JP2004333175A - Laser ultrasonic wave generating device by radiation of multiple beam - Google Patents

Laser ultrasonic wave generating device by radiation of multiple beam Download PDF

Info

Publication number
JP2004333175A
JP2004333175A JP2003125874A JP2003125874A JP2004333175A JP 2004333175 A JP2004333175 A JP 2004333175A JP 2003125874 A JP2003125874 A JP 2003125874A JP 2003125874 A JP2003125874 A JP 2003125874A JP 2004333175 A JP2004333175 A JP 2004333175A
Authority
JP
Japan
Prior art keywords
laser
laser beam
ultrasonic
beams
measurement object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003125874A
Other languages
Japanese (ja)
Other versions
JP4027261B2 (en
Inventor
Yasuaki Nagata
泰昭 永田
Naoya Hamada
直也 浜田
Hirohisa Yamada
裕久 山田
Wan Yan Chu
ワン ヤン チュ
Sun Teku Hon
スン テク ホン
Ze Kyon I
ゼ キョン イ
Chun Su Rin
チュン ス リン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Posco Holdings Inc
Original Assignee
Nippon Steel Corp
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Posco Co Ltd filed Critical Nippon Steel Corp
Priority to JP2003125874A priority Critical patent/JP4027261B2/en
Publication of JP2004333175A publication Critical patent/JP2004333175A/en
Application granted granted Critical
Publication of JP4027261B2 publication Critical patent/JP4027261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Lasers (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To execute high-temperature, moving body, and nondestructive defect inspection by radiating a laser beam to a subject to generate ultrasonic waves, and contactlessly performing ultrasonic inspection using an optical interferometer. <P>SOLUTION: This device is a combined lens mechanism provided with a pulse Nd-YAG laser (pulsed Nd-YAG laser) to generate the laser beam, and a number of beam branching mechanisms to separate one high-output laser beam into multiple beams, in which distance between the laser beams and radiation cross sectional area of radiation of each laser beam can be freely adjusted. By separating one laser beam into multiple beams to be radiated to the subject, high-intensity multiple pulse laser ultrasonic waves are generated at the subject in this laser ultrasonic wave generating device by radiation of multiple beams. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、測定対象体にレーザビームを照射して超音波を発生させ、光干渉計を利用して超音波による材料の検査を非接触で行い、高温の物体や、移動体にも適用できる非破壊検査を行う装置で、より詳しくは、レーザ超音波の発生効率向上のため、多重レーザビームを生じさせ、適切に測定対象体に照射することにより、高強度の超音波を発生させ、測定対象体内部の欠陥探傷や結晶粒径などの諸物性を正確に評価し、信頼性の高い結晶粒径測定並びに、内部欠陥の評価が可能になるように改善された多重ビーム照射によるレーザ超音波の発生装置に関するものである。
【0002】
【従来の技術】
従来より、レーザ超音波発生装置においては超音波の送受信方法で圧電素子を利用した方式がよく使われていた。
しかし、製鉄工程のように高温の環境や、測定対象体が動く場合には、接触媒質を利用する接触式超音波法の使用が制限される。これの代替としてロレンツ(lorentz)原理を利用するEMAT(Electro−magnetic acoustic transducer)と、強磁性体の磁歪現象を利用するMsS(Magnetostrictive sensor)技術が非接触式超音波発生及び受信法で提案されているが、測定対象体と送受信探触子の距離が数mmに過ぎないので周辺技術の画期的な進歩がなければ、適用するのが難しい。
【0003】
一方、レーザを測定対象体に照射させると、熱弾性(Thermoelastic)及び、融発メカニズム(Ablation mechanism)により、測定対象物体において超音波が生じる。特に、レーザビームが高出力に到達すると、入射レーザにより媒質表面から融発現象が起こり、その反発応力により媒質内に振動波である高強度の超音波が生じる。
【0004】
かかる融発(ablation)領域で生じるレーザ超音波は、測定対象体との離隔距離(lift−off)が大きい環境でも使えるため、遠隔で測定対象体の物性を評価できる。
【0005】
しかし、レーザを利用した超音波の発生時にレーザの強さをいくら増加させても発生超音波は増加されない。これは、図10でグラフとして示したように、レーザ強度300MJ当たりで発生の超音波の強度が飽和される現象が現れるからである。したがって、高強度の超音波を生じさせるには、こうした超音波の発生飽和現象を避けなければならない。
【0006】
そこで、レーザ応用超音波の発生強度を増加させるために、高強度のレーザ発生器から出るレーザビームを多数のレーザビームに分離して測定対象体に入射させる技術及び、その装置の開発が必要である。又、従来の一本の光ファイバー当りのパルスレーザエネルギー伝送強さは、250MJ/pulse程度であるが、高エネルギーレーザを要求する計測分野では、このような一本のレーザだけでは、その強度が不足し、多岐のレーザビームを使用する光学系と、これにふさわしい多数の光ファーバーを備えなければならない。
【0007】
従来のレーザ超音波を利用した非破壊検査は、高温の製鉄工程で材質物性評価に効果的である。しかし、高い雑音対比信号比(S/N)値の信号を取得するためには、高出力超音波発生用レーザの使用が要求されるが、レーザ強度増加によりレーザ超音波の強度が飽和し、効果的な信号増大を図る必要がある。
【0008】
また、従来のレーザを利用して物体の内部欠陥を非接触式で探傷する方法と装置については、多数の発明者により多様な形態の特許が提示されている。レーザ超音波についてのこれら発明は、主に測定対象体の一面にレーザを照射させ、測定対象体の内部に超音波を生じさせて、これの反対側に非接触式超音波探触子として、たとえば、光干渉計、音響マイクロフォン、空中超音波探触子、EMATなどを利用して信号を受信し、内部の欠陥などを評価する方法と装置に関するものである。
【0009】
さらに、超音波探傷と関連したレーザビームの活用分野に関する従来技術としては、特許文献1の“Laser beam aiming apparatus for ultrasonic inspection”がある。これは、超音波探触子と同軸で可視レーザビームを測定対象体に照射させ、十字形を測定対象体の表面に生じさせ、探傷位置を確認するように補完してくれるレーザ照準装置に関するものである。
【0010】
そして、多重レーザビームの概念を利用する特許文献2の“Multi−beam optical system”があるが、これは、半導体の回路を作るときビーム軌跡線(Beam spot line)の曲げを解決するために導入された多重レーザビーム活用についての特許であり、超音波探傷或いは超音波による物性評価に関する技術内容ではない。したがって、従来は一本のレーザビームを用いており、測定対象体に高強度の超音波を発生させるすべがなくなく、結果として測定対象体の内部欠陥探傷などを信頼性高く行えなかったという問題点があった。
【0011】
【特許文献1】
米国特許第5773721号公報
【特許文献2】
米国特許第6466351号公報
【0012】
【発明が解決しようとする課題】
本発明は、前述したような従来の問題点を解決するためのもので、その目的は、レーザ超音波の飽和現象なく、最適のレーザ誘起超音波の強度増加を得るため、多重のレーザビームを生じさせ、適切に測定対象体に照射させることにより、高強度の超音波を生じさせ、測定対象体の内部の欠陥探傷や結晶粒径などの諸物性を正確に評価して信頼性高い結晶粒径測定並びに内部欠陥評価に生かされるよう改善した、多重ビーム照射によるレーザ超音波の発生装置を提供することにある。
【0013】
【課題を解決するための手段】
前述したような目的を達成するために本発明は、測定対象体(100)にレーザビームを照射して超音波を生じさせ、光干渉計を利用して超音波による内部検査を非接触で行う材料の非破壊検査を遂行する装置において、レーザビームを発生するパルスNd−YAG レーザ(pulsed Nd−YAG laser)(10)と、前記パルスNd−YAGレーザ(10)から出射された1つの高出力レーザビームを複数のレーザビームに分岐する複数のビーム分岐機構と、前記ビーム分岐機構から作られた複数のレーザビームのビーム間距離(d)と各々のレーザビームの照射断面積を調整する大口径焦点レンズ(62a)及び楔形窓焦点レンズ(62b)からなる組合せレンズ機構(60)とを有し、1本のレーザビームを多岐に分岐して測定対象体(100)に照射することにより、高強度の多重パルスレーザ超音波を測定対象体(100)から生じさせるように構成したことを特徴とする多重ビーム照射によるレーザ超音波の発生装置である。
【0014】
【発明の実施の形態】
以下、本発明を図面を参照しつつ詳しく説明する。本発明の多重ビームによるレーザ超音波の発生装置(1)は、多重パルスレーザ超音波の発生のために多重レーザビームのビーム間の距離と、ビームサイズを独立的に調節できるものであり、+字形に配置された5個のレーザビームを生じさせる。
【0015】
図1に示したように、本発明である多重ビーム照射によるレーザ超音波の発生装置(1)は、パルスYAGレーザ(10)の後ろ側で多数の凹及び凸(concave 及びconvex)レンズ(22a)(22b)からなるビームサイズ縮小装置(beam reducer set)(20)を具備する。
【0016】
前記ビームサイズ縮小装置(20)は、水晶(quartz)で作られた凸−凹レンズ(convex−concave lens)の組合で高出力レーザビーム(PO)の大きさを減らす装置である。これは、凹レンズ(22a)を通して超音波発生用の高エネルギレーザビーム(PO)が入り、凸レンズ(22b)を通過すれば、凹−凸水晶レンズ集合体(quartz lens set of convex and concave)としてビームの大きさを縮小するものである。
【0017】
そして、前記ビームの大きさ縮小装置(20)の後ろ側には、図2に詳しく示したように、レーザビーム(PO)を40:60の比率で分けられるようビームスプリッタ(32)を備えた第1ビーム分岐機構が配置され、その後ろ側には第2ビーム分岐機構(40)及び、第3ビーム分岐機構(50)が配置される。
【0018】
前記のビームスプリッタ(32)は、ガラス面に適切なコーティングして光を一定の比率に透過させ、残りは反射させるレンズである。
【0019】
前記第2ビーム分岐機構(40)は、第1ビーム分岐機構(30)で40%反射されたビームを適切な光経路を有するよう多数のミラー(42a)で調整した後、これをビームスプリッタ(42b)を通過させ、50:50に分離し、測定対象体(100)のx−軸上に照射される2個のレーザビーム(P1)(P2)を生じさせる。
【0020】
又、前記第1ビーム分岐機構(30)から60%にして透過されたレーザを受け、前記第2ビーム分岐機構(40)に交叉するよう配置された第3ビーム分岐機構(50)は、先に60%にして透過されたレーザを33.3%反射させ、測定対象体(100)のy−軸上に1個のレーザビーム(P3)を照射させるようにするビームスプリッタ(52a)を具備し、残り66.7%が透過されたレーザビームを50:50に反射及び透過させるビームスプリッタ(54a)を具備して測定対象体(100)の原点に1個のレーザビーム(P4)を照射させ、続いて透過されたレーザをミラーで反射させ、測定対象体(100)の y軸上に最終的に1個のビーム(P5)を照射させるようにするミラー(52b)を具備する。
【0021】
さらに、前記第2ビーム分岐機構(40)と第3ビーム分岐機構(50)の出側には、測定対象体(100)の表面におけるパルス間の距離調整用組合レンズ機構(60)が配置され、測定対象体(100)との間の距離を適切に調節することにより、各ビーム間の距離(d)を効率的に調節できる。
【0022】
一方、前記組合レンズ機構(60)は、図4の a),b)に示したように、凸レンズの大口径焦点レンズ(62a)と楔形窓(wedge−type window)の光学レンズ(62b)の組合体を使うものである。
【0023】
仮に、図4の a)に示したような一般的な焦点光学レンズ(62a)、たとえば、凸レンズだけを使う場合、測定対象体(100)とレンズ(62a)の距離変化により多数のレーザビーム間の距離(d)だけでなく、照射されたビームの大きさが同時に変わってしまうが、適正レーザビーム間の距離(d)とビームの大きさを決めた後に、図4の a)に示したような大口径焦点レンズ(62a)だけの使用でも可能である。
【0024】
ところが、レーザビームの大きさをビームサイズ縮小装置(20)を通過させ縮小し、レーザビーム間の距離(d)だけを減少させようとする場合、ビームの大きさが変わる大口径焦点レンズ(62a)ではできないため、図4b)に示したような楔形窓(wedge−type window)の光学レンズ(62b)を利用し、ビーム間の距離(d)を調節できる。
【0025】
前記楔形窓(wedge−type window)の光学レンズ(62b)は、測定対象体(100)との距離が変わると、レーザビームの大きさを変化させず、レーザビーム間の距離(d)を変化させる事ができるので、図4b)において矢印の垂直の方向へのレーザビーム間の距離(d)は自動で変化することになる。このような構造は極めて簡単でかつ小型の構造であり、レーザビーム間の距離(d)を調整可能である。
【0026】
したがって、このように凸レンズの大口径焦点レンズ(62a)と、楔形窓(wedge−type window)の光学レンズ(62b)の組合体を使って必要に応じて選択したり、あるいはこれらの組合で使えるものである。
【0027】
前記組合レンズ機構(60)は、凸レンズの大口径焦点レンズ(62a)と、楔形窓(Wedge−type window)の光学レンズ(62b)を各々独立的に、或いは同時にz−軸方向に効率的に動かすよう精密モータ(Step motor)(70)とコントローラ(controller)(72)を備えた自動レンズ調整器(Automatic lens position controller)(74)を図1のように備えている。
【0028】
又、前記パルスYAGレーザ(10)と、自動レンズ一調整器(74)をコンピュータ(80)に繋いでコンピュータモニターの画像プログラム(MMI)画面を通じ、コントロールできるよう電気的に連結する。
【0029】
前記のように構成された本発明は、5本のレーザを測定対象体(100)に照射させると、各ビーム(P1)(P2)(P3)(P4)(P5)のレーザ強度により、熱弾性(Thermoelastic)あるいは融発メカニズム(Ablation mechanism)により測定対象体にて超音波が生じる。特にレーザビームが高出力に到達すると、入射レーザにより媒質表面から融発現象が起こり、レーザ誘導プラズマが生じ、その反力で媒質内に超音波が発生されるが、これを測定対象体(100)の裏面に照射された検知用レーザ、すなわち光干渉計(Interferometer)(110)より照射された別のレーザを用いて測定対象体(100)表面に現れる微小超音波変位を測ることになる。
【0030】
このため、本発明は、YAGレーザ発生装置(1)の後ろから多数の凹凸レンズ(22a)(22b)からなっているビームサイズ縮小装置(Beam reducer set)(20)が配置され、これを利用し、高出力パルスレーザから放出されるレーザビーム、すなわち本発明のYAGレーザ(10)から出射される9mm直径のビーム(P0)を測定対象体(100)からレーザ超音波を生じさせる上で適切なレーザ強度を有するよう変換する。
【0031】
なお、前記ビームサイズ縮小装置(20)は、水晶でできた凹―凸レンズ集合体(quartz lens set of convex and concave)であり、超音波発生用高エネルギレーザビーム(P0)が入ると、そのビームサイズを縮小する。
【0032】
そして、前記ビームサイズ縮小装置(20)は、測定対象体(100)に入射されるレーザ入射ビーム(P1)(P2)(P3)(P4)(P5)などが、各々レーザ超音波発生時に超音波強度飽和を起こさない範囲での最大レーザ強度を有するよう前記レーザビームのサイズを調節する。このように、サイズが調節されたレーザビーム(P0)は、前記ビームサイズ縮小装置(20)の後ろ側にある第1ビーム分岐機構(30)で40:60の比率に分離され、その後ろ側に備えた第2ビーム分岐機構(40)及び第3分岐機構(50)側に反射及び透過される。
【0033】
前記第2ビーム分岐機構(40)では、第1ビーム分岐機構(30)から40%反射されたビームが適切な経路を有するようミラー(42a)で調整した後、これをビームスプリッタ(42b)から50:50と分離させ、測定対象体(100)のx−軸上に照射される2個のレーザビーム(P1)(P2)を生じさせる。
【0034】
又、第1ビーム分岐機構(30)で強度が60%の透過されたレーザは、前記第2ビーム分岐機構(40)で交叉するよう第3ビーム分岐機構(50)で前記60%のレーザビームを先にビームスプリッタ(51a)が33.3%反射させ、測定対象体(100)のy−軸上に1個のレーザビーム(P3)を照射させるようにし、残り66.7%の透過されたレーザビームをビームスプリッタ(54a)で反射及び透過させ、測定対象体(100)の原点に1個のレーザビーム(P4)を照射させ、終わりに透過されたレーザは、ミラー(52b)で反射させ、測定対象体(100)のy−軸上に最終に1個のビーム(P5)を照射するようになる。
【0035】
このように作られた x,y軸にかかった十字形の5個のレーザビーム(P1)(P2)(P3)(P4)(P5)は、殆ど同時に測定対象体(100)に照射されるよう各ビームの行路差を最小になるように、前記光学要素等、即ち前記ビーム分岐機構(30)(40)(50)等を配置する。
【0036】
前記のような方法で、5つの分離されたレーザビーム(P1)(P2)(P3)(P4)(P5)を得た後、測定対象体(100)に照射させるとき、各ビームの間の距離(d)を効率的にコントロールできるように前記第2ビーム分岐機構(40)と第3ビーム分岐機構(50)の出側に備えた前記組合レンズ機構(60)中の凸レンズの大口径焦点レンズ(62a)或いは、楔形窓(wedge−type window)の光学レンズ(62b)の中のいずれか1つを使い、測定対象体(100)の表面との距離を調整することで、図3に示したような5個のレーザの各ビームの間の距離を効率的に調整する。
【0037】
この際、前記組合レンズ機構(60)は、レーザビームの大きさの変化無しにレーザビーム間の距離だけを調整する場合、図4の b)で示したように楔形窓(wedge−type window)の光学レンズ(62b)だけの使用を本発明は具備するものである。
【0038】
そして、前記レーザビーム間の距離を変化させる楔形窓(wedge−type window)の光学レンズ(62b)を、z−軸方向に効率的に動くよう精密モータ(step motor)(70)とコントローラ(controller)(72)で自動レンズ位置調整器(automatic lens position controller)(74)を構成し、前記 YAGレーザ(10)と自動レンズ位置調整器(74)などをすべてコンピュータ(80)とつなぎ、コンピュータモニターの画像プログラム(MMI)画面を通じて統制できるようにしている。
【0039】
前述したように、本発明では、凡そ1.6joule/pulseのパルス形レーザビーム(PO)を入力させると、伝送中の損失などが生じて、5個のレーザビーム(P1)(P2)(P3)(P4)(P5)の各ビーム当たり250〜300mJ/pulseが測定対象体(100)の表面に照射される。すなわち、5個のレーザビーム(P1)(P2)(P3)(P4)(P5)を中央に1個、四方90°方向で4個配置した十字(+)形態(cross configuration with point symmetry)の多重レーザビームとして得られる。
【0040】
このように十字(+)形態の多重入射(cross configuration of 5 sources)の場合に、レーザソースの中心間の距離(d)を変化させた場合の、発生レーザ超音波の強度変化を図5にグラフで示す。なお、縦軸の単位は単一ビーム照射時の強度を1とした時の相対強度を示す。
【0041】
図5のように、十字形の多重ビーム入射により生じる超音波(縦波)の強度は、多重レーザビームの入射条件により変わることがわかる。すなわち、レーザビーム間の距離が(d)減少するほど発生超音波の強度が強くなり、周波数が増加するにつれ、ビーム間距離が数mm以内で多重入射による超音波強度増加の効果が表れる。
【0042】
又、図6は、本発明を活用し、生じさせた多重入射レーザビームの照射状態を示してある。これは、ビームの直径を4.5mmと一定に保った状態で楔形窓(Wedge−type window)の焦点レンズ(62b)を軸方向に移動させつつ、ビーム間の距離(d)を0、5、10、15及び20mmと調整した結果の実例である。
【0043】
そして、図7は、ビーム直径を3.0mmと一定に保った状態で楔形窓(Wedge−type window)の焦点レンズ(62b)を軸方向に移動させつつ、ビーム間の距離(d)を0、4.5、8.5、13mmと調整した結果の実例である。
【0044】
このように、本発明は測定対象体(100)に照射された5個のレーザビームにより測定対象体(100)から高強度の超音波が生じ、測定対象体(100)裏面に照射された検知用レーザ、および光干渉計(Interferometer)(110)で測定対象体(100)の表面から現れる超音波変位を測れる。
【0045】
図8は、本発明により生じさせたレーザ超音波信号を示した結果として、図8の a)のように時間軸平面(time−domain)上の取得信号から分析しようとする部分のピーク信号を高速フーリエ変換(Fast Fourier Transformation)処理して図8のb)のような周波数領域(domain)に変換させる。
【0046】
図9は、レーザビームの直径3.0mmである状態でレーザビーム間の距離(d)を変化させながら、得られたレーザ超音波信号の超音波強度を示した結果の一例を示している。
【0047】
前記のように本発明は、レーザビームの間に距離があり、別別に近い位置で5個のレーザビームを入射させることにより、各々のレーザビーム照射点で超音波を発生させるようになり、各々発生された超音波が、測定対象体(100)から伝播される過程で超音波の干渉現象が起こるようになり、これを用いて従来の単一レーザビームによる超音波出力強度より極めて大きい強度の超音波出力の発生が可能になる。
【0048】
【発明の効果】
本発明によると、高強度の超音波出力を測定対象体(100)から得ることができ、超音波探傷検査を非接触で行えるため、高温及び移動体を対象に非破壊検査を容易に遂行できる。即ち、高温の連鋳スラブや圧延中の測定対象体(100)を対象に高強度の超音波を生じさせ、測定対象体(100)の内部の欠陥探傷や結晶粒径などの諸物性をオンラインで評価できる。
【0049】
又、本発明の多重ビーム照射によるレーザ超音波の発生装置を利用し、超微細粒鋼のような高付加価値鋼の製造にも活用できる。また、高出力超音波を生じさせ、測定対象体(100)に入射させることができるので、雑音対信号比(S/N)が高い信号を得て信頼性の高いの結晶粒径測定及び内部欠陥の評価が可能になる。かかる評価結果を圧延或いは、連鋳工程にフィードバックさせると、連鋳スラブ及び圧延製品の品質を画期的に改善させるなどの効果がある。
【図面の簡単な説明】
【図1】本発明による多重ビーム照射によるレーザ超音波の発生装置全体構成図。
【図2】本発明による多重ビーム照射によるレーザ超音波の発生装置で、レーザビームの分割部分の構成図。
【図3】本発明による多重ビーム照射によるレーザ超音波の発生装置から得られたレーザビームの軌跡を示した説明図。
【図4】本発明による多重ビーム照射によるレーザ超音波の発生装置に備えた組合レンズの詳細図。
【図5】本発明による多重ビーム照射によるレーザ超音波の発生装置でレーザビームの中心距離変化の際のレーザ超音波強度を示したグラフ図。
【図6】本発明による多重ビーム照射によるレーザ超音波の発生装置により生じさせた多重レーザビームなどの照射形態を示した写真。
【図7】本発明による多重ビーム照射によるレーザ超音波の発生装置において、楔形焦点レンズを利用して調整した多重レーザビームの照射形態を示した写真。
【図8】a)は、本発明による多重ビーム照射によるレーザ超音波の発生装置により得られた超音波強度波形を示したグラフ図、b)は、a)図から得られた信号を処理して得た周波数別の振幅の大きさを示したグラフ図。
【図9】本発明による多重ビーム照射によるレーザ超音波の発生装置でビーム間の距離を変化させた場合の超音波強度を示したグラフ図。
【図10】一般のレーザ照射強度密度による超音波飽和現象を示したグラフである。
【符号の説明】
10…パルスYAGレーザ
20…ビームサイズ縮小装置(Beam reducer set)
22a…凹レンズ
22b…凸レンズ
30…第1ビーム分岐機構(Beam splitter module)
32…ビームスプリッタ
40…第2ビーム分岐機構(Beam splitter module)
42a…ミラー(mirror)
42b…ビームスプリッタ
50…第3ビーム分岐機構(Beam splitter module)
52a、54a…ビームスプリッタ
60…組合レンズ機構(pulse distance controlling focusing lens)
62a…大口径焦点レンズ
62b…楔形窓(wedge−type window)の光学レンズ
70…精密モータ(step motor)
72…コントローラ(controller)
74…自動レンズ位置調整器(automatic lens position controller)
80…コンピュータ
100…測定対象体
110…光干渉計(interferometer)
P1、P2、P3、P4、P5…レーザビーム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention irradiates a measuring object with a laser beam to generate ultrasonic waves, performs a non-contact inspection of a material by ultrasonic waves using an optical interferometer, and can be applied to a high-temperature object or a moving object. This is a non-destructive inspection device.More specifically, in order to improve the generation efficiency of laser ultrasonic waves, by generating multiple laser beams and appropriately irradiating the measurement object, high intensity ultrasonic waves are generated and measured. Laser ultrasound by multiple beam irradiation improved to accurately evaluate various physical properties such as flaw detection and crystal grain size inside the target object, and to enable reliable measurement of crystal grain size and evaluation of internal defects The present invention relates to a device for generating the above.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a method using a piezoelectric element in a method of transmitting and receiving ultrasonic waves has been often used in a laser ultrasonic generator.
However, in a high-temperature environment or when the measurement object moves as in the iron making process, the use of the contact ultrasonic method utilizing a couplant is limited. As alternatives, an EMAT (Electro-Magnetic Acoustic Transducer) using the Lorentz principle and a MsS (Magnetostrictive sensor) technology using a magnetostriction phenomenon of a ferromagnetic material have been proposed in a non-contact ultrasonic generation and reception method. However, since the distance between the object to be measured and the transmitting / receiving probe is only a few millimeters, it is difficult to apply the method without a breakthrough in peripheral technology.
[0003]
On the other hand, when the measurement object is irradiated with the laser, an ultrasonic wave is generated in the measurement object by thermoelasticity and an ablative mechanism. In particular, when the laser beam reaches a high output, a fusion phenomenon occurs from the surface of the medium by the incident laser, and high-intensity ultrasonic waves, which are vibration waves, are generated in the medium due to the repulsive stress.
[0004]
Since the laser ultrasonic wave generated in the ablation region can be used in an environment where the separation distance (lift-off) from the measurement target is large, the physical properties of the measurement target can be remotely evaluated.
[0005]
However, no matter how much the intensity of the laser is increased during generation of the ultrasonic waves using the laser, the generated ultrasonic waves are not increased. This is because, as shown in the graph of FIG. 10, a phenomenon occurs in which the intensity of the generated ultrasonic wave is saturated at a laser intensity of 300 MJ. Therefore, in order to generate high-intensity ultrasonic waves, it is necessary to avoid such a generation phenomenon of ultrasonic waves.
[0006]
Therefore, in order to increase the generation intensity of laser-applied ultrasonic waves, it is necessary to develop a technique and a device for separating a laser beam emitted from a high-intensity laser generator into a number of laser beams and making the laser beam incident on a measurement target. is there. Further, the conventional pulse laser energy transmission intensity per optical fiber is about 250 MJ / pulse. However, in the measurement field requiring a high energy laser, the intensity is insufficient with such a single laser. However, it is necessary to provide an optical system using various laser beams and a large number of optical fibers suitable for this.
[0007]
Conventional nondestructive inspection using laser ultrasonic waves is effective for evaluating material properties in a high-temperature iron-making process. However, in order to obtain a signal with a high signal-to-noise ratio (S / N), it is necessary to use a laser for generating high-power ultrasonic waves. It is necessary to increase the effective signal.
[0008]
In addition, various types of patents have been proposed by a number of inventors for a conventional method and apparatus for non-contact flaw detection of an internal defect of an object using a laser. These inventions about the laser ultrasonic wave, mainly irradiate the laser to one surface of the measurement object, to generate an ultrasonic wave inside the measurement object, as a non-contact ultrasonic probe on the opposite side, For example, the present invention relates to a method and an apparatus for receiving a signal using an optical interferometer, an acoustic microphone, an aerial ultrasonic probe, an EMAT, and the like, and evaluating an internal defect or the like.
[0009]
Further, as a conventional technique relating to a field of utilizing a laser beam related to ultrasonic flaw detection, there is “Laser beam aiming apparatus for ultrasonic inspection” in Patent Document 1. This is a laser sighting device that irradiates the measurement object with a visible laser beam coaxially with the ultrasonic probe, generates a cross on the surface of the measurement object, and complements it so that you can check the flaw detection position. It is.
[0010]
There is a “Multi-beam optical system” in Patent Document 2 that utilizes the concept of a multiple laser beam, which is introduced to solve the bending of a beam spot line when a semiconductor circuit is formed. It is a patent on the use of multiple laser beams, and is not a technical content related to ultrasonic flaw detection or physical property evaluation by ultrasonic waves. Therefore, conventionally, a single laser beam was used, and there was no way to generate high-intensity ultrasonic waves on the measurement target, and as a result, internal defects of the measurement target could not be detected with high reliability. There was a point.
[0011]
[Patent Document 1]
US Pat. No. 5,773,721 [Patent Document 2]
US Patent No. 6,466,351
[Problems to be solved by the invention]
The present invention has been made to solve the above-described conventional problems, and has an object to achieve the optimum increase in the intensity of laser-induced ultrasonic waves without a saturation phenomenon of laser ultrasonic waves. By generating and appropriately irradiating the object to be measured, high-intensity ultrasonic waves are generated, and various physical properties such as flaw detection and crystal grain size inside the object to be measured are accurately evaluated to obtain highly reliable crystal grains. It is an object of the present invention to provide a laser ultrasonic wave generating apparatus using multiple beam irradiation, which is improved so as to be utilized for diameter measurement and internal defect evaluation.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention irradiates a laser beam to a measurement object (100) to generate ultrasonic waves, and performs an internal inspection by ultrasonic waves without contact using an optical interferometer. In a device for performing a nondestructive inspection of a material, a pulsed Nd-YAG laser (10) for generating a laser beam and one high-power output from the pulsed Nd-YAG laser (10) A plurality of beam splitters for splitting a laser beam into a plurality of laser beams; a large diameter for adjusting a distance between beams (d) of the plurality of laser beams formed by the beam splitter and an irradiation sectional area of each laser beam; A combination lens mechanism (60) composed of a focusing lens (62a) and a wedge-shaped window focusing lens (62b); An apparatus for generating laser ultrasonic waves by multiple beam irradiation, wherein high-intensity multi-pulse laser ultrasonic waves are generated from the measurement object (100) by irradiating the fixed object (100). is there.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. The multi-beam laser ultrasonic wave generator (1) of the present invention can independently adjust the distance between the multi-laser beams and the beam size for generating the multi-pulse laser ultrasonic waves. Generate five laser beams arranged in a letter shape.
[0015]
As shown in FIG. 1, the apparatus (1) for generating a laser ultrasonic wave by irradiating multiple beams according to the present invention includes a plurality of concave and convex lenses (22a) behind a pulse YAG laser (10). ) (22b) comprising a beam reducer set (20).
[0016]
The beam size reduction device (20) is a device for reducing the size of a high-power laser beam (PO) by a combination of convex-concave lenses made of quartz. This means that when a high-energy laser beam (PO) for generating an ultrasonic wave enters through the concave lens (22a) and passes through the convex lens (22b), the beam is formed as a quartz lens set of convex and concave. Is to reduce the size of.
[0017]
Further, a beam splitter (32) is provided at the rear side of the beam size reducing device (20) so as to divide the laser beam (PO) at a ratio of 40:60, as shown in detail in FIG. A first beam splitting mechanism is arranged, and a second beam splitting mechanism (40) and a third beam splitting mechanism (50) are arranged behind the first beam splitting mechanism.
[0018]
The beam splitter (32) is a lens that appropriately coats a glass surface to transmit light at a certain ratio, and reflects the rest.
[0019]
The second beam splitting mechanism (40) adjusts the beam 40% reflected by the first beam splitting mechanism (30) with a number of mirrors (42a) so as to have an appropriate optical path, and then adjusts the beam by a beam splitter (40). 42b), split at 50:50 to generate two laser beams (P1) and (P2) which are irradiated on the x-axis of the measurement object (100).
[0020]
The third beam splitter (50), which receives the laser transmitted through the first beam splitter (30) at 60% and crosses the second beam splitter (40), A beam splitter (52a) that reflects 33.3% of the transmitted laser beam to 60% and irradiates one laser beam (P3) on the y-axis of the measurement object (100). Then, a beam splitter (54a) for reflecting and transmitting the remaining 66.7% of the transmitted laser beam at 50:50 is provided, and one laser beam (P4) is irradiated to the origin of the measurement object (100). Then, a mirror (52b) for reflecting the transmitted laser beam by a mirror and finally irradiating one beam (P5) on the y-axis of the measurement object (100) is provided.
[0021]
Further, a combination lens mechanism (60) for adjusting the distance between pulses on the surface of the measurement object (100) is arranged on the exit side of the second beam branching mechanism (40) and the third beam branching mechanism (50). The distance (d) between the beams can be adjusted efficiently by appropriately adjusting the distance between the beam and the object to be measured (100).
[0022]
On the other hand, as shown in FIGS. 4A and 4B, the combination lens mechanism (60) includes a large-diameter focal lens (62a) of a convex lens and an optical lens (62b) of a wedge-type window. It uses a union.
[0023]
If only a general focusing optical lens (62a), for example, a convex lens as shown in FIG. 4A) is used, a large number of laser beams may be interposed due to a change in the distance between the object (100) and the lens (62a). Not only the distance (d) but also the size of the irradiated beam changes at the same time, but after determining the appropriate distance (d) between the laser beams and the beam size, it is shown in FIG. The use of only such a large-aperture focal lens (62a) is also possible.
[0024]
However, when the size of the laser beam is reduced by passing through a beam size reduction device (20) to reduce only the distance (d) between the laser beams, a large-diameter focal lens (62a) whose beam size changes. 4), the distance (d) between the beams can be adjusted by using an optical lens (62b) having a wedge-shaped window as shown in FIG. 4b).
[0025]
The optical lens (62b) of the wedge-shaped window changes the distance (d) between the laser beams without changing the size of the laser beam when the distance to the object (100) changes. 4b), the distance (d) between the laser beams in the direction perpendicular to the arrow in FIG. 4b) automatically changes. Such a structure is a very simple and compact structure, and the distance (d) between the laser beams can be adjusted.
[0026]
Therefore, the combination of the large-diameter focal lens (62a) of the convex lens and the optical lens (62b) of the wedge-shaped window can be selected as needed, or can be used in these combinations. Things.
[0027]
The combination lens mechanism (60) efficiently and independently converts the large-diameter focal lens (62a) of a convex lens and the optical lens (62b) of a wedge-shaped window (z-axis) independently or simultaneously in the z-axis direction. As shown in FIG. 1, an automatic lens position controller (74) including a precision motor (Step motor) (70) and a controller (72) is provided.
[0028]
The pulse YAG laser (10) and the automatic lens adjuster (74) are electrically connected to a computer (80) so that they can be controlled through an image program (MMI) screen of a computer monitor.
[0029]
In the present invention configured as above, when five lasers are irradiated on the object to be measured (100), heat is generated by the laser intensity of each beam (P1) (P2) (P3) (P4) (P5). Ultrasonic waves are generated in the measurement object by elasticity (thermoelastic) or ablative mechanism (ablation mechanism). In particular, when the laser beam reaches a high output, the incident laser causes a fusion phenomenon from the surface of the medium, generates laser-induced plasma, and generates an ultrasonic wave in the medium by the reaction force. ), The displacement of the minute ultrasonic wave appearing on the surface of the measurement object (100) is measured by using a detection laser radiated on the back surface, that is, another laser radiated from an optical interferometer (110).
[0030]
For this reason, in the present invention, a beam size reduction device (Beam reducer set) (20) comprising a large number of concave and convex lenses (22a) (22b) is arranged from the back of the YAG laser generator (1), and is used. The laser beam emitted from the high-power pulse laser, that is, the beam (P0) having a diameter of 9 mm emitted from the YAG laser (10) of the present invention is suitable for generating laser ultrasonic waves from the measurement object (100). Is converted to have an appropriate laser intensity.
[0031]
The beam size reduction device (20) is a quartz lens set of convex and concave made of quartz. When a high-energy laser beam (P0) for generating an ultrasonic wave enters, the beam is reduced. Reduce size.
[0032]
Then, the beam size reducing device (20) is capable of transmitting the laser incident beams (P1) (P2) (P3) (P4) (P5) and the like incident on the measurement object (100) at the time of generating the laser ultrasonic waves. The size of the laser beam is adjusted so as to have a maximum laser intensity within a range that does not cause sound wave intensity saturation. The laser beam (P0) whose size has been adjusted in this way is split at a ratio of 40:60 by the first beam splitting mechanism (30) behind the beam size reduction device (20), and the rear side thereof is separated. The light is reflected and transmitted to the second beam splitting mechanism (40) and the third splitting mechanism (50) provided in the above.
[0033]
In the second beam splitting mechanism (40), the beam reflected by 40% from the first beam splitting mechanism (30) is adjusted by the mirror (42a) so as to have an appropriate path, and then adjusted from the beam splitter (42b). 50:50 to generate two laser beams (P1) and (P2) which are irradiated on the x-axis of the measurement object (100).
[0034]
The laser beam transmitted through the first beam splitting mechanism (30) having an intensity of 60% is crossed by the second beam splitting mechanism (40) so that the laser beam having the intensity of 60% is crossed by the third beam splitting mechanism (50). Is first reflected by the beam splitter (51a) by 33.3%, and one laser beam (P3) is irradiated on the y-axis of the measurement object (100). The remaining 66.7% is transmitted. The reflected laser beam is reflected and transmitted by a beam splitter (54a), and one laser beam (P4) is irradiated to the origin of the measurement object (100). The laser transmitted at the end is reflected by a mirror (52b). Then, one beam (P5) is finally irradiated on the y-axis of the measurement object (100).
[0035]
The five cross-shaped laser beams (P1), (P2), (P3), (P4), and (P5) formed on the x- and y-axes are irradiated on the measurement object (100) almost simultaneously. The optical elements and the like, that is, the beam splitting mechanisms (30), (40) and (50) are arranged so that the path difference between the beams is minimized.
[0036]
After obtaining the five separated laser beams (P1), (P2), (P3), (P4), and (P5) by the method described above, when irradiating the measurement object (100), the distance between the beams is reduced. The large-diameter focal point of the convex lens in the combination lens mechanism (60) provided on the exit side of the second beam splitting mechanism (40) and the third beam splitting mechanism (50) so that the distance (d) can be efficiently controlled. By adjusting the distance to the surface of the measurement object (100) by using one of the lens (62a) and the optical lens (62b) of a wedge-shaped window (wedge-type window), FIG. Efficiently adjust the distance between each beam of the five lasers as shown.
[0037]
At this time, when adjusting only the distance between the laser beams without changing the size of the laser beams, the combination lens mechanism (60) has a wedge-type window as shown in FIG. The present invention includes the use of only the optical lens (62b).
[0038]
Then, an optical lens (62b) of a wedge-type window for changing a distance between the laser beams is moved by a precision motor (70) and a controller so as to move efficiently in the z-axis direction. ) (72) constitutes an automatic lens position controller (74), and connects the YAG laser (10) and the automatic lens position controller (74) to a computer (80), and a computer monitor. Can be controlled through an image program (MMI) screen.
[0039]
As described above, in the present invention, when a pulse-shaped laser beam (PO) of about 1.6 joules / pulse is input, a loss occurs during transmission, and the five laser beams (P1) (P2) (P3) are lost. ) The surface of the measurement object (100) is irradiated with 250 to 300 mJ / pulse for each beam of (P4) and (P5). That is, a cross configuration with five laser beams (P1), (P2), (P3), (P4), and (P5), one in the center and four in the 90 ° direction are arranged in a cross (+) configuration. Obtained as multiple laser beams.
[0040]
FIG. 5 shows the intensity change of the generated laser ultrasonic wave when the distance (d) between the centers of the laser sources is changed in the case of the cross configuration of 5 sources in the cross (+) form. Shown in a graph. The unit on the vertical axis indicates the relative intensity when the intensity during single beam irradiation is set to 1.
[0041]
As shown in FIG. 5, it can be seen that the intensity of the ultrasonic wave (longitudinal wave) generated by the cross-shaped multiple beam incidence changes depending on the incidence condition of the multiple laser beam. That is, as the distance between the laser beams decreases (d), the intensity of the generated ultrasonic waves increases, and as the frequency increases, the effect of increasing the ultrasonic intensity due to multiple incidence within the distance between the beams of several mm or less appears.
[0042]
FIG. 6 shows an irradiation state of a multiple incident laser beam generated by utilizing the present invention. This means that while keeping the diameter of the beam constant at 4.5 mm, the focusing lens (62b) of the wedge-shaped window is moved in the axial direction, and the distance (d) between the beams is reduced to 0,5. It is an example of the result adjusted to 10, 15, and 20 mm.
[0043]
FIG. 7 shows that while keeping the beam diameter constant at 3.0 mm, the focusing lens (62b) of the wedge-type window is moved in the axial direction, and the distance (d) between the beams is reduced to 0. , 4.5, 8.5, and 13 mm.
[0044]
As described above, according to the present invention, a high intensity ultrasonic wave is generated from the measurement object (100) by the five laser beams irradiated to the measurement object (100), and the detection is performed on the back surface of the measurement object (100). The ultrasonic displacement appearing from the surface of the measuring object (100) can be measured by the laser for use and the optical interferometer (110).
[0045]
FIG. 8 shows a laser ultrasonic signal generated according to the present invention. As a result, as shown in FIG. 8A, a peak signal of a portion to be analyzed from an acquired signal on a time-domain plane (time-domain) is obtained. Fast Fourier Transform processing is performed to convert the data into a frequency domain as shown in FIG.
[0046]
FIG. 9 shows an example of the result of showing the ultrasonic intensity of the obtained laser ultrasonic signal while changing the distance (d) between the laser beams while the diameter of the laser beam is 3.0 mm.
[0047]
As described above, according to the present invention, there is a distance between laser beams, and five laser beams are made incident at separately close positions to generate ultrasonic waves at each laser beam irradiation point. The generated ultrasonic wave causes an interference phenomenon of the ultrasonic wave in the process of being propagated from the measurement object (100), and the intensity of the ultrasonic wave is significantly higher than that of the conventional ultrasonic wave generated by a single laser beam. Ultrasonic output can be generated.
[0048]
【The invention's effect】
According to the present invention, a high-intensity ultrasonic output can be obtained from the measurement object (100) and the ultrasonic inspection can be performed in a non-contact manner, so that the non-destructive inspection can be easily performed on a high-temperature and moving object. . That is, high-intensity ultrasonic waves are generated at a high-temperature continuous casting slab or a rolling target (100), and various physical properties such as a defect detection and a crystal grain size inside the measuring target (100) are measured online. Can be evaluated.
[0049]
In addition, the apparatus for generating a laser ultrasonic wave by irradiating multiple beams according to the present invention can be used to produce high value-added steel such as ultrafine grained steel. In addition, since high-power ultrasonic waves can be generated and incident on the object to be measured (100), a signal having a high noise-to-signal ratio (S / N) can be obtained, and a reliable crystal grain size measurement and internal measurement can be performed. Defects can be evaluated. When the evaluation result is fed back to the rolling or continuous casting process, there are effects such as remarkably improving the quality of the continuous casting slab and the rolled product.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a laser ultrasonic wave generating apparatus using multiple beam irradiation according to the present invention.
FIG. 2 is a configuration diagram of a divided portion of a laser beam in the apparatus for generating a laser ultrasonic wave by irradiating multiple beams according to the present invention.
FIG. 3 is an explanatory diagram showing a trajectory of a laser beam obtained from a laser ultrasonic wave generating apparatus using multiple beam irradiation according to the present invention.
FIG. 4 is a detailed view of a combination lens provided in the apparatus for generating laser ultrasonic waves by multiple beam irradiation according to the present invention.
FIG. 5 is a graph showing the intensity of laser ultrasonic waves when the center distance of the laser beam changes in the apparatus for generating laser ultrasonic waves by multiple beam irradiation according to the present invention.
FIG. 6 is a photograph showing an irradiation mode of a multiple laser beam or the like generated by a laser ultrasonic wave generator by multiple beam irradiation according to the present invention.
FIG. 7 is a photograph showing an irradiation mode of a multiple laser beam adjusted by using a wedge-shaped focal lens in a laser ultrasonic wave generation apparatus using multiple beam irradiation according to the present invention.
FIG. 8A is a graph showing an ultrasonic intensity waveform obtained by the apparatus for generating a laser ultrasonic wave by multiple beam irradiation according to the present invention, and FIG. 8B is a diagram showing a signal obtained from FIG. FIG. 7 is a graph showing the magnitude of amplitude for each frequency obtained by the above method.
FIG. 9 is a graph showing the intensity of ultrasonic waves when the distance between beams is changed by the apparatus for generating laser ultrasonic waves by multiple beam irradiation according to the present invention.
FIG. 10 is a graph showing an ultrasonic saturation phenomenon according to a general laser irradiation intensity density.
[Explanation of symbols]
10 pulse YAG laser 20 beam size reduction device (Beam reducer set)
Reference numeral 22a: concave lens 22b: convex lens 30: first beam splitting mechanism (Beam splitter module)
32 ... beam splitter 40 ... second beam splitter module
42a ... mirror
42b: Beam splitter 50: Third beam splitter mechanism
52a, 54a... Beam splitter 60... Combination lens mechanism (pulse distance controlling focusing lenses)
62a: large-diameter focal lens 62b: wedge-type window optical lens 70: precision motor (step motor)
72 ... controller
74 ... automatic lens position controller
80 Computer 100 Measurement object 110 Optical interferometer
P1, P2, P3, P4, P5 ... Laser beam

Claims (5)

測定対象体(100)にレーザビームを照射して超音波を生じさせ、光干渉計を利用して超音波による内部検査を非接触で行う材料の非破壊検査を遂行する装置において、レーザビームを生じさせるパルスNd−YAG レーザ(pulsed Nd−YAG laser)(10);前記パルスYAGレーザ(10)から出射された1つの高出力レーザビームを複数のレーザビームに分岐する複数のビーム分岐機構と、前記ビーム分岐機構から作られた複数のレーザビームのビーム間距離(d)と各々のレーザビームの照射断面積を調整する大口径焦点レンズ(62a)及び楔形窓焦点レンズ(62b)からなる組合レンズ機構(60)とを有し、1本のレービームを多岐に分岐して測定対象体(100)に照射することにより、高強度の多重パルスレーザ超音波を測定対象体(100)から生じさせように構成したことを特徴とする多重ビーム照射によるレーザ超音波発生装置。An apparatus for performing non-destructive inspection of a material in which a measurement object (100) is irradiated with a laser beam to generate an ultrasonic wave and performs an internal inspection by an ultrasonic wave in a non-contact manner using an optical interferometer. A pulsed Nd-YAG laser (10); a plurality of beam splitting mechanisms for splitting one high-power laser beam emitted from the pulsed YAG laser (10) into a plurality of laser beams; A combined lens comprising a large-diameter focal lens (62a) and a wedge-shaped window focal lens (62b) for adjusting the inter-beam distance (d) of a plurality of laser beams produced by the beam splitting mechanism and the irradiation sectional area of each laser beam. A high-intensity multi-beam by irradiating a single ray beam in various ways and irradiating the object to be measured (100). The laser ultrasonic generator according to multiple beam irradiation, characterized in that the pulsed laser ultrasonic configured as to cause the measured object (100). 前記パルスYAG レーザの後ろに、多数の凹凸レンズ(22a)(22b)からなっているビームサイズ縮小装置(Beam reducer set)(20)を具備し、ビームサイズを縮小することを特徴とする請求項1記載の多重ビーム照射によるレーザ超音波発生装置。A beam size reducing device (20) comprising a number of concave and convex lenses (22a) (22b) behind the pulse YAG laser to reduce the beam size. 2. A laser ultrasonic generator using multiple beam irradiation according to claim 1. 前記第1ビーム分岐機構(30)において、レーザビーム(PO)を40:60の比率で分けられるようビームスプリッタ(32)を備えたことを特徴とする請求項1記載の多重ビーム照射によるレーザ超音波発生装置。The laser beam splitter according to claim 1, wherein the first beam splitting mechanism (30) includes a beam splitter (32) so as to split the laser beam (PO) at a ratio of 40:60. Sound wave generator. 前記第2ビーム分岐機構(40)において、第1ビーム分岐機構(30)で40%反射されたビームを適切の光経路を有するよう 調整する多数のミラー(42a)と、前記ビームを50:50に分離させるビームスプリッタ(42b)を備え、測定対象体(100)の x−軸上に照射される2個のレーザビーム(P1)(P2)を生じさせることを特徴とする請求項1記載の多重ビーム照射によるレーザ超音波発生装置。In the second beam splitting mechanism (40), a number of mirrors (42a) for adjusting a beam reflected by 40% by the first beam splitting mechanism (30) so as to have an appropriate optical path; 2. A beam splitter (42b) for separating two laser beams (P1) and (P2) irradiated on the x-axis of an object to be measured (100). A laser ultrasonic generator using multiple beam irradiation. 第3ビーム分岐機構(50)において、前記第1ビーム分岐機構(30)から60%にして透過されたレーザを受け、前記第2ビーム分岐機構(40)に交叉するよう配置され 、前記60%にして透過されたレーザビームを33.3%反射させ、測定対象体(100)の y−軸上に1つのレーザビーム(P3)を照射させるようにするビームスプリッタ(52a)を具備し、残り66.7%が透過されたレーザビームを50:50に反射及び透過させるビームスプリッタ(54a)を具備して測定対象体(100)の原点に1つのレーザビーム(P4)を照射させるとともに、続いて透過されたレーザビームを測定対象体(100)のy−軸上に最終的に1つのレーザビーム(P5)を照射させるミラー(52b)を更に具備することを特徴とする請求項4記載の多重ビーム照射によるレーザ超音波発生装置。The third beam splitting mechanism (50) receives the laser transmitted through the first beam splitting mechanism (30) at 60%, and is disposed so as to cross the second beam splitting mechanism (40). And a beam splitter (52a) for reflecting the transmitted laser beam by 33.3% to irradiate one laser beam (P3) on the y-axis of the measurement object (100). A beam splitter (54a) for reflecting and transmitting the laser beam transmitted by 66.7% at 50:50 is provided to irradiate one laser beam (P4) to the origin of the measurement object (100), and And a mirror (52b) for finally irradiating the laser beam transmitted through the laser beam (P5) onto the y-axis of the measurement object (100). The laser ultrasonic generator according to claim 4, wherein the laser ultrasonic wave is generated by multiple beam irradiation.
JP2003125874A 2003-04-30 2003-04-30 Laser ultrasonic generator using multiple beam irradiation Expired - Fee Related JP4027261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125874A JP4027261B2 (en) 2003-04-30 2003-04-30 Laser ultrasonic generator using multiple beam irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125874A JP4027261B2 (en) 2003-04-30 2003-04-30 Laser ultrasonic generator using multiple beam irradiation

Publications (2)

Publication Number Publication Date
JP2004333175A true JP2004333175A (en) 2004-11-25
JP4027261B2 JP4027261B2 (en) 2007-12-26

Family

ID=33503003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125874A Expired - Fee Related JP4027261B2 (en) 2003-04-30 2003-04-30 Laser ultrasonic generator using multiple beam irradiation

Country Status (1)

Country Link
JP (1) JP4027261B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086028A (en) * 2005-09-26 2007-04-05 Toshiba Mitsubishi-Electric Industrial System Corp Laser ultrasonic material measuring instrument
CN102735614A (en) * 2011-04-08 2012-10-17 中国科学院光电研究院 Multi-channel parallel laser ultrasonic detection system
KR101694812B1 (en) * 2015-08-28 2017-01-23 한국과학기술원 Method and Apparatus for Noncontactly Detecting Defect via Multipoint concurrent Laser Excitation
JP2018119847A (en) * 2017-01-25 2018-08-02 株式会社Ihi Laser ultrasonic-flaw detector
CN113008803A (en) * 2021-02-01 2021-06-22 太原理工大学 Laser ultrasonic nondestructive online detection method and device for surface cracks of bar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266646A (en) * 1987-04-22 1988-11-02 Pioneer Electronic Corp Multibeam type optical head
JPH08285823A (en) * 1995-04-17 1996-11-01 Nippon Steel Corp Ultrasonic inspection apparatus
JPH10260163A (en) * 1997-03-18 1998-09-29 Nippon Steel Corp Laser ultrasonic wave inspecting device
JP2000065804A (en) * 1998-08-26 2000-03-03 Nippon Steel Corp Laser ultrasonic inspecting device and method therefor
JP2000341718A (en) * 1999-03-19 2000-12-08 Matsushita Electric Ind Co Ltd Video scope and its display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266646A (en) * 1987-04-22 1988-11-02 Pioneer Electronic Corp Multibeam type optical head
JPH08285823A (en) * 1995-04-17 1996-11-01 Nippon Steel Corp Ultrasonic inspection apparatus
JPH10260163A (en) * 1997-03-18 1998-09-29 Nippon Steel Corp Laser ultrasonic wave inspecting device
JP2000065804A (en) * 1998-08-26 2000-03-03 Nippon Steel Corp Laser ultrasonic inspecting device and method therefor
JP2000341718A (en) * 1999-03-19 2000-12-08 Matsushita Electric Ind Co Ltd Video scope and its display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086028A (en) * 2005-09-26 2007-04-05 Toshiba Mitsubishi-Electric Industrial System Corp Laser ultrasonic material measuring instrument
CN102735614A (en) * 2011-04-08 2012-10-17 中国科学院光电研究院 Multi-channel parallel laser ultrasonic detection system
KR101694812B1 (en) * 2015-08-28 2017-01-23 한국과학기술원 Method and Apparatus for Noncontactly Detecting Defect via Multipoint concurrent Laser Excitation
JP2018119847A (en) * 2017-01-25 2018-08-02 株式会社Ihi Laser ultrasonic-flaw detector
CN113008803A (en) * 2021-02-01 2021-06-22 太原理工大学 Laser ultrasonic nondestructive online detection method and device for surface cracks of bar
CN113008803B (en) * 2021-02-01 2022-09-16 太原理工大学 Laser ultrasonic nondestructive online detection method and device for surface cracks of bar

Also Published As

Publication number Publication date
JP4027261B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
US4169662A (en) Method and apparatus for producing acoustic waves by laser pulses
JP5260130B2 (en) Ultrasonic inspection apparatus, ultrasonic inspection method, and non-destructive inspection method for nuclear power plant
JP5104833B2 (en) Structure internal state measurement system and structure internal state measurement method
CN110779990B (en) Laser ultrasonic three-dimensional positioning quantitative detection method for multiple defects in material
KR100946550B1 (en) An apparatus for generating laser-based ultrasonic by multi-beam irradiation
Stratoudaki et al. Full matrix capture and the total focusing imaging algorithm using laser induced ultrasonic phased arrays
Yi et al. Inspection of cracks with focused angle beam laser ultrasonic wave
Stratoudaki et al. Adapting the full matrix capture and the total focusing method to laser ultrasonics for remote non destructive testing
KR101746922B1 (en) Apparatus and method for full-field pulse-echo laser ultrasonic propagation imaging
Dai et al. Defect imaging based on laser ultrasonic frequency domain synthetic aperture focusing technology with separated generation–detection and 2-D equivalent velocity mapping
Hopko et al. Laser generated ultrasound by material ablation using fiber optic delivery
JP5391375B2 (en) Plate thickness measuring method and plate thickness measuring apparatus
JP4027261B2 (en) Laser ultrasonic generator using multiple beam irradiation
JP2008249557A (en) Ultrasonic inspection device
Pierce et al. Temporal modulation of a laser source for the generation of ultrasonic waves
JP3477330B2 (en) Ultrasonic generator
WO2022254805A1 (en) Defect detection device and defect detection method
Yang et al. Performance evaluation of fiber array for NDE application
KR20050022585A (en) System for defect-detection in plate using a laser excitation typed lamb wave
Dai et al. High-efficiency ultrasound generation excited by an annular distributed Ho: YAG laser with 2.09 µm in carbon fiber reinforced plastics
CN114018827A (en) Laser ultrasonic nondestructive testing equipment and method based on shearing speckle interference
CN214952997U (en) Laser element analysis and nondestructive testing system
JPH11271281A (en) Laser ultrasonic inspection device and method
JP2001208730A (en) Non-contact ultrasonic apparatus
Nishino et al. Generation and directivity control of bulk acoustic waves by phase velocity scanning of laser interference fringes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4027261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees