【0001】
【発明の属する技術分野】
本発明は、回転型可変抵抗器や回転型センサ等に具備される抵抗基板とその製造方法および抵抗基板用印刷マスクに関する。
【0002】
【従来の技術】
従来より、絶縁基板上に円弧状の抵抗体層が印刷形成された抵抗基板と、摺動子を有する操作体と、この操作体を回転可能に支持する枠体等を具備し、操作体を抵抗基板に対して回転操作することにより、摺動子を抵抗体層上で摺動させて出力変化を得るようにした回転型可変抵抗器が知られている(例えば、特許文献1参照)。このような回転型可変抵抗器において、上記抵抗基板を製造する場合は、抵抗体層の材料である抵抗体ペーストを印刷マスクの透過部分を通過させて絶縁基板上に転写するというスクリーン印刷法が採用されている。
【0003】
図6はかかるスクリーン印刷法を用いた従来の抵抗基板の製造工程を示す説明図であり、まず、同図(a)に示すように、円弧状の透過部分1aを有する印刷マスク1を準備する。この印刷マスク1は紗と呼ばれるメッシュ状のスクリーンの透過部分1aを除く部位にUV硬化樹脂等の乳剤を形成した印刷判であり、抵抗体ペーストは透過部分1aのみを通過できるようになっている。次に、この印刷マスク1を絶縁基板2上に載置した状態で図示せぬ抵抗体ペーストを同図の矢印A方向へ直線的にスキージングすると、抵抗体ペーストが印刷マスク1の透過部分1aを通過して絶縁基板2上に転写されるため、同図(b)に示すように、絶縁基板2上に透過部分1aと同形状の円弧状の抵抗体層3を印刷形成することができる。なお、一般的に抵抗基板は多数個取りされるようになっているため、印刷マスク1には多数の透過部分1aが規則的に形成されており、この印刷マスク1を用いて大判の絶縁基板2上に多数の抵抗体層3を印刷形成した後、これを細かく分割することにより、個々の絶縁基板2上に抵抗体層3が印刷形成された抵抗基板を得るようにしている。
【0004】
【特許文献1】
特許第2925904号公報(第2−3頁、図1)
【0005】
【発明が解決しようとする課題】
ところで、前述した従来技術のように、印刷マスク1に形成された円弧状の透過部分1aに対して抵抗体ペーストを直線的にスキージングする場合、抵抗体ペーストのスキーズ位置に対して透過部分1aの寸法が変化するという現象が発生する。例えば、図6(a)に示すように、印刷マスク1に一定幅Wの透過部分1aが形成され、その透過部分1aが中心Oを半径とする円弧状であると仮定した場合、透過部分1aを抵抗体ペーストのスキーズ方向(同図の矢印A方向)と直交する直線で断面したときの寸法は、中心Oを通る直線B−B位置においては図7(a)に示すようにW1(W1≒W)となるが、中心Oから離れたC−C位置においては図7(b)に示すようにW2(W2≫W)となる。このため、抵抗体ペーストを矢印A方向に沿ってスキージングしたとき、スキーズ方向に対する透過部分1aの中心付近では、図7(a)に示すように、幅狭なW1の透過部分1aから抜けた抵抗体ペーストの断面形状がほぼ矩形状となるが、スキーズ方向に対する透過部分1aの末端位置では、図7(b)に示すように、幅広なW2の透過部分1aから抜けた抵抗体ペーストの断面形状が中央部を窪ませたサドル形状となる。ここで、幅広な透過部分1aから抜けた抵抗体ペーストの断面形状がサドル形状となるのは、印刷時に印刷マスク1が絶縁基板2側に撓むためと考えられる。
【0006】
そして、図6(b)に示すように、絶縁基板2上に印刷形成された抵抗体層3の膜厚について見ると、スキーズ方向の開始位置(同図のD部分)や末端位置(同図のE部分)での膜厚が中央位置(同図のF部分)での膜厚に対して薄くなってしまい、抵抗体層3の円周方向に沿ってその膜厚(面積抵抗)がばらついてしまうことになる。その結果、このようにして製造された抵抗基板を回転型可変抵抗器や回転型センサ等の完成品として使用して、抵抗体層3の両端に定電圧を印加した場合、図8の破線で示すように、抵抗体層3上を摺動する摺動子の位置と摺動子からの出力電圧との関係が理想的な直線(実線)に対して変動してしまい、出力変化の直線性(リニアリティ)が劣化するという問題があった。
