JP2004333265A - Method and apparatus for continuously measuring temperature dependence characteristics of electric electronic component - Google Patents

Method and apparatus for continuously measuring temperature dependence characteristics of electric electronic component Download PDF

Info

Publication number
JP2004333265A
JP2004333265A JP2003128811A JP2003128811A JP2004333265A JP 2004333265 A JP2004333265 A JP 2004333265A JP 2003128811 A JP2003128811 A JP 2003128811A JP 2003128811 A JP2003128811 A JP 2003128811A JP 2004333265 A JP2004333265 A JP 2004333265A
Authority
JP
Japan
Prior art keywords
temperature
electric
electronic component
measuring
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003128811A
Other languages
Japanese (ja)
Inventor
Michio Takahashi
道生 高橋
Daisuke Nishide
大亮 西出
Tetsuya Kodama
哲也 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2003128811A priority Critical patent/JP2004333265A/en
Publication of JP2004333265A publication Critical patent/JP2004333265A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem where a plurality of units must be prepared if a material to be measured is measured under a plurality of temperature conditions or a measuring efficiency is intended to be raised though a heat transfer to a gas atmosphere is used as a method for heating the material to a predetermined temperature, an increase in size of an apparatus is required, and a product cost is raised by the introduction of an increasing in a measuring cost. <P>SOLUTION: A method for continuously measuring the temperature dependence characteristics of electric electronic component at different temperatures includes steps of bringing a heater or a cooler into contact with the electric electronic component and controlling the same. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気電子部品の電気的特性の温度依存特性を測定するもので、複数の温度範囲の特性を連続して測定する方法およびその装置に関するものである。
【0002】
【従来の技術】
一般に電気電子部品の電気抵抗などの電気的特性を測定する場合、測定自体は短時間で行われるが、その測定条件を整える為に時間が長くかかっている。つまり、温度が変化している状態や複数の温度で連続的に被測定物の温度依存特性を測定しようとすると、被測定物を所定の温度へ加熱若しくは冷却するのに要する時間が、測定時間の中で支配的となる。
したがって、単位時間当たりの測定数量を上げて、測定効率を高めようとする場合には、如何に被測定物を効率よく所定温度へ加熱若しくは冷却するかが重要となる。
【0003】
従来、前記測定効率を高める手段として、(1)測定温度になっている炉に、被測定物を挿入し、被測定物が測定温度になったときに電気的特性を測定する方法(例えば、特許文献1参照)、(2)直接、被測定物へ所定温度に設定された温風を吹き付けることで被測定物を測定温度に調節した後に電気的特性を測定する方法(例えば、特許文献2参照)などが提案されてきている。
【0004】
【特許文献1】
特開平5−206244号公報
【特許文献2】
特開平8−166423号公報
【0005】
【発明が解決しようとする課題】
前記(1)においては、加熱媒体として気体を用いた被測定物への熱伝達により被測定物が測定温度へ加熱される。即ち、炉内で気体が所定温度に均一に加熱され、その気体と被測定物間で被測定物全体が均一な所定温度になるまで熱伝達がなされる。
しかしながら、加熱媒体である気体と固体である被測定物間の熱伝達は、両者間の熱伝達係数が小さいことから所定温度への加熱に時間が掛かるという問題がある。
【0006】
複数の被測定物の温度依存特性を連続して測定する場合、前記(1)で示すように複数の被測定物を炉内に置いて加熱した後に温度依存特性を測定する。
しかしながら、異なる複数温度の温度依存特性を測定する場合、温度条件の数だけ炉内温度を変えた炉を準備しなくてはならず装置が大掛かりになる。そして、単位時間当たりの測定数量を多くしようとする場合、使用する炉が大型化してしまう問題が生じる。
【0007】
前記(2)で示す所定温度の加熱媒体を直接、被測定物に吹き付けることで加熱を行う方法によれば測定温度まで短時間且つ正確に加熱することができる。
