JP2004335977A - Electromagnetic shield member and shield device - Google Patents

Electromagnetic shield member and shield device Download PDF

Info

Publication number
JP2004335977A
JP2004335977A JP2003133505A JP2003133505A JP2004335977A JP 2004335977 A JP2004335977 A JP 2004335977A JP 2003133505 A JP2003133505 A JP 2003133505A JP 2003133505 A JP2003133505 A JP 2003133505A JP 2004335977 A JP2004335977 A JP 2004335977A
Authority
JP
Japan
Prior art keywords
opening
electromagnetic shielding
elastic core
conductive
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003133505A
Other languages
Japanese (ja)
Inventor
Kazuaki Tsuji
和明 辻
Akira Muramatsu
晃 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Original Assignee
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Valqua Industries Ltd, Nihon Valqua Kogyo KK filed Critical Nippon Valqua Industries Ltd
Priority to JP2003133505A priority Critical patent/JP2004335977A/en
Publication of JP2004335977A publication Critical patent/JP2004335977A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow an electromagnetic shield member and a shield device to keep good performance, which is excellent in an electromagnetic shield function without damaging a hermetic sealing function at a joint, in a long term. <P>SOLUTION: The electromagnetic shield member 20, which is mounted in a recess channel 13 located in one member 12 and abuts against the other member 14 at a position where a pair of members 12, 14 detouchably face each other to perform the electromagnetic function, is made up of a conductive material, and is equipped with a conductive outer member 50, which has a pair of opening/closing pieces 51, 51 whose one ends 56 are joined and the other ends face openably/closably at a space each other in a sectional profile, and an elastic core member 40, which is sandwiched between the opening/closing pieces 51, 51 of the conductive outer member 50 and is easily elastically-deformed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電磁シールド材およびシールド装置に関し、詳しくは、プラズマ処理装置のように電磁的な遮蔽性が要求される個所で用いられる電磁シールド材と、このような電磁シールド材を利用するシールド装置とを対象にしている。
【0002】
【従来の技術】
半導体製造技術や薄膜形成技術などの技術分野において、エッチング処理、スパッタリング処理、CVD処理などを行う処理装置では、処理室内で強い電界が生じたり電磁波が発生したりすることがある。例えば、プラズマ処理装置では、真空状態の処理室内に供給された処理ガスに強い電界を印加してプラズマを発生させ、このプラズマ流によって被処理物に各種の処理を施す。
このような処理装置の処理室は、通常、容器状をなす容器本体の開口を蓋で塞いで密封状態にしている。必要に応じて蓋を外せば、処理室の内部を点検したりクリーニングしたりすることができる。この蓋と容器本体との対面個所は、外部の空気が侵入したり内部のプラズマガスが漏れたりしないように、Oリングなどで気密封止される。また、処理に伴って発生する電磁波が外部に漏れないように、容器本体と蓋体とを電気的に導通させて、処理室を外部環境に対して電磁的に遮蔽しておく。
【0003】
特許文献1には、真空容器の容器本体と蓋体との接合個所に、気密封止機能を果たすOリングを配置するとともに、Oリングよりも外周側に、傾斜コイルばねからなる電磁シールド部材を配置する技術が提案されている。コイル材が傾斜して巻回されている傾斜コイルばねは、変形が容易であるため、Oリングによる気密封止の効果を損なうことが少ないとされている。特許文献1には、従来技術の説明として、筒状メッシュ導体の内部にゴムなどからなる紐状弾性体が挿入された構造の電磁シールド部材も記載されている。
【0004】
【特許文献1】
特開2002−164685号公報
【0005】
【発明が解決しようとする課題】
前記した従来技術では、電磁遮蔽機能が不十分であるとともに耐久性に劣り、気密封止機能も低下するという問題がある。
特許文献1の技術では、傾斜コイルばねと両側の部材との接触は、螺旋状をなすコイル線材の頂点のみで生じる。断続的な点接触に過ぎないので、両側の部材との電気的接触が不十分になり易く、接触抵抗が大きく電気的導通が良くないため、電磁遮蔽の効果が十分に達成できないことがある。
断続的な点接触のみで十分な電気的導通あるいは電磁遮蔽機能を果たすには、傾斜コイルばねの弾力的反発力を強くして、両側の部材との接触圧力を高めておかなければならない。ところが、そうすると、処理室内の定期的なクリーニング作業などで蓋体の開け閉めを繰り返したときに、傾斜コイルばねと点接触する両側の部材が、傾斜コイルばねと衝突したり擦られたりして削られ、微細な磨耗粉が発生し、この微細粉(パーティクル)が、高度な清浄環境が要求される処理室内を汚染してしまうという問題が発生する。このようなパーティクルは、半導体製品の品質性能を損ない、生産歩留まりを低下させる。パーティクルを除去する作業に手間と時間がかかり、処理作業を開始するのが遅れて、作業能率を大きく損なう。
【0006】
傾斜コイルばねの材料は、バネ鋼材など比較的に硬い材料であるのに対し、容器本体や蓋体の材料は、アルミニウムなど比較的に柔らかい材料であるため、前記した衝突や摩擦接触で、柔らかい容器本体や蓋体の材料が削られ易い。電気的導通性を高めるために傾斜コイルばねの弾力的反発力を強めるほど、上記問題が顕著になる。
しかも、傾斜コイルばねは、通常の円筒コイルばねよりは変形し易くできたとしても、ゴム材料などに比べればかなり硬いので、電磁シールド部材と別に並設されたOリングの気密封止機能が損なわれるという問題も発生する。電磁シールド部材が容易に変形できないと、並設されたOリングに加わる圧縮力が弱くなり変形も不十分になり、変形に伴う弾性反発力も弱くなって、気密封止機能が低下してしまうのである。
【0007】
特許文献1に従来技術として記載された、筒状メッシュ導体とゴム製紐状弾性体との組み合わせ構造では、コイルばねよりも筒状メッシュ導体のほうが変形は容易であるから、Oリングの気密封止機能を損ない難いという利点はある。しかし、特許文献1にも記載されているように、処理室の内部環境に晒される紐状弾性体が経時的に劣化して弾力性を失い、筒状メッシュ導体を両側の部材に押し付ける力が弱くなり、電気的導通性が低下して、目的とする電磁遮蔽の機能が損なわれる。
さらに、特許文献1の技術では、気密防止機能を果たすOリングよりも外周側に電磁シールド部材を配置しているため、処理室内で発生するプラズマガスなどが、Oリングを構成するゴム材料に接触して、ゴム材料の迅速な劣化を招き、短期間でOリングを交換しなければならないという問題もある。
【0008】
本発明の課題は、電磁遮蔽機能に優れているとともに、接合個所の気密封止機能を損なうことがなく、長期間にわたって良好な性能を持続できる電磁シールド材を提供することである。
【0009】
【課題を解決するための手段】
本発明にかかる電磁シールド材は、一対の部材が接離可能に対面する個所で、一方の部材に設けられた凹溝に装着され他方の部材と当接して電磁遮蔽機能を果たす電磁シールド材であって、導電性材料からなり、断面形状において一端側が連結され他端側は間隔をあけて開閉可能に対面する一対の開閉片を有する導電外被材と、前記導電外被材の開閉片間に挟み込まれ、弾力変形容易な弾性芯材と
を備える。
〔一対の部材〕
電磁シールド材が使用される、一対の部材が接離可能に対面する個所とは、容器の本体と蓋との合わせ面、バルブ構造の弁体と弁座との当接面、各種処理室の開口と開閉蓋との当接面など、一対の部材同士を、互いに当接させて封止したり、互いに離して開放したりする接離動作を行う機械装置の構造部分である。
【0010】
特に、部材同士を当接させて閉じた状態で、部材同士を電気的に導通させ、対面個所を通じて電磁波が漏洩するのを防ぐ電磁遮蔽機能を必要とされる構造部分である。
具体的には、集積回路素子などの半導体装置を製造する半導体製造装置で、半導体ウエハに各種の処理を施す処理室を構成する容器本体と蓋体との対面個所が挙げられる。
半導体製造装置には、プラズマ処理装置、イオン処理装置、CVD装置、PVD装置、ドライエッチング装置などがあり、複数の処理機能を兼ね備えた装置もある。処理室内に高圧電界を発生させたり、電磁波が発生する可能性があったりする処理装置に適用される。処理室内に、プラズマガスや電離イオン、腐食性ガスなどが供給されたり内部で発生させたりする装置にも適用される。
【0011】
半導体製造装置に被処理物である半導体ウエハが出入りする開口の開閉バルブ部分、点検口や観察口の取付部分なども、電磁シールド材が装着される個所となる。
半導体製造装置のほかにも、各種の電子素子や精密部品などを製造したり各種の処理を施したりする共通する構造を備えた処理装置に適用される。
〔電磁シールド材の装着構造〕
電磁シールド材の装着個所では、一方の部材に凹溝が設けられる。凹溝は、通常、矩形状をなし、電磁シールド材の幅および高さに対応する寸法を有している。凹溝の内側壁は傾斜していたり曲面であったりすることもある。凹溝の底面は平坦であったり傾斜していたり、段差や凹凸があったりすることもある。
【0012】
プラズマ処理装置の処理室やバルブ部分の場合、開口部分を囲む環状の凹溝が設けられる。環形状は、開口部分の形状によって異なるが、矩形などの多角形のほか、円形、長円形、楕円形などの曲線部分を含む形状であってもよい。
電磁シールド材は、凹溝に収容された状態で、一部が凹溝の上縁よりも上方に突き出す。この突き出し量が締め代になる。
凹溝を有しない他方の部材のうち、電磁シールド材と対面して当接する個所は、通常、平坦である。浅い溝や凹凸、傾斜を有する場合もある。
一対の部材のうち、少なくとも電磁シールド材と当接する個所は、導電性材料で構成されていて、電磁エネルギーが通過できるようにしておく。具体的には、鋼材などの導電金属材料で構成されていることが望ましい。絶縁性材料の表面に導電性のコーティングを施しておいたり、絶縁性材料に導電性材料を配合して導電性を付与しておいたりすることができる。接地線を接続しておいたり、接地処理を施しておいたりすることもできる。
【0013】
電磁シールド材は、凹溝の全長にわたって装着することができる。環状の凹溝には環状の電磁シールド材を装着することができる。但し、必要とされる電磁遮蔽機能が達成されれば、凹溝の一部のみに電磁シールド材が装着されているだけの場合もある。環状の凹溝に対して、断続的に複数個所に電磁シールド材が装着される場合もある。
〔導電外被材〕
導電性材料からなり、電磁遮蔽機能を果たす。また、弾性芯材を保護する機能も果たす。
【0014】
導電性材料としては、プラズマガスや腐食性ガスに侵食され難い材料が好ましい。弾力的な変形性に優れる材料が好ましい。凹溝を有する部材および相手側部材に焼き付いたり固着してしまったりし難い材料が好ましい。機械的強度や摩擦耐久性に優れたものが好ましい。具体的な材料として、SUS304、SUS316、SUS316Lなどのステンレス鋼が使用できる。そのほか、チタン合金、アルミ合金、銅合金、ハステロイ合金、インコネル合金も使用できる。導電性材料の表面に、コーティングなどの表面処理を施しておくこともできる。
導電外被材の厚みは、弾性芯材の弾性反発力によって変形し易くするには厚みが薄いほうがよい。あまり薄過ぎると溶接による接合連結を行ったときに歪みが発生するなどの不具合が生じ易い。好ましい厚みは、導電外被材の材質によっても異なるが、通常、0.05〜0.20mmである。
【0015】
〔開閉片〕
導電外被材は、一対の開閉片で構成される。一対の開閉片は、断面形状において一端側が連結され他端側は間隔をあけて開閉可能に対面する。開閉可能とは、開閉片の対面間隔が広がったり狭まったりできることを意味する。
開閉片には、弾力的に開閉する機能はそれほど必要とされない。開閉片の弾力的開閉動作は、主に弾性芯材が果たすからである。開閉片は、比較的に少ない力でも十分に撓み変形できる特性を有していることが望ましい。
一対の開閉片は、概略薄板状でV字形あるいはU字形、コ字形などをなすことで変形性を高めることができる。一対の開閉片の間に弾性芯材が収容される。一対の開閉片は、1枚の板材を屈曲形成したものであってもよいし、2枚の板材を一端で接合したものであってもよい。2枚の板材を接合したもののほうが、少ない力でもスムーズに開閉動作ができ易い。一対の開閉片は、通常、互いに対称な形状をなしているが、部分的に形状が異なるものを組み合わせることもできる。
【0016】
開閉片の形状として、弧状部と延長部と連結部とを有するものが使用できる。
<弧状部>
弧状部は、弾性芯材および開閉片の両側に存在する部材と滑らかに当接して、弾性芯材と開閉片との間、および、開閉片とその両側の部材との間に、局部的に過大な応力が発生することを防止できる。開閉片が両側の部材を擦って削り取るようなことが起こり難い。開閉片とその両側部材との間における電気的接触も良好にできる。
弧状部としては、弾性芯材との当接個所において弾性芯材の曲率半径よりも大きな曲率R1の弧状を有するものが好ましい。断面円形の弾性芯材の場合、弾性芯材の直径D1の1/2が弾性芯材の曲率半径である。弧状部の曲率半径R1を、弾性芯材の曲率半径D1の70〜100%に設定できる。弧状部の曲率半径R1が小さ過ぎると、導電外被材と弾性芯材とが擦れたときに、弾性芯材が削られてパーティクルが発生し易くなる。弧状部の曲率半径R1が十分に大きければ、導電外被材が、電磁シールド材を装着した部材の凹溝および相手側部材の面に当接するときに、当接領域の外縁で当接する両方の面が徐々に近づいて当接して中心側へと徐々に当接圧力が増えるような状態になる。その結果、導電外被材が当接する相手の部材を傷付けたり削り取ったりすることが有効に防止できる。弧状部の曲率半径R1が大き過ぎると、導電外被材の寸法が大きくなり過ぎる。
【0017】
弧状部は、弾性芯材の幅方向の全体を覆うことが望ましい。特に、弾性芯材が収容された状態で、弧状部のうち連結部と反体側で開閉片の開口側になる端縁を、弾性芯材の側端よりも外側まで延ばしておくことが望ましい。
<延長部>
延長部は、弧状部の一端につづき相手側の開閉片の延長部と当接して平行に延びる。一対の開閉片の延長部同士が1本の直線をなすように配置される。延長部が存在することで、一対の開閉片の開閉動作がスムーズに行え、開閉片を閉じる方向に力が加わったときに、局部的に過大な応力を生じることなくスムーズに閉じる方向の変形ができる。連結部のみに過大な変形応力が発生することを防止できる。延長部の長さL1は、長いほうが開閉片の開閉動作が良好に行え、連結部の応力も低減できるが、導電外被材および電磁シールド材の全幅が増える。適切な長さL1は、用途や要求性能によっても異なるが、導電外被材の断面における全幅L0の20〜40%に設定できる。
【0018】
延長部と弧状部との間が、滑らかな曲線でつながっていると、延長部から弧状部の変形がスムーズに行え局部的に大きな応力が発生し難い。延長部と弧状部とをつなぐ部分の曲率半径R2を、前記した弧状部の曲率半径R1の70〜80%に設定できる。
<連結部>
連結部は、延長部の一端で相手側の開閉片と連結される。連結手段としては、溶接が採用できる。溶接法としては、アーク溶接やTig溶接などが適用できる。これらの溶接法は、連結部における開閉片間の電気的導通が良好であり、延長部側の変形も容易になり。好ましい連結手段である。半導体デバイス製造装置に用いる電磁シール材としては、不活性ガスを用いたTig溶接が好ましい。その他、開閉片の材質に合わせて、通常の材料における接合手段の中から、適切な接合手段を採用することができる。
【0019】
<対面間隔>
導電外被材における一対の開閉片の対面間隔は、弾性芯材の寸法に合わせて設定すればよい。弾性芯材が収容された状態で、弾性芯材に圧縮方向の力が加わる状態であってもよいし、導電外被材の内側で弾性芯材が自由に移動できる状態であってもよい。軽い圧縮力が加わるほうが弾性芯材の位置決めがし易い。
弧状部の先端同士の間隔Gが広いほど、弾性芯材を導電外被材に押し込む作業が行い易い。間隔Gが広過ぎると、導電外被材の内側に収容された弾性芯材が、取扱中や使用中などに開閉片の間からはみ出る心配がある。具体的には、間隔Gを弾性芯材の直径D1に対して50〜80%の長さに設定できる。
【0020】
〔弾性芯材〕
導電外被材の開閉片間に挟み込まれ、弾力変形容易である。電磁シールド材の長さ方向につづく紐状をなす。
基本的には、通常のOリングと同様の材料および構造が採用できる。
弾性芯材の材料は、装着個所の環境に耐えて良好な弾性反発力を発揮できる材料が好ましい。プラズマガスが存在する環境では、耐プラズマ性を高い材料が好ましい。使用環境によって、耐熱性や耐腐食性、耐光性なども必要とされる。弾性芯材は、導電外被材で覆われているので、直接にプラズマガスなどに晒されることは少ないが、導電外被材を超えたり隙間を通過してきたりするプラズマガスなどに耐えるためには、前記したような特性を備えていることが望ましい。
【0021】
具体的な材料として、フッ素ゴム、シリコンゴムが挙げられる。特に、完全フッ素化されたパーフルオロフッ素ゴムや、半導体製造装置用として知られる耐プラズマ性を向上させたフッ素ゴムからなるものが好ましい。例えば、特開平11−172027号に開示されている、オルガノシロキサン系モノマーやフッ素系モノマーで表面処理されたフッ素ゴムOリングが使用できる。
弾性芯材の断面形状は、通常のOリングと同じ円形が採用できる。円形が少し変形した楕円形や長円形、多角形の角を丸めた形状なども採用できる。
電磁シールド材の組み立ては、導電外被材の開閉片を弾力的に変形させて開き、その間に弾性芯材を挿入すればよい。予め開いた状態にした開閉片の間に弾性芯材を配置したあと、開閉片を両側から挟み付けて、その間隔を狭めるように加工することもできる。電磁シールド材の組み立て状態では、開閉片の先端側の間隔Gが弾性芯材の直径D1よりも狭くなって、弾性芯材が導電外被材から脱落しないようにしておくことが好ましい。
【0022】
〔シールド装置〕
電磁シールド材は、基本的に、電磁遮蔽機能のみを果たし、気密封止機能はそれほど高くはない。そこで、気密封止機能についても十分な性能を要求される場合には、電磁シールド材による電磁遮蔽機能に気密封止機能を付け加えたシールド装置が構成できる。
シールド装置は、電磁シールド材を単独で使用する場合と同様に、一対の部材同士の接離自在な対面個所に配置される。
対面個所には、第1の凹溝および第2の凹溝が設けられる。
【0023】
何れか一方の部材に設けられる第1の凹溝には、気密シールド材が装着される。気密シールド材は、他方の部材と当接して第1凹溝の内側と外側とを気密封止する。
第2の凹溝は、第1凹溝の外側または内側で、何れか一方の部材に設けられる。第2凹溝には、前記した電磁シールド材が装着される。電磁シールド材は、他方の部材と当接して、電磁シールド材の両側の部材を電気的に導通させ、第2凹溝の内側空間と外側空間とを電磁的に遮断する。
電磁シールド材と気密シールド材との配置は、プラズマ流や電磁波、腐食性ガスなどと先に接触する側に、電磁シールド材を配置しておくことが望ましい。例えば、プラズマ処理装置の処理室と蓋体との対面個所に設ける場合は、処理室の内部側に近いほうに電磁シールド材を配置し、処理室の外側に近い側に気密シールド材を配置する。このようにすれば、電磁シールド材の導電外被材が、プラズマや腐食性ガスの通過を阻止して、気密シールド材の劣化や損傷を効果的に防ぐことができる。
【0024】
その結果、気密シールド材による気密封止と、電磁シールド材による電磁遮蔽との両方の機能を効果的に組み合わせて、何れの機能をも良好に発揮させることができる。
【0025】
【発明の実施の形態】
〔プラズマ処理装置〕
図1は、電磁シールド材を用いたシールド構造を備えるプラズマ処理装置10の概略構造を示している。
プラズマ処理装置10は、容器状の処理室を構成する容器本体12と、容器本体12の上面開口を塞ぐ蓋板14とを備える。容器本体12および蓋体14にはそれぞれ電極16、18が配置されている。電極16、18にはそれぞれ、電源につながる配線17、19が接続されている。なお、容器本体12には接地線11が接続されている。電極16、18に高周波電圧などを印加することができる。図示しないが、容器本体12には、真空排気管や処理ガス供給管なども備えている。
【0026】
下側電極16に、半導体ウエハなどの被処理物Wを配置して、電極16、18に電圧を印加することで、容器本体12内でプラズマを発生させ、被処理物Wに、プラズマエッチング、プラズマCVDなどのプラズマ処理を施す。
このようなプラズマ処理装置10では、容器本体12と蓋体14との接合個所に、電磁シールド材20および気密封止材30によるシールド構造が設けられる。
気密封止材30は、容器本体12内の真空状態が、外部からの空気の侵入によって損なわれることを防ぎ、容器本体12内の処理ガスやプラズマガスが容器本体12の外に漏れることを防止する。
【0027】
電磁シールド材20は、容器本体12内で発生する電磁波あるいは強電界が、容器本体12の外に漏れることを防止する。電極16、18に電圧を印加して処理を行うと、接地線11が接続されていない蓋体14に電荷が溜まった状態(チャージアップ)になり、蓋体14と容器本体12との間にスパークが発生することがあるが、電磁シールド材20は、蓋体14に溜まった電荷を、容器本体12から接地線11へと逃がすことで、上記スパークの発生を防止する。
容器本体12の開口と蓋体14との接合個所は、容器本体12の外周に設けられたフランジ部分に沿って環状に存在する。電磁シールド材20および気密封止材30も、容器本体12の外周に沿って環状に配置される。
【0028】
〔電磁シールド材の構造〕
図2は、電磁シールド材20の断面構造を示す。
電磁シールド材20は、導電外被材50と弾性芯材40とで構成されている。
弾性芯材40は、全体が紐状で、断面形状が直径D1の円形をなし、フッ素ゴムなどの耐プラズマ性を有するとともに弾力的な反発性に優れた弾性材料で形成されている。
導電外被材50は、SUS304等のステンレス鋼薄板で形成され、互いに対称形状をなす上下一対の開閉片51、51で構成されている。開閉片51、51が、弾性芯材40を上下から覆うように配置される。
【0029】
開閉片51,51は、弧状部52、延長部54および連結部56を有する。
弧状部52は、弾性芯材40の上下に配置され、円弧状をなしている。弧状部52の曲率半径R1は、弾性芯材40の曲率半径(直径D1の1/2)よりも少し大きく設定されている。弧状部52と弾性芯材40とは、弾性芯材40の上下の直径方向端部あるいはその近くで接触している。弾性芯材40の軸方向に沿って、上下で帯状に接触領域が連続することになる。
弧状部52の一端は、互いの間に間隔Gをあけて対向している。この間隔Gは、弾性芯材40の直径D1よりも少し狭くなっている。上下の開閉片51、51に挟まれた状態の弾性芯材40が、間隔Gから外に抜け出し難くなっている。
【0030】
弧状部52の他端は、延長部54につながる。延長部54は、上下の開閉片51、51の延長部54が、長さL1の間、互いに当接して平行に延びている。延長部54同士は接合されていないので、独立して変形可能である。延長部54と弧状部52との連結部分は曲率半径R2の曲線で滑らかにつながっている。
延長部54の端部は、上下の延長部54、54が溶接で一体接合された連結部56になっている。連結部56は、延長部54,54よりも少し膨れた形状になっている。
連結部56で連結された上下の開閉片51、51は、材料が有する弾力的変形性によって、連結部56を基点にして上下に弾力的に開閉可能である。開閉片51、51が開けば、弧状部52、52の間隔Gが広がって、弾性芯材40を出し入れし易くなる。開閉片51、51が開くときには、延長部54、54は平行で当接している状態から、弧状部52、52側の端部が離れて互いに逆方向に傾斜した状態になる。開閉片51、51を開く力が無くなれば、開閉片51、51は弾力的に閉じる。弧状部52、52が弾性芯材40を上下から挟み付けて固定する。さらに、開閉片51、51を閉じる方向に力が加わった場合は、延長部54、54は互いに当接した状態で、弧状部51、51の側が変形をすることになる。弧状部51、51から延長部54、54で変形力が吸収され、連結部56のほうに大きな変形力が加わることはない。
【0031】
〔電磁シールド材の使用〕
<装着状態>
図3(a)は、電磁シールド材20を、プラズマ処理装置10の容器本体12に装着した状態を表す。気密封止材30も装着されて、シールド構造を構成している。
容器本体12の開口上端面には全周にわたって、内外に隣接する2本の環状凹溝13、15が形成されている。容器本体12の内部に近い内側の環状凹溝13は、断面形状が、深さよりも幅が広い扁平な矩形状をなし、電磁シールド材20が装着される。容器本体12の外部に近い外側の環状凹溝15は、断面形状が、環状凹溝13よりも幅が狭い正方形に近い矩形状をなしている。
【0032】
環状凹溝13に装着された電磁シールド材20は、環状凹溝13の内幅よりも少し狭い幅L0を有し、導電外被材50の弧状部52、52が環状凹溝13の外周側、連結部56が内周側に配置される。電磁シールド材20の高さは、環状凹溝13の深さよりも少し大きくなっており、電磁シールド材20の一部が環状凹溝13の上方に突き出している。
環状凹溝15に装着されたOリング30は、環状凹溝15の内幅よりも幅が狭く、環状凹溝15の深さよりも高い。
容器本体12の開口上端面を塞ぐ蓋体14の下面は平坦である。
【0033】
<使用状態>
図3(b)に示すように、蓋体14を容器本体12に被せ、ボルト締結などの手段で圧接させて取付固定する。
蓋体14に押圧された電磁シールド材20は、導電被覆材50の開閉片51、51の上下幅が狭くなるように変形する。開閉片51、51の変形とともに、弾性芯材40は断面が円形から扁平に押し潰されるように変形する。弾力的に変形した弾性芯材40には反発力が生じて、開閉片51、51を環状凹溝13の底面および蓋体14の下面へと押し付ける。この押し付け力によって、蓋体14から導電外被材50を介して容器本体12へと、良好な電気的接続状態が構成され、高い電磁遮蔽機能が発揮される。
【0034】
容器本体12の環状凹溝13および蓋体14と導電外被材50との接触は、開閉片51の弧状部52の頂点で導電外被材50の長さ方向に連続する稜線に沿って生じる。実際には、接触個所で両側の材料が変形を生じるので、前記稜線を挟んで左右に一定幅を有する帯状の接触領域が構成される。特に、弧状部52は、その曲率半径が大きくなるようにスムーズに変形するので、弧状部52の稜線だけではなく、稜線の両側部分を含む充分な面積で、蓋体14および環状凹溝13と接触することができる。このように、大きな接触面積が得られるので、導電外被材50による容器本体12の環状凹溝13から蓋体14への電気的導通状態は良好である。接触面積が大きいことで、接触圧は比較的に小さくても、接触抵抗は十分に低減される。
【0035】
弧状部52と蓋体14および環状凹溝13との接触位置よりも内周側では、連結部56で連結された上下の開閉片51、51が、弾性芯材40を完全に覆っている。
図3(b)に白矢印および破線矢印で示すように、容器本体12に存在するプラズマガスや腐食性ガスなどが、蓋体14と容器本体12との隙間を通って、環状凹溝13の内部に侵入してきても、それ以上の侵入は導電外被材50で阻止される。導電外被材50を超えて開閉片51の内部側および外周側まで漏れ出すこが抑制される。弾性芯材40がプラズマガス等に直接に晒されて劣化することが防がれる。Oリング30のほうまで大量のプラズマガスや熱流、腐食性ガスなどが到達することも阻止される。
【0036】
Oリング30は、蓋体14と環状凹溝15の底面との間で押し潰されるように変形して扁平になる。Oリング30の弾性的反発力が、蓋体14および環状凹溝15の底面との間を強力に気密封止する。容器本体12内のガスが外部に漏れたり、容器本体12の真空度が損なわれたりすることがない。
なお、電磁シールド材20の変形に伴う弾性反発力は、基本的に弾性芯材40の弾性反発力で決まり、それほど過大にはならないので、Oリング30の弾性反発力による気密封止機能を損なうことはない。容器本体12の内部側から電磁シールド材20を超えて漏れ出るガスが多少あっても、Oリング30の位置で確実に封止することができる。逆に、外部環境から空気などが容器本体12に侵入しようとしても、Oリング30の位置で確実に阻止される。電磁シールド材20の部分には、それほど高度な封止機能を持たせる必要がない。電子シールド材20の弾性反発力は、電気的導通性を確保できる程度の大きさで十分であり、高度な気密封止性は必要とされない。
【0037】
処理装置10の内部点検や清掃などで、容器本体12から蓋体14を取り外したときには、Oリング30は、その弾性復元力で元の形状に復元する。電磁シールド材20も弾性芯材40が有する弾性復元力によって元の形状に復元する。したがって、蓋体14を再び容器本体12に取り付ければ、Oリング30による気密封止機能および電磁シールド材40による電磁遮蔽機能は、最初の取付時と同様に良好に発揮される。蓋体14の着脱を繰り返しても、電磁シールド材40による電磁遮蔽機能が低下することはない。
容器本体12に蓋体14を被せる際に、蓋体14の底面が電磁シールド材40の導電外皮材50に衝突するが、このとき、蓋体14の平坦な底面が、ゆるやかに湾曲した弧状部52に当接する。当接する両側の面が中心から周囲へと傾斜した状態で、当接領域が弧状部52の頂点から徐々に周囲に広がるので、弧状部52と衝突した蓋体14の底面に局部的に過大な応力が発生したり傷つけられたり擦られたり削り取られたりすることがない。有害なパーティクルの発生がない。勿論、環状凹溝13の底面と弧状部52との間でもスムーズに圧接されるので、環状凹溝13が損傷したりパーティクルを生じたりすることもない。
【0038】
従来の電磁シールド材を使用したプラズマ処理装置などでは、どうしてもパーティクルが発生するため、パーティクルの除去作業を行ってから、プラズマ処理装置の稼動を開始しなければならず、処理作業の再立ち上げまでに時間がかり、作業効率を低下させていたが、前記した実施形態の電磁シールド材40を使用すれば、このような問題が解消できる。
【0039】
【発明の効果】
本発明にかかる電磁シールド材は、導電外被材の開閉片が、その間に配置された弾性芯材によって弾力的に開閉でき、導電外被材が当接する両側の部材に、広い面積で隙間なく確実に接触して良好な電気的導通状態を構成できる結果、優れた電磁遮蔽機能を発揮することができる。
導電外被材と両側の部材との接触は、断続的な点接触や局部的な接触ではなく十分な面積での面接触になるので、両側の部材間を開いたり閉じたりする動作を繰り返しても、導電外被材が両側の部材を擦って削ったり傷付けたり微細なパーティクルを発生させたりすることが少ない。広い面積での電気的接触が得られることで、接触圧が低くても接触抵抗は小さく良好な導通状態が達成でき、接触圧が低いことで、導電外被材が両側の部材を削ったり傷付けたりすることが余計に少なくなる。
【0040】
弾性芯材は、導電外被材で覆われているので、弾性芯材を劣化させるプラズマガスなどとの直接の接触が阻止され、弾性芯材の経時劣化が防止できる。その結果、弾性芯材の弾性反発力による導電外被材と両側の部材との適切な接触状態および良好な電気的導通状態を、長期にわたって維持することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を表す、電磁シールド材を用いたプラズマ処理装置の断面構造図
【図2】電磁シールド材の断面図
【図3】電磁シールド材の装着状態(a)と使用状態(b)とを示す断面図
【符号の説明】
10 プラズマ処理装置
12 処理室
13 凹溝
14 蓋体
15 凹溝
20 電磁シールド材
30 気密封止材
40 弾性芯材
50 導電外被材
51 開閉片
52 弧状部
54 延長部
56 連結部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic shielding material and a shielding device, and more particularly, to an electromagnetic shielding material used in a place where electromagnetic shielding is required, such as a plasma processing device, and a shielding device using such an electromagnetic shielding material And are targeted.
[0002]
[Prior art]
2. Description of the Related Art In a technical field such as a semiconductor manufacturing technique or a thin film forming technique, in a processing apparatus which performs an etching process, a sputtering process, a CVD process, or the like, a strong electric field or an electromagnetic wave may be generated in a processing chamber. For example, in a plasma processing apparatus, a strong electric field is applied to a processing gas supplied into a processing chamber in a vacuum state to generate plasma, and various processing is performed on an object to be processed by the plasma flow.
Usually, the processing chamber of such a processing apparatus is closed by closing an opening of a container body having a container shape with a lid. By removing the lid as needed, the inside of the processing chamber can be inspected and cleaned. The facing portion between the lid and the container body is hermetically sealed with an O-ring or the like so that external air does not enter or internal plasma gas leaks. Further, the container body and the lid are electrically connected to each other so that the processing chamber is electromagnetically shielded from the external environment so that electromagnetic waves generated during the processing do not leak to the outside.
[0003]
In Patent Literature 1, an O-ring that performs a hermetic sealing function is disposed at a joint between a container body and a lid of a vacuum container, and an electromagnetic shield member made of a tilted coil spring is provided on the outer peripheral side of the O-ring. An arrangement technique has been proposed. It is said that an inclined coil spring in which a coil material is wound obliquely is easily deformed, so that the effect of hermetic sealing by an O-ring is hardly impaired. Patent Literature 1 also describes, as a description of the related art, an electromagnetic shield member having a structure in which a string-like elastic body made of rubber or the like is inserted inside a cylindrical mesh conductor.
[0004]
[Patent Document 1]
JP-A-2002-164885
[0005]
[Problems to be solved by the invention]
In the above-mentioned conventional technology, there is a problem that the electromagnetic shielding function is insufficient, the durability is poor, and the hermetic sealing function is deteriorated.
In the technique of Patent Document 1, the contact between the inclined coil spring and the members on both sides occurs only at the apex of the spiral coil wire. Since it is only intermittent point contact, electrical contact with the members on both sides is likely to be insufficient, and the contact resistance is large and electrical conduction is poor, so that the effect of electromagnetic shielding may not be sufficiently achieved.
In order to achieve a sufficient electrical conduction or electromagnetic shielding function only by intermittent point contact, it is necessary to increase the elastic repulsive force of the inclined coil spring to increase the contact pressure with the members on both sides. However, when the lid is repeatedly opened and closed for a periodical cleaning work in the processing chamber, the members on both sides that come into point contact with the inclined coil spring collide with or are rubbed with the inclined coil spring. As a result, fine abrasion powder is generated, and this fine powder (particles) contaminates a processing chamber requiring a high-grade clean environment. Such particles impair the quality performance of the semiconductor product and lower the production yield. The work of removing particles takes time and effort, delays the start of the processing work, and greatly impairs work efficiency.
[0006]
The material of the gradient coil spring is a relatively hard material such as a spring steel material, whereas the material of the container body and the lid is a relatively soft material such as aluminum. The material of the container body and the lid is easily shaved. The above problem becomes more pronounced as the elastic repulsion of the inclined coil spring is increased in order to enhance the electrical conductivity.
Moreover, even if the inclined coil spring can be easily deformed than a normal cylindrical coil spring, it is considerably harder than a rubber material or the like, so that the air-tight sealing function of the O-ring provided separately from the electromagnetic shield member is impaired. There is also the problem that If the electromagnetic shield member cannot be easily deformed, the compressive force applied to the parallel O-rings will be weakened and the deformation will be insufficient, and the elastic repulsive force accompanying the deformation will also be weakened, and the hermetic sealing function will be reduced. is there.
[0007]
In the combination structure of the tubular mesh conductor and the rubber string-like elastic body described in Patent Document 1 as a conventional technique, the tubular mesh conductor is easier to deform than the coil spring. There is an advantage that the stopping function is not easily damaged. However, as described in Patent Document 1, the string-like elastic body exposed to the internal environment of the processing chamber deteriorates with time and loses elasticity, and the force for pressing the tubular mesh conductor against the members on both sides is reduced. As a result, the electrical conductivity decreases, and the intended electromagnetic shielding function is impaired.
Further, in the technique of Patent Document 1, since the electromagnetic shield member is arranged on the outer peripheral side of the O-ring that functions to prevent airtightness, plasma gas or the like generated in the processing chamber comes into contact with the rubber material forming the O-ring. As a result, the rubber material is quickly deteriorated, and the O-ring must be replaced in a short period of time.
[0008]
An object of the present invention is to provide an electromagnetic shielding material which is excellent in an electromagnetic shielding function and which can maintain good performance for a long period of time without impairing a hermetic sealing function of a joining portion.
[0009]
[Means for Solving the Problems]
The electromagnetic shielding material according to the present invention is an electromagnetic shielding material which is mounted on a concave groove provided on one member and abuts on the other member to perform an electromagnetic shielding function at a place where a pair of members face each other so as to be able to come and go. A conductive covering material made of a conductive material, having a pair of opening and closing pieces facing one another in a sectional shape, one end of which is connected and the other end of which is openable and closable, between the opening and closing pieces of the conductive covering material; Between the elastic core material that is easily elastically deformed
Is provided.
[A pair of members]
The part where the electromagnetic shielding material is used and the pair of members face each other so that they can come and go is the mating surface of the container body and the lid, the contact surface between the valve body and the valve seat of the valve structure, and the various processing chambers. This is a structural part of a mechanical device that performs a contacting / separating operation in which a pair of members such as a contact surface between an opening and an opening / closing lid are brought into contact with each other to be sealed or separated from each other and opened.
[0010]
In particular, it is a structural part that requires an electromagnetic shielding function to prevent the electromagnetic wave from leaking through the facing portion while electrically connecting the members in a state where the members are brought into contact with each other and closed.
Specifically, in a semiconductor manufacturing apparatus for manufacturing a semiconductor device such as an integrated circuit element, a facing portion between a container body and a lid constituting a processing chamber for performing various processes on a semiconductor wafer may be mentioned.
Semiconductor manufacturing apparatuses include a plasma processing apparatus, an ion processing apparatus, a CVD apparatus, a PVD apparatus, a dry etching apparatus, and the like, and an apparatus having a plurality of processing functions. The present invention is applied to a processing apparatus which may generate a high-voltage electric field in a processing chamber or generate electromagnetic waves. The present invention is also applied to an apparatus in which plasma gas, ionized ions, corrosive gas, and the like are supplied into the processing chamber or are generated inside.
[0011]
The opening / closing valve portion of the opening through which the semiconductor wafer to be processed enters and exits the semiconductor manufacturing apparatus, the attachment portion of the inspection port and the observation port, and the like are also places where the electromagnetic shielding material is attached.
In addition to a semiconductor manufacturing apparatus, the present invention is applied to a processing apparatus having a common structure for manufacturing various electronic elements and precision parts and performing various processes.
[Electromagnetic shield mounting structure]
At the mounting position of the electromagnetic shielding material, a concave groove is provided on one of the members. The concave groove usually has a rectangular shape, and has dimensions corresponding to the width and height of the electromagnetic shielding material. The inner wall of the groove may be inclined or curved. The bottom surface of the groove may be flat or inclined, or may have steps or irregularities.
[0012]
In the case of the processing chamber or the valve portion of the plasma processing apparatus, an annular groove surrounding the opening is provided. The ring shape depends on the shape of the opening, but may be a shape including a curved portion such as a circle, an oval, and an ellipse, in addition to a polygon such as a rectangle.
A part of the electromagnetic shielding material protrudes above the upper edge of the groove when housed in the groove. This amount of protrusion serves as a margin.
A portion of the other member having no concave groove, which comes into contact with the electromagnetic shield material, is usually flat. It may have shallow grooves, irregularities, or slopes.
At least a portion of the pair of members that comes into contact with the electromagnetic shielding material is made of a conductive material so that electromagnetic energy can pass therethrough. Specifically, it is desirable to be made of a conductive metal material such as steel. A conductive coating can be applied to the surface of the insulating material, or a conductive material can be added to the insulating material to impart conductivity. A ground wire can be connected or grounding can be performed.
[0013]
The electromagnetic shielding material can be installed over the entire length of the groove. An annular electromagnetic shielding material can be attached to the annular groove. However, if the required electromagnetic shielding function is achieved, there is a case where the electromagnetic shielding material is merely attached to only a part of the concave groove. The electromagnetic shielding material may be intermittently attached to a plurality of locations in the annular groove.
(Conductive sheath material)
It is made of a conductive material and performs an electromagnetic shielding function. In addition, it also has a function of protecting the elastic core material.
[0014]
As the conductive material, a material which is hardly eroded by a plasma gas or a corrosive gas is preferable. A material having excellent elastic deformability is preferable. It is preferable to use a material that does not easily stick to or adhere to the member having the concave groove and the mating member. Those excellent in mechanical strength and friction durability are preferable. As a specific material, stainless steel such as SUS304, SUS316, and SUS316L can be used. In addition, titanium alloys, aluminum alloys, copper alloys, Hastelloy alloys, and Inconel alloys can also be used. The surface of the conductive material may be subjected to a surface treatment such as coating.
As for the thickness of the conductive covering material, the thinner the better, the easier it is to be deformed by the elastic repulsion of the elastic core material. If the thickness is too thin, problems such as distortion may easily occur when joining and joining by welding. The preferred thickness varies depending on the material of the conductive covering material, but is usually 0.05 to 0.20 mm.
[0015]
(Opening and closing piece)
The conductive covering material is composed of a pair of opening and closing pieces. One end of the pair of opening and closing pieces is connected in the cross-sectional shape, and the other end faces openably and closably at an interval. Opening / closing means that the facing distance between the opening / closing pieces can be increased or decreased.
The opening / closing piece does not require much elastic opening / closing function. This is because the elastic core material mainly performs the elastic opening / closing operation of the opening / closing piece. It is desirable that the opening / closing piece has a characteristic that it can sufficiently bend and deform even with a relatively small force.
The pair of opening / closing pieces can be formed in a generally thin plate shape, such as a V-shape, a U-shape, or a U-shape, so that the deformability can be enhanced. An elastic core material is accommodated between the pair of opening / closing pieces. The pair of opening / closing pieces may be formed by bending one plate material, or may be formed by joining two plate materials at one end. It is easier to smoothly open and close with less force by joining two plate members. The pair of opening / closing pieces usually have mutually symmetric shapes, but those having a partially different shape may be combined.
[0016]
As the shape of the opening / closing piece, one having an arc-shaped portion, an extended portion, and a connecting portion can be used.
<Arc part>
The arc-shaped portion smoothly abuts on the elastic core material and the members present on both sides of the opening / closing piece, and locally between the elastic core material and the opening / closing piece, and between the opening / closing piece and the members on both sides thereof. The generation of excessive stress can be prevented. It is unlikely that the opening / closing piece scrapes and scrapes the members on both sides. The electrical contact between the opening / closing piece and both side members can also be improved.
The arc-shaped portion preferably has an arc shape with a curvature R1 larger than the radius of curvature of the elastic core material at a contact point with the elastic core material. In the case of an elastic core having a circular cross section, 1/2 of the diameter D1 of the elastic core is the radius of curvature of the elastic core. The radius of curvature R1 of the arc portion can be set to 70 to 100% of the radius of curvature D1 of the elastic core material. If the radius of curvature R1 of the arc portion is too small, the elastic core material is shaved when the conductive outer cover material rubs against the elastic core material, and particles are easily generated. If the radius of curvature R1 of the arc-shaped portion is sufficiently large, when the conductive covering material comes into contact with the concave groove of the member to which the electromagnetic shielding material is attached and the surface of the mating member, both of the two members are brought into contact at the outer edge of the contact region. The surfaces gradually come into contact with each other, and the contact pressure gradually increases toward the center. As a result, it is possible to effectively prevent the member against which the conductive covering material comes into contact from being damaged or scraped off. If the radius of curvature R1 of the arc-shaped portion is too large, the size of the conductive covering material becomes too large.
[0017]
The arc-shaped portion desirably covers the entire elastic core material in the width direction. In particular, in the state where the elastic core material is housed, it is desirable to extend the edge of the arc-shaped portion, which is on the opening side of the opening / closing piece, on the side opposite to the connecting portion, to the outside of the side end of the elastic core material.
<Extension>
The extension portion extends in parallel with one end of the arc-shaped portion in contact with the extension portion of the opening / closing piece on the other side. The extended portions of the pair of opening and closing pieces are arranged so as to form one straight line. The presence of the extension allows the pair of opening and closing pieces to open and close smoothly, and when a force is applied in the direction to close the opening and closing pieces, deformation in the direction to close smoothly without generating excessive stress locally. it can. Excessive deformation stress can be prevented from being generated only in the connecting portion. The longer the length L1 of the extension portion, the better the opening / closing operation of the opening / closing piece can be performed and the stress of the connecting portion can be reduced, but the overall width of the conductive outer cover material and the electromagnetic shield material increases. The appropriate length L1 varies depending on the application and required performance, but can be set to 20 to 40% of the total width L0 in the cross section of the conductive jacket material.
[0018]
If the extension portion and the arc-shaped portion are connected by a smooth curve, the arc-shaped portion can be smoothly deformed from the extension portion and a large stress is hardly generated locally. The radius of curvature R2 of the portion connecting the extension and the arc can be set to 70 to 80% of the radius of curvature R1 of the arc.
<Connecting part>
The connection portion is connected to the opening / closing piece on the other side at one end of the extension portion. As the connecting means, welding can be adopted. As a welding method, arc welding, Tig welding, or the like can be applied. These welding methods provide good electrical continuity between the opening and closing pieces in the connection portion, and also facilitate deformation of the extension portion. It is a preferred connection means. As an electromagnetic sealing material used in a semiconductor device manufacturing apparatus, Tig welding using an inert gas is preferable. In addition, appropriate joining means can be adopted from joining means of ordinary materials in accordance with the material of the opening / closing piece.
[0019]
<Face spacing>
The facing distance between the pair of open / close pieces in the conductive covering material may be set in accordance with the size of the elastic core material. In the state where the elastic core material is housed, a force in the compression direction may be applied to the elastic core material, or the elastic core material may be freely movable inside the conductive covering material. The application of a light compressive force facilitates the positioning of the elastic core material.
The work of pushing the elastic core material into the conductive outer cover material is easier to perform as the gap G between the tips of the arc portions increases. If the interval G is too wide, the elastic core material accommodated inside the conductive jacket material may be protruded from between the open / close pieces during handling or use. Specifically, the interval G can be set to 50 to 80% of the length D1 of the elastic core material.
[0020]
(Elastic core material)
It is sandwiched between the opening and closing pieces of the conductive covering material, and is easily elastically deformed. It has a string shape following the length of the electromagnetic shielding material.
Basically, the same material and structure as those of a normal O-ring can be adopted.
The material of the elastic core material is preferably a material that can withstand the environment of the mounting location and exhibit good elastic repulsion. In an environment where a plasma gas exists, a material having high plasma resistance is preferable. Depending on the use environment, heat resistance, corrosion resistance, light resistance, and the like are required. Since the elastic core material is covered with the conductive jacket material, it is rarely directly exposed to plasma gas, etc., but in order to withstand plasma gas, etc. that exceeds the conductive jacket material or passes through gaps. It is desirable to have the above-mentioned characteristics.
[0021]
Specific materials include fluorine rubber and silicone rubber. In particular, it is preferable to use a perfluorinated fluororubber which is completely fluorinated or a fluororubber having improved plasma resistance which is known for semiconductor manufacturing equipment. For example, a fluorine rubber O-ring surface-treated with an organosiloxane-based monomer or a fluorine-based monomer disclosed in JP-A-11-172027 can be used.
As the cross-sectional shape of the elastic core material, the same circle as a normal O-ring can be adopted. An elliptical shape, an elliptical shape in which the circle is slightly deformed, and a shape in which the corners of a polygon are rounded can also be adopted.
To assemble the electromagnetic shield material, the opening and closing piece of the conductive outer cover material may be elastically deformed and opened, and an elastic core material may be inserted therebetween. After disposing the elastic core material between the open / closed pieces that have been opened in advance, the openable / closed pieces can be sandwiched from both sides to reduce the gap therebetween. In the assembled state of the electromagnetic shielding material, it is preferable that the gap G on the distal end side of the opening / closing piece is smaller than the diameter D1 of the elastic core material so that the elastic core material does not fall off the conductive outer material.
[0022]
[Shielding device]
The electromagnetic shielding material basically performs only the electromagnetic shielding function, and the hermetic sealing function is not so high. Therefore, when a sufficient performance is required also for the hermetic sealing function, a shield device in which the hermetic sealing function is added to the electromagnetic shielding function by the electromagnetic shielding material can be configured.
The shield device is disposed at a facing position where the pair of members can freely contact and separate from each other, as in the case where the electromagnetic shield material is used alone.
A first concave groove and a second concave groove are provided at the facing portion.
[0023]
An airtight shielding material is mounted in the first concave groove provided in any one of the members. The hermetic shield member is in contact with the other member to hermetically seal the inside and outside of the first groove.
The second groove is provided on one of the members outside or inside the first groove. The above-described electromagnetic shield material is mounted in the second concave groove. The electromagnetic shield material is in contact with the other member to electrically conduct the members on both sides of the electromagnetic shield material, and electromagnetically blocks the inner space and the outer space of the second groove.
Regarding the arrangement of the electromagnetic shielding material and the hermetic shielding material, it is desirable to arrange the electromagnetic shielding material on the side that comes into contact with the plasma flow, the electromagnetic wave, the corrosive gas or the like first. For example, in the case where the cover is provided at a position facing the processing chamber and the lid of the plasma processing apparatus, an electromagnetic shielding material is disposed closer to the inside of the processing chamber, and an airtight shielding material is disposed closer to the outside of the processing chamber. . With this configuration, the conductive covering material of the electromagnetic shielding material can prevent the passage of the plasma and the corrosive gas, and can effectively prevent the deterioration and damage of the airtight shielding material.
[0024]
As a result, both functions of the hermetic sealing by the hermetic shield material and the electromagnetic shielding by the electromagnetic shield material can be effectively combined, and both functions can be exhibited well.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
[Plasma processing equipment]
FIG. 1 shows a schematic structure of a plasma processing apparatus 10 having a shield structure using an electromagnetic shield material.
The plasma processing apparatus 10 includes a container body 12 that forms a container-like processing chamber, and a lid plate 14 that closes an upper surface opening of the container body 12. Electrodes 16 and 18 are arranged on the container body 12 and the lid 14, respectively. Wirings 17 and 19 connected to a power supply are connected to the electrodes 16 and 18, respectively. In addition, the ground wire 11 is connected to the container body 12. A high-frequency voltage or the like can be applied to the electrodes 16 and 18. Although not shown, the container body 12 is also provided with a vacuum exhaust pipe, a processing gas supply pipe, and the like.
[0026]
A workpiece W such as a semiconductor wafer is disposed on the lower electrode 16 and a voltage is applied to the electrodes 16 and 18 to generate plasma in the container body 12. Plasma processing such as plasma CVD is performed.
In such a plasma processing apparatus 10, a shielding structure including an electromagnetic shielding material 20 and an airtight sealing material 30 is provided at a joint between the container body 12 and the lid 14.
The hermetic sealing material 30 prevents the vacuum state in the container main body 12 from being damaged by the intrusion of air from the outside, and prevents the processing gas and plasma gas in the container main body 12 from leaking out of the container main body 12. I do.
[0027]
The electromagnetic shielding member 20 prevents an electromagnetic wave or a strong electric field generated in the container body 12 from leaking out of the container body 12. When a process is performed by applying a voltage to the electrodes 16 and 18, electric charges are accumulated in the lid 14 to which the ground line 11 is not connected (charge-up), and a gap is formed between the lid 14 and the container body 12. Although a spark may be generated, the electromagnetic shielding material 20 prevents the above-described spark from being generated by releasing the electric charge accumulated in the lid 14 from the container body 12 to the ground wire 11.
The joint between the opening of the container body 12 and the lid 14 is annularly formed along a flange portion provided on the outer periphery of the container body 12. The electromagnetic shield member 20 and the hermetic sealing member 30 are also arranged annularly along the outer periphery of the container body 12.
[0028]
[Structure of electromagnetic shielding material]
FIG. 2 shows a cross-sectional structure of the electromagnetic shielding member 20.
The electromagnetic shield member 20 includes a conductive outer cover member 50 and an elastic core member 40.
The elastic core member 40 has a string shape as a whole, has a circular cross section with a diameter D1, and is formed of an elastic material having plasma resistance and excellent elastic resilience, such as fluororubber.
The conductive covering material 50 is formed of a stainless steel thin plate such as SUS304, and is constituted by a pair of upper and lower opening and closing pieces 51, 51 symmetrical to each other. The opening / closing pieces 51, 51 are arranged so as to cover the elastic core member 40 from above and below.
[0029]
The opening / closing pieces 51 have an arc-shaped portion 52, an extension portion 54, and a connecting portion 56.
The arc-shaped portions 52 are arranged above and below the elastic core member 40 and have an arc shape. The radius of curvature R1 of the arc-shaped portion 52 is set to be slightly larger than the radius of curvature (1/2 of the diameter D1) of the elastic core material 40. The arc-shaped portion 52 and the elastic core material 40 are in contact at or near the upper and lower diametrical ends of the elastic core material 40. Along the axial direction of the elastic core material 40, the contact area is continuous in the form of a band at the top and bottom.
One ends of the arc-shaped portions 52 are opposed to each other with an interval G therebetween. This interval G is slightly smaller than the diameter D1 of the elastic core material 40. The elastic core member 40 sandwiched between the upper and lower opening / closing pieces 51, 51 does not easily come out of the gap G.
[0030]
The other end of the arc portion 52 is connected to the extension portion 54. The extension portion 54 extends in parallel with the upper and lower opening / closing pieces 51, 51 in contact with each other for a length L <b> 1. Since the extensions 54 are not joined, they can be deformed independently. The connecting portion between the extension portion 54 and the arc-shaped portion 52 is smoothly connected by a curve having a radius of curvature R2.
The end of the extension 54 is a connecting portion 56 in which the upper and lower extensions 54, 54 are integrally joined by welding. The connecting portion 56 has a shape slightly expanded from the extension portions 54, 54.
The upper and lower opening / closing pieces 51, 51 connected by the connecting portion 56 can be opened and closed elastically up and down with the connecting portion 56 as a base point due to the elastic deformability of the material. When the opening / closing pieces 51, 51 are opened, the gap G between the arc-shaped portions 52, 52 is widened, so that the elastic core member 40 can be easily taken in and out. When the opening / closing pieces 51, 51 are opened, the extended portions 54, 54 are in a state of being parallel and in contact with each other, and the ends of the arc-shaped portions 52, 52 are separated and inclined in opposite directions. When there is no longer any force to open the opening / closing pieces 51, 51, the opening / closing pieces 51, 51 close elastically. The arc-shaped portions 52, 52 sandwich and fix the elastic core material 40 from above and below. Further, when a force is applied in a direction to close the opening / closing pieces 51, 51, the arc portions 51, 51 are deformed in a state where the extension portions 54, 54 are in contact with each other. Deformation force is absorbed from the arc portions 51, 51 by the extension portions 54, 54, and no large deformation force is applied to the connecting portion 56.
[0031]
[Use of electromagnetic shielding material]
<Attached state>
FIG. 3A shows a state in which the electromagnetic shield member 20 is mounted on the container body 12 of the plasma processing apparatus 10. The hermetic sealing material 30 is also attached to form a shield structure.
Two annular concave grooves 13 and 15 that are adjacent to the inside and outside are formed over the entire periphery of the opening upper end surface of the container body 12. The inner annular groove 13 near the inside of the container body 12 has a flat rectangular shape having a cross-sectional shape wider than the depth, and the electromagnetic shielding material 20 is attached thereto. The outer annular groove 15 close to the outside of the container body 12 has a rectangular cross-sectional shape that is closer to a square with a smaller width than the annular groove 13.
[0032]
The electromagnetic shielding member 20 mounted in the annular groove 13 has a width L0 slightly smaller than the inner width of the annular groove 13, and the arc-shaped portions 52, 52 of the conductive jacket material 50 are located on the outer peripheral side of the annular groove 13. , The connecting portion 56 is disposed on the inner peripheral side. The height of the electromagnetic shield member 20 is slightly larger than the depth of the annular groove 13, and a part of the electromagnetic shield member 20 protrudes above the annular groove 13.
The O-ring 30 mounted on the annular groove 15 is narrower than the inner width of the annular groove 15 and higher than the depth of the annular groove 15.
The lower surface of the lid 14 that covers the upper end surface of the opening of the container body 12 is flat.
[0033]
<Use condition>
As shown in FIG. 3B, the lid body 14 is put on the container main body 12, and the lid body 14 is press-fitted by means such as bolting and fixed.
The electromagnetic shielding member 20 pressed by the lid 14 is deformed so that the vertical width of the opening / closing pieces 51 of the conductive coating material 50 is reduced. Along with the deformation of the opening / closing pieces 51, the elastic core material 40 is deformed so that the cross section is crushed from circular to flat. A repulsive force is generated in the elastically deformed elastic core member 40, and the opening / closing pieces 51, 51 are pressed against the bottom surface of the annular groove 13 and the bottom surface of the lid 14. With this pressing force, a good electrical connection state is formed from the lid 14 to the container main body 12 via the conductive covering material 50, and a high electromagnetic shielding function is exhibited.
[0034]
The contact between the annular groove 13 and the lid 14 of the container body 12 and the conductive covering material 50 occurs along a ridge line which is continuous in the length direction of the conductive covering material 50 at the vertex of the arc-shaped portion 52 of the opening / closing piece 51. . Actually, since the material on both sides is deformed at the contact point, a strip-shaped contact area having a constant width on the left and right across the ridge is formed. In particular, since the arc-shaped portion 52 is smoothly deformed so as to have a large radius of curvature, not only the ridge of the arc-shaped portion 52 but also a sufficient area including both side portions of the ridge, the cover 14 and the annular concave groove 13 Can contact. As described above, since a large contact area is obtained, the state of electrical conduction from the annular groove 13 of the container main body 12 to the lid 14 by the conductive covering material 50 is good. Since the contact area is large, even if the contact pressure is relatively small, the contact resistance is sufficiently reduced.
[0035]
On the inner peripheral side of the contact position between the arc-shaped portion 52 and the lid 14 and the annular concave groove 13, the upper and lower opening / closing pieces 51, 51 connected by the connecting portion 56 completely cover the elastic core member 40.
As shown by the white arrow and the dashed arrow in FIG. 3B, plasma gas, corrosive gas, and the like existing in the container body 12 pass through the gap between the lid 14 and the container body 12 to form the annular groove 13. Even if it invades the inside, further intrusion is prevented by the conductive covering material 50. Leakage to the inner side and outer peripheral side of the opening / closing piece 51 beyond the conductive jacket material 50 is suppressed. The elastic core member 40 is prevented from being directly exposed to the plasma gas or the like and deteriorated. A large amount of plasma gas, heat flow, corrosive gas and the like are prevented from reaching the O-ring 30.
[0036]
The O-ring 30 is deformed and flattened so as to be crushed between the lid 14 and the bottom surface of the annular groove 15. The elastic repulsion of the O-ring 30 strongly hermetically seals the space between the lid 14 and the bottom surface of the annular groove 15. The gas in the container body 12 does not leak to the outside, and the degree of vacuum of the container body 12 is not impaired.
It should be noted that the elastic repulsion caused by the deformation of the electromagnetic shield member 20 is basically determined by the elastic repulsion of the elastic core member 40 and is not so large, so that the hermetic sealing function of the O-ring 30 due to the elastic repulsion is impaired. Never. Even if there is some gas leaking from the inside of the container body 12 beyond the electromagnetic shield member 20, the sealing can be reliably performed at the position of the O-ring 30. Conversely, even if air or the like attempts to enter the container body 12 from the external environment, it is reliably prevented at the position of the O-ring 30. It is not necessary to provide the electromagnetic shielding member 20 with a very high sealing function. The elastic repulsive force of the electronic shield material 20 is sufficient to ensure electrical conductivity, and a high degree of hermetic sealing is not required.
[0037]
When the lid 14 is removed from the container main body 12 for internal inspection or cleaning of the processing apparatus 10, the O-ring 30 is restored to its original shape by its elastic restoring force. The electromagnetic shield member 20 is restored to the original shape by the elastic restoring force of the elastic core member 40. Therefore, when the lid 14 is attached to the container body 12 again, the hermetic sealing function by the O-ring 30 and the electromagnetic shielding function by the electromagnetic shielding material 40 are exhibited as well as the first mounting. Even if the cover 14 is repeatedly attached and detached, the electromagnetic shielding function of the electromagnetic shielding material 40 does not decrease.
When the cover 14 is put on the container body 12, the bottom surface of the cover 14 collides with the conductive outer cover material 50 of the electromagnetic shield material 40. At this time, the flat bottom surface of the cover 14 52. Since the contact area gradually expands from the apex of the arc-shaped portion 52 to the periphery in a state where the surfaces on both sides in contact are inclined from the center to the periphery, the bottom surface of the lid 14 colliding with the arc-shaped portion 52 is locally excessively large. No stress is generated, scratched, rubbed or scraped off. No harmful particles are generated. Needless to say, since the pressure is smoothly pressed even between the bottom surface of the annular groove 13 and the arc-shaped portion 52, the annular groove 13 is not damaged or particles are generated.
[0038]
Since particles are inevitably generated in plasma processing equipment that uses conventional electromagnetic shielding materials, it is necessary to start the operation of the plasma processing equipment after removing the particles, until the processing work is restarted. However, such problems can be solved by using the electromagnetic shielding material 40 of the above-described embodiment.
[0039]
【The invention's effect】
In the electromagnetic shielding material according to the present invention, the opening / closing piece of the conductive covering material can be elastically opened and closed by the elastic core material disposed therebetween, and the members on both sides with which the conductive covering material abuts, without a gap in a wide area. As a result, a good electrical conduction state can be formed by reliable contact, so that an excellent electromagnetic shielding function can be exhibited.
Since the contact between the conductive jacket material and the members on both sides is not intermittent point contact or local contact but surface contact with a sufficient area, repeat the operation of opening and closing the members on both sides. Also, the conductive covering material rarely scrapes or damages the members on both sides and generates fine particles. The electrical contact over a large area is obtained, so that even if the contact pressure is low, the contact resistance is small and a good conduction state can be achieved.The low contact pressure allows the conductive covering material to scrape or damage the members on both sides Or less.
[0040]
Since the elastic core material is covered with the conductive covering material, direct contact with a plasma gas or the like that degrades the elastic core material is prevented, so that the elastic core material can be prevented from deteriorating with time. As a result, an appropriate contact state and a good electrical conduction state between the conductive outer cover material and the members on both sides due to the elastic repulsion of the elastic core material can be maintained for a long time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional structural view of a plasma processing apparatus using an electromagnetic shielding material according to an embodiment of the present invention.
FIG. 2 is a sectional view of an electromagnetic shielding material.
FIG. 3 is a cross-sectional view showing a mounted state (a) and a used state (b) of the electromagnetic shielding material.
[Explanation of symbols]
10 Plasma processing equipment
12 processing room
13 Groove
14 Lid
15 Groove
20 Electromagnetic shielding material
30 hermetic sealing material
40 elastic core material
50 Conductive jacket material
51 Closing piece
52 arc-shaped part
54 Extension
56 connection

Claims (4)

一対の部材が接離可能に対面する個所で、一方の部材に設けられた凹溝に装着され他方の部材と当接して電磁遮蔽機能を果たす電磁シールド材であって、
導電性材料からなり、断面形状において一端側が連結され他端側は間隔をあけて開閉可能に対面する一対の開閉片を有する導電外被材と、
前記導電外被材の開閉片間に挟み込まれ、弾力変形容易な弾性芯材と
を備える電磁シールド材。
An electromagnetic shielding material that performs an electromagnetic shielding function by being attached to a concave groove provided in one member at a place where a pair of members face each other so as to be able to contact and separate,
A conductive outer cover material having a pair of opening and closing pieces which are made of a conductive material, one end of which is connected in the cross-sectional shape and the other end of which is openably and closably opposed at intervals.
An electromagnetic shield material comprising: an elastic core material which is sandwiched between opening and closing pieces of the conductive outer cover material and is easily elastically deformed.
前記導電外被材の開閉片が、前記弾性芯材との当接個所において弾性芯材の曲率半径よりも大きな曲率半径の弧状をなす弧状部と、前記弧状部の一端につづき開閉片同士が当接して平行に延びる延長部と、前記延長部の一端で開閉片同士が連結される連結部とを有する
請求項1に記載の電磁シールド材。
The opening and closing piece of the conductive covering material has an arc-shaped portion having an arc shape having a curvature radius larger than the curvature radius of the elastic core material at a contact point with the elastic core material. The electromagnetic shielding material according to claim 1, further comprising: an extending portion that abuts and extends in parallel, and a connecting portion that connects the opening and closing pieces at one end of the extending portion.
前記弾性芯材は、フッ素ゴム、シリコンゴムからなる群から選ばれる弾性材料からなり、
前記導電外被材は、ステンレス鋼、チタン合金、アルミ合金、銅合金、ハステロイ合金、インコネル合金からなる群から選ばれる導電性金属材料で厚み0.05〜0.20mmの薄板からなる一対の開閉片が、断面形状の一端側で溶接により連結されてなる
請求項1または2に記載の電磁シールド材。
The elastic core material is made of an elastic material selected from the group consisting of fluorine rubber and silicone rubber,
The conductive covering material is a pair of open / close formed of a thin plate having a thickness of 0.05 to 0.20 mm and made of a conductive metal material selected from the group consisting of stainless steel, titanium alloy, aluminum alloy, copper alloy, Hastelloy alloy, and Inconel alloy. The electromagnetic shielding material according to claim 1, wherein the pieces are connected by welding at one end of the cross-sectional shape.
一対の部材が接離可能に対面する個所に配置されるシールド装置であって、
前記対面個所で何れか一方の部材に設けられる第1の凹溝と、
前記一方の部材の第1凹溝に装着され他方の部材と当接して気密封止機能を果たす気密シールド材と、
前記第1凹溝に隣接して、何れか一方の部材に設けられる第2の凹溝と、
前記一方の部材の第2凹溝に装着され他方の部材と当接して電磁遮蔽機能を果たす請求項1〜3の何れかに記載の電磁シールド材とを備える
シールド装置。
A shield device disposed at a position where a pair of members face each other so as to be able to contact and separate,
A first concave groove provided in any one of the members at the facing portion,
An airtight shield material that is mounted in the first concave groove of the one member and contacts the other member to perform an airtight sealing function;
A second groove provided on one of the members adjacent to the first groove;
A shield device comprising: the electromagnetic shielding material according to any one of claims 1 to 3, which is mounted in the second groove of the one member and abuts on the other member to perform an electromagnetic shielding function.
JP2003133505A 2003-05-12 2003-05-12 Electromagnetic shield member and shield device Withdrawn JP2004335977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133505A JP2004335977A (en) 2003-05-12 2003-05-12 Electromagnetic shield member and shield device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133505A JP2004335977A (en) 2003-05-12 2003-05-12 Electromagnetic shield member and shield device

Publications (1)

Publication Number Publication Date
JP2004335977A true JP2004335977A (en) 2004-11-25

Family

ID=33508027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133505A Withdrawn JP2004335977A (en) 2003-05-12 2003-05-12 Electromagnetic shield member and shield device

Country Status (1)

Country Link
JP (1) JP2004335977A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010135A (en) * 2005-07-01 2007-01-18 Applied Materials Inc Chamber isolation valve rf grounding
JP2010196144A (en) * 2009-02-27 2010-09-09 Fuji Electric Holdings Co Ltd Apparatus for manufacturing thin film
JP2017112009A (en) * 2015-12-17 2017-06-22 パナソニックIpマネジメント株式会社 Plasma processing apparatus and plasma processing method
CN110602937A (en) * 2019-10-29 2019-12-20 中国工程物理研究院电子工程研究所 Electromagnetic shielding structure and electronic product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010135A (en) * 2005-07-01 2007-01-18 Applied Materials Inc Chamber isolation valve rf grounding
US8327878B2 (en) 2005-07-01 2012-12-11 Applied Materials, Inc. Chamber isolation valve RF grounding
JP2010196144A (en) * 2009-02-27 2010-09-09 Fuji Electric Holdings Co Ltd Apparatus for manufacturing thin film
JP2017112009A (en) * 2015-12-17 2017-06-22 パナソニックIpマネジメント株式会社 Plasma processing apparatus and plasma processing method
CN110602937A (en) * 2019-10-29 2019-12-20 中国工程物理研究院电子工程研究所 Electromagnetic shielding structure and electronic product

Similar Documents

Publication Publication Date Title
JP5134773B2 (en) RF grounding of chamber isolation valve
TWI320952B (en) Sealing part and substrate processing apparatus
KR101313088B1 (en) Gate valve structure and substrate processor equipped with the same
JP4247625B2 (en) Plasma-resistant seal
JP4985973B2 (en) Sealing structure
JP4774549B2 (en) Vacuum gate valve and seal member used therefor
JP2004316724A (en) Sealant for dovetail groove
JP2004335977A (en) Electromagnetic shield member and shield device
KR101020160B1 (en) Apparatus for processing substrate with plasma
KR20160043820A (en) Plasma processing apparatus
JP4768381B2 (en) Oxygen-resistant radical seal material
JP4625746B2 (en) Sealing material
JP3578739B2 (en) Plasma equipment
CN112713077B (en) Semiconductor processing equipment
JP2003172452A (en) Sealing structure and sealing method by metal gasket
JP4601993B2 (en) Sealing material
JP2003343727A (en) Plasma resisting seal
TWM587359U (en) Sealing mechanism
JP5441083B1 (en) Plasma processing apparatus and sealing method thereof
KR20230108690A (en) Plasma radical edge ring barrier seal
TW202340626A (en) Guard ring, adhesive surface protection structure comprising the guard ring, and method for protecting adhesive surface
JPH10163788A (en) Air-tight terminal for press-fitting for cylindrical vibrator
KR20090015328A (en) Substrate processing apparatus
JPH10322077A (en) Magnetic spring

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801