【0007】
本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、出力変化のリニアリティ特性に優れた抵抗基板を提供することにある。
【0008】
【課題を解決するための手段】
上述した目的を達成するために、本発明による抵抗基板では、絶縁基板上に円弧状に延びる抵抗体層が印刷形成され、この抵抗体層はその表面のほぼ全周に亘って微細凹部を有していることを特徴としている。
【0009】
このように抵抗体層の表面のほぼ全周に亘って微細凹部が形成されていると、抵抗体層の(面積抵抗)が円周方向に沿って均一化されるため、出力変化のリニアリティ特性に優れた抵抗基板を実現することができる。
【0010】
上記の構成において、複数の微細凹部を抵抗体層の径方向へ延ばして放射状に形成したり、ドット形状やハニカム形状の複数の微細凹部を抵抗体層のほぼ全周に亘って形成することも可能であるが、微細凹部を抵抗体層の周方向へ延びる円弧状に形成し、この微細凹部を抵抗体層の径方向に沿って所定間隔を存して複数形成することが好ましく、このように構成すると、摺動子が抵抗体層上を摺動する際に微細凹部を横切らないため、摺動子をスムーズに移動させることができる。
【0011】
また、上述した目的を達成するために、本発明による抵抗基板の製造方法では、円弧状の外形をなす透過部分の内部に微細幅の非透過部分が形成された印刷マスクを準備し、この印刷マスクを絶縁基板上に載置して抵抗体ペーストを一方向へ直線的にスキージングすることにより、前記絶縁基板上に前記透過部分の外形に対応する円弧状の抵抗体層をスクリーン印刷し、この抵抗体層の表面のほぼ全周に亘って前記非透過部分に対応する微細凹部を形成したことを特徴とする。
【0012】
このような構成を採用すると、印刷マスクの透過部分を通過した抵抗体ペーストがだれることにより、微細幅の非透過部分が繋がって微細凹部となるため、抵抗体層の表面のほぼ全周に亘って微細凹部を簡単に形成することができ、出力変化のリニアリティ特性に優れた抵抗基板を実現することができる。
【0013】
また、上述した目的を達成するために、本発明による抵抗基板用印刷マスクでは、絶縁基板上に円弧状の抵抗体層をスクリーン印刷するために用いられる印刷マスクであって、外形が円弧状をなす透過部分と、この透過部分の内部のほぼ全周に亘って形成された微細幅の非透過部分とを有し、抵抗体ペーストが前記透過部分を透過可能としたことを特徴としている。
【0014】
このように構成された印刷マスクを用いて絶縁基板上に抵抗体層をスクリーン印刷すると、印刷マスクの透過部分を通過した抵抗体ペーストがダレることにより、微細幅の非透過部分が繋がって微細凹部となるため、抵抗体層の表面のほぼ全周に亘って微細凹部を簡単に形成することができ、出力変化のリニアリティ特性に優れた抵抗基板を実現することができる。
【0015】
上記の構成において、透過部分の内部に複数本の非透過部分を径方向へ延ばして放射状に形成したり、ドット形状やハニカム形状の複数の非透過部分をほぼ全周に亘って形成することも可能であるが、非透過部分を透過部分の周方向へ延びる円弧状に形成し、この非透過部分を透過部分の径方向に沿って複数本形成することが好ましく、このように構成すると、摺動子が抵抗体層上を摺動する際に微細凹部を横切らないため、摺動子をスムーズに移動させることができる。その際、非透過部分の径方向に沿う幅寸法を0.01〜0.1mmに設定すると共に、径方向に隣接する一対の非透過部分で挟まれた透過部分の幅寸法を0.3〜2.0mmに設定することが好ましい。
