius of the evening ear on the side opposite to the center, that is, the actual rolling radius on the side of the outer tread half So, and smooth turning is possible. When the ratio Hi / Ho is less than 1.02, the above effect is not exhibited. On the other hand, when the ratio exceeds 1.20, the straight running performance is impaired, and the contact pressure distribution becomes non-uniform and the wear performance tends to deteriorate. Become.
[0038]
FIG. 6 illustrates another embodiment of the tread pattern. In the figure, the inner tread half Si is provided with an inner slanted horizontal main groove 11 consisting of only the first inner slanted horizontal main groove 11A, and the outer tread half So is provided with a An outer slanted horizontal main groove 20 composed of only the outer slanted horizontal main groove 20A is provided.
[0039]
Although the preferred embodiment of the present invention has been described in detail above, the present invention is not limited to the illustrated embodiment, and may be implemented in various forms without being limited to the illustrated embodiment, such as a general passenger car tire. .
[0040]
【Example】
A pneumatic tire (255 / 40ZR17) having the structure shown in FIG. 1 and having the tread pattern shown in FIGS. 2, 6, and 7 was prototyped according to the specifications shown in Table 1, and the wet grip performance of each test tire and gymkhana competition. The running time was measured, and the results are shown in Table 1. The specifications other than Table 1 are substantially the same.
[0041]
(1) Wet grip performance (linear hydroplaning resistance):
The test tires were accelerated on a straight road at a depth of 10 mm using a passenger vehicle (2600 cc) mounted on all wheels under the conditions of a rim (9 J × 17) and internal pressure (230 kPa), and the acceleration limit speed was measured. It was indicated by an index with Example 1 being 100. The higher the value, the better.
[0042]
(2) Wet grip performance (lateral hydroplaning resistance):
Using the above vehicle, the vehicle is entered on a 100 m radius asphalt road surface on a course provided with a puddle having a depth of 5 mm and a length of 20 m while increasing the speed stepwise, and the lateral acceleration (lateral G) is measured. The average lateral G of the front wheels at a speed of 80 km / h was calculated. Then, the average lateral G was represented by an index with Comparative Example 1 being 100. The higher the value, the better.
[0043]
[Table 1]
Figure 2004338628
[0044]
It can be confirmed that the tires of the examples can enhance both wet grip performance and dry grip performance.
[0045]
【The invention's effect】
Since the present invention is configured as described above, it is possible to appropriately increase the pattern rigidity while ensuring excellent drainage, and to improve dry grip performance, hydroplaning resistance, and abrasion resistance.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an embodiment of a pneumatic tire according to the present invention.
FIG. 2 is a developed view showing the tread pattern.
FIG. 3 is a cross-sectional view of a circumferential main groove.
FIGS. 4A and 4B are diagrams illustrating the inclination angle of a groove wall surface of a circumferential main groove.
FIG. 5 is a diagram showing an example of a circumferential groove removed from an outer tread half.
FIG. 6 is a development view showing another embodiment of the tread pattern used in the present invention.
FIGS. 7A and 7B are development views showing an example of a tread pattern of a conventional tire.
[Explanation of symbols]
2S Tread surface 10 Circumferential main groove 20 Slope horizontal main groove 20A Outside first slant horizontal main groove 20B Second slant horizontal main groove 21 Communication part 22o inside horizontal groove main part 22i Communication part C outside Tire equators E, Ei, Eo Tread edge g Tread half within groove wall Si, Tread half outside So

Claims (5)

