JP3823153B2 - Method for producing molded wood powder using air-dried wood flour - Google Patents

Method for producing molded wood powder using air-dried wood flour Download PDF

Info

Publication number
JP3823153B2
JP3823153B2 JP2003133972A JP2003133972A JP3823153B2 JP 3823153 B2 JP3823153 B2 JP 3823153B2 JP 2003133972 A JP2003133972 A JP 2003133972A JP 2003133972 A JP2003133972 A JP 2003133972A JP 3823153 B2 JP3823153 B2 JP 3823153B2
Authority
JP
Japan
Prior art keywords
wood
wood powder
molding
molded product
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003133972A
Other languages
Japanese (ja)
Other versions
JP2004338097A (en
Inventor
誠 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forestry and Forest Products Research Institute
Original Assignee
Forestry and Forest Products Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forestry and Forest Products Research Institute filed Critical Forestry and Forest Products Research Institute
Priority to JP2003133972A priority Critical patent/JP3823153B2/en
Publication of JP2004338097A publication Critical patent/JP2004338097A/en
Application granted granted Critical
Publication of JP3823153B2 publication Critical patent/JP3823153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、木粉の成型にあたり、全乾状態にしなくても気乾状態の木粉を使用でき、また、成型された木粉成型物が耐水性、生分解性を有し、任意の形状に成型した高密度、高強度、高硬度の木粉成型物及びその製造方法に関する。
【0002】
【従来の技術】
従来より、木材資源の有効利用や保護等の観点から、木粉を高密度・高強度の成型物へ加工・成型するための木粉成型技術が研究されてきた。
【0003】
木粉を成型するための技術としては、250メッシュパス(63μm以下)の全乾木粉を金属製ダイに充填し、静圧プレス機を用いて圧力100MPa、温度180〜240℃で6〜10分間熱圧締するものがある(非特許文献1)。この技術では、例えば、220℃で10分間の熱圧条件或いは240℃で6分間の熱圧条件の時に木粉状態が認識できないプラスチック様外観を持ち、高密度(約1.45gcm−3)で高強度(曲げ強度70〜80MPaで、曲げ弾性率10GPa程度)の板状の形状を有する木粉成型物が得られた。
【0004】
また、この他にも100メッシュパスの気乾木粉に対して粉末フェノール樹脂接着剤を重量百分率で3〜40%添加し、圧力3MPa、温度160〜220℃で12分間熱圧締する技術がある(非特許文献2)。この技術では、木粉成型物として密度が0.6〜1.0gcm−3の厚さ12mmのボードが得られ、得られたボードの強度は曲げ強度が最大60MPa、曲げ弾性率は最大6GPaで、内部接合力は最大5MPaであった。
【0005】
【非特許文献1】
第28回木材の化学加工研究会シンポジウム講演集、日本木材学会、p27−34(1998)
【非特許文献2】
材料47(4)、日本材料学会、p344−349(1998)
【0006】
【発明が解決しようとする課題】
250メッシュパス(63μm以下)の全乾木粉を金属製ダイに充填し、静圧プレス機を用いて圧力100MPa、温度180〜240℃で6〜10分間熱圧締する技術では、木粉を全乾させなければならないため、木粉を乾燥させるためのエネルギーが必要で、作業効率も低下し、経済コストが高いという課題がある。
【0007】
また、この技術では金属製ダイを使用した1軸方向の成型を行うものであるため、成型物の形状は板状に限定されてしまうという課題がある。
【0008】
更に、この技術により得られた成型物は、5時間煮沸すると、強度が著しく低下してしまい、バラバラに分解してしまう。このため、得られた成型物の耐水性が十分ではないという課題がある。
【0009】
100メッシュパスの気乾木粉に対して粉末フェノール樹脂接着剤を重量百分率で3〜40%添加し、圧力3MPa、温度160〜220℃で12分間熱圧締する技術では、フェノール樹脂という熱硬化性合成樹脂の接着剤を使用しているため、廃棄後のリサイクルが困難で、環境に適した廃棄が難しいという課題を有する。
【0010】
熱圧締をする際に150℃を超える温度で加熱することは、木材の熱分解を考慮すると、一般的に好ましくない。
【0011】
従って、本発明では、木粉を成型するにあたり、木粉成型物の高密度性と高強度性を保持しつつ、上記課題を解決するため、木粉を全乾状態にせずに成型できる木粉成型物及び該木粉成型物の製造方法を提供することを目的とする。
【0012】
また、本発明では、木粉を成型するにあたり、木粉成型物の高密度性と高強度性を保持しつつ、成型物が耐水性を有する木粉成型物及び該木粉成型物の製造方法を提供することを目的とする。
【0013】
本発明では、木粉を成型するにあたり、木粉成型物の高密度性と高強度性を保持しつつ、木粉成型物が有する生分解性により、リサイクル可能である木粉成型物及び該木粉成型物の製造方法を提供することを目的とする。
【0014】
更に、本発明では、木粉を成型するにあたり、木粉成型物の高密度性と高強度性を保持しつつ、任意の形状に成型した木粉成型物及び該木粉成型物の製造方法を提供することを目的とする。
【0015】
本発明では、高強度性を保持するにあたって、できる限り高硬度性を図る。
【0016】
【課題を解決するための手段】
本発明は、供試木粉を冷間静水圧法により等方加圧で予備成型し、得られた予備成型物を温間静水圧法により、超高圧の下、等方加圧で本成型すれば、供試木粉として気乾木粉を使用でき、また、耐水性や生分解性を有し、任意の形状に成型した高密度、高強度、高硬度の木粉成型物が得られるという知見に基づいてなされたものである。
【0017】
ここで、高密度とは、木材の最大密度である約1.3gcm−3よりも大きく、木材実質の密度である約1.5gcm−3に近い密度であることをいう。なお、木材実質の密度とは、細胞壁と空隙からなる木材の細胞壁そのものの密度を意味する。
【0018】
また、高強度成型物とは、木材の最大圧縮強度である約110MPaよりも大きい圧縮強度を有する木粉成型物をいう。
【0019】
本発明では、等方加圧により成型するため、板状、棒状、柱状等のような多種の形状の成型物を任意に得ることができる。
【0020】
木粉とは、その母体である木材を砕いたときに生じる粒子或いは粉体をいい、供試木粉とは、木粉成型物を製造するにあたって使用される木粉をいう。この木粉の粒径は通常0.5mm以下程度のものをいうが、これに限定されるものではない。
【0021】
本発明によって得られる成型物は生分解性の木粉からなるため、全て生分解でき、この結果、リサイクルを図ることができる。
【0022】
本発明の木粉成型物は、本願請求項1に記載されているように、気乾木粉を使用した木粉成型物であって、耐水性や生分解性を有し、任意の形状に成型したことを特徴とするものである。
【0023】
これにより、木粉成型物を得るにあたり、供試木粉を全乾させずに使用できるため、木粉を乾燥させるためのエネルギーを必要としなくて済む。
【0024】
また、得られた木粉成型物は、生分解性の木粉からなるため、生分解に基づくリサイクルを図ることができ、自然環境に適した廃棄ができる。
【0025】
更に、木粉成型物の形状を任意に成型しているため、木粉成型物として板状以外にも柱状、棒状等の形状のものが存在する。このため、木粉成型物の形状を用途に応じて任意に特定することが可能となり、木粉成型物の使い勝手が向上する。
【0026】
本発明の木粉成型物は、本願請求項2に記載されているように、木粉成型物の密度が少なくとも1.3gcm−3で、その圧縮強度が少なくとも85MPaで,そのロックウェル硬さが少なくとも90HRRであることを特徴とするものである。
【0027】
これにより、本発明の木粉成型物は、高密度、高強度の木粉成型物である。もっとも、ここでいう圧縮強度とは、作成した円筒形成型物の半径方向と長さ方向について圧縮試験を行った時の双方の強度を包含する意味である。
【0028】
本発明の木粉成型物の製造方法は、請求項3に記載されているように、木粉を冷間静水圧法装置内で等方加圧により予備成型する工程と、該予備成型工程で得られた予備成型物を温間静水圧法装置内で、超高圧の下、等方加圧により本成型する工程とを備えたことを特徴とするものである。
【0029】
これにより、木粉成型物の高密度性と高強度性を保持しつつ高硬度性も有する供試木粉として気乾木粉を使用した木粉成型物であって、耐水性や生分解性を有し、任意の形状に成型した木粉成型物が得られる。
【0030】
上記木粉成型物を製造するための本発明に係る木粉成型物の製造方法は、請求項4に記載されているように、上記予備成型物を本成型するための超高圧条件が100〜500MPaであることを特徴とするものである。
【0031】
また、本発明の木粉成型物の製造方法は、請求項5に記載されているように、上記予備成型物を本成型するための温度条件が150℃以下であることを特徴とするものである。
【0032】
これにより、木材の熱分解を極力抑制することが可能となり、また、密度が少なくとも1.3gcm−3であるという高密度性と、圧縮強度が少なくとも85MPaであるという高強度性と、ロックウェル硬さが少なくとも90HRRであるという高硬度性とを有する木粉成型物が得られる。
【0033】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。但し、本発明は本実施例に限定されるものではない。
【0034】
本発明である木粉成型物を製造する方法について図1を用いて詳細に説明する。本発明の木粉成型物(7)を製造する方法は、図1に例示するように、供試木粉(1)を冷間静水圧法装置(CIP装置)(3)内で等方加圧により予備成型する工程(A)と、該予備成型工程で得られた予備成型物(4)を温間静水圧法装置(WIP装置)(6)内で、超高圧の下、等方加圧により本成型する工程(B)とを備えたことを特徴とするものである。
【0035】
なお、冷間静水圧法装置(CIP装置)(3)には、株式会社神戸製鋼所製のDr.CIPを、温間静水圧法装置(WIP装置)(6)には、三菱重工業株式会社製の三菱温間等方圧加圧装置を使用した。
【0036】
予備成型工程(A)で使用する供試木粉(1)としては、表1に示すように、粒径をそれぞれ32メッシュパス−60メッシュオン、60メッシュパス−100メッシュオン、100メッシュパス−170メッシュオン、170メッシュパス−250メッシュオン、250メッシュパス−350メッシュオンに区分した気乾状態の木粉を使用した。
【0037】
なお、メッシュパスとは、そのメッシュを持つ網目を通過することを意味し、メッシュオンとは、そのメッシュを持つ網目を通過せずにその網に堆積することを意味する。
【0038】
本発明の木粉成型物(7)を製造する方法においては、供試木粉(1)を冷間静水圧法装置(3)内で等方加圧するにあたり、予め、高さ10cm、直径6.5cm程の円筒形の冷間静水圧法成型用ゴムモールド(2)に充填したうえで、冷間静水圧法装置(3)内で、CIP装置用加圧用ポンプ(8)を使用して、圧力を50MPa、温度を室温に設定して10分間程等方加圧した。その結果、高さ5.2cm、直径5cm程の予備成型物(4)を得た。
【0039】
本成型工程(B)では、予備成型工程で得られた予備成型物(4)を直径が5.5cm程で高さが5〜10cmに可変できる円筒形の温間静水圧法成型用ゴムモールド(5)に入れて、温間静水圧法装置内(6)で、WIP装置用加圧用ポンプ(9)を使用して、圧力100〜500MPaの超高圧の下、温度90〜140℃で1〜3時間程等方加圧し、本成型を行った。温度調整にはWIP装置用加熱ヒーター(10)を使用した。
【0040】
なお、超高圧の上限は、WIP装置の最大圧力である500MPaにあわせたものであり、特に限定するものではない。
【0041】
その結果、高さ4.7cm、直径4.8cm程の高密度、高強度の木粉成型物(7)を得た。
【0042】
例えば、上述の製造方法によって製造された本発明の木紛成型物は以下のようにして特定した。
【0043】
本発明の木粉成型物の密度は、気乾状態における成型物の重量をその寸法測定により算出した体積で割ることにより特定した。
【0044】
本発明の木粉成型物の圧縮強度は、強度試験機(島津(株)製 オートグラフ)による測定で特定した。
【0045】
本発明の木粉成型物の硬さは、硬さ試験機(アカシ(株)製 ロックウェル硬さ試験機)により直径12.7mmの鋼球を初試験力98.07N、全試験力588.4Nで試験したときの変形量を測定して特定した。なお、この硬さ試験における測定結果がロックウェル硬さと呼ぶものである。
【0046】
耐水性の有無は、木粉成型物を沸騰水中で72時間煮沸した後、その成型物の形状変化を目視により確認し、判断した。
【0047】
その結果、本発明の木粉成型物の密度は、供試木粉の粒径に拘わらず1.4gcm−3程度であり、木材細胞壁の密度(1.5gcm−3)に比較的近く、通常の木材の密度(0.3〜1.1gcm−3)よりも遥かに大きく、1.3gcm−3以上の高密度を示した(表1参照)。また、本発明の木粉成型物の強度は、供試木粉の粒径によって相異するものの、いずれも圧縮強度が85〜134MPaという値を示し、強度の大きな木材が有する値(100MPa程度)と同程度或いはそれ以上の高強度であった(表1参照)。
【0048】
なお、円筒形状の木粉成型物では、半径方向と長さ方向で圧縮強度が異なり、長さ方向が大きな圧縮強度を示した(表1参照)。
【0049】
本発明である上記木粉成型物の硬さ(ロックウェル硬さ)は、粒径に拘わらず、極めて硬い木材(ボンゴシ材)の木口面硬さ(90HRR程度)よりも大きい110〜120HHRという高い値を示した(表1参照)。
【0050】
本発明である上記木粉成型物は、該木粉成型物を72時間煮沸しても形状は崩れることなく、十分な耐水性を示した。
【0051】
【実施例】
以下、実施例により、本発明である木粉成型物について、各種粒径の気乾木粉を成型した場合の本成型工程(B)における成型圧力、成型温度及び成型時間の各種条件とその結果得られた木粉成型物の密度、ロックウェル硬さ及び圧縮強度の各種特性との関係で具体的に説明する。但し、本発明の木紛成型物及びその製造方法はこれらの実施例に限定されるものではない。
【0052】
実施例1 32メッシュパス−60メッシュオンの気乾木粉を供試木粉(1)として使用し、この供試木粉(1)を円筒形の冷間静水圧法成型用ゴムモールド(2)に充填し、冷間静水圧法装置(3)内で圧力を50MPa、温度を室温に設定して10分間等方加圧し、予備成型物(4)を得た。
【0053】
この予備成型物(4)を円筒形の温間静水圧法成型用ゴムモールド(5)に入れ、温間静水圧法装置(6)内で、表1に示す条件下で、等方加圧により本成型物である高さ4.7cm、直径4.8cm程の円柱状の木粉成型物(7)を得た。
【0054】
得られた木粉成型物の密度、圧縮強度及びロックウェル硬さは、それぞれ、気乾状態の重量と寸法の測定、強度試験機(島津(株)製 オートグラフ)による測定、硬さ試験機(アカシ(株)製 ロックウェル硬さ試験機)による測定により決定した。
【0055】
測定結果は表1に示した。
【0056】
実施例2 60メッシュパス−100メッシュオンの気乾木粉を供試木粉(1)として使用し、この供試木粉(1)を円筒形の冷間静水圧法成型用ゴムモールド(2)に充填し、冷間静水圧法装置(3)内で圧力を50MPa、温度を室温に設定して10分間等方加圧し、予備成型物(4)を得た。
【0057】
この予備成型物(4)を円筒形の温間静水圧法成型用ゴムモールド(5)に入れ、温間静水圧法装置(6)内で、表1に示す条件下で、等方加圧により本成型物である高さ4.7cm、直径4.8cm程の円柱状の木粉成型物(7)を得た。
【0058】
得られた木粉成型物の密度、圧縮強度及びロックウェル硬さは、それぞれ、気乾状態の重量と寸法の測定、上記強度試験機による測定、上記硬さ試験機による測定により決定した。
【0059】
測定結果は表1に示した。
【0060】
実施例3 100メッシュパス−170メッシュオンの気乾木粉を供試木粉(1)として使用し、この供試木粉(1)を円筒形の冷間静水圧法成型用ゴムモールド(2)に充填し、冷間静水圧法装置(3)内で圧力を50MPa、温度を室温に設定して10分間等方加圧し、予備成型物(4)を得た。
【0061】
この予備成型物(4)を円筒形の温間静水圧法成型用ゴムモールド(5)に入れ、温間静水圧法装置(6)内で、表1に示す条件下で、等方加圧により本成型物である高さ4.7cm、直径4.8cm程の円柱状の木粉成型物(7)を得た。
【0062】
得られた木粉成型物の密度、圧縮強度及びロックウェル硬さは、それぞれ、気乾状態の重量と寸法の測定、上記強度試験機による測定、上記硬さ試験機による測定により決定した。
【0063】
測定結果は表1に示した。
【0064】
実施例4 170メッシュパス−250メッシュオンの気乾木粉を供試木粉(1)として使用し、この供試木粉(1)を円筒形の冷間静水圧法成型用ゴムモールド(2)に充填し、冷間静水圧法装置(3)内で圧力を50MPa、温度を室温に設定して10分間等方加圧し、予備成型物(4)を得た。
【0065】
この予備成型物(4)を円筒形の温間静水圧法成型用ゴムモールド(5)に入れ、温間静水圧法装置(6)内で、表1に示す条件下で、等方加圧により本成型物である高さ4.7cm、直径4.8cm程の円柱状の木粉成型物(7)を得た。
【0066】
得られた木粉成型物の密度、圧縮強度及びロックウェル硬さは、それぞれ、気乾状態の重量と寸法の測定、上記強度試験機による測定、上記硬さ試験機による測定により決定した。
【0067】
測定結果は表1に示した。
【0068】
実施例5 250メッシュパス−350メッシュオンの気乾木粉を供試木粉(1)として使用し、この供試木粉(1)を円筒形の冷間静水圧法成型用ゴムモールド(2)に充填し、冷間静水圧法装置(3)内で圧力を50MPa、温度を室温に設定して10分間等方加圧し、予備成型物(4)を得た。
【0069】
この予備成型物(4)を円筒形の温間静水圧法成型用ゴムモールド(5)に入れ、温間静水圧法装置(6)内で、表1に示す条件下で、等方加圧により本成型物である高さ4.7cm、直径4.8cm程の円柱状の木粉成型物(7)を得た。
【0070】
得られた木粉成型物の密度、圧縮強度及びロックウェル硬さは、それぞれ、気乾状態の重量と寸法の測定、上記強度試験機による測定、上記硬さ試験機による測定により決定した。
【0071】
測定結果は表1に示した。
【0072】
【表1】

Figure 0003823153
【0073】
なお、これらの成型物に対して72時間の煮沸を行ったところ、膨潤したものの、形状が崩れることはなかった。
【0074】
【発明の効果】
本発明の木粉成型物及びその製造方法によれば、木粉の成型にあたり、気乾状態の木粉を使用でき、また、成型された木粉成型物が耐水性、生分解性を有し、任意の形状に成型した高密度で高強度の木粉成型物が得られるという効果を奏する。
【0075】
このため、本発明の木粉成型物の製造方法によれば、木粉を成型するにあたり、供試木粉として全乾状態にしなくても気乾状態の木粉を使用でき、供試木粉を乾燥させるためのエネルギーを必要としないという効果を奏する。その結果、低コストで高密度、高強度の木粉成型物を得ることができる。
【0076】
また、木材の熱分解も極力抑制することも可能である。
【0077】
本発明の木粉成型物及びその製造方法によれば、成型された木粉成型物が十分な耐水性を有するため、用途範囲が広いという効果を奏する。
【0078】
本発明の木粉成型物及びその製造方法によれば、成型された木粉成型物が木粉のみからなるため、全て生分解でき、リサイクルを図ることができるという効果を奏する。このため、自然環境に適した廃棄ができる。
【0079】
本発明の木粉成型物及びその製造方法によれば、任意の形状の木粉成型物が得られるため、木粉成型物の形状を用途に応じて任意に特定することが可能となり、用途範囲が広がるとともに木粉成型物の使い勝手が向上するという効果を奏する。
【図面の簡単な説明】
【図1】 本発明の木粉成型物の製造方法を示した概略図
【符号の説明】
1 供試木粉
2 冷間静水圧法成型用ゴムモールド
3 冷間静水圧法装置(CIP装置)
4 予備成型物
5 温間静水圧法成型用ゴムモールド
6 温間静水圧法装置(WIP装置)
7 木粉成型物
8 CIP装置用加圧ポンプ
9 WIP装置用加圧ポンプ
10 WIP装置用加熱ヒーター[0001]
BACKGROUND OF THE INVENTION
The present invention can use air-dried wood powder without molding it completely when molding wood powder, and the molded wood powder product has water resistance and biodegradability, and has any shape. The present invention relates to a high-density, high-strength, high-hardness wood powder molded product and a method for producing the same.
[0002]
[Prior art]
Conventionally, from the viewpoint of effective use and protection of wood resources, wood powder molding technology for processing and molding wood powder into a high-density and high-strength molding has been studied.
[0003]
As a technique for molding wood powder, 250 cm pass (63 μm or less) of all dry wood powder is filled in a metal die and 6 to 10 at a pressure of 100 MPa and a temperature of 180 to 240 ° C. using a static pressure press. There is one that heat-presses for a minute (Non-Patent Document 1). In this technology, for example, it has a plastic-like appearance in which a wood powder state cannot be recognized under a heat pressure condition of 220 ° C. for 10 minutes or a heat pressure condition of 240 ° C. for 6 minutes, and has a high density (about 1.45 gcm −3 ). A wood powder molded product having a plate shape with high strength (bending strength of 70 to 80 MPa and bending elastic modulus of about 10 GPa) was obtained.
[0004]
In addition to this, there is a technique in which 3-40% by weight of a powdered phenol resin adhesive is added to 100-mesh pass air-dried wood flour and hot pressed at a pressure of 3 MPa and a temperature of 160-220 ° C. for 12 minutes. Yes (Non-Patent Document 2). In this technique, a board having a density of 0.6 to 1.0 gcm −3 and a thickness of 12 mm is obtained as a wood powder molded product, and the obtained board has a bending strength of a maximum of 60 MPa and a bending elastic modulus of a maximum of 6 GPa. The maximum internal bonding force was 5 MPa.
[0005]
[Non-Patent Document 1]
Proceedings of the 28th Symposium of the Chemical Processing Society of Wood, The Wood Society of Japan, p27-34 (1998)
[Non-Patent Document 2]
Material 47 (4), Japan Society for Materials Science, p344-349 (1998)
[0006]
[Problems to be solved by the invention]
In a technique in which 250 cm pass (63 μm or less) of all dry wood powder is filled in a metal die and hot pressed at a pressure of 100 MPa and a temperature of 180 to 240 ° C. for 6 to 10 minutes using a hydrostatic press machine, Since it must be completely dried, energy for drying the wood powder is required, work efficiency is lowered, and there is a problem that economic cost is high.
[0007]
Moreover, since this technique performs uniaxial molding using a metal die, there is a problem that the shape of the molded product is limited to a plate shape.
[0008]
Furthermore, when the molded product obtained by this technique is boiled for 5 hours, the strength is remarkably lowered and it is decomposed apart. For this reason, there exists a subject that the water resistance of the obtained molding is not enough.
[0009]
In the technology of adding 3-40% by weight of powdered phenol resin adhesive to 100 mesh pass air-dried wood powder and hot pressing for 12 minutes at a pressure of 3 MPa and a temperature of 160-220 ° C., thermosetting called phenol resin Since the adhesive of the synthetic resin is used, there is a problem that recycling after disposal is difficult and disposal suitable for the environment is difficult.
[0010]
It is generally not preferable to heat at a temperature exceeding 150 ° C. when performing hot pressing in consideration of thermal decomposition of wood.
[0011]
Therefore, in the present invention, in molding wood powder, the wood powder that can be molded without completely drying the wood powder in order to solve the above problems while maintaining the high density and high strength of the wood powder molding. It aims at providing the manufacturing method of a molding and this wood-powder molding.
[0012]
Further, in the present invention, when molding wood powder, the wood powder molded product having water resistance while maintaining the high density and high strength of the wood powder molded product, and a method for producing the wood powder molded product The purpose is to provide.
[0013]
In the present invention, when molding wood powder, the wood powder molded product that can be recycled due to the biodegradability of the wood powder molded product while maintaining the high density and high strength of the wood powder molded product and the wood It aims at providing the manufacturing method of a powder molding.
[0014]
Further, in the present invention, when molding wood powder, a wood powder molded product molded into an arbitrary shape while maintaining the high density and high strength of the wood powder molded product and a method for producing the wood powder molded product The purpose is to provide.
[0015]
In the present invention, the hardness is as high as possible when maintaining high strength.
[0016]
[Means for Solving the Problems]
The present invention preliminarily molds the sample wood powder by isotropic pressurization by the cold isostatic press method, and the obtained preform is finally molded by isostatic pressurization under the ultrahigh pressure by the warm isostatic press method. If this is done, air-dried wood flour can be used as the sample wood flour, and it has water resistance and biodegradability, and a high-density, high-strength, high-hardness wood flour molded product molded into any shape can be obtained. It was made based on the knowledge.
[0017]
Here, the high density means that the density is larger than about 1.3 gcm −3 which is the maximum density of wood and close to about 1.5 gcm −3 which is the density of wood. In addition, the density of wood substance means the density of the cell wall itself of the wood which consists of a cell wall and a space | gap.
[0018]
The high-strength molded article refers to a wooden powder molded article having a compressive strength greater than about 110 MPa, which is the maximum compressive strength of wood.
[0019]
In this invention, since it shape | molds by isotropic pressurization, a molded article of various shapes, such as plate shape, rod shape, and column shape, can be obtained arbitrarily.
[0020]
Wood flour refers to particles or powder produced when the base wood is crushed, and sample wood flour refers to wood flour used in producing a wood flour molded product. The particle size of the wood flour is usually about 0.5 mm or less, but is not limited thereto.
[0021]
Since the molded product obtained by the present invention is made of biodegradable wood flour, it can be all biodegraded and, as a result, can be recycled.
[0022]
As described in claim 1 of the present invention, the wood flour molded product of the present invention is a wood powder molded product using air-dried wood flour, having water resistance and biodegradability, and having an arbitrary shape It is characterized by being molded.
[0023]
Thereby, in obtaining a wood powder molding, since the sample wood powder can be used without being completely dried, energy for drying the wood powder is not required.
[0024]
Moreover, since the obtained wood powder molding consists of biodegradable wood powder, the recycling based on biodegradation can be aimed at and the disposal suitable for natural environment can be performed.
[0025]
Furthermore, since the shape of the wooden powder molded product is arbitrarily molded, there are some wooden powder molded products having a columnar shape, a rod shape, or the like in addition to the plate shape. For this reason, it becomes possible to specify arbitrarily the shape of a wooden powder molding according to a use, and the usability of a wooden powder molding improves.
[0026]
As described in claim 2 of the present invention, the wood powder molded product has a density of at least 1.3 gcm −3 , a compressive strength of at least 85 MPa, and a Rockwell hardness of at least 1.3 gcm −3. It is at least 90 HRR.
[0027]
Thereby, the wood powder molding of the present invention is a wood powder molding of high density and high strength. However, the term “compressive strength” as used herein includes both strengths when the compression test is performed in the radial direction and the length direction of the formed cylindrical mold.
[0028]
The method for producing a wood flour molded product according to the present invention includes, as described in claim 3, a step of preforming wood flour by isotropic pressurization in a cold isostatic pressure apparatus, and a step of the preforming step. And a step of subjecting the obtained preform to a main molding by isostatic pressing under an ultrahigh pressure in a warm isostatic pressing apparatus.
[0029]
This is a wood powder molding using air-dried wood powder as a test wood powder that has high hardness while maintaining the high density and high strength of the wood powder molding, and is water resistant and biodegradable. A wood powder molded product molded into an arbitrary shape is obtained.
[0030]
As described in claim 4, the method for producing a wood powder molded product according to the present invention for producing the wood powder molded product has an ultrahigh pressure condition of 100 to 100 for main molding the preform. It is 500 MPa.
[0031]
The method for producing a wood flour molded product of the present invention is characterized in that, as described in claim 5, the temperature condition for main molding the preform is 150 ° C. or lower. is there.
[0032]
This makes it possible to suppress the thermal decomposition of the wood as much as possible, and has a high density of a density of at least 1.3 gcm −3 , a high strength of a compressive strength of at least 85 MPa, and Rockwell hardness. A molded wood powder having a high hardness of at least 90 HRR is obtained.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to this embodiment.
[0034]
The method for producing a wood flour molded product according to the present invention will be described in detail with reference to FIG. As shown in FIG. 1, the method for producing the wood flour molded product (7) of the present invention is obtained by isotropically adding the sample wood flour (1) in the cold isostatic pressing device (CIP device) (3). The process (A) for preforming by pressure and the preform (4) obtained in the preforming process in a warm isostatic apparatus (WIP apparatus) (6) under isotropic pressure And a step (B) of main molding by pressure.
[0035]
In addition, the cold isostatic apparatus (CIP apparatus) (3) includes Dr. Mitsubishi Warm isostatic pressurizer manufactured by Mitsubishi Heavy Industries, Ltd. was used as the CIP and warm isostatic apparatus (WIP device) (6).
[0036]
As shown in Table 1, the sample wood powder (1) used in the preforming step (A) has a particle size of 32 mesh pass, 60 mesh on, 60 mesh pass, 100 mesh on, and 100 mesh pass, respectively. The air-dried wood flour divided into 170 mesh on, 170 mesh pass-250 mesh on, 250 mesh pass-350 mesh on was used.
[0037]
The mesh path means passing through a mesh having the mesh, and the mesh-on means depositing on the mesh without passing through the mesh having the mesh.
[0038]
In the method for producing the wood flour molded product (7) of the present invention, the sample wood flour (1) is isostatically pressed in the cold hydrostatic pressure apparatus (3) in advance with a height of 10 cm and a diameter of 6 After filling the cylindrical cold isostatic press molding rubber mold (2) of about 5 cm, use the CIP pressurizing pump (8) in the cold isostatic press (3). The pressure was set to 50 MPa, the temperature was set to room temperature, and isotropically pressurized for about 10 minutes. As a result, a preform (4) having a height of 5.2 cm and a diameter of about 5 cm was obtained.
[0039]
In the main molding step (B), a cylindrical mold for warm isostatic pressing in which the preform (4) obtained in the pre-molding step can have a diameter of about 5.5 cm and a height of 5 to 10 cm can be varied. (5) In a warm hydrostatic pressure apparatus (6), using a WIP apparatus pressurizing pump (9), the temperature is 90 to 140 ° C. under an ultra high pressure of 100 to 500 MPa. The molding was carried out by isostatic pressing for about 3 hours. A WIP heater (10) was used for temperature adjustment.
[0040]
Note that the upper limit of the ultrahigh pressure is set to 500 MPa, which is the maximum pressure of the WIP device, and is not particularly limited.
[0041]
As a result, a high-density, high-strength wood flour molding (7) having a height of 4.7 cm and a diameter of about 4.8 cm was obtained.
[0042]
For example, the wood powder molding of the present invention manufactured by the above-described manufacturing method was specified as follows.
[0043]
The density of the wood flour molded product of the present invention was specified by dividing the weight of the molded product in an air-dried state by the volume calculated by dimensional measurement.
[0044]
The compressive strength of the wood powder molding of the present invention was specified by measurement with a strength tester (manufactured by Shimadzu Corp. Autograph).
[0045]
The hardness of the wood powder molded product of the present invention was determined by using a hardness tester (Rockwell hardness tester manufactured by Akashi Co., Ltd.), a steel ball having a diameter of 12.7 mm had an initial test force of 98.07 N and a total test force of 588. The deformation was measured and specified when tested at 4N. In addition, the measurement result in this hardness test is what is called Rockwell hardness.
[0046]
The presence or absence of water resistance was judged by visually checking the shape change of the molded product after boiling the wood powder molded product in boiling water for 72 hours.
[0047]
As a result, the density of the wood flour molded product of the present invention is about 1.4 gcm −3 regardless of the particle size of the test wood flour, which is relatively close to the density of the wood cell wall (1.5 gcm −3 ), usually It was much larger than the density of wood (0.3 to 1.1 gcm −3 ), and showed a high density of 1.3 gcm −3 or more (see Table 1). Moreover, although the intensity | strength of the wood flour molding of this invention changes with the particle sizes of a sample wood powder, all show the value whose compressive strength is 85-134 MPa, and the value which a strong wood has (about 100 MPa) (See Table 1).
[0048]
In addition, in the cylindrical-shaped wood powder molding, the compressive strength was different between the radial direction and the length direction, and the compressive strength was large in the length direction (see Table 1).
[0049]
The hardness (Rockwell hardness) of the above-mentioned wood powder molded product according to the present invention is as high as 110 to 120 HHR, which is larger than the hard end surface hardness (about 90 HRR) of extremely hard wood (bongoshi material) regardless of the particle diameter. Values are shown (see Table 1).
[0050]
The above-mentioned wood powder molding according to the present invention showed sufficient water resistance without losing its shape even when the wood powder molding was boiled for 72 hours.
[0051]
【Example】
Hereinafter, according to examples, various conditions of molding pressure, molding temperature and molding time in the molding step (B) in the case of molding air-dried wood flour of various particle sizes, and results thereof for the wood powder molded product of the present invention. It demonstrates concretely in relation to the various characteristics of the density, Rockwell hardness, and compressive strength of the obtained wood powder molding. However, the wood powder molding of the present invention and the production method thereof are not limited to these examples.
[0052]
Example 1 32 mesh pass-60 mesh-on air-dried wood flour was used as a sample wood flour (1), and this sample wood flour (1) was a cylindrical cold isostatic molding rubber mold (2 In the cold isostatic pressure apparatus (3), the pressure was set to 50 MPa, the temperature was set to room temperature, and isotropically pressurized for 10 minutes to obtain a preform (4).
[0053]
This preform (4) is put into a cylindrical warm isostatic press molding rubber mold (5), and isotropically pressurized under the conditions shown in Table 1 in the warm isostatic press (6). As a result, a cylindrical wood powder molding (7) having a height of 4.7 cm and a diameter of about 4.8 cm was obtained.
[0054]
Density, compressive strength, and Rockwell hardness of the obtained wood powder molding are measured for air-dried weight and dimensions, measured by a strength tester (Shimadzu Corporation Autograph), hardness tester, respectively. It was determined by measurement with (Akashi Co., Ltd. Rockwell hardness tester).
[0055]
The measurement results are shown in Table 1.
[0056]
Example 2 An air-dried wood powder of 60 mesh pass-100 mesh on was used as a test wood powder (1), and this test wood powder (1) was formed into a cylindrical cold isostatic molding rubber mold (2 In the cold isostatic pressure apparatus (3), the pressure was set to 50 MPa, the temperature was set to room temperature, and isotropically pressurized for 10 minutes to obtain a preform (4).
[0057]
This preform (4) is put into a cylindrical warm isostatic press molding rubber mold (5), and isotropically pressurized under the conditions shown in Table 1 in the warm isostatic press (6). As a result, a cylindrical wood powder molding (7) having a height of 4.7 cm and a diameter of about 4.8 cm was obtained.
[0058]
The density, compressive strength, and Rockwell hardness of the obtained wood powder molding were determined by measuring the weight and dimensions in an air-dried state, measuring with the strength tester, and measuring with the hardness tester, respectively.
[0059]
The measurement results are shown in Table 1.
[0060]
Example 3 An air-dried wood powder of 100 mesh pass-170 mesh on was used as a test wood powder (1), and this test wood powder (1) was formed into a cylindrical cold isostatic pressing rubber mold (2 In the cold isostatic pressure apparatus (3), the pressure was set to 50 MPa, the temperature was set to room temperature, and isotropically pressurized for 10 minutes to obtain a preform (4).
[0061]
This preform (4) is put into a cylindrical warm isostatic press molding rubber mold (5), and isotropically pressurized under the conditions shown in Table 1 in the warm isostatic press (6). As a result, a cylindrical wood powder molding (7) having a height of 4.7 cm and a diameter of about 4.8 cm was obtained.
[0062]
The density, compressive strength, and Rockwell hardness of the obtained wood powder molding were determined by measuring the weight and dimensions in an air-dried state, measuring with the strength tester, and measuring with the hardness tester, respectively.
[0063]
The measurement results are shown in Table 1.
[0064]
Example 4 170 mesh pass-250 mesh-on air-dried wood flour was used as the sample wood flour (1), and this sample wood flour (1) was formed into a cylindrical cold isostatic molding rubber mold (2 In the cold isostatic pressure apparatus (3), the pressure was set to 50 MPa, the temperature was set to room temperature, and isotropically pressurized for 10 minutes to obtain a preform (4).
[0065]
This preform (4) is put into a cylindrical warm isostatic press molding rubber mold (5), and isotropically pressurized under the conditions shown in Table 1 in the warm isostatic press (6). As a result, a cylindrical wood powder molding (7) having a height of 4.7 cm and a diameter of about 4.8 cm was obtained.
[0066]
The density, compressive strength, and Rockwell hardness of the obtained wood powder molding were determined by measuring the weight and dimensions in an air-dried state, measuring with the strength tester, and measuring with the hardness tester, respectively.
[0067]
The measurement results are shown in Table 1.
[0068]
Example 5 An air-dried wood powder of 250 mesh pass-350 mesh on was used as a test wood powder (1), and this test wood powder (1) was formed into a cylindrical cold isostatic press molding rubber mold (2 In the cold isostatic pressure apparatus (3), the pressure was set to 50 MPa, the temperature was set to room temperature, and isotropically pressurized for 10 minutes to obtain a preform (4).
[0069]
This preform (4) is put into a cylindrical warm isostatic press molding rubber mold (5), and isotropically pressurized under the conditions shown in Table 1 in the warm isostatic press (6). As a result, a cylindrical wood powder molding (7) having a height of 4.7 cm and a diameter of about 4.8 cm was obtained.
[0070]
The density, compressive strength, and Rockwell hardness of the obtained wood powder molding were determined by measuring the weight and dimensions in an air-dried state, measuring with the strength tester, and measuring with the hardness tester, respectively.
[0071]
The measurement results are shown in Table 1.
[0072]
[Table 1]
Figure 0003823153
[0073]
When these molded products were boiled for 72 hours, they were swollen but the shape did not collapse.
[0074]
【The invention's effect】
According to the wood flour molding of the present invention and the method for producing the wood flour, air-dried wood flour can be used for molding wood flour, and the molded wood flour molding has water resistance and biodegradability. There is an effect that a high-density and high-strength wood powder molded product molded into an arbitrary shape can be obtained.
[0075]
For this reason, according to the method for producing a wood flour molded product of the present invention, when molding wood powder, air-dried wood flour can be used as a sample wood flour without being completely dry. There is an effect that energy for drying is not required. As a result, a high-density, high-strength wood powder molded product can be obtained at low cost.
[0076]
It is also possible to suppress the thermal decomposition of wood as much as possible.
[0077]
According to the wood powder molding of the present invention and the method for producing the same, since the molded wood powder molding has sufficient water resistance, there is an effect that the application range is wide.
[0078]
According to the wood powder molded product and the method for producing the same of the present invention, since the molded wood powder molded material consists of only wood powder, all can be biodegraded and the recycling can be achieved. For this reason, disposal suitable for the natural environment can be performed.
[0079]
According to the wood powder molding of the present invention and the method for producing the same, since a wood powder molding having an arbitrary shape can be obtained, the shape of the wood powder molding can be arbitrarily specified according to the application, As a result, the usability of the wood powder molding is improved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a method for producing a wood flour molded product of the present invention.
DESCRIPTION OF SYMBOLS 1 Sample wood powder 2 Rubber mold for cold isostatic press molding 3 Cold isostatic press apparatus (CIP apparatus)
4 Pre-formed product 5 Rubber mold for warm isostatic pressing molding 6 Warm isostatic pressing apparatus (WIP apparatus)
7 Wood powder molding 8 Pressure pump for CIP device 9 Pressure pump for WIP device 10 Heater for WIP device

Claims (3)

気乾木粉を冷間静水圧法装置内で等方加圧により予備成型する工程と、
該予備成型工程で得られた予備成型物を温間静水圧法装置内で、超高圧の下、等方加圧により本成型する工程と、
を備えたことを特徴とする木粉成型物の製造方法。
A step of preforming air-dried wood flour by isotropic pressurization in a cold isostatic press ;
A step of subjecting the preform obtained in the preforming step to a main molding by isostatic pressing under an ultra-high pressure in a warm isostatic apparatus,
A method for producing a wood powder molded product, comprising:
請求項記載の木粉成型物の製造方法において、予備成型物を温間静水圧法装置により等方加圧で本成型する際の超高圧条件が100〜500MPaであることを特徴とする木粉成型物の製造方法。2. The method of manufacturing a wood flour molded product according to claim 1, wherein the ultrahigh pressure condition when the preform is fully molded by isotropic pressurization with a warm hydrostatic pressure apparatus is 100 to 500 MPa. Manufacturing method of powder molding. 請求項1または2記載の木粉成型物の製造方法において、予備成型物を温間静水圧法装置により等方加圧で本成型する際の温度条件が150℃以下であることを特徴とする木粉成型物の製造方法。The method for producing a wood flour molded product according to claim 1 or 2 , characterized in that the temperature condition when the preform is formed by isostatic pressing with a warm isostatic press is 150 ° C or less. A method for producing wood powder moldings.
JP2003133972A 2003-05-13 2003-05-13 Method for producing molded wood powder using air-dried wood flour Expired - Lifetime JP3823153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133972A JP3823153B2 (en) 2003-05-13 2003-05-13 Method for producing molded wood powder using air-dried wood flour

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133972A JP3823153B2 (en) 2003-05-13 2003-05-13 Method for producing molded wood powder using air-dried wood flour

Publications (2)

Publication Number Publication Date
JP2004338097A JP2004338097A (en) 2004-12-02
JP3823153B2 true JP3823153B2 (en) 2006-09-20

Family

ID=33524645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133972A Expired - Lifetime JP3823153B2 (en) 2003-05-13 2003-05-13 Method for producing molded wood powder using air-dried wood flour

Country Status (1)

Country Link
JP (1) JP3823153B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6785165B2 (en) 2017-01-27 2020-11-18 株式会社クレハ Manufacturing method of molded product
KR102500571B1 (en) * 2022-07-08 2023-02-20 윤성필 Method of manufacture for safety finishing materials

Also Published As

Publication number Publication date
JP2004338097A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
Squeo et al. Shape memory epoxy foams by solid-state foaming
Quadrini et al. Solid-state foaming of nano–clay-filled thermoset foams with shape memory properties
JPS61501695A (en) Improved polyethylene molding composition and method for making the same
Zare et al. Microstructural modifications of polyethylene glycol powder binder in the processing of sintered alpha alumina under different conditions of preparation
JP3823153B2 (en) Method for producing molded wood powder using air-dried wood flour
Negrov et al. Manufacture of slip bearings from PTFE-based composite
Carneim et al. Response of granular powders to uniaxial loading and unloading
Zlobin et al. Cyclic impact compaction of ultra high molecular weight polyethylene powder
JP2002326871A (en) Carbonized foam and its manufacturing method
Beverte Deformation of polypropylene foam Neopolen® P in compression
JP5629863B2 (en) Heat-pressed wood and method for producing the same
Ozkul et al. The effect of preloading on the mechanical properties of polymeric foams
Giménez et al. Influence of the green density on the dewaxing behaviour of uniaxially pressed powder compacts
JPS6371321A (en) Solid granular polymer capable of being fluidized
Khan et al. Improvement of a high velocity compaction technique for iron powder
Khan et al. Analysis of density and mechanical properties of iron powder with upper relaxation assist through high velocity compaction
CN110926982B (en) Method for approximately obtaining metal elastic-plastic parameters based on Vickers indenter indentation method
Wheatley et al. The fatigue strength of sintered iron compacts
JP5327790B2 (en) Fluid molding of wood using solvents.
Aizawa Analysis of restitution coefficient and hardness of CO2-assisted polymer compression products
Sinevich et al. Formation of various types of intergranular bond during the compaction of ultra-high-molecular-weight polyethylene reactor powders
Fu et al. Effect of cyclic pressure consolidation on the uniformity of metal matrix composites
Carlone et al. Cold compaction of ceramic powder: Computational analysis of the effect of pressing method and die shape
Carlone et al. Computational modeling of the cold compaction of ceramic powders
Waziri et al. AN EVALUATION ON THE EFFECT OF NATURAL FIBRES ON THE MECHANICAL PROPERTIES OF KENAF-COIR HYBRID COMPOSITE

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

R150 Certificate of patent or registration of utility model

Ref document number: 3823153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term