【0016】
【発明の実施の形態】
発明の実施の形態について図面を参照して説明すると、図1は本発明の実施形態例に係る印刷マスクの平面図、図2は該印刷マスクの要部断面図、図3は該印刷マスクを用いた抵抗基板の製造工程を示す説明図、図4は該抵抗基板の平面図、図5は図4のV−V線に沿う断面図である。
【0017】
図1と図2に示すように、本実施形態例に係る印刷マスク10は、外形が円弧状をなす透過部分10aと、この透過部分10aの内部に径方向に所定間隔を存して円弧状に形成された複数本の桟部10bとを有しており、各桟部10bと透過部分10aの外側領域10cは全て非透過部分となっている。本実施形態例の場合、透過部分10aは中心Oを半径とする円弧状に形成され、その幅寸法Wは各部で一定の7〜10mmに設定されている。また、各桟部10bの幅寸法w1は0.01〜0.1mm(好ましくは0.03〜0.06mm)に設定され、隣接する一対の桟部10bで挟まれた透過部分10aおよび外側領域10cと隣接する桟部10bで挟まれた透過部分10aの幅寸法w2は0.3〜2.0mm(好ましくは0.5〜1.0mm)に設定されている。なお、この印刷マスク10には内部に桟部10bを有する多数の透過部分10aが規則的に形成されており、図1はそのうちの1つを例示したものである。また、図2中で符号21はナイロンやステンレス等からなる細線20がメッシュ状に編まれてなる紗(スクリーン)であり、この紗21に乳剤22が形成されて桟部10bおよび外側領域10cが非透過部分となっている。なお、図2において、細線20のピッチや乳剤22の厚さ等は理解をしやすくするために模式的に表している。
【0018】
次に、上記印刷マスク10を用いて絶縁基板11上に抵抗体層12をスクリーン印刷する工程を説明する。まず、図3(a)に示すように、印刷マスク10を大判の絶縁基板11上に載置した状態で抵抗体ペースト13を図1の矢印A方向へ直線的にスキージングすると、抵抗体ペースト13が印刷マスク10の透過部分10aを通過して絶縁基板11に転写される。その際、抵抗体ペースト13のスキーズ位置に対する透過部分10a全体の見掛け上の外形寸法は変化するが、本実施形態例の場合、透過部分10aの内部に所定ピッチ間隔を存して複数の桟部10bが形成されているため、スキーズ位置に拘わらず抵抗体ペースト13は幅寸法w2の幅狭な透過部分10aを通過して絶縁基板11に転写される。しかる後、図3(b)に示すように、印刷マスク10を絶縁基板11から取り除くと、各透過部分10aから抜けた抵抗体ペースト13がダレて、各桟部10bによって生じる隙間が抵抗体ペースト13によって繋がれる。次いで、抵抗体ペースト13を加熱・乾燥することにより、図3(c)に示すように、絶縁基板11上に透過部分10aの外形形状に対応する円弧状の抵抗体層12がスクリーン印刷され、この抵抗体層12の表面の全周に亘って各桟部10bに対応する微細凹部12aが形成される。最後に、大判の絶縁基板11を細かく分割することにより、図4に示すように、個々の絶縁基板11上に円弧状の抵抗体層12が印刷形成された抵抗基板14を得ることができる。
【0019】
このようにして製造された抵抗基板14を回転型可変抵抗器や回転型センサ等の完成品として使用する場合は、抵抗体層12の両端に定電圧を印加すると共に、図4,5に示すように、絶縁基板11上に2点鎖線で示す摺動子15を圧接する。そして、この摺動子15を図示せぬ操作体で回転して抵抗体層12上を摺動させることにより、摺動子15の位置に対する出力変化を電圧として摺動子15より取り出すようになっている。なお、図示省略されているが、絶縁基板11上には摺動子15に常時摺接するコモン用の導電体層や抵抗体層12の両端に接続する電圧印加用の端子部等が形成されており、これらは抵抗体層12と別工程で形成されるようになっている。
