JP2004335524A - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP2004335524A
JP2004335524A JP2003125078A JP2003125078A JP2004335524A JP 2004335524 A JP2004335524 A JP 2004335524A JP 2003125078 A JP2003125078 A JP 2003125078A JP 2003125078 A JP2003125078 A JP 2003125078A JP 2004335524 A JP2004335524 A JP 2004335524A
Authority
JP
Japan
Prior art keywords
transparent member
light emitting
light
refractive index
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003125078A
Other languages
Japanese (ja)
Inventor
Yuji Azuma
祐二 我妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2003125078A priority Critical patent/JP2004335524A/en
Publication of JP2004335524A publication Critical patent/JP2004335524A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode that can be adjusted in the angle of luminous intensity distribution without increasing its thickness. <P>SOLUTION: This light emitting diode is constituted by covering the upper part of a light emitting element 14 with a first transparent member 18 and forming a first air space 19 between the transparent member 18 and a base substrate 11. Then the upper part of the first transparent member 18 is covered with a second transparent member 21, and the projecting section 20 of the first transparent member 18 is fitted in the recessed section 22 of the second transparent member 21. At the same time, a second air space 23 is formed of the recess 24 of the second transparent member 21 between the first and second transparent members 18 and 21. In addition, annular convex lenses 25 are formed on one side of the second transparent member 21 opposite to the first transparent member 18 for adjusting the angle of luminous intensity distribution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、照明装置などに用いる発光ダイオードに関するものである。
【0002】
【従来の技術】
一般に、チップ型の発光ダイオードは、携帯電話や小型電子機器の液晶表示部のバックライト光源や各種の照明装置の光源として広く利用されている。図5は従来の発光ダイオードの側面図である。ベース基板11と反射部材28とは白色の樹脂で一体的に形成され、ベース基板11の左右両側に金属製リードフレーム12a、12bを設け、一方のリードフレーム12aに形成される第1電極部13aに発光素子14を搭載し、他方のリードフレーム12bに形成される第2電極部13bに金属製ワイヤ15で接続する。そして、この金属製ワイヤおよび発光素子14の上部を透明の樹脂製パッケージで被覆する。
【0003】
このように、ベース基板11上に配置された金属製リードフレーム12aの第1電極部13aに半導体チップである発光素子14を配設し、この発光素子14を透明な樹脂16で充填して樹脂製パッケージ内に発光素子14を封止して発光ダイオードを形成していた。また、配光角を小さくする場合には、図6に示すように透明樹脂15の前面に凸レンズ17を配設し、発光素子14からの光線を前面の凸レンズ17で屈折させて配光角の調整を行っていた。
【0004】
【発明が解決しようとする課題】
しかし、凸レンズ17で集光させる場合などでは、発光素子14と凸レンズ17との間の距離が凸レンズ17のR面の半径以上必要となることから、厚みが増すと言った問題がある。
【0005】
本発明の目的は、発光ダイオードの厚みを増加させることなく配光角を調整できる発光ダイオードを提供することである。