トレッド面に、タイヤ赤道の両側でトレッドパターンを異ならせた非対称パターンを設けた空気入りタイヤであって、
前記トレッド面をタイヤ赤道を中心として、タイヤの車両装着状態において、車両内側となる内のトレッド半部分と、車両外側となる外のトレッド半部分とに仮想区分し、かつ内のトレッド半部分におけるトレッドパターンの溝面積比Liを、車両外側となる外のトレッド半部分におけるトレッドパターンの溝面積比Loよりも0.05以上大、かつトレッド面全体のトレッドパターンの溝面積比Lを0.15〜0.35の範囲とし、
前記内のトレッド半部分は、タイヤ赤道からトレッド端までのトレッド半巾の20〜55%の距離をタイヤ赤道から隔たる領域Yに、タイヤ周方向に連続してのびる直線状の周方向主溝を設け、かつ該周方向主溝の溝壁面のトレッド面への法線に対する傾斜角度αを30〜50°とするとともに、
前記外のトレッド半部分には、タイヤ周方向に連続してのびる周方向溝を設けることなく、
しかも該外のトレッド半部分は、内端をタイヤ赤道としてトレッド端に向かってのびかつタイヤ周方向に対してなす傾斜角度βを35°以上とした横溝主部を有する外の傾斜横主溝を具え、
かつ該外の傾斜横主溝は、前記横溝主部の内端に連なり前記タイヤ赤道を越えて前記周方向主溝に連通する内の連通部、又は前記横溝主部の外端に連なりトレッド端に連通する外の連通部を有するとともに、各連通部の連通位置における前記傾斜角度βを75〜90°としたことを特徴とする空気入りタイヤ。
On the tread surface, a pneumatic tire provided with an asymmetric pattern in which the tread pattern is different on both sides of the tire equator,
The tread surface is centered on the tire equator, and in a state in which the tire is mounted on the vehicle, the tread half portion inside the vehicle and the outer tread half portion outside the vehicle are virtually divided, and the inner tread half portion. The groove area ratio Li of the tread pattern is 0.05 or more larger than the groove area ratio Lo of the tread pattern in the outer half of the tread outside the vehicle, and the groove area ratio L of the tread pattern on the entire tread surface is 0.15. ~ 0.35,
The tread half portion includes a linear circumferential main groove extending continuously in the tire circumferential direction in a region Y separated from the tire equator by a distance of 20 to 55% of a tread half width from the tire equator to the tread edge. And the inclination angle α with respect to the normal to the tread surface of the groove wall surface of the circumferential main groove is set to 30 to 50 °,
In the outer tread half, without providing a circumferential groove extending continuously in the tire circumferential direction,
Moreover, the outer half of the tread has an outer inclined main groove having an inner end extending toward the tread end with the inner end being a tire equator and having an inclined angle β of 35 ° or more with respect to the tire circumferential direction. Yes,
And the outer inclined horizontal main groove communicates with the inner end of the horizontal groove main portion and communicates with the circumferential main groove beyond the tire equator, or the outer end of the horizontal groove main portion and the tread end. A pneumatic tire having an outer communicating portion communicating with the tire, and the inclination angle β at a communicating position of each communicating portion is set to 75 to 90 °.
前記外の傾斜横主溝は、前記横溝主部に外の連通部を接続した第1の外の傾斜横主溝のみからなることを特徴とすると請求項1記載の空気入りタイヤ。2. The pneumatic tire according to claim 1, wherein the outer inclined lateral main groove is formed only of a first outer inclined lateral main groove having an outer communicating portion connected to the lateral groove main portion. 3. 前記外の傾斜横主溝は、前記横溝主部に外の連通部を接続した第1の外の傾斜横主溝と、横溝主部に前記内の連通部を接続した第2の外の傾斜横主溝とを含むことを特徴とする請求項1又は2記載の空気入りタイヤ。The outer inclined horizontal main groove has a first outer inclined horizontal main groove having an outer communicating portion connected to the lateral groove main portion, and a second outer inclined main groove having the inner communicating portion connected to the lateral groove main portion. The pneumatic tire according to claim 1, further comprising a lateral main groove. 前記外の傾斜横主溝は、前記第1の外の傾斜横主溝と、前記第2の外の傾斜横主溝とを周方向に交互に配したことを特徴とする請求項3に記載の空気入りタイヤ。4. The outer inclined horizontal main groove, wherein the first outer inclined horizontal main groove and the second outer inclined horizontal main groove are alternately arranged in the circumferential direction. 5. Pneumatic tires. 前記トレッド面は、前記内のトレッド半部分のトレッド端のタイヤ赤道点からの半径方向距離Hiと、外のトレッド半部分のトレッド端のタイヤ赤道点からの半径方向距離Hoとの比Hi/Hoを1.02〜1.20としたことを特徴とする請求項1〜4の何れかに記載の空気入りタイヤ。The tread surface is a ratio Hi / Ho of a radial distance Hi of the tread end of the inner tread half from the tire equatorial point to a radial distance Ho of the outer tread half of the tread end from the tire equatorial point. Was set to 1.02 to 1.20, the pneumatic tire according to any one of claims 1 to 4.
JP2003139231A 2003-05-16 2003-05-16 Pneumatic tire Expired - Fee Related JP4098668B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003139231A JP4098668B2 (en) 2003-05-16 2003-05-16 Pneumatic tire
GB0410555A GB2401588B (en) 2003-05-16 2004-05-12 Pneumatic tire
AU2004202040A AU2004202040B2 (en) 2003-05-16 2004-05-13 Pneumatic Tire
DE200410024162 DE102004024162A1 (en) 2003-05-16 2004-05-14 tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139231A JP4098668B2 (en) 2003-05-16 2003-05-16 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2004338628A true JP2004338628A (en) 2004-12-02
JP4098668B2 JP4098668B2 (en) 2008-06-11

