JP2004335116A - Process for manufacturing bismuth 2212 superconductive compound multicore wire - Google Patents

Process for manufacturing bismuth 2212 superconductive compound multicore wire Download PDF

Info

Publication number
JP2004335116A
JP2004335116A JP2003124814A JP2003124814A JP2004335116A JP 2004335116 A JP2004335116 A JP 2004335116A JP 2003124814 A JP2003124814 A JP 2003124814A JP 2003124814 A JP2003124814 A JP 2003124814A JP 2004335116 A JP2004335116 A JP 2004335116A
Authority
JP
Japan
Prior art keywords
bismuth
oxide
silver
temperature
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003124814A
Other languages
Japanese (ja)
Other versions
JP4002975B2 (en
Inventor
Akiyoshi Matsumoto
明善 松本
Hitoshi Kitaguchi
仁 北口
Hiroaki Kumakura
浩明 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003124814A priority Critical patent/JP4002975B2/en
Publication of JP2004335116A publication Critical patent/JP2004335116A/en
Application granted granted Critical
Publication of JP4002975B2 publication Critical patent/JP4002975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a bismuth 2212 superconductive compound multi-core wire in which supercurrent stably flows and is improved in critical current density characteristic. <P>SOLUTION: When the bismuth 2212 oxide is annealed after partial melting to be made a superconductor, highest attained temperature in partial melting is made to a temperature of ≥0.6°C and ≤2°C with respect to the melting point of the bismuth 2212 oxide. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は、ビスマス2212超伝導複合多芯線材の製造方法に関するものである。さらに詳しくは、この出願の発明は、超伝導電流が安定して流れ、臨界電流密度特性の改善されたビスマス2212超伝導複合多芯線材を製造することのできるビスマス2212超伝導複合多芯線材の製造方法に関するものである。
【0002】
【従来の技術とその課題】
銀若しくは銀合金シース内に酸化物超伝導体が多数本埋め込まれた酸化物超伝導複合多芯線材については、比較的高い臨界電流密度特性を実現することが可能である(たとえば、特許文献1参照)。
【0003】
しかしながら、その臨界電流密度特性は、実用化が可能なほどには高くない。それというのも、酸化物超伝導体同士が銀若しくは銀合金シース内で結合し、結晶が粗大化してしまうからである。このように、酸化物超伝導複合多芯線材については、超伝導電流を安定的に流すために有効とされる多芯構造は可能であっても、多芯化によりもたらされる効果が十分に得られていないのが実情である。
【0004】
この出願の発明は、このような事情に鑑みてなされたものであり、超伝導電流が安定して流れ、臨界電流密度特性の改善されたビスマス2212超伝導複合多芯線材を製造することのできるビスマス2212超伝導複合多芯線材の製造方法を提供することを解決すべき課題としている。
【0005】
【特許文献1】
特開平11−329112号公報
【0006】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、銀若しくは銀合金により被覆されたビスマス2212酸化物の単芯線材を銀若しくは銀合金のシース内に複数本埋め込んだ後、ビスマス2212酸化物を超伝導体とするビスマス2212超伝導複合多芯線材の製造方法であり、ビスマス2212酸化物を部分溶融させた後徐冷して超伝導体とする際に、部分溶融時の最高到達温度をビスマス2212酸化物の融点より0.6℃以上2℃以下とすることを特徴とするビスマス2212超伝導複合多芯線材の製造方法(請求項1)を提供する。
【0007】
以下、実施例を示し、この出願の発明のビスマス2212超伝導複合多芯線材の製造方法についてさらに詳しく説明する。
【0008】
【発明の実施の形態】
この出願の発明のビスマス2212超伝導複合多芯線材の製造方法は、上述のとおり、銀若しくは銀合金により被覆されたビスマス2212酸化物の単芯線材を銀若しくは銀合金のシース内に複数本埋め込んだ後、ビスマス2212酸化物を超伝導体とする製造方法である。ここで、ビスマス2212酸化物とは、一般に知られているように、組成式BiSrCaCuで示され、適当な熱処理により臨界温度90K程度の超伝導体となる複合酸化物である。
【0009】
そして、この出願の発明のビスマス2212超伝導複合多芯線材の製造方法では、ビスマス2212酸化物を部分溶融させた後徐冷して超伝導体とする際に、部分溶融時の最高到達温度をビスマス2212酸化物の融点より0.6℃以上2℃以下とする。このように、ビスマス2212酸化物を部分溶融させる時の最高到達温度をビスマス2212酸化物の融点より0.6℃以上2℃以下の温度にする精密な熱処理を行うことにより、ビスマス2212超伝導体の結晶の粗大化が抑制され、多芯化されたビスマス2212超伝導体が互いに結合するのが抑制される。製造されるビスマス2212超伝導複合多芯線材は、超電流電流を安定して流すことができ、臨界電流密度特性が十分高く、実用に好ましいものとなる。
【0010】
なお、ビスマス2212酸化物の融点は、示差熱分析装置を用いて測定することができる。ビスマス2212酸化物が固相から液相に移る時、示差熱分析装置において吸熱のピークが観察され、その吸熱ピークの開始位置を融点とすることができる。ビスマス2212酸化物の融点は酸素分圧に依存する傾向にあり、酸素分圧が1気圧、0.2気圧、0.05気圧の時、融点は、それぞれ、881℃、871℃、861℃と測定される。
【0011】
この出願の発明のビスマス2212超電導複合多芯線材の製造方法において、銀合金の種類は特に制限されず、たとえばAg−Mg合金を例示することができる。このAg−Mg合金におけるMgの割合は、たとえば0.02〜0.5wt%が例示される。
【0012】
【実施例】