【0006】
【課題を解決するための手段】
請求項1の発明に係わる発光ダイオードは、電極部が形成されたベース基板上に設置された発光素子と;前記発光素子の上部を被覆し前記ベース基板との間に第1空気層を形成し前記発光素子に対面する反対側に凸部を有した第1透明部材と;前記第1透明部材に対面する側に前記第1透明部材の凸部に嵌合する凹部と前記第1透明部材との間に第2空気層を形成する凹部とが複合された面を有した第2透明部材と;前記第2透明部材の前記第1透明部材に対面する反対側に形成された円環状の凸レンズと;を備えたことを特徴とする。
【0007】
本発明及び以下の発明において、特に指定しない限り用語の定義及び技術的意味は以下による。
【0008】
ベース基板は白色の樹脂で反射部材と一体的に形成され、電極部はリードフレームと一体的に形成される。そして、白色樹脂とリードフレームとは一体モールド化される。発光素子は半導体チップであり、電極部から電源が供給されたときに発光する素子である。
【0009】
第1透明部材は、透明樹脂で形成され発光素子の上部を被覆し、ベース基板との間に第1空気層を形成する。また、発光素子に対面する反対側には凸部を有している。第2透明部材は、透明樹脂で形成され第1透明部材に対面する側に第1透明部材の凸部に嵌合する凹部を有すると共に、第1透明部材との間に第2空気層を形成する凹部とを有する。また、第2透明部材の第1透明部材に対面する反対側には円環状の凸レンズが形成され、この円環状凸レンズで光線を集光し外部に外部に光線を出射する。
【0010】
従って、第1透明部材と第2透明部材とが接触する境界面は、第1透明部材の凸部と第2透明部材の凹部との嵌合部分と、第2空気槽が形成された部分とを有した複合面となる。発光素子からの光線は第1透明部材と第2透明部材とが接触する境界面に入射され、その境界面の第2空気層の底部に当たった光線は全反射して第1空気層に入射され、第1空気層でさらに全反射して第1透明部材と第2透明部材とが接触する境界面に入射される。一方、第1透明部材と第2透明部材とが接触する境界面の第1透明部材の凸部と第2透明部材の凹部との嵌合部分に当たった光線は、その嵌合部を通過して第2透明部材に入り、第2空気層の傾斜面で全反射し円環状凸レンズで集光されて外部に出射される。
【0011】
本発明によれば、全反射を利用していることから反射のロスは小さく、また配光角を調整するには、前面の円環状凸レンズの曲率半径を変化させるか第2空気層を作る凹部の傾斜角を変化させることで可能であるので、発光素子からの光線を減衰させることなく、また、発光ダイオードの厚みを増加させることなく配光角を容易に調整できる発光ダイオードを提供できる。
【0012】
請求項2の発明に係わる発光ダイオードは、請求項1の発明において、前記第1空気層および前記第2空気層に代えて屈折率1以上1.45未満の低屈折率材料層を配設し、前記第1透明部材および前記第2透明部材を屈折率1.45以上2未満の高屈折率材料層で一体的に形成したことを特徴とする。
【0013】
本発明は、第1空気層および第2空気層に代えて屈折率1以上1.45未満の低屈折率材料層を配設し、第1透明部材および第2透明部材を屈折率1.45以上2未満の高屈折率材料層で一体的に形成したものである。
【0014】
本発明によれば、高屈折率材料層の内部に屈折率1以上1.45未満の傾斜を持った低屈折率材料層を含ませるので、高屈折率材料層27は一体的に形成され重なる部分がないので、請求項1の発明の効果に加え、さらに光線の出射効率が向上する。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は本発明の第1の実施の形態に係わる発光ダイオードの説明図であり、図1(a)は平面図、図1(b)は側面図である。ベース基板11と反射部材28とは白色の樹脂で一体的に形成され、ベース基板11の左右両側に金属製リードフレーム12a、12bが取り付けられる。そして、一方のリードフレーム12aに形成される第1電極部13aに発光素子14が搭載して接続され、他方のリードフレーム12bに形成される第2電極部13bと金属製ワイヤ15で接続される。これにより、発光素子14に電源が供給されるようにしている。
【0016】
発光素子14の上部は第1透明部材18で被覆される。その際に、第1透明部材18とベース基板11(リードフレーム12)との間に第1空気層19を形成する。また、第1透明部材18の発光素子14に対面する反対側には凸部20が形成されている。さらに、この第1透明部材18の上部は第2透明部材21が被覆される。第2透明部材21の第1透明部材18に対面する側には、第1透明部材18の凸部20に嵌合する凹部22が設けられ、また、第2透明部材21と第1透明部材18との間に第2空気層23を形成するための凹部24が設けられている。一方、第2透明部材21の第1透明部材18に対面する反対側には円環状凸レンズ25が設けられている。この円環状凸レンズ25は集光性を増すために設けられている。
【0017】
このように、点光源である発光素子14の周囲に第1空気層19を設け、また、第1空気層19の反対側に円環状の突起(凸部20)をある間隔で配置した第1透明部材18を配設し、その第1透明部材18の突起(凸部20)と同じ形状の凹部22および第2空気層23を形成する凹部24とを有した第2透明部材21を重ねていき、第1透明部材18の凸部20と第2透明部材21の凹部22とを嵌合させると共に、第2空気層23を形成する。
【0018】