しかしながら、単位時間当たりの測定速度を上げるには、加熱ノズルの数を増やすことや加熱源の数を増やす必要がある。更に、異なる温度の温度依存特性を測定しようとする場合、測定する温度に設定されている加熱源を必要数準備しなくてはならないために測定装置の大型化が避けられない。
【0008】
【課題を解決するための手段】
本発明は上記従来技術における問題に鑑みなされたもので、本発明によれば、被測定物を所定温度へ迅速、正確かつ均一に加熱若しくは冷却することが、更に、測定装置の大型化も防いで、測定費用の低廉化を可能とした電気電子部品の温度依存特性を連続測定する方法及び温度依存特性連続測定装置を提供することを目的とする。
【0009】
請求項1記載発明は、電気電子部品の温度依存特性を異なる温度で連続して測定する方法において、前記電気電子部品の温度を、前記電気電子部品に加熱体又は冷却体を接触させて制御することを特徴とする電気電子部品の温度依存特性を連続測定する方法である。
【0010】
請求項2記載発明は、前記電気電子部品に加熱体又は冷却体を接触させる前に、前記電気電子部品を予熱又は予冷しておくことを特徴とする請求項1記載の電気電子部品の温度依存特性を連続測定する方法である。
【0011】
請求項3記載発明は、加熱体又は冷却体と電気電子部品の接触面に緩衝部材を設けることを特徴とする請求項1又は請求項2記載の電気電子部品の温度依存特性を連続測定する方法である。
【0012】
請求項4記載発明は、電気電子部品を搬送するための搬送具と該搬送される電気電子部品に接触させて前記電気電子部品を所定温度に制御するための加熱体又は冷却体と前記所定温度に制御された電気電子部品の温度依存特性を測定するための測定具を備えたことを特徴とする電気電子部品の温度依存特性連続測定装置である。
【0013】
請求項5記載発明は、前記加熱体又は冷却体が制御温度ごとに対をなして配置されていて、前記対をなす加熱体又は冷却体が、前記電気電子部品を挟んで、前記電気電子部品の温度を制御することを特徴とする請求項4記載の電気電子部品の温度依存特性連続測定装置である。
【0014】
請求項6記載発明は、前記搬送具、前記加熱体又は冷却体、及び前記測定具が、断熱容器内に配されていることを特徴とする請求項4又は請求項5記載の電気電子部品の温度依存特性連続測定装置である。
【0015】
【発明の実施の形態】
以下に図1〜5を参照して本発明を具体的に説明する。
図1は本発明に係る温度依存特性を連続測定する測定装置の実施形態を示すシステム概略の側面図である。
図1において、測定装置1は被測定物2を挟んで被測定物2に接触できるように構成されて、上方加熱体3aと下方加熱体3bで一対となる加熱体3及びその前段部に配置される前記加熱体3と同温度若しくはやや低温に温度設定された上方予熱体4aと下方予熱体4bとで一対となる予熱体4が直列に配置されている。上方加熱体3aと上方予熱体4aは上下移動し、下方加熱体3bと下方予熱体4bは固定されている。上方加熱体3aには被測定物2の電気的特性を測定する温度依存特性測定用プローブ5が組み込まれている。
図1において、6は加熱体3の温度を制御する装置、7aは被測定物を搬送する搬送治具、7bは搬送を制御する装置、8は温度依存特性を測定する装置、9は測定全体の制御を行う装置である。
【0016】
図2は、加熱体3や予熱体4で使用される加熱用ヒーターの構成図で、上下移動型の加熱体における下方加熱体3bの例を示している。
この下方加熱体3bは、加熱源としてシート状ヒーター11aを配し、該シート状ヒーター11aの上面に緩衝材11bが、その下面にはヒーター部基材11cが配置されている。
緩衝材11bは、多数の被測定物2を測定する場合、被測定物2の高さが個々に異なる場合に起こるシート状ヒーター11aとの接触不良を回避する働きを示す。例えばシリコンラバーが使用でき、ヒーター部基材11cには例えばベークライトが使用できるが、これらの材質は何ら限定すべきものでなく搬送時の振動を嫌う被測定物2の場合にはポリテトラフルオルエチレンなどの低摩擦係数の材料を使用できる。なお、図2において11dは加熱体の温度を測定する熱電対を示し、11eは加熱用のヒーター線を示している。
【0017】
図3(a)は本発明の加熱体3と予熱体4の全体説明図で、図3(b)、(c)は、被測定物2の加熱及び温度依存特性を測定する時の加熱体3の動作説明図である。
例えば、第1の予熱体4の温度を60℃にし、測定を行う第1の加熱体3の温度を80℃とし、第2の予熱体4の温度を100℃、測定を行う第2の加熱体3の温度を120℃として被測定物2の80℃及び120℃の時の電気的特性を測定するものとする。
【0018】
先ず、加熱体3、予熱体4を前記温度に設定する。次に、被測定物2を搬送治具7aにより入り口から80℃の加熱体3の位置まで搬送する。この際、被測定物2は80℃の予熱体4により80℃近辺まで加熱される。次に、80℃の加熱体3の上方加熱体3aと下方加熱体3bが被測定物2を挟み、被測定物2に上方加熱体3a及び下方加熱体3bを接触させ、被測定物2の温度を80℃まで上げる。なお、加熱体3は単独又は連なる複数の加熱体3及び予熱体4と共に動作して被測定物2と接触しても良い。
【0019】
被測定物2の温度が80℃に達した後、温度依存測定用プローブ5を被測定物2に接触させて、被測定物2の電気的特性を測定する。しかる後に、上方加熱体3aを移動させて被測定物2から離す。次に、搬送治具7aにより被測定物2を次の120℃の加熱体へと移動させる。前記操作を繰返して順次被測定物2の温度依存特性を測定するものである。なお、温度依存特性の測定は、測定温度に到達後、若しくは、測定温度に到達するまでの加熱又は冷却時にも行うことができる。
【0020】
ところで、予熱体4を加熱体3の前後段又は周囲に配置することは、被測定物2を加熱体3に接触させて加熱する前に、被測定物2が予熱体4により予熱され、加熱体3での測定温度への加熱時間が短縮でき、単位時間当たりの測定数量を大きくすることができる。また、熱の緩衝部としての機能もあり、両測定部の被測定物2に対する熱影響を抑制して被測定物2の温度の乱れを小さくする効果を示す。なお、予熱体4の温度は、加熱体3の温度と同温度若しくはやや低めの場合に前記効果が大きい。
ここでは、加熱体3及び予熱体4は上下に動く例を示しているが、左右開閉型でもよい。
【0021】
図4(a)、(b)は、本発明に係る熱流入出防止機構の概略図である。
前記測定装置1は被測定物2の搬送時には、加熱体3と被測定物2とを離してから被測定物2を搬送するために、周囲の大気の影響を受けて温度の変動を生じることがあり測定効率を低下させる要因になる。そこで、図4(a)に示されるような加熱体3や予熱体4の側面にカバー12aを取り付けることで周囲空気の流入、内部空気の流出を防いで温度の変動を抑える。カバーは、一段だけでなく図4(b)のように複数段設けたラビリンス型12bとすることでより一層の温度変動防止ができる。また、測定装置1の加熱体3及び予熱体4全体を覆っても良い。
【0022】
図5(a)〜(c)は前記実施例と異なる他の実施形態を示している。
前記実施例では温度依存特性を測定する加熱体3の間に設けられる予熱体4は一つずつであったが、図5(a)に示すように80℃、120℃の加熱体3の間に、100℃、120℃の2つの予熱体4を設けてもよく、図5(b)のように、80℃、120℃の加熱体3の間に、2つの予熱体4を設けると、120℃の加熱体3の後段に120℃の予熱体4を設けてもよい。また、図5(c)のように80℃、120℃の加熱体3の間に、全長の短い予熱体4を設けても被測定物2の温度をより良好に制御することができる。なお、予熱体4の数や温度依存特性を測定する加熱体3の数や組合せは、前記実施例に限定されるものでなく、増やすことも減らすこともできる。
【0023】
上記実施例では、被測定物を加熱する場合について説明したが、冷却する場合も同様であり、予冷体は、通常、測定温度と同温度か、やや高めに設定すると前記効果が大きい。
【0024】
更に、本発明による測定装置は、対流により加熱を行う従来の測定装置に比べて、被測定物を直接加熱もしくは冷却するので、その加熱効率もしくは冷却効率を顕著に高めることができるために従来の測定装置より、その全長を1/6程度に大幅に短くすることができる。
【0025】
【発明の効果】
以上に説明したように、本発明による電気電子部品の温度依存特性を連続して測定する方法によれば、所定温度に被測定物を迅速、正確かつ均一に加熱もしくは冷却することができ、異なる複数温度の温度依存特性の測定を容易にする。更に、本発明による電気電子部品の温度依存特性を連続して測定する装置は、測定時間の短縮や測定装置の大型化を防いで、測定費用の低廉化を促す効果を示すものであり、工業上顕著な効果を奏するものである
【図面の簡単な説明】
【図1】温度依存特性を連続測定する測定装置のシステム概略の側面図である。
【図2】本発明に係る下方加熱体の構成図である。
【図3】(a)測定装置1の加熱に係る説明図である。
(b)被測定物を搬送する時の加熱体の状態を示した図である。
(c)被測定物の加熱及び温度依存特性を測定する時の加熱体の状態を示した図である。
【図4】(a)カバー型熱流入出防止機構概略図である。
(b)ラビリンス型熱流入出防止機構概略図である。
【図5】本発明に係る加熱体における他の実施例の説明図である。
【符号の説明】
1 温度依存特性連続測定装置
2 被測定物
3 加熱体
3a 上方加熱体
3b 下方加熱体
4 予熱体
4a 上方予熱体
4b 下方予熱体
5 温度依存特性測定プローブ
6 温度制御装置
7a 搬送治具
7b 搬送制御装置
8 温度依存特性測定装置
9 測定制御装置
10 緩衝材
11a シート状ヒーター
11b シリコンラバー
11c ヒート部基材
11d 熱電対
11e ヒーター線
12a 熱遮断カバー
12b 熱遮断ラビリンス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring the temperature-dependent characteristics of electric characteristics of an electric / electronic component, and more particularly to a method and apparatus for continuously measuring characteristics in a plurality of temperature ranges.
[0002]
[Prior art]
Generally, when measuring electrical characteristics such as electrical resistance of electrical and electronic components, the measurement itself is performed in a short time, but it takes a long time to adjust the measurement conditions. In other words, when the temperature-dependent characteristics of the device under test are continuously measured in a state where the temperature is changing or at a plurality of temperatures, the time required to heat or cool the device under test to a predetermined temperature is increased by the measurement time. Dominates in
Therefore, when trying to increase the measurement efficiency by increasing the number of measurements per unit time, it is important how to efficiently heat or cool the object to be measured to a predetermined temperature.
[0003]
Conventionally, as means for increasing the measurement efficiency, (1) a method in which an object to be measured is inserted into a furnace at a measurement temperature and an electrical characteristic is measured when the object to be measured reaches the measurement temperature (for example, (See Patent Literature 1), (2) A method of measuring electrical characteristics after adjusting an object to be measured by directly blowing hot air at a predetermined temperature to the object to be measured (for example, Patent Document 2) Reference) has been proposed.
[0004]
[Patent Document 1]
JP-A-5-206244 [Patent Document 2]
JP-A-8-166423
[Problems to be solved by the invention]
In the above (1), the object to be measured is heated to the measurement temperature by heat transfer to the object to be measured using gas as the heating medium. That is, the gas is uniformly heated to a predetermined temperature in the furnace, and heat is transferred between the gas and the object until the entire object to be measured reaches a uniform predetermined temperature.
However, the heat transfer between the gas as the heating medium and the solid object to be measured has a problem that it takes a long time to heat to a predetermined temperature because the heat transfer coefficient between the two is small.
[0006]
When continuously measuring the temperature-dependent characteristics of a plurality of DUTs, the temperature-dependent characteristics are measured after the plurality of DUTs are placed in a furnace and heated as shown in (1).
However, when measuring the temperature-dependent characteristics of a plurality of different temperatures, it is necessary to prepare a furnace in which the temperature in the furnace is changed by the number of temperature conditions, and the apparatus becomes large-scale. And, when trying to increase the measurement quantity per unit time, there is a problem that the furnace to be used becomes large.
[0007]
According to the method of heating by directly spraying the heating medium of the predetermined temperature on the object to be measured as described in (2) above, it is possible to quickly and accurately heat to the measurement temperature.
However, in order to increase the measurement speed per unit time, it is necessary to increase the number of heating nozzles and the number of heating sources. Further, when trying to measure the temperature-dependent characteristics of different temperatures, it is necessary to prepare a necessary number of heating sources set to the temperature to be measured, so that the measurement device is inevitably increased in size.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of the above-mentioned problems in the related art, and according to the present invention, an object to be measured can be quickly or accurately and uniformly heated or cooled to a predetermined temperature, and further, an increase in the size of the measuring apparatus can be prevented. SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for continuously measuring the temperature-dependent characteristics of electric and electronic components and a continuous temperature-dependent characteristic measuring apparatus which can reduce the measurement cost.
[0009]
According to a first aspect of the present invention, in the method for continuously measuring the temperature-dependent characteristics of the electric / electronic component at different temperatures, the temperature of the electric / electronic component is controlled by bringing a heating element or a cooling element into contact with the electric / electronic component. This is a method for continuously measuring the temperature-dependent characteristics of electric and electronic components.
[0010]
The invention according to claim 2 is characterized in that the electric / electronic component is pre-heated or pre-cooled before a heating or cooling body is brought into contact with the electric / electronic component. This is a method for continuously measuring characteristics.
[0011]
According to a third aspect of the present invention, there is provided a method for continuously measuring a temperature-dependent characteristic of an electric / electronic component according to the first or second aspect, wherein a buffer member is provided on a contact surface between the heating or cooling body and the electric / electronic component. It is.
[0012]
According to a fourth aspect of the present invention, there is provided a carrier for transporting electric and electronic components, a heating element or a cooling element for controlling the electric and electronic components to a predetermined temperature by contacting the transported electric and electronic components, and the predetermined temperature. A temperature-dependent characteristic measuring device for measuring the temperature-dependent characteristics of the electric and electronic components controlled by the electronic component.
[0013]
The invention according to claim 5, wherein the heating element or the cooling element is arranged in pairs for each control temperature, and the heating element or the cooling element forming the pair sandwiches the electric or electronic component, and 5. The apparatus according to claim 4, wherein the temperature is controlled.
[0014]
According to a sixth aspect of the present invention, there is provided the electric / electronic component according to the fourth or fifth aspect, wherein the carrier, the heating element or the cooling element, and the measuring instrument are arranged in a heat insulating container. This is a continuous measurement device for temperature-dependent characteristics.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described with reference to FIGS.
FIG. 1 is a schematic side view of a system showing an embodiment of a measuring device for continuously measuring temperature-dependent characteristics according to the present invention.
In FIG. 1, a measuring device 1 is configured so as to be able to contact an object 2 with an object 2 interposed therebetween, and is arranged in a pair of a heating element 3 composed of an upper heating element 3a and a lower heating element 3b, and a front stage thereof. A pair of preheaters 4 is arranged in series with an upper preheater 4a and a lower preheater 4b whose temperature is set to the same or slightly lower than that of the heater 3 to be heated. The upper heating body 3a and the upper preheating body 4a move up and down, and the lower heating body 3b and the lower preheating body 4b are fixed. A temperature-dependent characteristic measuring probe 5 for measuring the electric characteristics of the device under test 2 is incorporated in the upper heating body 3a.
In FIG. 1, 6 is a device for controlling the temperature of the heating element 3, 7a is a transport jig for transporting an object to be measured, 7b is a device for controlling transport, 8 is a device for measuring temperature-dependent characteristics, and 9 is the entire measurement. Is a device for controlling the above.
[0016]
FIG. 2 is a configuration diagram of a heating heater used in the heating body 3 and the preheating body 4, and shows an example of a lower heating body 3b in a vertically moving heating body.
The lower heater 3b has a sheet-like heater 11a as a heating source, a buffer 11b on the upper surface of the sheet-like heater 11a, and a heater base 11c on the lower surface.
The cushioning member 11b has a function of avoiding poor contact with the sheet-shaped heater 11a when a large number of the DUTs 2 are measured when measuring a large number of DUTs 2. For example, silicon rubber can be used, and for example, bakelite can be used for the heater base material 11c. However, these materials are not limited at all, and in the case of the test object 2 which dislikes vibration during transportation, polytetrafluoroethylene is used. For example, a material having a low coefficient of friction, such as a low friction coefficient, can be used. In FIG. 2, 11d indicates a thermocouple for measuring the temperature of the heating body, and 11e indicates a heater wire for heating.
[0017]
FIG. 3A is an overall explanatory view of the heating body 3 and the preheating body 4 of the present invention, and FIGS. 3B and 3C show the heating body when heating the object 2 and measuring the temperature-dependent characteristics. 3 is an operation explanatory diagram of FIG.
For example, the temperature of the first preheating body 4 is set to 60 ° C., the temperature of the first heating body 3 for performing measurement is set to 80 ° C., the temperature of the second preheating body 4 is set to 100 ° C., and the second heating for performing measurement is performed. Assuming that the temperature of the body 3 is 120 ° C., the electrical characteristics of the device under test 2 at 80 ° C. and 120 ° C. are measured.
[0018]
First, the heating element 3 and the preheating element 4 are set to the above-mentioned temperatures. Next, the device under test 2 is transported by the transport jig 7a from the entrance to the position of the heater 3 at 80 ° C. At this time, the device under test 2 is heated to around 80 ° C. by the preheating body 4 at 80 ° C. Next, the upper heating body 3a and the lower heating body 3b of the heating body 3 at 80 ° C. sandwich the object 2 to be measured, and the upper heating body 3a and the lower heating body 3b are brought into contact with the object 2 to be measured. Increase temperature to 80 ° C. In addition, the heating element 3 may operate alone or in series with the plurality of heating elements 3 and the preheating element 4 to come into contact with the DUT 2.
[0019]
After the temperature of the device under test 2 reaches 80 ° C., the temperature dependent probe 5 is brought into contact with the device under test 2 to measure the electrical characteristics of the device under test 2. Thereafter, the upper heating body 3a is moved to be separated from the object 2 to be measured. Next, the device under test 2 is moved to the next heating body at 120 ° C. by the transport jig 7a. The above operation is repeated to measure the temperature-dependent characteristics of the device under test 2 sequentially. The measurement of the temperature-dependent characteristics can be performed after the temperature reaches the measurement temperature or during heating or cooling until the temperature reaches the measurement temperature.
[0020]
By the way, disposing the preheating body 4 before or after the heating body 3 or around the heating body 3 means that the object 2 is preheated by the preheating body 4 before the object 2 is brought into contact with the heating body 3 and heated. The heating time of the body 3 to the measurement temperature can be shortened, and the number of measurements per unit time can be increased. In addition, it also has a function as a heat buffer, and has an effect of suppressing the thermal influence of the two measurement units on the DUT 2 and reducing the disturbance of the temperature of the DUT 2. The effect is large when the temperature of the preheater 4 is equal to or slightly lower than the temperature of the heater 3.
Here, an example in which the heating element 3 and the preheating element 4 move up and down is shown, but the opening and closing type may be used.
[0021]
FIGS. 4A and 4B are schematic diagrams of a heat inflow / outflow prevention mechanism according to the present invention.
When transporting the object 2, the measuring device 1 separates the heating element 3 from the object 2 and then transports the object 2, so that the temperature may fluctuate under the influence of the surrounding atmosphere. This causes a reduction in measurement efficiency. Thus, by attaching a cover 12a to the side surface of the heating element 3 or the preheating element 4 as shown in FIG. 4A, the inflow of ambient air and the outflow of internal air are prevented, and the temperature fluctuation is suppressed. If the cover is a labyrinth type 12b provided not only in one stage but also in a plurality of stages as shown in FIG. 4B, it is possible to further prevent the temperature fluctuation. Further, the entire heating body 3 and preheating body 4 of the measuring device 1 may be covered.
[0022]
5A to 5C show another embodiment different from the above embodiment.
In the above-described embodiment, the number of the preheating bodies 4 provided between the heating bodies 3 for measuring the temperature-dependent characteristics is one by one. However, as shown in FIG. In addition, two preheating bodies 4 of 100 ° C. and 120 ° C. may be provided, and as shown in FIG. 5B, when two preheating bodies 4 are provided between the heating bodies 3 of 80 ° C. and 120 ° C. A 120 ° C. preheater 4 may be provided at a stage subsequent to the 120 ° C. heater 3. Also, as shown in FIG. 5C, the temperature of the device under test 2 can be better controlled even if the preheating body 4 having a short overall length is provided between the heating bodies 3 at 80 ° C. and 120 ° C. In addition, the number and combination of the heating elements 3 for measuring the number of the preheating elements 4 and the temperature-dependent characteristics are not limited to the above-described embodiment, and may be increased or decreased.
[0023]
In the above embodiment, the case where the object to be measured is heated is described. However, the same applies to the case where the object to be cooled is cooled. The pre-cooled body usually has the same effect as the measured temperature, or the temperature is set slightly higher.
[0024]
Furthermore, the measuring device according to the present invention directly heats or cools the object to be measured, as compared with the conventional measuring device that heats by convection, so that the heating efficiency or the cooling efficiency can be remarkably increased. The total length can be significantly shortened to about 1/6 compared to the measuring device.
[0025]
【The invention's effect】
As described above, according to the method for continuously measuring the temperature-dependent characteristics of an electric / electronic component according to the present invention, the object to be measured can be quickly or accurately and uniformly heated or cooled to a predetermined temperature, and Facilitates measurement of temperature-dependent characteristics at multiple temperatures. Further, the device for continuously measuring the temperature-dependent characteristics of electric and electronic components according to the present invention has the effect of reducing the measurement cost by shortening the measurement time and preventing the measurement device from increasing in size. It has a remarkable effect. [Brief description of the drawings]
FIG. 1 is a schematic side view of a system of a measuring device for continuously measuring a temperature-dependent characteristic.
FIG. 2 is a configuration diagram of a lower heating body according to the present invention.
FIG. 3A is an explanatory diagram relating to heating of the measuring apparatus 1.
FIG. 3B is a diagram illustrating a state of the heating body when the object to be measured is transported.
(C) is a diagram showing the state of the heating element when measuring the heating and temperature-dependent characteristics of the device under test.
FIG. 4A is a schematic view of a cover-type heat inflow / outflow prevention mechanism.
(B) It is a schematic diagram of a labyrinth type heat inflow / outflow prevention mechanism.
FIG. 5 is an explanatory view of another embodiment of the heating element according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Temperature-dependent characteristic continuous measuring device 2 Device under test 3 Heating body 3a Upper heating body 3b Lower heating body 4 Preheating body 4a Upper preheating body 4b Lower preheating body 5 Temperature-dependent characteristic measuring probe 6 Temperature controller 7a Transport jig 7b Transport control Device 8 Temperature-dependent characteristic measuring device 9 Measurement control device 10 Buffer material 11a Sheet-shaped heater 11b Silicon rubber 11c Heating base material 11d Thermocouple 11e Heater wire 12a Heat-blocking cover 12b Heat-blocking labyrinth

Claims (6)

電気電子部品の温度依存特性を異なる温度で連続して測定する方法において、前記電気電子部品の温度を、前記電気電子部品に加熱体又は冷却体を接触させて制御することを特徴とする電気電子部品の温度依存特性を連続測定する方法。A method for continuously measuring the temperature-dependent characteristics of an electric / electronic component at different temperatures, wherein the temperature of the electric / electronic component is controlled by bringing a heating element or a cooling element into contact with the electric / electronic component. A method for continuously measuring the temperature-dependent characteristics of components. 前記電気電子部品に加熱体又は冷却体を接触させる前に、前記電気電子部品を予熱又は予冷しておくことを特徴とする請求項1記載の電気電子部品の温度依存特性を連続測定する方法。The method for continuously measuring the temperature-dependent characteristics of an electric / electronic component according to claim 1, wherein the electric / electronic component is preheated or precooled before a heating element or a cooling element is brought into contact with the electric / electronic component. 加熱体又は冷却体と電気電子部品の接触面に緩衝部材を設けることを特徴とする請求項1又は請求項2記載の電気電子部品の温度依存特性を連続測定する方法。3. The method according to claim 1, wherein a buffer member is provided on a contact surface between the heating element or the cooling element and the electric / electronic component. 電気電子部品を搬送するための搬送具と該搬送される電気電子部品に接触させて前記電気電子部品を所定温度に制御するための加熱体又は冷却体と前記所定温度に制御された電気電子部品の温度依存特性を測定するための測定具を備えたことを特徴とする電気電子部品の温度依存特性連続測定装置。A carrier for transporting electrical and electronic components, a heating element or a cooling body for bringing the electrical and electronic components into contact with the transported electrical and electronic components to control the electrical and electronic components to a predetermined temperature, and the electrical and electronic components controlled to the predetermined temperature A temperature-dependent characteristic measuring device for measuring the temperature-dependent characteristics of electrical and electronic components. 前記加熱体又は冷却体が制御温度ごとに対をなして配置されていて、前記対をなす加熱体又は冷却体が前記電気電子部品を挟んで、前記電気電子部品の温度を制御することを特徴とする請求項4記載の電気電子部品の温度依存特性連続測定装置。The heating element or the cooling element is arranged in pairs for each control temperature, and the heating element or the cooling element forming the pair controls the temperature of the electric / electronic component with the electric / electronic component interposed therebetween. The apparatus for continuously measuring temperature-dependent characteristics of electric and electronic components according to claim 4. 前記搬送具、前記加熱体又は冷却体、及び前記測定具が断熱容器内に配されていることを特徴とする請求項4又は請求項5記載の電気電子部品の温度依存特性連続測定装置。The temperature-dependent characteristic continuous measurement apparatus for an electric / electronic component according to claim 4, wherein the carrier, the heating element or the cooling element, and the measuring tool are arranged in a heat insulating container.
JP2003128811A 2003-05-07 2003-05-07 Method and apparatus for continuously measuring temperature dependence characteristics of electric electronic component Pending JP2004333265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128811A JP2004333265A (en) 2003-05-07 2003-05-07 Method and apparatus for continuously measuring temperature dependence characteristics of electric electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128811A JP2004333265A (en) 2003-05-07 2003-05-07 Method and apparatus for continuously measuring temperature dependence characteristics of electric electronic component

Publications (1)

Publication Number Publication Date
JP2004333265A true JP2004333265A (en) 2004-11-25

Family

ID=33504827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128811A Pending JP2004333265A (en) 2003-05-07 2003-05-07 Method and apparatus for continuously measuring temperature dependence characteristics of electric electronic component

Country Status (1)

Country Link
JP (1) JP2004333265A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104360164A (en) * 2014-12-13 2015-02-18 太原理工大学 Device and method for testing impedance of soil mass under different temperature paths
CN111366807A (en) * 2020-04-01 2020-07-03 成都为辰信息科技有限公司 Adjustable constant-temperature high-temperature testing equipment for components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104360164A (en) * 2014-12-13 2015-02-18 太原理工大学 Device and method for testing impedance of soil mass under different temperature paths
CN111366807A (en) * 2020-04-01 2020-07-03 成都为辰信息科技有限公司 Adjustable constant-temperature high-temperature testing equipment for components

Similar Documents

Publication Publication Date Title
US5260668A (en) Semiconductor surface resistivity probe with semiconductor temperature control
US7271604B2 (en) Method and apparatus for testing semiconductor wafers by means of a temperature-regulated chuck device
JP6883618B2 (en) Semiconductor wafer measurement method and semiconductor wafer measurement device
CN1920585B (en) Substrate detector
CN108231627B (en) Heat treatment apparatus, heat treatment method, and computer storage medium
CN102759417A (en) Temperature measuring device, temperature calibrating device and temperature calibrating method
EP3857188B1 (en) Method and apparatus for controlling the temperature of a semiconductor wafer
KR102536180B1 (en) Apparatus for measuring temperature in test chamber and method of calibrating temperature in test chamber using the same
JP4917981B2 (en) Inspection method and program recording medium recording inspection method
JP2007187619A (en) Wafer-type temperature sensor, temperature measuring device, thermal treatment apparatus and temperature measuring method
JP2003344498A (en) Semiconductor tester
TWI628449B (en) Active wafer prober pre-heat &amp; pre-cold system and methodology of wafer inspection
JP6024938B1 (en) Semiconductor wafer inspection apparatus and semiconductor wafer inspection method
JP2004333265A (en) Method and apparatus for continuously measuring temperature dependence characteristics of electric electronic component
JP2009115456A (en) Handler, test tray, and memory device
JP2007324508A (en) Inspection method and inspection apparatus for semiconductor wafer
TW202210969A (en) Method for controlling temperature of substrate support and inspection apparatus
JP2008170179A (en) Autohandler
US20220082636A1 (en) Method and system for thermal control of devices in an electronics tester
KR102066155B1 (en) Probing method, probe card for performing the method, and probing apparatus including the probe card
JPH04286143A (en) Wafer treatment equipment
TWI768984B (en) Chuck unit and temperature control method of chuck unit
KR20200068576A (en) Heat treatment apparatus and heat treatment method
US7063992B2 (en) Semiconductor substrate surface preparation using high temperature convection heating
JP2004286713A (en) Reflow heating testing device and reflow heating testing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070105