Bi、SrCO、CaCO、CuOの粉末をBi:Sr:Ca:Cu=2:2:1:2となるように配合し、この粉末に対して850℃で12時間の熱処理を行った。このように仮焼したビスマス2212粉末を銀若しくは銀合金のシースに詰め込み、圧延を行い、単芯線材を作製した。この単芯線材を多数本束ねて銀合金シース内に詰め込んだ後圧延を行った。以上の工程を繰り返し、線径1.0mmφ、多芯数127×7の多芯線材を作製した。作製した多芯線材を3−4cm程度に切断し、1気圧の酸素を常時流し続ける管状型電気炉内に配置した。この管状型電気炉は、±1℃の温度制御を可能としたものである。このような管状型電気炉において部分溶融−徐冷熱処理を行った。部分溶融−徐冷熱処理の温度パターンは、600℃で5時間放置した後、2時間で最高到達温度(Tmax)まで温度を上げ、その後、2℃/時間の冷却温度でTmax−60の温度まで徐冷し、次いで50℃/時間で200℃程度まで温度を下げた後、炉冷を行うものとした。そして、Tmaxを880.5℃〜886.4℃まで約1℃ずつ変化させ、線材を作製した。作製した各線材に4.2K、10Tの磁場中で電流を流し、臨界電流密度を測定した。臨界電流は、1μV/cmの電圧発生をクライテリオンとして決定した。
【0013】
図1は、各多芯線材の臨界電流値の熱処理温度依存性を示した図である。
【0014】
881℃まではまったく電流が流れないが、882.5℃で突然最高値の425Aの電流が流れ、Tmaxが882.5℃を超えると、臨界電流値は半分程度に下がることが確認された。
【0015】
その原因を調べるために、各温度で作製した多芯線材の長手方向の断面を観察した。その結果が図2の写真である。写真中の暗い領域がビスマス2212酸化物超伝導体であり、明るい領域が銀若しくは銀合金シースである。881.5℃の熱処理ではビスマス2212超伝導体は溶融していない。したがって、電流が流れるために必要な結晶粒間の結合が不十分であり、電流が流れなかったと考察される。882.3℃の熱処理では隣接するビスマス2212超伝導体同士の結合が少なく、臨界電流を安定に流すことができたと理解される。886.4℃の熱処理では隣接するビスマス2212超伝導体が結合し、結晶粒の粗大化が起こることが確認される。このように結晶粒が粗大化すると、超伝導電流の流れが不均一となり、安定した電流を流すことができず、また、不純物等が生成し、臨界電流密度の低下を引き起こす。
【0016】
以上から、ビスマス2212酸化物を超伝導体とする際の部分溶融−徐冷処理において、部分溶融時の最高到達温度をビスマス2212酸化物の融点より0.6℃以上2℃以下とすることが、臨界電流が安定して流れ、臨界電流密度特性を改善させるために有効であると実証された。
【0017】
もちろん、この出願の発明は、以上の実施形態及び実施例によって限定されるものではない。多芯線材の構造、シース用の銀合金の種類等の細部については様々な態様が可能であることはいうまでもない。
【0018】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、超伝導電流が安定して流れ、臨界電流密度特性の改善されたビスマス2212超伝導複合多芯線材が提供される。
【図面の簡単な説明】
【図1】部分溶融時の最高到達温度と臨界電流との関係を示した図である。
【図2】部分溶融時の最高到達温度を881.5℃、882.3℃、886.4℃として得られた多芯線材の長手方向の断面組織を示した写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a method for producing a bismuth 2212 superconducting composite multifilamentary wire. More specifically, the invention of this application relates to a bismuth 2212 superconducting composite multifilamentary wire capable of producing a bismuth 2212 superconducting composite multifilamentary wire having a stable supercurrent flow and an improved critical current density characteristic. It relates to a manufacturing method.
[0002]
[Prior art and its problems]
An oxide superconducting composite multifilamentary wire in which a number of oxide superconductors are embedded in a silver or silver alloy sheath can achieve relatively high critical current density characteristics (for example, Patent Document 1). reference).
[0003]
However, its critical current density characteristics are not high enough to be practical. This is because the oxide superconductors are bonded together in the silver or silver alloy sheath and the crystal becomes coarse. As described above, for the oxide superconducting composite multifilamentary wire, although the multifilamentary structure that is effective for stably flowing the superconducting current is possible, the effect brought by the multifilamentation is sufficiently obtained. The fact is that it has not been done.
[0004]
The invention of this application has been made in view of such circumstances, and it is possible to manufacture a bismuth 2212 superconducting composite multifilamentary wire in which a superconducting current flows stably and the critical current density characteristics are improved. An object of the present invention is to provide a method for manufacturing a bismuth 2212 superconducting composite multifilamentary wire.
[0005]
[Patent Document 1]
JP-A-11-329112
[Means for Solving the Problems]
The invention of this application solves the above problem by embedding a plurality of bismuth 2212 oxide single-core wires coated with silver or a silver alloy in a silver or silver alloy sheath, and then applying the bismuth 2212 oxide. Is a method for producing a bismuth 2212 superconducting composite multifilamentary wire using a superconductor as a superconductor. A method for producing a bismuth 2212 superconducting composite multifilamentary wire, wherein the melting point of the bismuth 2212 oxide is 0.6 ° C. or more and 2 ° C. or less, is provided.
[0007]
Hereinafter, examples will be shown, and the method for producing the bismuth 2212 superconducting composite multifilamentary wire of the present invention will be described in more detail.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, the bismuth 2212 superconducting composite multifilamentary wire manufacturing method of the invention of this application embeds a plurality of bismuth 2212 oxide single core wires coated with silver or a silver alloy in a silver or silver alloy sheath. After that, the manufacturing method uses bismuth 2212 oxide as a superconductor. Here, the bismuth 2212 oxide is, as generally known, a compound oxide represented by a composition formula Bi 2 Sr 2 Ca 1 Cu 2 O x which becomes a superconductor having a critical temperature of about 90 K by appropriate heat treatment. Things.
[0009]
In the method for producing a bismuth 2212 superconducting composite multifilamentary wire according to the invention of the present application, when the bismuth 2212 oxide is partially melted and then gradually cooled to obtain a superconductor, the highest ultimate temperature at the time of partial melting is reduced. The melting point of bismuth 2212 oxide is set to 0.6 ° C. or more and 2 ° C. or less. As described above, by performing a precise heat treatment to set the maximum temperature at which the bismuth 2212 oxide is partially melted to a temperature of 0.6 ° C. or more and 2 ° C. or less from the melting point of the bismuth 2212 oxide, the bismuth 2212 superconductor is obtained. Is suppressed, and the bonding of the multi-core bismuth 2212 superconductors to each other is suppressed. The manufactured bismuth 2212 superconducting composite multifilamentary wire can stably flow a supercurrent, and has sufficiently high critical current density characteristics, which is preferable for practical use.
[0010]
Note that the melting point of the bismuth 2212 oxide can be measured using a differential thermal analyzer. When the bismuth 2212 oxide moves from the solid phase to the liquid phase, an endothermic peak is observed in the differential thermal analyzer, and the starting position of the endothermic peak can be used as the melting point. The melting point of bismuth 2212 oxide tends to depend on the oxygen partial pressure. When the oxygen partial pressure is 1 atm, 0.2 atm, and 0.05 atm, the melting points are 881 ° C, 871 ° C, and 861 ° C, respectively. Measured.
[0011]
In the method of manufacturing the bismuth 2212 superconducting composite multifilamentary wire of the invention of the present application, the type of silver alloy is not particularly limited, and examples thereof include an Ag-Mg alloy. The ratio of Mg in the Ag-Mg alloy is, for example, 0.02 to 0.5 wt%.
[0012]
【Example】
Bi 2 O 3 , SrCO 3 , CaCO 3 , and CuO powders are blended so that Bi: Sr: Ca: Cu = 2: 2: 1: 2, and this powder is subjected to a heat treatment at 850 ° C. for 12 hours. went. The bismuth 2212 powder calcined in this manner was packed in a silver or silver alloy sheath and rolled to produce a single core wire. A large number of the single-core wires were bundled, packed in a silver alloy sheath, and then rolled. The above steps were repeated to prepare a multifilamentary wire having a wire diameter of 1.0 mmφ and a multifilamentary number of 127 × 7. The produced multifilamentary wire was cut into about 3 to 4 cm, and placed in a tubular electric furnace in which oxygen at 1 atm was constantly flowing. This tubular electric furnace enables temperature control of ± 1 ° C. Partial melting-annealing heat treatment was performed in such a tubular electric furnace. The temperature pattern of the partial melting-annealing heat treatment is as follows: after leaving at 600 ° C. for 5 hours, the temperature is raised to the maximum attained temperature (T max ) in 2 hours, and then T max −60 at a cooling temperature of 2 ° C./hour. After gradually cooling to a temperature and then decreasing the temperature to about 200 ° C. at 50 ° C./hour, the furnace was cooled. And Tmax was changed by about 1 degreeC from 880.5 degreeC to 886.4 degreeC by 1 degree, and the wire was produced. A current was passed through each of the produced wires in a magnetic field of 4.2 K and 10 T, and the critical current density was measured. The critical current was determined as a voltage of 1 μV / cm as a criterion.
[0013]
FIG. 1 is a diagram showing the heat treatment temperature dependence of the critical current value of each multifilamentary wire.
[0014]
No current flows at all up to 881 ° C., but it was confirmed that the maximum current of 425 A suddenly flowed at 882.5 ° C., and when T max exceeded 882.5 ° C., the critical current value was reduced to about half. .
[0015]
In order to investigate the cause, cross sections in the longitudinal direction of the multifilamentary wire manufactured at each temperature were observed. The result is the photograph of FIG. The dark area in the photograph is the bismuth 2212 oxide superconductor, and the bright area is the silver or silver alloy sheath. The bismuth 2212 superconductor was not melted by the heat treatment at 881.5 ° C. Therefore, it is considered that the coupling between the crystal grains necessary for the current to flow is insufficient, and the current did not flow. It is understood that the heat treatment at 882.3 ° C. has little coupling between adjacent bismuth 2212 superconductors, and a critical current can be stably passed. In the heat treatment at 886.4 ° C., it is confirmed that the adjacent bismuth 2212 superconductors are bonded and the crystal grains are coarsened. When the crystal grains are coarsened in this way, the flow of the superconducting current becomes non-uniform, a stable current cannot be passed, and impurities and the like are generated, which causes a decrease in the critical current density.
[0016]
From the above, in the partial melting and slow cooling treatment when bismuth 2212 oxide is used as a superconductor, the highest temperature at the time of partial melting is set to be 0.6 ° C. or more and 2 ° C. or less from the melting point of bismuth 2212 oxide. It has been proved that the critical current flows stably and is effective for improving the critical current density characteristics.
[0017]
Of course, the invention of this application is not limited by the above embodiments and examples. It goes without saying that various aspects are possible for details such as the structure of the multifilamentary wire and the type of silver alloy for the sheath.
[0018]
【The invention's effect】
As described in detail above, the invention of this application provides a bismuth 2212 superconducting composite multifilamentary wire in which the superconducting current flows stably and the critical current density characteristics are improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a maximum temperature reached during partial melting and a critical current.
FIG. 2 is a photograph showing a cross-sectional structure in the longitudinal direction of a multifilamentary wire obtained at a maximum ultimate temperature of 881.5 ° C., 882.3 ° C., and 886.4 ° C. upon partial melting.

Claims (1)

銀若しくは銀合金により被覆されたビスマス2212酸化物の単芯線材を銀若しくは銀合金のシース内に複数本埋め込んだ後、ビスマス2212酸化物を超伝導体とするビスマス2212超伝導複合多芯線材の製造方法であり、ビスマス2212酸化物を部分溶融させた後徐冷して超伝導体とする際に、部分溶融時の最高到達温度をビスマス2212酸化物の融点より0.6℃以上2℃以下とすることを特徴とするビスマス2212超伝導複合多芯線材の製造方法。After a plurality of single-core wires of bismuth 2212 oxide coated with silver or a silver alloy are embedded in a sheath of silver or silver alloy, a bismuth 2212 superconducting composite multi-core wire having bismuth 2212 oxide as a superconductor is used. When the bismuth 2212 oxide is partially melted and then gradually cooled to obtain a superconductor, the highest temperature at the time of partial melting is 0.6 ° C. or more and 2 ° C. or less from the melting point of bismuth 2212 oxide. A method for producing a bismuth 2212 superconducting composite multifilamentary wire, characterized in that:
JP2003124814A 2003-04-30 2003-04-30 Manufacturing method of bismuth 2212 superconducting composite multi-core wire Expired - Lifetime JP4002975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124814A JP4002975B2 (en) 2003-04-30 2003-04-30 Manufacturing method of bismuth 2212 superconducting composite multi-core wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124814A JP4002975B2 (en) 2003-04-30 2003-04-30 Manufacturing method of bismuth 2212 superconducting composite multi-core wire

Publications (2)

Publication Number Publication Date
JP2004335116A true JP2004335116A (en) 2004-11-25
JP4002975B2 JP4002975B2 (en) 2007-11-07

Family

ID=33502252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124814A Expired - Lifetime JP4002975B2 (en) 2003-04-30 2003-04-30 Manufacturing method of bismuth 2212 superconducting composite multi-core wire

Country Status (1)

Country Link
JP (1) JP4002975B2 (en)

Also Published As

Publication number Publication date
JP4002975B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP3587956B2 (en) Oxide superconducting wire and its manufacturing method
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JP2003298129A (en) Superconducting member
JP4111240B1 (en) Oxide superconducting material, manufacturing method thereof, superconducting wire, superconducting equipment
JP4002975B2 (en) Manufacturing method of bismuth 2212 superconducting composite multi-core wire
JP2006260854A (en) Manufacturing method of superconductive wire rod
JPWO2005001852A1 (en) Bismuth oxide superconducting wire and method for producing the same
JP2004158448A (en) Superconducting cable conductor having rebco-coated conductor element
JP2007149416A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
JPH06139848A (en) Manufacture of oxide high-temperature superconducting wire rod
JP4211454B2 (en) Method for producing bismuth oxide superconducting wire
JPH06275146A (en) Composite superconducting wire
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
JP4496902B2 (en) Superconducting wire manufacturing method
JP2006236652A (en) Oxide superconducting wire material with stabilizing layer and manufacturing method of the same
KR100821209B1 (en) Manufacturing method of high temperature superconductor thick films by using cu-free precursors on ni substrates
JP2004296253A (en) Manufacturing method of bismuth based oxide superconducting wire rod
JPH03102717A (en) Manufacture of conductor for current lead
JPH01123405A (en) Manufacture of superconducting power lead
JP3044732B2 (en) Method for producing bismuth-based oxide superconductor
JP2006107843A (en) Tape-shaped superconductive wire
JPH01163913A (en) Manufacture of oxide superconductive wire
JPS63225410A (en) Compound superconductive wire and its manufacture
JP2004214020A (en) Method of manufacturing nb3sn wire rod
JPH03163714A (en) Manufacture of oxide superconductive conductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Ref document number: 4002975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term