従って、第1透明部材18と第2透明部材21とが接触する境界面は、第1透明部材18の凸部20と第2透明部材21の凹部22との嵌合部分と、第2空気層23が形成された部分との複合面となる。また、第2透明部材21の出光側には配光角を調整するための円環状凸レンズ25が設けられている。
【0019】
図2は、第1の実施の形態における発光素子14からの光線が円環状凸レンズ25からどのように出射されるかを示した光線追跡図である。光線は大きく分けて2つの動きをする。まず、一つ目は、発光素子14からの光線が第2空気層23の底部に当たった場合であり、この場合には光線は第2空気層23で全反射することになり、発光素子14側の面に向く光線となる。そして、発光素子14側の第1空気層19でも全反射することになり、この反射光が再度第2空気層23に当たれば同じことを繰り返す。
【0020】
次に、2つ目は凸部20と凹部22とが重なり合った部分に光線があたる場合であり、この場合には、その部分からの光線が前面の第2透明部材21に入り込み、第2空気層23を作る傾斜の部分に当たって全反射することになり、全反射した光は円環状凸レンズ25を通って外部に出射する。なお、円環状凸レンズ25は集光性を増すために利用している。
【0021】
第1の実施の形態によれば、発光素子14からの光線は第1の空気層19および第2の空気層23での全反射を利用し、最終的に円環状凸レンズ25で集光して外部に光線を出射するようにしているので、全体として反射のロスが小さい。また、配光角を調整するには、前面の円環状凸レンズ25の曲率半径を変化させるか第2空気層23を形成する凹部24の傾斜角を変化させることで可能になるので容易に配光角を調整できる。
次に、本発明の第2の実施の形態を説明する。図3は本発明の第2の実施の形態に係わる発光ダイオードの説明図であり、図3(a)は平面図、図3(b)は側面図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、第1空気層19および第2空気層23に代えて屈折率1以上1.45未満の低屈折率材料層26a、26bを配設し、第1透明部材18および第2透明部材21を屈折率1.45以上2未満の高屈折率材料層27で一体的に形成したものである。図1に示し第1の実施の形態と同一要素には同一符号を付し重複する説明は省略する。
【0022】
図3において、ベース基材11のリードフレーム12aの第1電極部13aに配置された発光素子14の周囲に、第1空気層19に代えて低屈折率材料層26aを形成し、その上部に高屈折率材料層27を形成する。高屈折材料層27は、高屈折率材料の中に低屈折率材料を埋め込んで、高屈折率材料層27の内部に低屈折率材料層26bを形成し、第1透明部材18および第2透明部材21を一体的に形成している。低屈折率材料層26a、26bは、屈折率が1以上で1.45未満の低屈折率材料を使用し、高屈折率材料層27としては屈折率1.45以上2未満の高屈折率材料を使用する。
【0023】
図4は、第2の実施の形態における発光素子14からの光線が円環状凸レンズ25からどのように出射されるかを示した光線追跡図である。第1の実施の形態の場合と同様に、光線は大きく分けて2つの動きをする。まず、一つ目は、発光素子14からの光線が低屈折率材料層26bの底部に当たった場合であり、この場合には光線は低屈折率材料層26bで全反射することになり、発光素子14側の面に向く光線となる。そして、発光素子14側の低屈折率材料層26aでも全反射することになり、この反射光が、再度低屈折率材料層26bに当たれば同じことを繰り返す。次に、2つ目は、低屈折率材料層26bの傾斜面部に光線があたる場合で、この場合には、低屈折率材料層26bを作る傾斜面部に当たって全反射することになり、全反射した光は円環状凸レンズ25を通って外部に出射する。
【0024】
図4では、高屈折率材料層27は一体的に形成されており重なる部分がないことから、この重なり部分のロスがなくなり効率はさらに向上する。この場合にも配光角を調整するには、前面の円環状凸レンズ25の曲率半径を変化させるか埋め込んだ低屈折率材料層26bの傾斜角を変化させることで可能になる。
【0025】
第2の実施の形態によれば、発光素子14からの光線は低屈折率材料層26a、26bでの全反射を利用し、最終的に円環状凸レンズ25で集光して外部に光線を出射するようにしているので全体として反射のロスが小さい。また、高屈折率材料層27は一体的に形成されており重なる部分がないことから、効率はさらに良くなる。また、配光角を調整するには、前面の円環状凸レンズ25の曲率半径を変化させるか低屈折率材料層26bを形成する凹部24の傾斜角を変化させることで可能になるので容易に配光角を調整できる。
【0026】
【発明の効果】
以上述べたように、請求項1の発明によれば、全反射を利用していることから反射のロスは小さく、また配光角を調整するには、前面の円環状凸レンズの曲率半径を変化させるか第2空気層を作る凹部の傾斜角を変化させることで可能であるので、発光素子からの光線を減衰させることなく、また、発光ダイオードの厚みを増加させることなく配光角を容易に調整できる発光ダイオードを提供できる。
【0027】
また、請求項2の発明によれば、高屈折率材料層の内部に屈折率1以上1.45未満の傾斜を持った低屈折率材料層を含ませるので、高屈折率材料層27は一体的に形成され重なる部分がないので、請求項1の発明の効果に加え、さらに光線の出射効率が向上する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係わる発光ダイオードの説明図。
【図2】本発明の第1の実施の形態における発光素子からの光線が円環状凸レンズからどのように出射されるかを示した光線追跡図。
【図3】本発明の第2の実施の形態に係わる発光ダイオードの説明図。
【図4】本発明の第2の実施の形態における発光素子からの光線が円環状凸レンズからどのように出射されるかを示した光線追跡図。
【図5】従来の発光ダイオードの側面図。
【図6】従来の凸レンズを有した発光ダイオードの側面図。
【符号の説明】
11…ベース基板、12a…金属製リードフレーム、13a…第1電極部、13b…第2電極部、14…発光素子、15…金属製ワイヤ、16…透明樹脂、17…凸レンズ、18…第1透明部材、19…第1空気層、20…凸部、21…第2透明部材、22…凹部、23…第2空気層、24…凹部、25…円環状凸レンズ、26…低屈折率材料層、27…高屈折率材料層、28…反射部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting diode used for a lighting device and the like.
[0002]
[Prior art]
2. Description of the Related Art In general, chip-type light emitting diodes are widely used as backlight light sources for liquid crystal display units of mobile phones and small electronic devices and light sources of various lighting devices. FIG. 5 is a side view of a conventional light emitting diode. The base substrate 11 and the reflection member 28 are integrally formed of a white resin, metal lead frames 12a and 12b are provided on both left and right sides of the base substrate 11, and a first electrode portion 13a formed on one of the lead frames 12a. The light emitting element 14 is mounted on the second lead frame 12b, and is connected to the second electrode portion 13b formed on the other lead frame 12b by the metal wire 15. Then, the metal wire and the upper part of the light emitting element 14 are covered with a transparent resin package.
[0003]
As described above, the light emitting element 14 which is a semiconductor chip is disposed on the first electrode portion 13a of the metal lead frame 12a disposed on the base substrate 11, and the light emitting element 14 is filled with the transparent resin 16 to form a resin. The light emitting element 14 is sealed in a package made of a light emitting diode. When the light distribution angle is reduced, a convex lens 17 is provided on the front surface of the transparent resin 15 as shown in FIG. 6, and the light from the light emitting element 14 is refracted by the convex lens 17 on the front surface to reduce the light distribution angle. Adjustments were being made.
[0004]
[Problems to be solved by the invention]
However, when the light is condensed by the convex lens 17 or the like, the distance between the light emitting element 14 and the convex lens 17 needs to be equal to or greater than the radius of the R surface of the convex lens 17.
[0005]
An object of the present invention is to provide a light emitting diode that can adjust a light distribution angle without increasing the thickness of the light emitting diode.
[0006]
[Means for Solving the Problems]
A light emitting diode according to the first aspect of the present invention includes a light emitting device disposed on a base substrate on which an electrode portion is formed; and forming a first air layer between the light emitting device and an upper portion of the light emitting device and the base substrate. A first transparent member having a convex portion on the opposite side facing the light emitting element; a concave portion fitted to the convex portion of the first transparent member on a side facing the first transparent member; and the first transparent member; A second transparent member having a surface in which a concave portion forming a second air layer is interposed therebetween; and an annular convex lens formed on a side of the second transparent member opposite to the first transparent member. And;
[0007]
In the present invention and the following inventions, definitions and technical meanings of terms are as follows unless otherwise specified.
[0008]
The base substrate is formed integrally with the reflection member using white resin, and the electrode portion is formed integrally with the lead frame. Then, the white resin and the lead frame are integrally molded. The light emitting element is a semiconductor chip, which emits light when power is supplied from the electrode portion.
[0009]
The first transparent member is formed of a transparent resin, covers an upper part of the light emitting element, and forms a first air layer between the first transparent member and the base substrate. Further, a convex portion is provided on the opposite side facing the light emitting element. The second transparent member is formed of a transparent resin, has a concave portion on the side facing the first transparent member, the concave portion being fitted to the convex portion of the first transparent member, and forms a second air space between the second transparent member and the first transparent member. And a concave portion. Further, an annular convex lens is formed on the opposite side of the second transparent member facing the first transparent member. The annular convex lens collects light rays and emits light rays to the outside.
[0010]
Therefore, the boundary surface where the first transparent member and the second transparent member are in contact with each other includes a fitting portion between the convex portion of the first transparent member and the concave portion of the second transparent member, and a portion where the second air tank is formed. Is obtained. Light rays from the light emitting element are incident on a boundary surface where the first transparent member and the second transparent member are in contact with each other, and light rays hitting the bottom of the second air layer at the boundary surface are totally reflected and incident on the first air layer. Then, the light is further totally reflected by the first air layer and is incident on a boundary surface where the first transparent member and the second transparent member come into contact with each other. On the other hand, a light beam hitting a fitting portion between the convex portion of the first transparent member and the concave portion of the second transparent member at the boundary surface where the first transparent member and the second transparent member come into contact passes through the fitting portion. And enters the second transparent member, is totally reflected by the inclined surface of the second air layer, is condensed by the annular convex lens, and is emitted to the outside.
[0011]
According to the present invention, since the total reflection is used, the reflection loss is small, and in order to adjust the light distribution angle, the radius of curvature of the front annular convex lens is changed or the concave portion for forming the second air layer is formed. It is possible to provide a light-emitting diode that can easily adjust the light distribution angle without attenuating the light rays from the light-emitting element and without increasing the thickness of the light-emitting diode.
[0012]
According to a second aspect of the present invention, in the light emitting diode according to the first aspect, a low refractive index material layer having a refractive index of 1 or more and less than 1.45 is provided in place of the first air layer and the second air layer. The first transparent member and the second transparent member are integrally formed of a high refractive index material layer having a refractive index of 1.45 or more and less than 2.
[0013]
According to the present invention, a low refractive index material layer having a refractive index of 1 or more and less than 1.45 is provided in place of the first air layer and the second air layer, and the first transparent member and the second transparent member are provided with a refractive index of 1.45. More than two and less than two high refractive index material layers are integrally formed.
[0014]
According to the present invention, the high-refractive-index material layer 27 is formed integrally and overlaps because the low-refractive-index material layer having a gradient of 1 or more and less than 1.45 is included in the high-refractive-index material layer. Since there is no portion, in addition to the effect of the first aspect, the light emission efficiency is further improved.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. FIG. 1 is an explanatory view of a light emitting diode according to a first embodiment of the present invention. FIG. 1 (a) is a plan view and FIG. 1 (b) is a side view. The base substrate 11 and the reflection member 28 are integrally formed of a white resin, and metal lead frames 12 a and 12 b are attached to both left and right sides of the base substrate 11. The light emitting element 14 is mounted and connected to the first electrode portion 13a formed on one lead frame 12a, and is connected to the second electrode portion 13b formed on the other lead frame 12b by the metal wire 15. . Thus, power is supplied to the light emitting element 14.
[0016]
The upper part of the light emitting element 14 is covered with the first transparent member 18. At this time, a first air layer 19 is formed between the first transparent member 18 and the base substrate 11 (lead frame 12). Further, a projection 20 is formed on the opposite side of the first transparent member 18 facing the light emitting element 14. Further, the upper part of the first transparent member 18 is covered with a second transparent member 21. On the side of the second transparent member 21 facing the first transparent member 18, there is provided a concave portion 22 that fits into the convex portion 20 of the first transparent member 18, and the second transparent member 21 and the first transparent member 18 are provided. A concave portion 24 for forming the second air layer 23 is provided between the first and second air layers. On the other hand, an annular convex lens 25 is provided on the opposite side of the second transparent member 21 facing the first transparent member 18. The annular convex lens 25 is provided to increase the light collecting property.
[0017]
As described above, the first air layer 19 is provided around the light emitting element 14 which is a point light source, and the annular projections (projections 20) are arranged at a certain interval on the opposite side of the first air layer 19. The transparent member 18 is provided, and the second transparent member 21 having the concave portion 22 having the same shape as the projection (convex portion 20) of the first transparent member 18 and the concave portion 24 forming the second air layer 23 is overlapped. Then, the convex portion 20 of the first transparent member 18 and the concave portion 22 of the second transparent member 21 are fitted together, and the second air layer 23 is formed.
[0018]
Therefore, the boundary surface where the first transparent member 18 and the second transparent member 21 come into contact with each other is formed by the fitting portion between the convex portion 20 of the first transparent member 18 and the concave portion 22 of the second transparent member 21 and the second air space. It becomes a composite surface with the portion where 23 is formed. An annular convex lens 25 for adjusting the light distribution angle is provided on the light exit side of the second transparent member 21.
[0019]
FIG. 2 is a ray tracing diagram showing how rays from the light emitting element 14 are emitted from the annular convex lens 25 in the first embodiment. Light rays make two major movements. First, the light beam from the light emitting element 14 strikes the bottom of the second air layer 23. In this case, the light ray is totally reflected by the second air layer 23, It is a light ray directed to the side surface. Then, the first air layer 19 on the light emitting element 14 side is also totally reflected, and the same is repeated when the reflected light hits the second air layer 23 again.
[0020]
Next, the second is a case where a light beam hits a portion where the convex portion 20 and the concave portion 22 overlap. In this case, the light beam from that portion enters the second transparent member 21 on the front surface and the second air The light is totally reflected upon hitting the inclined portion forming the layer 23, and the totally reflected light is emitted to the outside through the annular convex lens 25. In addition, the annular convex lens 25 is used to increase the light collecting property.
[0021]
According to the first embodiment, the light rays from the light emitting element 14 are ultimately condensed by the annular convex lens 25 using the total reflection in the first air layer 19 and the second air layer 23. Since the light beam is emitted to the outside, the reflection loss is small as a whole. Further, the light distribution angle can be adjusted by changing the radius of curvature of the annular convex lens 25 on the front surface or by changing the inclination angle of the concave portion 24 forming the second air layer 23. The angle can be adjusted.
Next, a second embodiment of the present invention will be described. FIG. 3 is an explanatory view of a light emitting diode according to a second embodiment of the present invention. FIG. 3 (a) is a plan view and FIG. 3 (b) is a side view. This second embodiment is different from the first embodiment shown in FIG. 1 in that a low refractive index material having a refractive index of 1 or more and less than 1.45 is used instead of the first air layer 19 and the second air layer 23. The layers 26a and 26b are provided, and the first transparent member 18 and the second transparent member 21 are integrally formed of a high refractive index material layer 27 having a refractive index of 1.45 or more and less than 2. The same elements as those shown in FIG. 1 and the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
[0022]
In FIG. 3, a low-refractive-index material layer 26a is formed instead of the first air layer 19 around the light emitting element 14 arranged on the first electrode portion 13a of the lead frame 12a of the base substrate 11, and on the upper portion thereof. The high refractive index material layer 27 is formed. The high-refractive-index material layer 27 embeds a low-refractive-index material in a high-refractive-index material, forms a low-refractive-index material layer 26b inside the high-refractive-index material layer 27, and forms the first transparent member 18 and the second transparent member. The member 21 is formed integrally. The low refractive index material layers 26a and 26b use a low refractive index material having a refractive index of 1 or more and less than 1.45, and the high refractive index material layer 27 has a high refractive index material having a refractive index of 1.45 or more and less than 2. Use
[0023]
FIG. 4 is a ray tracing diagram showing how rays from the light emitting element 14 are emitted from the annular convex lens 25 in the second embodiment. As in the case of the first embodiment, the light beam roughly divides into two movements. First, the light beam from the light emitting element 14 hits the bottom of the low-refractive-index material layer 26b. In this case, the light beam is totally reflected by the low-refractive-index material layer 26b. The light is directed toward the surface on the element 14 side. Then, the low-refractive-index material layer 26a on the side of the light-emitting element 14 is also totally reflected. When the reflected light hits the low-refractive-index material layer 26b again, the same is repeated. Next, in the second case, a light beam hits the inclined surface of the low refractive index material layer 26b. In this case, the light impinges on the inclined surface forming the low refractive index material layer 26b, and the light is totally reflected. The light exits through the annular convex lens 25 to the outside.
[0024]
In FIG. 4, since the high-refractive-index material layer 27 is formed integrally and has no overlapping portion, there is no loss in the overlapping portion, and the efficiency is further improved. Also in this case, the light distribution angle can be adjusted by changing the radius of curvature of the front annular convex lens 25 or by changing the inclination angle of the embedded low refractive index material layer 26b.
[0025]
According to the second embodiment, the light beam from the light emitting element 14 utilizes the total reflection in the low refractive index material layers 26a and 26b and is finally condensed by the annular convex lens 25 and emitted to the outside. The reflection loss is small as a whole. Further, since the high refractive index material layer 27 is formed integrally and has no overlapping portion, the efficiency is further improved. The light distribution angle can be easily adjusted by changing the radius of curvature of the front annular convex lens 25 or by changing the inclination angle of the concave portion 24 forming the low refractive index material layer 26b. The light angle can be adjusted.
[0026]
【The invention's effect】
As described above, according to the first aspect of the present invention, since the total reflection is used, the reflection loss is small, and in order to adjust the light distribution angle, the radius of curvature of the front annular convex lens is changed. Or by changing the inclination angle of the concave portion forming the second air layer, the light distribution angle can be easily adjusted without attenuating the light rays from the light emitting element and without increasing the thickness of the light emitting diode. An adjustable light emitting diode can be provided.
[0027]
According to the second aspect of the present invention, the high refractive index material layer 27 includes the low refractive index material layer having a gradient of 1 or more and less than 1.45 inside the high refractive index material layer. Since there is no overlapping part, the light emitting efficiency is further improved in addition to the effect of the first aspect of the present invention.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a light emitting diode according to a first embodiment of the present invention.
FIG. 2 is a ray tracing diagram showing how a ray from a light emitting element is emitted from an annular convex lens according to the first embodiment of the present invention.
FIG. 3 is an explanatory diagram of a light emitting diode according to a second embodiment of the present invention.
FIG. 4 is a ray tracing diagram showing how rays from a light emitting element are emitted from an annular convex lens according to a second embodiment of the present invention.
FIG. 5 is a side view of a conventional light emitting diode.
FIG. 6 is a side view of a light emitting diode having a conventional convex lens.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Base board, 12a ... Metal lead frame, 13a ... 1st electrode part, 13b ... 2nd electrode part, 14 ... Light emitting element, 15 ... Metal wire, 16 ... Transparent resin, 17 ... Convex lens, 18 ... 1st Transparent member, 19: first air layer, 20: convex portion, 21: second transparent member, 22: concave portion, 23: second air layer, 24: concave portion, 25: annular convex lens, 26: low refractive index material layer , 27: High refractive index material layer, 28: Reflecting member

Claims (2)

電極部が形成されたベース基板上に設置された発光素子と;
前記発光素子の上部を被覆し前記ベース基板との間に第1空気層を形成し前記発光素子に対面する反対側に凸部を有した第1透明部材と;
前記第1透明部材に対面する側に前記第1透明部材の凸部に嵌合する凹部と前記第1透明部材との間に第2空気層を形成する凹部とが複合された面を有した第2透明部材と;
前記第2透明部材の前記第1透明部材に対面する反対側に形成された円環状の凸レンズと;
を備えたことを特徴とする発光ダイオード。
A light emitting device installed on a base substrate on which an electrode unit is formed;
A first transparent member which covers an upper portion of the light emitting element, forms a first air layer between the light emitting element and the base substrate, and has a convex portion on a side opposite to the light emitting element;
On the side facing the first transparent member, there was provided a combined surface of a concave portion fitted to the convex portion of the first transparent member and a concave portion forming a second air layer between the first transparent member. A second transparent member;
An annular convex lens formed on the opposite side of the second transparent member facing the first transparent member;
A light emitting diode comprising:
前記第1空気層および前記第2空気層に代えて屈折率1以上1.45未満の低屈折率材料層を配設し、前記第1透明部材および前記第2透明部材を屈折率1.45以上2未満の高屈折率材料層で一体的に形成したことを特徴とする請求項1記載の発光ダイオード。A low refractive index material layer having a refractive index of 1 or more and less than 1.45 is provided in place of the first air layer and the second air layer, and the first transparent member and the second transparent member are provided with a refractive index of 1.45. 2. The light-emitting diode according to claim 1, wherein the light-emitting diode is formed integrally with at least two high refractive index material layers.
JP2003125078A 2003-04-30 2003-04-30 Light emitting diode Pending JP2004335524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125078A JP2004335524A (en) 2003-04-30 2003-04-30 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125078A JP2004335524A (en) 2003-04-30 2003-04-30 Light emitting diode

Publications (1)

Publication Number Publication Date
JP2004335524A true JP2004335524A (en) 2004-11-25

Family

ID=33502449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125078A Pending JP2004335524A (en) 2003-04-30 2003-04-30 Light emitting diode

Country Status (1)

Country Link
JP (1) JP2004335524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131050A1 (en) * 2008-04-24 2009-10-29 パナソニック電工株式会社 Light emitting unit with lens
US9411088B2 (en) 2005-08-24 2016-08-09 Koninklijke Philips N.V. Illumination module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9411088B2 (en) 2005-08-24 2016-08-09 Koninklijke Philips N.V. Illumination module
WO2009131050A1 (en) * 2008-04-24 2009-10-29 パナソニック電工株式会社 Light emitting unit with lens
JP2009266523A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Light-emitting unit with lens
CN102017199B (en) * 2008-04-24 2012-10-31 松下电器产业株式会社 Light emitting unit with lens
US8704256B2 (en) 2008-04-24 2014-04-22 Panasonic Corporation Lens-mounted light emitting unit

Similar Documents

Publication Publication Date Title
JP5647028B2 (en) Light emitting device and manufacturing method thereof
US7034343B1 (en) Dipolar side-emitting LED lens and LED module incorporating the same
KR100616598B1 (en) Light emitting diode lens and backlight module having the same
JP4182783B2 (en) LED package
JP4799341B2 (en) Lighting device
TWI426625B (en) Light emitting unit
US20100230693A1 (en) White light emitting diode package and method of making the same
JP2004363210A (en) Optical semiconductor device
RU2009103911A (en) LIGHTING DEVICE MODULE
JPWO2012144448A1 (en) Lens and light source unit
JP2020072264A (en) Lighting device and lighting module
TW201231874A (en) Tube luminescent retrofit using light emitting diodes
JP2012195350A (en) Light-emitting device and method of manufacturing the same
JP2012243641A (en) Light emitting device, and lighting device using the same
JP2004235337A (en) Light emitting diode
KR101239835B1 (en) Light emitting diode package with directional light pattern and liquid display device using the same
JP2006237321A (en) Light emitting diode
JP4239525B2 (en) Light emitting diode
JP2009027199A (en) Light-emitting diode
TWI240831B (en) Small-angle light-emitting device at specific positions for back light module of liquid crystal display
JP6021485B2 (en) Semiconductor light emitting device with optical member
TW201500776A (en) Lens and light source module with the same
JP4230198B2 (en) Planar light source and liquid crystal display device
JP2016213453A (en) Led module, and lamp using the same
JP2004335524A (en) Light emitting diode