JP2004338097A - Wood flour molded article of every shape having biodegradability, high density and high strength using air dried wood flour and its manufacturing method - Google Patents

Wood flour molded article of every shape having biodegradability, high density and high strength using air dried wood flour and its manufacturing method Download PDF

Info

Publication number
JP2004338097A
JP2004338097A JP2003133972A JP2003133972A JP2004338097A JP 2004338097 A JP2004338097 A JP 2004338097A JP 2003133972 A JP2003133972 A JP 2003133972A JP 2003133972 A JP2003133972 A JP 2003133972A JP 2004338097 A JP2004338097 A JP 2004338097A
Authority
JP
Japan
Prior art keywords
wood flour
molded product
wood
molding
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003133972A
Other languages
Japanese (ja)
Other versions
JP3823153B2 (en
Inventor
Makoto Ogoshi
誠 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forestry and Forest Products Research Institute
Original Assignee
Forestry and Forest Products Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forestry and Forest Products Research Institute filed Critical Forestry and Forest Products Research Institute
Priority to JP2003133972A priority Critical patent/JP3823153B2/en
Publication of JP2004338097A publication Critical patent/JP2004338097A/en
Application granted granted Critical
Publication of JP3823153B2 publication Critical patent/JP3823153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wood flour molded article molded into an arbitrary shape capable of using wood flour in an air-dried state as wood flour under test in molding wood flour even if the wood flour is not brought to a full-dried state and having water resistance, biodegradability, high density, high strength and high hardness, and its manufacturing method. <P>SOLUTION: This manufacturing method for the wood flour molded article (7) has a process for preforming the wood flour (1) under test by isotropic pressurization in a cold hydrostatic pressure apparatus (CIP apparatus) (3) and a process (B) for finally molding the preformed article (4) obtained in the preforming process under ultrahigh pressure by isotropic pressurization in a hot hydrostatic pressure apparatus (WIP apparatus) (6). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、木粉の成型にあたり、全乾状態にしなくても気乾状態の木粉を使用でき、また、成型された木粉成型物が耐水性、生分解性を有し、任意の形状に成型した高密度、高強度、高硬度の木粉成型物及びその製造方法に関する。
【0002】
【従来の技術】
従来より、木材資源の有効利用や保護等の観点から、木粉を高密度・高強度の成型物へ加工・成型するための木粉成型技術が研究されてきた。
【0003】
木粉を成型するための技術としては、250メッシュパス(63μm以下)の全乾木粉を金属製ダイに充填し、静圧プレス機を用いて圧力100MPa、温度180〜240℃で6〜10分間熱圧締するものがある(非特許文献1)。この技術では、例えば、220℃で10分間の熱圧条件或いは240℃で6分間の熱圧条件の時に木粉状態が認識できないプラスチック様外観を持ち、高密度(約1.45gcm−3)で高強度(曲げ強度70〜80MPaで、曲げ弾性率10GPa程度)の板状の形状を有する木粉成型物が得られた。
【0004】
また、この他にも100メッシュパスの気乾木粉に対して粉末フェノール樹脂接着剤を重量百分率で3〜40%添加し、圧力3MPa、温度160〜220℃で12分間熱圧締する技術がある(非特許文献2)。この技術では、木粉成型物として密度が0.6〜1.0gcm−3の厚さ12mmのボードが得られ、得られたボードの強度は曲げ強度が最大60MPa、曲げ弾性率は最大6GPaで、内部接合力は最大5MPaであった。
【0005】
【非特許文献1】第28回木材の化学加工研究会シンポジウム講演集、日本木材学会、p27−34(1998)
【非特許文献2】材料47(4)、日本材料学会、p344−349(1998)
【0006】
【発明が解決しようとする課題】
250メッシュパス(63μm以下)の全乾木粉を金属製ダイに充填し、静圧プレス機を用いて圧力100MPa、温度180〜240℃で6〜10分間熱圧締する技術では、木粉を全乾させなければならないため、木粉を乾燥させるためのエネルギーが必要で、作業効率も低下し、経済コストが高いという課題がある。
【0007】
また、この技術では金属製ダイを使用した1軸方向の成型を行うものであるため、成型物の形状は板状に限定されてしまうという課題がある。
【0008】
更に、この技術により得られた成型物は、5時間煮沸すると、強度が著しく低下してしまい、バラバラに分解してしまう。このため、得られた成型物の耐水性が十分ではないという課題がある。
【0009】
100メッシュパスの気乾木粉に対して粉末フェノール樹脂接着剤を重量百分率で3〜40%添加し、圧力3MPa、温度160〜220℃で12分間熱圧締する技術では、フェノール樹脂という熱硬化性合成樹脂の接着剤を使用しているため、廃棄後のリサイクルが困難で、環境に適した廃棄が難しいという課題を有する。
【0010】
熱圧締をする際に150℃を超える温度で加熱することは、木材の熱分解を考慮すると、一般的に好ましくない。
【0011】
従って、本発明では、木粉を成型するにあたり、木粉成型物の高密度性と高強度性を保持しつつ、上記課題を解決するため、木粉を全乾状態にせずに成型できる木粉成型物及び該木粉成型物の製造方法を提供することを目的とする。
【0012】
また、本発明では、木粉を成型するにあたり、木粉成型物の高密度性と高強度性を保持しつつ、成型物が耐水性を有する木粉成型物及び該木粉成型物の製造方法を提供することを目的とする。
【0013】
本発明では、木粉を成型するにあたり、木粉成型物の高密度性と高強度性を保持しつつ、木粉成型物が有する生分解性により、リサイクル可能である木粉成型物及び該木粉成型物の製造方法を提供することを目的とする。
【0014】
更に、本発明では、木粉を成型するにあたり、木粉成型物の高密度性と高強度性を保持しつつ、任意の形状に成型した木粉成型物及び該木粉成型物の製造方法を提供することを目的とする。
【0015】
本発明では、高強度性を保持するにあたって、できる限り高硬度性を図る。
【0016】
【課題を解決するための手段】
本発明は、供試木粉を冷間静水圧法により等方加圧で予備成型し、得られた予備成型物を温間静水圧法により、超高圧の下、等方加圧で本成型すれば、供試木粉として気乾木粉を使用でき、また、耐水性や生分解性を有し、任意の形状に成型した高密度、高強度、高硬度の木粉成型物が得られるという知見に基づいてなされたものである。
【0017】
ここで、高密度とは、木材の最大密度である約1.3gcm−3よりも大きく、木材実質の密度である約1.5gcm−3に近い密度であることをいう。なお、木材実質の密度とは、細胞壁と空隙からなる木材の細胞壁そのものの密度を意味する。
【0018】
また、高強度成型物とは、木材の最大圧縮強度である約110MPaよりも大きい圧縮強度を有する木粉成型物をいう。
【0019】
本発明では、等方加圧により成型するため、板状、棒状、柱状等のような多種の形状の成型物を任意に得ることができる。
【0020】
木粉とは、その母体である木材を砕いたときに生じる粒子或いは粉体をいい、供試木粉とは、木粉成型物を製造するにあたって使用される木粉をいう。この木粉の粒径は通常0.5mm以下程度のものをいうが、これに限定されるものではない。
【0021】
本発明によって得られる成型物は生分解性の木粉からなるため、全て生分解でき、この結果、リサイクルを図ることができる。
【0022】
本発明の木粉成型物は、本願請求項1に記載されているように、気乾木粉を使用した木粉成型物であって、耐水性や生分解性を有し、任意の形状に成型したことを特徴とするものである。
【0023】
これにより、木粉成型物を得るにあたり、供試木粉を全乾させずに使用できるため、木粉を乾燥させるためのエネルギーを必要としなくて済む。
【0024】
また、得られた木粉成型物は、生分解性の木粉からなるため、生分解に基づくリサイクルを図ることができ、自然環境に適した廃棄ができる。
【0025】
更に、木粉成型物の形状を任意に成型しているため、木粉成型物として板状以外にも柱状、棒状等の形状のものが存在する。このため、木粉成型物の形状を用途に応じて任意に特定することが可能となり、木粉成型物の使い勝手が向上する。
【0026】
本発明の木粉成型物は、本願請求項2に記載されているように、木粉成型物の密度が少なくとも1.3gcm−3で、その圧縮強度が少なくとも85MPaで,そのロックウェル硬さが少なくとも90HRRであることを特徴とするものである。
【0027】
これにより、本発明の木粉成型物は、高密度、高強度の木粉成型物である。もっとも、ここでいう圧縮強度とは、作成した円筒形成型物の半径方向と長さ方向について圧縮試験を行った時の双方の強度を包含する意味である。
【0028】
本発明の木粉成型物の製造方法は、請求項3に記載されているように、木粉を冷間静水圧法装置内で等方加圧により予備成型する工程と、該予備成型工程で得られた予備成型物を温間静水圧法装置内で、超高圧の下、等方加圧により本成型する工程とを備えたことを特徴とするものである。
【0029】
これにより、木粉成型物の高密度性と高強度性を保持しつつ高硬度性も有する供試木粉として気乾木粉を使用した木粉成型物であって、耐水性や生分解性を有し、任意の形状に成型した木粉成型物が得られる。
【0030】
上記木粉成型物を製造するための本発明に係る木粉成型物の製造方法は、請求項4に記載されているように、上記予備成型物を本成型するための超高圧条件が100〜500MPaであることを特徴とするものである。
【0031】
また、本発明の木粉成型物の製造方法は、請求項5に記載されているように、上記予備成型物を本成型するための温度条件が150℃以下であることを特徴とするものである。
【0032】
これにより、木材の熱分解を極力抑制することが可能となり、また、密度が少なくとも1.3gcm−3であるという高密度性と、圧縮強度が少なくとも85MPaであるという高強度性と、ロックウェル硬さが少なくとも90HRRであるという高硬度性とを有する木粉成型物が得られる。
【0033】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。但し、本発明は本実施例に限定されるものではない。
【0034】
本発明である木粉成型物を製造する方法について図1を用いて詳細に説明する。本発明の木粉成型物(7)を製造する方法は、図1に例示するように、供試木粉(1)を冷間静水圧法装置(CIP装置)(3)内で等方加圧により予備成型する工程(A)と、該予備成型工程で得られた予備成型物(4)を温間静水圧法装置(WIP装置)(6)内で、超高圧の下、等方加圧により本成型する工程(B)とを備えたことを特徴とするものである。
【0035】
なお、冷間静水圧法装置(CIP装置)(3)には、株式会社神戸製鋼所製のDr.CIPを、温間静水圧法装置(WIP装置)(6)には、三菱重工業株式会社製の三菱温間等方圧加圧装置を使用した。
【0036】
予備成型工程(A)で使用する供試木粉(1)としては、表1に示すように、粒径をそれぞれ32メッシュパス−60メッシュオン、60メッシュパス−100メッシュオン、100メッシュパス−170メッシュオン、170メッシュパス−250メッシュオン、250メッシュパス−350メッシュオンに区分した気乾状態の木粉を使用した。
【0037】
なお、メッシュパスとは、そのメッシュを持つ網目を通過することを意味し、メッシュオンとは、そのメッシュを持つ網目を通過せずにその網に堆積することを意味する。
【0038】
本発明の木粉成型物(7)を製造する方法においては、供試木粉(1)を冷間静水圧法装置(3)内で等方加圧するにあたり、予め、高さ10cm、直径6.5cm程の円筒形の冷間静水圧法成型用ゴムモールド(2)に充填したうえで、冷間静水圧法装置(3)内で、CIP装置用加圧用ポンプ(8)を使用して、圧力を50MPa、温度を室温に設定して10分間程等方加圧した。その結果、高さ5.2cm、直径5cm程の予備成型物(4)を得た。
【0039】
本成型工程(B)では、予備成型工程で得られた予備成型物(4)を直径が5.5cm程で高さが5〜10cmに可変できる円筒形の温間静水圧法成型用ゴムモールド(5)に入れて、温間静水圧法装置内(6)で、WIP装置用加圧用ポンプ(9)を使用して、圧力100〜500MPaの超高圧の下、温度90〜140℃で1〜3時間程等方加圧し、本成型を行った。温度調整にはWIP装置用加熱ヒーター(10)を使用した。
【0040】
なお、超高圧の上限は、WIP装置の最大圧力である500MPaにあわせたものであり、特に限定するものではない。
【0041】
その結果、高さ4.7cm、直径4.8cm程の高密度、高強度の木粉成型物(7)を得た。
【0042】
例えば、上述の製造方法によって製造された本発明の木紛成型物は以下のようにして特定した。
【0043】
本発明の木粉成型物の密度は、気乾状態における成型物の重量をその寸法測定により算出した体積で割ることにより特定した。
【0044】
本発明の木粉成型物の圧縮強度は、強度試験機(島津(株)製 オートグラフ)による測定で特定した。
【0045】
本発明の木粉成型物の硬さは、硬さ試験機(アカシ(株)製 ロックウェル硬さ試験機)により直径12.7mmの鋼球を初試験力98.07N、全試験力588.4Nで試験したときの変形量を測定して特定した。なお、この硬さ試験における測定結果がロックウェル硬さと呼ぶものである。
【0046】
耐水性の有無は、木粉成型物を沸騰水中で72時間煮沸した後、その成型物の形状変化を目視により確認し、判断した。
【0047】
その結果、本発明の木粉成型物の密度は、供試木粉の粒径に拘わらず1.4gcm−3程度であり、木材細胞壁の密度(1.5gcm−3)に比較的近く、通常の木材の密度(0.3〜1.1gcm−3)よりも遥かに大きく、1.3gcm−3以上の高密度を示した(表1参照)。また、本発明の木粉成型物の強度は、供試木粉の粒径によって相異するものの、いずれも圧縮強度が85〜134MPaという値を示し、強度の大きな木材が有する値(100MPa程度)と同程度或いはそれ以上の高強度であった(表1参照)。
【0048】
なお、円筒形状の木粉成型物では、半径方向と長さ方向で圧縮強度が異なり、長さ方向が大きな圧縮強度を示した(表1参照)。
【0049】
本発明である上記木粉成型物の硬さ(ロックウェル硬さ)は、粒径に拘わらず、極めて硬い木材(ボンゴシ材)の木口面硬さ(90HRR程度)よりも大きい110〜120HHRという高い値を示した(表1参照)。
【0050】
本発明である上記木粉成型物は、該木粉成型物を72時間煮沸しても形状は崩れることなく、十分な耐水性を示した。
【0051】
【実施例】
以下、実施例により、本発明である木粉成型物について、各種粒径の気乾木粉を成型した場合の本成型工程(B)における成型圧力、成型温度及び成型時間の各種条件とその結果得られた木粉成型物の密度、ロックウェル硬さ及び圧縮強度の各種特性との関係で具体的に説明する。但し、本発明の木紛成型物及びその製造方法はこれらの実施例に限定されるものではない。
【0052】
実施例1 32メッシュパス−60メッシュオンの気乾木粉を供試木粉(1)として使用し、この供試木粉(1)を円筒形の冷間静水圧法成型用ゴムモールド(2)に充填し、冷間静水圧法装置(3)内で圧力を50MPa、温度を室温に設定して10分間等方加圧し、予備成型物(4)を得た。
【0053】
この予備成型物(4)を円筒形の温間静水圧法成型用ゴムモールド(5)に入れ、温間静水圧法装置(6)内で、表1に示す条件下で、等方加圧により本成型物である高さ4.7cm、直径4.8cm程の円柱状の木粉成型物(7)を得た。
【0054】
得られた木粉成型物の密度、圧縮強度及びロックウェル硬さは、それぞれ、気乾状態の重量と寸法の測定、強度試験機(島津(株)製 オートグラフ)による測定、硬さ試験機(アカシ(株)製 ロックウェル硬さ試験機)による測定により決定した。
【0055】
測定結果は表1に示した。
【0056】
実施例2 60メッシュパス−100メッシュオンの気乾木粉を供試木粉(1)として使用し、この供試木粉(1)を円筒形の冷間静水圧法成型用ゴムモールド(2)に充填し、冷間静水圧法装置(3)内で圧力を50MPa、温度を室温に設定して10分間等方加圧し、予備成型物(4)を得た。
【0057】
この予備成型物(4)を円筒形の温間静水圧法成型用ゴムモールド(5)に入れ、温間静水圧法装置(6)内で、表1に示す条件下で、等方加圧により本成型物である高さ4.7cm、直径4.8cm程の円柱状の木粉成型物(7)を得た。
【0058】
得られた木粉成型物の密度、圧縮強度及びロックウェル硬さは、それぞれ、気乾状態の重量と寸法の測定、上記強度試験機による測定、上記硬さ試験機による測定により決定した。
【0059】
測定結果は表1に示した。
【0060】
実施例3 100メッシュパス−170メッシュオンの気乾木粉を供試木粉(1)として使用し、この供試木粉(1)を円筒形の冷間静水圧法成型用ゴムモールド(2)に充填し、冷間静水圧法装置(3)内で圧力を50MPa、温度を室温に設定して10分間等方加圧し、予備成型物(4)を得た。
【0061】
この予備成型物(4)を円筒形の温間静水圧法成型用ゴムモールド(5)に入れ、温間静水圧法装置(6)内で、表1に示す条件下で、等方加圧により本成型物である高さ4.7cm、直径4.8cm程の円柱状の木粉成型物(7)を得た。
【0062】
得られた木粉成型物の密度、圧縮強度及びロックウェル硬さは、それぞれ、気乾状態の重量と寸法の測定、上記強度試験機による測定、上記硬さ試験機による測定により決定した。
【0063】
測定結果は表1に示した。
【0064】
実施例4 170メッシュパス−250メッシュオンの気乾木粉を供試木粉(1)として使用し、この供試木粉(1)を円筒形の冷間静水圧法成型用ゴムモールド(2)に充填し、冷間静水圧法装置(3)内で圧力を50MPa、温度を室温に設定して10分間等方加圧し、予備成型物(4)を得た。
【0065】
この予備成型物(4)を円筒形の温間静水圧法成型用ゴムモールド(5)に入れ、温間静水圧法装置(6)内で、表1に示す条件下で、等方加圧により本成型物である高さ4.7cm、直径4.8cm程の円柱状の木粉成型物(7)を得た。
【0066】
得られた木粉成型物の密度、圧縮強度及びロックウェル硬さは、それぞれ、気乾状態の重量と寸法の測定、上記強度試験機による測定、上記硬さ試験機による測定により決定した。
【0067】
測定結果は表1に示した。
【0068】
実施例5 250メッシュパス−350メッシュオンの気乾木粉を供試木粉(1)として使用し、この供試木粉(1)を円筒形の冷間静水圧法成型用ゴムモールド(2)に充填し、冷間静水圧法装置(3)内で圧力を50MPa、温度を室温に設定して10分間等方加圧し、予備成型物(4)を得た。
【0069】
この予備成型物(4)を円筒形の温間静水圧法成型用ゴムモールド(5)に入れ、温間静水圧法装置(6)内で、表1に示す条件下で、等方加圧により本成型物である高さ4.7cm、直径4.8cm程の円柱状の木粉成型物(7)を得た。
【0070】
得られた木粉成型物の密度、圧縮強度及びロックウェル硬さは、それぞれ、気乾状態の重量と寸法の測定、上記強度試験機による測定、上記硬さ試験機による測定により決定した。
【0071】
測定結果は表1に示した。
【0072】
【表1】

Figure 2004338097
【0073】
なお、これらの成型物に対して72時間の煮沸を行ったところ、膨潤したものの、形状が崩れることはなかった。
【0074】
【発明の効果】
本発明の木粉成型物及びその製造方法によれば、木粉の成型にあたり、気乾状態の木粉を使用でき、また、成型された木粉成型物が耐水性、生分解性を有し、任意の形状に成型した高密度で高強度の木粉成型物が得られるという効果を奏する。
【0075】
このため、本発明の木粉成型物の製造方法によれば、木粉を成型するにあたり、供試木粉として全乾状態にしなくても気乾状態の木粉を使用でき、供試木粉を乾燥させるためのエネルギーを必要としないという効果を奏する。その結果、低コストで高密度、高強度の木粉成型物を得ることができる。
【0076】
また、木材の熱分解も極力抑制することも可能である。
【0077】
本発明の木粉成型物及びその製造方法によれば、成型された木粉成型物が十分な耐水性を有するため、用途範囲が広いという効果を奏する。
【0078】
本発明の木粉成型物及びその製造方法によれば、成型された木粉成型物が木粉のみからなるため、全て生分解でき、リサイクルを図ることができるという効果を奏する。このため、自然環境に適した廃棄ができる。
【0079】
本発明の木粉成型物及びその製造方法によれば、任意の形状の木粉成型物が得られるため、木粉成型物の形状を用途に応じて任意に特定することが可能となり、用途範囲が広がるとともに木粉成型物の使い勝手が向上するという効果を奏する。
【図面の簡単な説明】
【図1】本発明の木粉成型物の製造方法を示した概略図
【符号の説明】
1 供試木粉
2 冷間静水圧法成型用ゴムモールド
3 冷間静水圧法装置(CIP装置)
4 予備成型物
5 温間静水圧法成型用ゴムモールド
6 温間静水圧法装置(WIP装置)
7 木粉成型物
8 CIP装置用加圧ポンプ
9 WIP装置用加圧ポンプ
10 WIP装置用加熱ヒーター[0001]
TECHNICAL FIELD OF THE INVENTION
In the present invention, wood powder can be molded in an air-dried state without being completely dried, and the molded wood powder is water-resistant, biodegradable, and has any shape. TECHNICAL FIELD The present invention relates to a high-density, high-strength, high-hardness wood flour molded product and a method for producing the same.
[0002]
[Prior art]
Conventionally, from the viewpoint of effective use and protection of wood resources, wood powder molding technology for processing and molding wood powder into a high-density and high-strength molded product has been studied.
[0003]
As a technique for molding wood flour, a metal die is filled with all dry wood flour having a 250 mesh pass (63 μm or less), and the pressure is 100 MPa using a static pressure press machine at a temperature of 180 to 240 ° C. and 6 to 10 μm. There is one that heat-presses for minutes (Non-Patent Document 1). According to this technique, for example, a wood-powder state cannot be recognized under a hot - pressure condition of 220 ° C. for 10 minutes or a hot-press condition of 240 ° C. for 6 minutes, and the density is high (about 1.45 gcm −3 ). A wood flour molded product having a plate-like shape with high strength (bending strength of 70 to 80 MPa and bending elastic modulus of about 10 GPa) was obtained.
[0004]
In addition, there is also a technique in which a powder phenol resin adhesive is added in a weight percentage of 3 to 40% to 100-mesh pass air-dried wood powder and hot-pressed at a pressure of 3 MPa and a temperature of 160 to 220 ° C. for 12 minutes. (Non-Patent Document 2). According to this technique, a board having a thickness of 12 mm and a density of 0.6 to 1.0 gcm −3 is obtained as a wood flour molded product. The strength of the obtained board is a maximum bending strength of 60 MPa and a maximum bending elastic modulus of 6 GPa. , And the maximum internal bonding force was 5 MPa.
[0005]
[Non-Patent Document 1] 28th Symposium on Chemical Processing of Wood, Symposium on Wood Processing, Japan Wood Research Society, pp. 27-34 (1998)
[Non-Patent Document 2] Material 47 (4), The Society of Materials Science, Japan, p344-349 (1998)
[0006]
[Problems to be solved by the invention]
In a technique of filling a metal die with all dry wood flour having a 250 mesh pass (63 μm or less) and hot-pressing at a pressure of 100 MPa and a temperature of 180 to 240 ° C. for 6 to 10 minutes using a static pressure press, the wood flour is removed. Since it has to be completely dried, there is a problem that energy for drying the wood flour is required, work efficiency is reduced, and economic cost is high.
[0007]
Further, in this technique, since molding is performed in a uniaxial direction using a metal die, there is a problem that the shape of the molded product is limited to a plate shape.
[0008]
Furthermore, when the molded product obtained by this technique is boiled for 5 hours, the strength is remarkably reduced, and the molded product is broken apart. For this reason, there is a problem that the water resistance of the obtained molded product is not sufficient.
[0009]
In the technology of adding 3 to 40% by weight of a powdered phenolic resin adhesive to 100-mesh pass air-dried wood flour and hot-pressing at a pressure of 3 MPa and a temperature of 160 to 220 ° C. for 12 minutes, the thermosetting phenol resin is used. Since an adhesive made of a conductive synthetic resin is used, there is a problem that recycling after disposal is difficult, and disposal suitable for the environment is difficult.
[0010]
Heating at a temperature exceeding 150 ° C. when performing thermal compression is generally not preferred in view of the thermal decomposition of wood.
[0011]
Therefore, in the present invention, in order to solve the above problems, while maintaining the high density and high strength of the wood flour molding, in the wood flour molding, wood flour can be molded without making the wood flour completely dry It is an object of the present invention to provide a molded product and a method for producing the wood flour molded product.
[0012]
Further, in the present invention, in molding wood flour, a wood flour molded product having water resistance while maintaining the high density and high strength of the wood flour molded product, and a method for producing the wood flour molded product The purpose is to provide.
[0013]
In the present invention, when molding wood flour, the biodegradability of the wood flour molded product while maintaining the high density and high strength of the wood flour molded product, the recyclable wood flour molded product and the wood flour An object of the present invention is to provide a method for producing a powder molded product.
[0014]
Furthermore, in the present invention, in molding wood flour, while maintaining the high density and high strength of the wood flour molded product, a wood flour molded product molded into an arbitrary shape and a method for producing the wood flour molded product The purpose is to provide.
[0015]
In the present invention, in order to maintain high strength, the hardness is as high as possible.
[0016]
[Means for Solving the Problems]
In the present invention, the test wood flour is preformed by isostatic pressing by cold isostatic pressing, and the obtained preformed product is subjected to isostatic pressing under ultrahigh pressure by warm isostatic pressing. Air-dried wood flour can be used as the test wood flour, and it also has high water resistance and biodegradability, and can be molded into a high density, high strength, and high hardness wood flour molded into any shape. It was made based on the knowledge that
[0017]
Here, the high density means that the density is higher than about 1.3 gcm −3 which is the maximum density of wood and close to about 1.5 gcm −3 which is the density of wood. In addition, the density of the wood substance means the density of the cell wall itself of the wood including the cell walls and the voids.
[0018]
A high-strength molded product refers to a wood flour molded product having a compressive strength greater than the maximum compressive strength of wood, about 110 MPa.
[0019]
In the present invention, since molding is performed by isostatic pressing, molded articles having various shapes such as a plate, a rod, and a column can be arbitrarily obtained.
[0020]
The wood flour refers to particles or powder generated when the parent wood is crushed, and the test wood flour refers to wood flour used in producing a wood flour molded product. The particle size of the wood flour is usually about 0.5 mm or less, but is not limited thereto.
[0021]
Since the molded product obtained by the present invention is made of biodegradable wood flour, all can be biodegraded, and as a result, recycling can be achieved.
[0022]
As described in claim 1 of the present application, the wood flour molded product of the present invention is a wood flour molded product using air-dried wood flour, has water resistance and biodegradability, and has an arbitrary shape. It is characterized by being molded.
[0023]
Thereby, in obtaining a wood flour molded product, the test wood flour can be used without being completely dried, so that it is not necessary to use energy for drying the wood flour.
[0024]
Moreover, since the obtained wood flour molded product is made of biodegradable wood flour, it can be recycled based on biodegradation and can be disposed of in a natural environment.
[0025]
Furthermore, since the shape of the wood flour molded product is arbitrarily shaped, there are wood flour molded products having a columnar shape, a rod shape and the like in addition to a plate shape. For this reason, the shape of the wood flour molding can be arbitrarily specified according to the application, and the usability of the wood flour molding improves.
[0026]
As described in claim 2 of the present application, the wood flour molded product of the present invention has a density of at least 1.3 gcm −3 , a compressive strength of at least 85 MPa, and a Rockwell hardness of at least 85 MPa. It is characterized by at least 90 HRR.
[0027]
Thus, the wood flour molding of the present invention is a high density, high strength wood flour molding. However, the compressive strength as referred to herein is meant to include both strengths when a compression test is performed in the radial direction and the length direction of the formed cylindrical mold.
[0028]
The method for producing a wood flour molded product of the present invention comprises, as described in claim 3, a step of preforming the wood flour by isostatic pressing in a cold isostatic pressure apparatus, and And a step of subjecting the obtained preform to a full isostatic press under ultrahigh pressure in a warm isostatic press.
[0029]
As a result, it is a wood flour molded product that uses air-dried wood flour as a test wood flour that has high hardness while maintaining the high density and high strength of the wood flour molded product. And a wood flour molded product molded into an arbitrary shape is obtained.
[0030]
The method for producing a wood flour molding according to the present invention for producing the wood flour molding is, as described in claim 4, an ultrahigh-pressure condition for fully molding the preform is 100 to 100. It is characterized by being 500 MPa.
[0031]
Further, the method for producing a wood flour molded product of the present invention is characterized in that, as described in claim 5, the temperature condition for fully molding the preformed product is 150 ° C. or less. is there.
[0032]
This makes it possible to suppress the thermal decomposition of wood as much as possible. In addition, high density having a density of at least 1.3 gcm −3 , high strength having a compressive strength of at least 85 MPa, and Rockwell hardness And a high hardness of at least 90 HRR.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to this embodiment.
[0034]
The method for producing a wood flour molded product according to the present invention will be described in detail with reference to FIG. As shown in FIG. 1, in the method for producing a wood flour molded product (7) of the present invention, a test wood flour (1) is isotropically pressed in a cold isostatic press (CIP) (3). Preforming by pressure (A), and preforming (4) obtained in the preforming step are isostatically applied under ultra-high pressure in a warm isostatic press (WIP) (6). And a step (B) of performing main molding by pressure.
[0035]
In addition, the cold isostatic pressure apparatus (CIP apparatus) (3) includes a Dr. CIP was used as a warm isostatic pressing device (WIP device) (6) using a Mitsubishi warm isostatic pressing device manufactured by Mitsubishi Heavy Industries, Ltd.
[0036]
As shown in Table 1, the particle size of the test wood flour (1) used in the preforming step (A) was 32 mesh pass-60 mesh ON, 60 mesh pass-100 mesh ON, 100 mesh pass- Air-dried wood flour classified into 170 mesh on, 170 mesh pass-250 mesh on, 250 mesh pass-350 mesh on was used.
[0037]
The mesh path means passing through a mesh having the mesh, and the mesh-on means depositing on the mesh without passing through the mesh having the mesh.
[0038]
In the method for producing the wood flour molded product (7) of the present invention, when the test wood flour (1) is isotropically pressed in the cold isostatic pressure device (3), the height is 10 cm and the diameter is 6 in advance. After filling into a cylindrical rubber mold (2) for cold isostatic pressing of about 0.5 cm, a pressurizing pump (8) for a CIP device is used in a cold isostatic pressing device (3). The pressure was set to 50 MPa, and the temperature was set to room temperature. As a result, a preform (4) having a height of 5.2 cm and a diameter of about 5 cm was obtained.
[0039]
In the main molding step (B), the preform (4) obtained in the preforming step is a cylindrical rubber mold for warm isostatic molding capable of changing the diameter to about 5.5 cm and the height to 5 to 10 cm. In (5), in a warm isostatic press (6), using a pressurizing pump (9) for a WIP device, under a super-high pressure of 100-500 MPa and a temperature of 90-140 ° C. Main molding was performed by isostatic pressing for about 3 hours. A heater for a WIP device (10) was used for temperature adjustment.
[0040]
The upper limit of the ultra-high pressure is adjusted to 500 MPa, which is the maximum pressure of the WIP device, and is not particularly limited.
[0041]
As a result, a high-density, high-strength wood flour molded product (7) having a height of 4.7 cm and a diameter of about 4.8 cm was obtained.
[0042]
For example, the wood powder molded product of the present invention manufactured by the above-described manufacturing method was specified as follows.
[0043]
The density of the wood flour molding of the present invention was specified by dividing the weight of the molding in the air-dried state by the volume calculated by dimensional measurement.
[0044]
The compressive strength of the wood flour molded product of the present invention was specified by measurement using a strength tester (Autograph, manufactured by Shimadzu Corporation).
[0045]
The hardness of the wood flour molded product of the present invention was determined by using a hardness tester (Rockwell hardness tester manufactured by Akashi Co., Ltd.) using a steel ball having a diameter of 12.7 mm as an initial test force of 98.07 N and a total test force of 588. The amount of deformation when testing at 4N was measured and specified. The measurement result in the hardness test is called Rockwell hardness.
[0046]
The presence or absence of water resistance was determined by boiling a wood flour molded product in boiling water for 72 hours and then visually checking the shape change of the molded product.
[0047]
As a result, the density of the wood flour molded product of the present invention is about 1.4 gcm −3 irrespective of the particle size of the test wood flour, and is relatively close to the density of wood cell walls (1.5 gcm −3 ). It was much higher than the density of wood (0.3-1.1 gcm- 3 ) and showed a high density of 1.3 gcm- 3 or more (see Table 1). Moreover, although the strength of the wood flour molded product of the present invention differs depending on the particle size of the test wood flour, the compressive strength shows a value of 85 to 134 MPa, and the value of the high strength wood (about 100 MPa). The strength was as high as or higher than that (see Table 1).
[0048]
In the cylindrical wood powder molded product, the compressive strength was different between the radial direction and the longitudinal direction, and the compressive strength was large in the longitudinal direction (see Table 1).
[0049]
The hardness (Rockwell hardness) of the wood flour molded product according to the present invention is as high as 110 to 120 HHR, which is larger than the hardness at the tip of the extremely hard wood (bongo wood) (about 90 HRR) regardless of the particle size. The values are shown (see Table 1).
[0050]
The wood flour molded product of the present invention did not lose its shape even after boiling the wood flour molded product for 72 hours, and showed sufficient water resistance.
[0051]
【Example】
Hereinafter, various examples of the molding pressure, molding temperature, and molding time in the main molding step (B) when air-dried wood powder of various particle sizes are molded for the wood powder molded product of the present invention according to the present invention, and the results thereof Specific description will be made in relation to the density, Rockwell hardness and various properties of the compressive strength of the obtained wood flour molded product. However, the wood powder molding of the present invention and the method for producing the same are not limited to these examples.
[0052]
Example 1 Air-dried wood flour having a mesh width of 32 mesh and 60 mesh-on was used as the wood flour (1), and the wood flour (1) was used as a cylindrical rubber mold for cold isostatic molding (2). ), And was isostatically pressed in a cold isostatic pressure apparatus (3) for 10 minutes at a pressure of 50 MPa and a temperature of room temperature to obtain a preform (4).
[0053]
This preform (4) is put into a cylindrical warm isostatic pressing rubber mold (5), and isotropically pressed under the conditions shown in Table 1 in a warm isostatic press (6). As a result, a cylindrical wood powder molded product (7) having a height of 4.7 cm and a diameter of about 4.8 cm was obtained.
[0054]
The density, compressive strength and Rockwell hardness of the obtained wood flour molding were measured by measuring the weight and dimensions in an air-dried state, measuring with a strength tester (Autograph manufactured by Shimadzu Corporation), and hardness tester, respectively. (Rockwell hardness tester manufactured by Akashi Co., Ltd.).
[0055]
The measurement results are shown in Table 1.
[0056]
Example 2 Air-dried wood flour of 60 mesh pass-100 mesh on was used as test wood flour (1), and this test wood flour (1) was used as a cylindrical rubber mold (2) for cold isostatic molding. ), And was isostatically pressed in a cold isostatic pressure apparatus (3) for 10 minutes at a pressure of 50 MPa and a temperature of room temperature to obtain a preform (4).
[0057]
This preform (4) is put into a cylindrical warm isostatic pressing rubber mold (5), and isotropically pressed under the conditions shown in Table 1 in a warm isostatic press (6). As a result, a cylindrical wood powder molded product (7) having a height of 4.7 cm and a diameter of about 4.8 cm was obtained.
[0058]
The density, compressive strength, and Rockwell hardness of the obtained wood flour molded product were determined by measuring the weight and dimensions in an air-dried state, by the above-mentioned strength tester, and by the above-mentioned hardness tester, respectively.
[0059]
The measurement results are shown in Table 1.
[0060]
Example 3 Air-dried wood flour of 100 mesh pass-170 mesh on was used as test wood flour (1), and the test wood flour (1) was used as a cylindrical rubber mold (2) for cold isostatic molding. ), And was isostatically pressed in a cold isostatic pressure apparatus (3) for 10 minutes at a pressure of 50 MPa and a temperature of room temperature to obtain a preform (4).
[0061]
This preform (4) is put into a cylindrical warm isostatic pressing rubber mold (5), and isotropically pressed under the conditions shown in Table 1 in a warm isostatic press (6). As a result, a cylindrical wood powder molded product (7) having a height of 4.7 cm and a diameter of about 4.8 cm was obtained.
[0062]
The density, compressive strength, and Rockwell hardness of the obtained wood flour molded product were determined by measuring the weight and dimensions in an air-dried state, by the above-mentioned strength tester, and by the above-mentioned hardness tester, respectively.
[0063]
The measurement results are shown in Table 1.
[0064]
Example 4 Air-dried wood flour of 170 mesh pass-250 mesh on was used as test wood flour (1), and this test wood flour (1) was used as a cylindrical rubber mold (2) for cold isostatic molding. ), And was isostatically pressed in a cold isostatic pressure apparatus (3) for 10 minutes at a pressure of 50 MPa and a temperature of room temperature to obtain a preform (4).
[0065]
This preform (4) is put into a cylindrical warm isostatic pressing rubber mold (5), and isotropically pressed under the conditions shown in Table 1 in a warm isostatic press (6). As a result, a cylindrical wood powder molded product (7) having a height of 4.7 cm and a diameter of about 4.8 cm was obtained.
[0066]
The density, compressive strength, and Rockwell hardness of the obtained wood flour molded product were determined by measuring the weight and dimensions in an air-dried state, by the above-mentioned strength tester, and by the above-mentioned hardness tester, respectively.
[0067]
The measurement results are shown in Table 1.
[0068]
Example 5 Air-dried wood flour with a 250 mesh pass-350 mesh on was used as the test wood flour (1), and the test wood flour (1) was used as a cylindrical rubber mold (2) for cold isostatic molding. ), And was isostatically pressed in a cold isostatic pressure apparatus (3) for 10 minutes at a pressure of 50 MPa and a temperature of room temperature to obtain a preform (4).
[0069]
This preform (4) is put into a cylindrical warm isostatic pressing rubber mold (5), and isotropically pressed under the conditions shown in Table 1 in a warm isostatic press (6). As a result, a cylindrical wood powder molded product (7) having a height of 4.7 cm and a diameter of about 4.8 cm was obtained.
[0070]
The density, compressive strength, and Rockwell hardness of the obtained wood flour molded product were determined by measuring the weight and dimensions in an air-dried state, by the above-mentioned strength tester, and by the above-mentioned hardness tester, respectively.
[0071]
The measurement results are shown in Table 1.
[0072]
[Table 1]
Figure 2004338097
[0073]
When these molded products were boiled for 72 hours, they were swollen but did not lose their shapes.
[0074]
【The invention's effect】
According to the wood flour molded product and the method for producing the same of the present invention, air-dried wood flour can be used for molding wood flour, and the molded wood flour molded product has water resistance and biodegradability. The effect is that a high-density and high-strength wood flour molded article having an arbitrary shape can be obtained.
[0075]
For this reason, according to the method for producing a wood flour molded product of the present invention, in molding wood flour, air-dried wood flour can be used without making the wood flour completely dry. There is an effect that energy for drying is not required. As a result, a low-cost, high-density, high-strength wood flour molded product can be obtained.
[0076]
It is also possible to suppress the thermal decomposition of wood as much as possible.
[0077]
ADVANTAGE OF THE INVENTION According to the wood flour molding of this invention and its manufacturing method, since the molded wood flour molding has sufficient water resistance, there is an effect that the range of application is wide.
[0078]
ADVANTAGE OF THE INVENTION According to the wood flour molding of this invention and its manufacturing method, since the molded wood flour molding consists only of wood flour, it has the effect that all can be biodegraded and recycling can be achieved. Therefore, disposal suitable for the natural environment can be performed.
[0079]
According to the wood flour molded product and the method for producing the same of the present invention, a wood flour molded product having an arbitrary shape can be obtained, so that the shape of the wood flour molded product can be arbitrarily specified according to the intended use, Is spread, and the usability of the wood flour molding is improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a method for producing a wood flour molded product of the present invention.
DESCRIPTION OF SYMBOLS 1 Test wood flour 2 Rubber mold for cold isostatic pressing 3 Cold isostatic pressing device (CIP device)
4 Preform 5 Rubber mold for warm isostatic pressing 6 Warm isostatic pressing device (WIP device)
7 Molded wood powder 8 Pressure pump for CIP device 9 Pressure pump for WIP device 10 Heater for WIP device

Claims (5)

気乾木粉を使用した木粉成型物であって、耐水性や生分解性を有し、任意の形状に成型したことを特徴とする木粉成型物。What is claimed is: 1. A wood flour molded product using air-dried wood flour, characterized by having water resistance and biodegradability and being molded into an arbitrary shape. 請求項1記載の木粉成型物において、その密度が少なくとも1.3gcm−3で、その圧縮強度が少なくとも85MPaで,そのロックウェル硬さが少なくとも90HRRであることを特徴とする木粉成型物。The wood flour molding of claim 1 wherein the density is at least 1.3 gcm -3 , the compressive strength is at least 85 MPa, and the Rockwell hardness is at least 90 HRR. 請求項1ないし2記載の木粉成型物を製造する方法において、前記木粉を冷間静水圧法装置内で等方加圧により予備成型する工程と、
該予備成型工程で得られた予備成型物を温間静水圧法装置内で、超高圧の下、等方加圧により本成型する工程と、
を備えたことを特徴とする木粉成型物の製造方法。
A method for producing a wood flour molded product according to claim 1 or 2, wherein the wood flour is preformed by isostatic pressing in a cold isostatic press,
A step of subjecting the preformed product obtained in the preforming step to a full isostatic pressing under ultrahigh pressure in a warm isostatic press,
A method for producing a wood flour molded product, comprising:
請求項3記載の木粉成型物の製造方法において、予備成型物を温間静水圧法装置により等方加圧で本成型する際の超高圧条件が100〜500MPaであることを特徴とする木粉成型物の製造方法。4. The method for producing a wood flour molded product according to claim 3, wherein the ultra-high pressure condition when the pre-molded product is fully molded by isostatic pressing by a warm isostatic method is 100 to 500 MPa. Manufacturing method of powder molding. 請求項3ないし4記載の木粉成型物の製造方法において、予備成型物を温間静水圧法装置により等方加圧で本成型する際の温度条件が150℃以下であることを特徴とする木粉成型物の製造方法。The method for producing a wood flour molded product according to claim 3 or 4, wherein a temperature condition when the preformed product is fully molded by isostatic pressing by a warm isostatic pressure device is 150 ° C or less. Manufacturing method of wood flour moldings.
JP2003133972A 2003-05-13 2003-05-13 Method for producing molded wood powder using air-dried wood flour Expired - Lifetime JP3823153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133972A JP3823153B2 (en) 2003-05-13 2003-05-13 Method for producing molded wood powder using air-dried wood flour

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133972A JP3823153B2 (en) 2003-05-13 2003-05-13 Method for producing molded wood powder using air-dried wood flour

Publications (2)

Publication Number Publication Date
JP2004338097A true JP2004338097A (en) 2004-12-02
JP3823153B2 JP3823153B2 (en) 2006-09-20

Family

ID=33524645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133972A Expired - Lifetime JP3823153B2 (en) 2003-05-13 2003-05-13 Method for producing molded wood powder using air-dried wood flour

Country Status (1)

Country Link
JP (1) JP3823153B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139128A1 (en) * 2017-01-27 2018-08-02 株式会社クレハ Molded article and use of same
KR102500571B1 (en) * 2022-07-08 2023-02-20 윤성필 Method of manufacture for safety finishing materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139128A1 (en) * 2017-01-27 2018-08-02 株式会社クレハ Molded article and use of same
JP2018119124A (en) * 2017-01-27 2018-08-02 株式会社クレハ Molding, and use thereof
US10759097B2 (en) 2017-01-27 2020-09-01 Kureha Corporation Molded article and use of same
KR102500571B1 (en) * 2022-07-08 2023-02-20 윤성필 Method of manufacture for safety finishing materials

Also Published As

Publication number Publication date
JP3823153B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
Fernandes et al. Cork based composites using polyolefin’s as matrix: Morphology and mechanical performance
Glass et al. Ceramic powder compaction
JPS62187017A (en) Method and device for molding article
EP3569647B1 (en) Method for preparing foamed thermoplastic polyurethane elastomer product
Zare et al. Microstructural modifications of polyethylene glycol powder binder in the processing of sintered alpha alumina under different conditions of preparation
JP2004338097A (en) Wood flour molded article of every shape having biodegradability, high density and high strength using air dried wood flour and its manufacturing method
Eboibi et al. Evaluation of organic enhancer on the mechanical properties of periwinkle shells concrete
JP2004137144A (en) Porous carbon material, porous carbon material powder using the same, method of manufacturing the same, and method of manufacturing porous carbon material product using the porous carbon material powder
Carneim et al. Response of granular powders to uniaxial loading and unloading
Miazga et al. Preparation of Al 2 O 3–Ni cermet composites by aqueous gelcasting
JP5629863B2 (en) Heat-pressed wood and method for producing the same
Ribeiro et al. Fabrication of artificial stone from marble residue by resin transfer molding
JP2002326871A (en) Carbonized foam and its manufacturing method
JP6252944B2 (en) Method for producing keratin-derived bioplastic molded body
JP2004195658A (en) Regeneration treatment method for polyurethane foam waste material and regenerated polyurethane molded object
Khan et al. Improvement of a high velocity compaction technique for iron powder
RU2404055C2 (en) Method of producing articles from powder polymer materials (versions)
Dai Blendability and processing methodology of an environmental material rice-hush/PVA composite
Belousova et al. Evaluating the effectiveness of axial and isostatic pressing methods of ceramic granular powder
Sinevich et al. Formation of various types of intergranular bond during the compaction of ultra-high-molecular-weight polyethylene reactor powders
Aizawa Analysis of restitution coefficient and hardness of CO2-assisted polymer compression products
Mohammed et al. THE EFFECT OF NATURAL MATERIALS ON MECHANICAL PROPERTIES OF COMPOSITE MATERIALS
Waziri et al. AN EVALUATION ON THE EFFECT OF NATURAL FIBRES ON THE MECHANICAL PROPERTIES OF KENAF-COIR HYBRID COMPOSITE
Maulida et al. A Study on the utilization of coffee grounds for particle board
Shen et al. The fabrication and characterization of polymeric microcellular foams with designed gradient density

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

R150 Certificate of patent or registration of utility model

Ref document number: 3823153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term