【0020】
ここで、印刷マスク10を用いて絶縁基板11上にスクリーン印刷された抵抗体層12は、その表面の全周に亘って各桟部10bに対応する微細凹部12aが形成されているため、個々の部分では凹凸面を有する断面形状となるが、全体としては膜厚(面積抵抗)が円周方向に沿って均一化されるため、抵抗体層12上を摺動する摺動子15の位置と出力との関係を図8の実線で示す理想的な直線に近付けることができ、出力変化の直線性(リニアリティ)を高めることができる。また、各微細凹部12aが抵抗体層12の円周方向に沿って円弧状に形成されており、すなわち、各微細凹部12aの延出方向と摺動子15の移動方向が一致しているため、摺動子15が抵抗体層12上を摺動する際に微細凹部12aを横切ることはなく、それゆえ摺動子15をスムーズに移動させることができる。
【0021】
なお、上記実施形態例では、印刷マスク10に円弧状の透過部分10aを形成すると共に、この透過部分10aの内部に径方向に所定間隔を存して複数本の桟部10bを円弧状に形成し、このような印刷マスク10を用いて絶縁基板11上に抵抗体層12をスクリーン印刷することにより、抵抗体層12の表面の全周に亘って円弧状に延びる微細凹部12aを形成した説明したが、印刷マスク10の透過部分10aの内部に形成される桟部10b(非透過部分)の形状や、その桟部10bに対応して形成される抵抗体層12の微細凹部12aの形状は円弧状に限定されるものではない。例えば、印刷マスクに円弧状の透過部分の内部を径方向へ横切るように複数本の桟部(非透過部分)を形成したり、円弧状の透過部分の内部にドット形状やハニカム形状の複数の非透過部分をほぼ全周に亘って形成し、このような印刷マスクを用いて絶縁基板上に抵抗体層をスクリーン印刷することにより、抵抗体層の表面のほぼ全周に亘って放射状やドット形状あるいはハニカム形状の微細凹部を形成することも可能である。
【0022】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0023】
印刷マスクに外形が円弧状をなす透過部分を形成すると共に、この透過部分の内部のほぼ全周に亘って微細幅の非透過部分を形成し、このような印刷マスクを用いて絶縁基板上に抵抗体層をスクリーン印刷することにより、抵抗体層の表面のほぼ全周に亘って微細凹部を形成したので、印刷方向(スキーズ方向)に拘わらず抵抗体層の膜厚(面積抵抗)が円周方向に沿って均一化され、出力変化のリニアリティ特性に優れた抵抗基板を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施形態例に係る印刷マスクの平面図である。
【図2】該印刷マスクの要部断面図である。
【図3】該印刷マスクを用いた抵抗基板の製造工程を示す説明図である。
【図4】該抵抗基板の平面図である。
【図5】図4のV−V線に沿う断面図である。
【図6】従来例に係る抵抗基板の製造工程を示す説明図である。
【図7】従来技術の問題点を示す説明図である。
【図8】摺動子の位置と出力との関係を示す説明図である。
【符号の説明】
10 印刷マスク
10a 透過部分
10b 桟部(非透過部分)
11 絶縁基板
12 抵抗体層
12a 微細凹部
13 抵抗体ペースト
14 抵抗基板
15 摺動子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resistor substrate provided in a rotary variable resistor, a rotary sensor, and the like, a method of manufacturing the same, and a print mask for the resistor substrate.
[0002]
[Prior art]
Conventionally, a resistance substrate having an arc-shaped resistance layer printed on an insulating substrate, an operating body having a slider, a frame body rotatably supporting the operating body, and the like are provided. 2. Description of the Related Art A rotary variable resistor has been known in which a slider is slid on a resistor layer by rotating a resistive substrate to obtain a change in output (for example, see Patent Document 1). In such a rotary variable resistor, when manufacturing the resistor substrate, a screen printing method is used in which a resistor paste, which is a material of a resistor layer, is transferred onto an insulating substrate by passing through a transparent portion of a print mask. Has been adopted.
[0003]
FIG. 6 is an explanatory view showing a conventional resistive substrate manufacturing process using such a screen printing method. First, as shown in FIG. 6A, a print mask 1 having an arcuate transparent portion 1a is prepared. . This print mask 1 is a print format in which an emulsion of a UV curable resin or the like is formed on a portion of a mesh screen called a gauze other than the transparent portion 1a, and the resistor paste can pass only through the transparent portion 1a. . Next, when the resistor paste (not shown) is linearly squeezed in a direction indicated by an arrow A in FIG. 1 in a state where the print mask 1 is placed on the insulating substrate 2, the resistor paste becomes transparent portion 1 a of the print mask 1. And is transferred onto the insulating substrate 2, so that the arc-shaped resistor layer 3 having the same shape as the transparent portion 1 a can be formed on the insulating substrate 2 by printing as shown in FIG. . Since a large number of resistance substrates are generally taken, a large number of transparent portions 1a are regularly formed in the print mask 1, and a large-sized insulating substrate is formed using the print mask 1. After a large number of resistor layers 3 are formed on the substrate 2 by printing, the substrate is finely divided to obtain a resistor substrate in which the resistor layers 3 are printed on the individual insulating substrates 2.
[0004]
[Patent Document 1]
Japanese Patent No. 2925904 (page 2-3, FIG. 1)
[0005]
[Problems to be solved by the invention]
When the resistor paste is linearly squeezed with respect to the arcuate transparent portion 1a formed on the print mask 1 as in the above-described related art, the transparent portion 1a is moved relative to the squeeze position of the resistor paste. A phenomenon occurs in which the dimensions change. For example, as shown in FIG. 6A, assuming that a transmission portion 1a having a constant width W is formed on the print mask 1 and the transmission portion 1a is formed in an arc shape having a center O as a radius, the transmission portion 1a Is a cross section taken along a straight line perpendicular to the squeezing direction of the resistor paste (the direction of arrow A in the same figure), and at the position of a straight line BB passing through the center O, as shown in FIG. ≒ W), but at the CC position distant from the center O, W2 (W2CW) as shown in FIG. 7B. For this reason, when the resistor paste is squeezed in the direction of arrow A, near the center of the transmitting portion 1a in the squeezing direction, as shown in FIG. 7A, the resistor paste escapes from the narrow transmitting portion 1a of W1. The cross-sectional shape of the resistor paste is substantially rectangular, but at the end position of the transmission portion 1a in the squeezing direction, as shown in FIG. 7B, the cross-section of the resistor paste escapes from the wide W2 transmission portion 1a. The shape is a saddle shape with the center recessed. Here, it is considered that the cross-sectional shape of the resistor paste coming out of the wide transmitting portion 1a becomes a saddle shape because the print mask 1 is bent toward the insulating substrate 2 during printing.
[0006]
Then, as shown in FIG. 6B, looking at the film thickness of the resistor layer 3 formed on the insulating substrate 2 by printing, the starting position in the squeezing direction (portion D in FIG. 6) and the terminal position (FIG. (Part E in FIG. 3) becomes thinner than the film thickness in the center position (part F in FIG. 3), and the thickness (area resistance) varies along the circumferential direction of the resistor layer 3. Will be. As a result, when the resistive substrate thus manufactured is used as a completed product such as a rotary variable resistor or a rotary sensor, and a constant voltage is applied to both ends of the resistor layer 3, a broken line in FIG. As shown, the relationship between the position of the slider sliding on the resistor layer 3 and the output voltage from the slider fluctuates with respect to an ideal straight line (solid line), and the linearity of the output change. (Linearity) is deteriorated.
[0007]
The present invention has been made in view of such a situation of the related art, and an object of the present invention is to provide a resistance substrate having excellent linearity characteristics of output change.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the resistor substrate according to the present invention, a resistor layer extending in an arc shape is formed by printing on an insulating substrate, and the resistor layer has fine recesses over almost the entire surface of the resistor layer. It is characterized by doing.
[0009]
When the fine concave portions are formed over substantially the entire circumference of the surface of the resistor layer, the (area resistance) of the resistor layer is uniformed in the circumferential direction, so that the linearity characteristic of the output change is obtained. The resistance substrate excellent in the above can be realized.
[0010]
In the above configuration, a plurality of minute concave portions may be formed radially by extending in a radial direction of the resistor layer, or a plurality of minute concave portions of a dot shape or a honeycomb shape may be formed over substantially the entire circumference of the resistor layer. Although it is possible, it is preferable to form the fine recesses in an arc shape extending in the circumferential direction of the resistor layer, and to form a plurality of the fine recesses at predetermined intervals along the radial direction of the resistor layer. With this configuration, when the slider slides on the resistor layer, it does not cross the minute concave portion, so that the slider can be moved smoothly.
[0011]
Further, in order to achieve the above-mentioned object, in the method of manufacturing a resistance substrate according to the present invention, a printing mask in which a fine-width non-transmissive portion is formed inside a transmissive portion having an arcuate outer shape is prepared. By placing a mask on the insulating substrate and linearly squeezing the resistor paste in one direction, an arc-shaped resistor layer corresponding to the outer shape of the transparent portion is screen-printed on the insulating substrate, Fine recesses corresponding to the non-transmitting portions are formed over substantially the entire periphery of the surface of the resistor layer.
[0012]
When such a configuration is adopted, the resistor paste that has passed through the transparent portion of the print mask drips, and the non-transparent portion having a fine width is connected to form a fine concave portion. Thus, a fine concave portion can be easily formed, and a resistance substrate having excellent linearity characteristics of output change can be realized.
[0013]
In addition, in order to achieve the above-mentioned object, a print mask for a resistive substrate according to the present invention is a print mask used for screen-printing an arc-shaped resistor layer on an insulating substrate, wherein the outer shape has an arc shape. It has a transparent portion to be formed and a non-transparent portion having a fine width formed over substantially the entire periphery of the transparent portion, and the resistor paste is capable of transmitting the transparent portion.
[0014]
When the resistor layer is screen-printed on the insulating substrate using the print mask configured as described above, the resistor paste that has passed through the transparent portion of the print mask is dripped, and the non-transparent portions having a fine width are connected to form a fine pattern. Since the concave portions are formed, fine concave portions can be easily formed over substantially the entire periphery of the surface of the resistor layer, and a resistor substrate having excellent linearity characteristics of output change can be realized.
[0015]
In the above configuration, a plurality of non-transmissive portions may be formed radially by extending a plurality of non-transmissive portions in the radial direction inside the transmissive portion, or a plurality of non-transmissive portions in a dot shape or a honeycomb shape may be formed over substantially the entire circumference. Although it is possible, it is preferable that the non-transmissive portion is formed in an arc shape extending in the circumferential direction of the transmissive portion, and a plurality of the non-transmissive portions are formed along the radial direction of the transmissive portion. Since the moving element does not cross the minute concave portion when sliding on the resistor layer, the sliding element can be moved smoothly. At that time, the width of the non-transmitting portion along the radial direction is set to 0.01 to 0.1 mm, and the width of the transmitting portion sandwiched between a pair of non-transmitting portions adjacent in the radial direction is set to 0.3 to 0.1 mm. Preferably, it is set to 2.0 mm.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a plan view of a print mask according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a main part of the print mask, and FIG. FIG. 4 is an explanatory view showing a manufacturing process of the used resistive substrate, FIG. 4 is a plan view of the resistive substrate, and FIG. 5 is a sectional view taken along line VV in FIG.
[0017]
As shown in FIGS. 1 and 2, the print mask 10 according to the present embodiment has a transparent portion 10 a having an arc shape and an arc shape with a predetermined radial distance inside the transparent portion 10 a. And the outer region 10c of each of the crosspieces 10b and the transmissive portion 10a is a non-transmissive portion. In the case of the present embodiment, the transmitting portion 10a is formed in an arc shape having the center O as a radius, and the width dimension W is set to a constant value of 7 to 10 mm in each portion. The width dimension w1 of each crosspiece 10b is set to 0.01 to 0.1 mm (preferably 0.03 to 0.06 mm), and the transmissive portion 10a and the outer region sandwiched between a pair of adjacent crosspieces 10b. The width dimension w2 of the transmissive portion 10a sandwiched between the crosspieces 10b adjacent to 10c is set to 0.3 to 2.0 mm (preferably 0.5 to 1.0 mm). A large number of transmissive portions 10a each having a crosspiece 10b are regularly formed in the print mask 10, and FIG. 1 illustrates one of them. In FIG. 2, reference numeral 21 denotes a gauze (screen) formed by knitting a thin wire 20 made of nylon, stainless steel, or the like in a mesh shape, and an emulsion 22 is formed on the gauze 21 to form a crosspiece 10b and an outer region 10c. It is a non-transmissive part. In FIG. 2, the pitch of the thin wires 20, the thickness of the emulsion 22, and the like are schematically shown for easy understanding.
[0018]
Next, a step of screen-printing the resistor layer 12 on the insulating substrate 11 using the print mask 10 will be described. First, as shown in FIG. 3A, when the resistor paste 13 is linearly squeezed in the direction of arrow A in FIG. 1 with the print mask 10 placed on the large-sized insulating substrate 11, the resistor paste 13 is transferred to the insulating substrate 11 through the transparent portion 10a of the print mask 10. At this time, the apparent outer dimensions of the entire transparent portion 10a with respect to the squeeze position of the resistor paste 13 change, but in the case of the present embodiment, a plurality of cross sections are provided inside the transparent portion 10a with a predetermined pitch interval. Since the resistor 10b is formed, the resistor paste 13 is transferred to the insulating substrate 11 through the narrow transmitting portion 10a having the width w2 regardless of the squeeze position. Thereafter, as shown in FIG. 3 (b), when the print mask 10 is removed from the insulating substrate 11, the resistor paste 13 that has fallen out of each transmissive portion 10a is dripped, and the gap created by each crosspiece 10b is removed. 13 are connected. Next, by heating and drying the resistor paste 13, an arc-shaped resistor layer 12 corresponding to the outer shape of the transparent portion 10 a is screen-printed on the insulating substrate 11 as shown in FIG. A fine concave portion 12a corresponding to each crosspiece 10b is formed over the entire circumference of the surface of the resistor layer 12. Finally, by dividing the large-sized insulating substrate 11 into small pieces, it is possible to obtain a resistance substrate 14 in which an arc-shaped resistor layer 12 is printed on each of the insulating substrates 11 as shown in FIG.
[0019]
When the resistance substrate 14 manufactured as described above is used as a completed product such as a rotary variable resistor or a rotary sensor, a constant voltage is applied to both ends of the resistor layer 12 and shown in FIGS. Thus, the slider 15 indicated by a two-dot chain line is pressed onto the insulating substrate 11. Then, the slider 15 is rotated by an operating body (not shown) to slide on the resistor layer 12, so that a change in output with respect to the position of the slider 15 is taken out from the slider 15 as a voltage. ing. Although not shown, on the insulating substrate 11, there are formed a common conductor layer which is always in sliding contact with the slider 15, a voltage application terminal section which is connected to both ends of the resistor layer 12, and the like. These are formed in a step different from that of the resistor layer 12.
[0020]
Here, since the resistor layer 12 screen-printed on the insulating substrate 11 using the print mask 10 has the fine recesses 12a corresponding to the crosspieces 10b formed all around the surface thereof, Although the cross section has an uneven surface in the portion, the position of the slider 15 sliding on the resistor layer 12 is uniform because the film thickness (area resistance) is uniform along the circumferential direction as a whole. And the output can be approximated to the ideal straight line shown by the solid line in FIG. 8, and the linearity of output change can be improved. In addition, since each minute concave portion 12a is formed in an arc shape along the circumferential direction of the resistor layer 12, that is, the extending direction of each minute concave portion 12a and the moving direction of the slider 15 match. In addition, when the slider 15 slides on the resistor layer 12, it does not cross the fine recess 12a, and therefore, the slider 15 can be moved smoothly.
[0021]
In the above-described embodiment, an arc-shaped transparent portion 10a is formed in the print mask 10, and a plurality of crosspieces 10b are formed in the arc at predetermined intervals in the radial direction inside the transparent portion 10a. Then, the resist layer 12 is screen-printed on the insulating substrate 11 using such a print mask 10 to form a fine concave portion 12a extending in an arc shape over the entire circumference of the surface of the resistor layer 12. However, the shape of the bar portion 10b (non-transmitting portion) formed inside the transmitting portion 10a of the print mask 10 and the shape of the fine concave portion 12a of the resistor layer 12 formed corresponding to the bar portion 10b are It is not limited to an arc shape. For example, a plurality of crosspieces (non-transmissive portions) may be formed in the print mask so as to cross the inside of the arc-shaped transparent portion in the radial direction, or a plurality of dot-shaped or honeycomb-shaped portions may be formed inside the arc-shaped transparent portion. A non-transmissive portion is formed over almost the entire circumference, and a resistor layer is screen-printed on an insulating substrate using such a print mask, so that radial or dots are formed over almost the entire circumference of the surface of the resistor layer. It is also possible to form a fine recess having a shape or a honeycomb shape.
[0022]
【The invention's effect】
The present invention is implemented in the form described above, and has the following effects.
[0023]
A transparent portion having an arc shape is formed on the print mask, and a non-transparent portion having a fine width is formed over substantially the entire periphery of the transparent portion, and on the insulating substrate using such a print mask. By printing the resistor layer by screen printing, fine concave portions were formed over substantially the entire circumference of the surface of the resistor layer, so that the thickness (area resistance) of the resistor layer was circular regardless of the printing direction (squeezing direction). A resistance substrate that is uniform along the circumferential direction and has excellent linearity characteristics of output change can be realized.
[Brief description of the drawings]
FIG. 1 is a plan view of a print mask according to an embodiment of the present invention.
FIG. 2 is a sectional view of a main part of the print mask.
FIG. 3 is an explanatory diagram showing a manufacturing process of a resistance substrate using the print mask.
FIG. 4 is a plan view of the resistance substrate.
FIG. 5 is a sectional view taken along the line VV of FIG. 4;
FIG. 6 is an explanatory view showing a manufacturing process of a resistance substrate according to a conventional example.
FIG. 7 is an explanatory diagram showing a problem of the related art.
FIG. 8 is an explanatory diagram showing a relationship between a position of a slider and an output.
[Explanation of symbols]
10 Printing mask 10a Transmissive part 10b Crosspiece (non-transmissive part)
Reference Signs List 11 Insulating substrate 12 Resistor layer 12a Fine recess 13 Resistor paste 14 Resistor substrate 15 Slider