Family

ID=32588732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139231A Expired - Fee Related JP4098668B2 (en) 2003-05-16 2003-05-16 Pneumatic tire

Country Status (4)

Country Link
JP (1) JP4098668B2 (en)
AU (1) AU2004202040B2 (en)
DE (1) DE102004024162A1 (en)
GB (1) GB2401588B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090912A (en) * 2007-10-11 2009-04-30 Bridgestone Corp Studless tire
JP2009101775A (en) * 2007-10-22 2009-05-14 Bridgestone Corp Pneumatic tire and mounting method thereof
JP2009184401A (en) * 2008-02-04 2009-08-20 Bridgestone Corp Pneumatic radial tire
JP2013525194A (en) * 2010-04-30 2013-06-20 コンパニー ゼネラール デ エタブリッスマン ミシュラン Trailer type heavy vehicle tire tread
EP3127715A1 (en) 2015-08-03 2017-02-08 Sumitomo Rubber Industries Limited Pneumatic tire
KR20170032829A (en) 2015-09-15 2017-03-23 스미토모 고무 고교 가부시키가이샤 Pneumatic tire
JP2017088816A (en) * 2015-11-17 2017-05-25 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same
EP3290235A1 (en) 2016-09-01 2018-03-07 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP7400429B2 (en) 2019-06-05 2023-12-19 住友ゴム工業株式会社 tire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9884518B2 (en) * 2013-02-25 2018-02-06 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP7310174B2 (en) * 2019-03-05 2023-07-19 住友ゴム工業株式会社 tire

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121201B1 (en) * 1970-02-20 1976-07-01
JPH02212202A (en) * 1989-02-14 1990-08-23 Bridgestone Corp Pneaumatic tire
JPH03169707A (en) * 1989-11-30 1991-07-23 Yokohama Rubber Co Ltd:The Pneumatic radial tire for passenger car
JPH07329515A (en) * 1994-04-11 1995-12-19 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH08164714A (en) * 1994-12-13 1996-06-25 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JPH11198608A (en) * 1998-01-09 1999-07-27 Ohtsu Tire & Rubber Co Ltd :The Pneumatic radial tire
JPH11321245A (en) * 1998-05-13 1999-11-24 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
JP2001121922A (en) * 1999-10-25 2001-05-08 Bridgestone Corp Pneumatic tire
JP2003159912A (en) * 2001-11-27 2003-06-03 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2003200711A (en) * 2002-01-08 2003-07-15 Sumitomo Rubber Ind Ltd Pneumatic radial tire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121201B1 (en) * 1970-02-20 1976-07-01
JPH02212202A (en) * 1989-02-14 1990-08-23 Bridgestone Corp Pneaumatic tire
JPH03169707A (en) * 1989-11-30 1991-07-23 Yokohama Rubber Co Ltd:The Pneumatic radial tire for passenger car
JPH07329515A (en) * 1994-04-11 1995-12-19 Sumitomo Rubber Ind Ltd Pneumatic tire
JPH08164714A (en) * 1994-12-13 1996-06-25 Yokohama Rubber Co Ltd:The Pneumatic radial tire
JPH11198608A (en) * 1998-01-09 1999-07-27 Ohtsu Tire & Rubber Co Ltd :The Pneumatic radial tire
JPH11321245A (en) * 1998-05-13 1999-11-24 Toyo Tire & Rubber Co Ltd Pneumatic radial tire
JP2001121922A (en) * 1999-10-25 2001-05-08 Bridgestone Corp Pneumatic tire
JP2003159912A (en) * 2001-11-27 2003-06-03 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2003200711A (en) * 2002-01-08 2003-07-15 Sumitomo Rubber Ind Ltd Pneumatic radial tire

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090912A (en) * 2007-10-11 2009-04-30 Bridgestone Corp Studless tire
JP2009101775A (en) * 2007-10-22 2009-05-14 Bridgestone Corp Pneumatic tire and mounting method thereof
JP2009184401A (en) * 2008-02-04 2009-08-20 Bridgestone Corp Pneumatic radial tire
JP2013525194A (en) * 2010-04-30 2013-06-20 コンパニー ゼネラール デ エタブリッスマン ミシュラン Trailer type heavy vehicle tire tread
CN106394138A (en) * 2015-08-03 2017-02-15 住友橡胶工业株式会社 Pneumatic tire
KR20170016274A (en) 2015-08-03 2017-02-13 스미토모 고무 고교 가부시키가이샤 Pneumatic tire
EP3127715A1 (en) 2015-08-03 2017-02-08 Sumitomo Rubber Industries Limited Pneumatic tire
US10427465B2 (en) 2015-08-03 2019-10-01 Sumitomo Rubber Industries, Ltd. Pneumatic tire
KR20170032829A (en) 2015-09-15 2017-03-23 스미토모 고무 고교 가부시키가이샤 Pneumatic tire
JP2017088816A (en) * 2015-11-17 2017-05-25 横浜ゴム株式会社 Rubber composition and pneumatic tire using the same
EP3290235A1 (en) 2016-09-01 2018-03-07 Sumitomo Rubber Industries, Ltd. Pneumatic tire
KR20180025808A (en) 2016-09-01 2018-03-09 스미토모 고무 고교 가부시키가이샤 Pneumatic tire
US10894445B2 (en) 2016-09-01 2021-01-19 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP7400429B2 (en) 2019-06-05 2023-12-19 住友ゴム工業株式会社 tire

Also Published As

Publication number Publication date
AU2004202040A1 (en) 2004-12-02
GB2401588B (en) 2005-07-06
GB0410555D0 (en) 2004-06-16
AU2004202040B2 (en) 2009-02-26
DE102004024162A1 (en) 2004-12-09
JP4098668B2 (en) 2008-06-11
GB2401588A (en) 2004-11-17

Similar Documents

Publication Publication Date Title
JP3367927B2 (en) Pneumatic tire
EP1189770B1 (en) High-performance tyre for a motor vehicle
EP2373497B1 (en) Pneumatic tyre
EP1437237A2 (en) Pneumatic tire
US11203234B2 (en) Pneumatic tire
JP6699270B2 (en) Pneumatic tire
CN109501524B (en) Tyre for vehicle wheels
JP2004352023A (en) Pneumatic tire
WO2018150746A1 (en) Pneumatic tire
JPH0924707A (en) Pneumatic tire and its usage
CN111660733A (en) Tyre for vehicle wheels
JP5344064B2 (en) Pneumatic tire
WO2005005170A1 (en) Pneumatic tire
JP2004217120A (en) Pneumatic tire
JP3676534B2 (en) Pneumatic tire
EP0858916B1 (en) Vehicle tyre
JP4122179B2 (en) Pneumatic tire
KR20110021674A (en) Pneumatic tire
JP4098668B2 (en) Pneumatic tire
WO2017141915A1 (en) Pneumatic tire
WO2017141912A1 (en) Pneumatic tire
JP6446112B2 (en) Pneumatic tire
JP4219379B2 (en) Pneumatic tire
WO2017141914A1 (en) Pneumatic tire
JP2009023654A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

R150 Certificate of patent or registration of utility model

Ref document number: 4098668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees