JP2004332076A - Carburizing apparatus - Google Patents

Carburizing apparatus Download PDF

Info

Publication number
JP2004332076A
JP2004332076A JP2003132073A JP2003132073A JP2004332076A JP 2004332076 A JP2004332076 A JP 2004332076A JP 2003132073 A JP2003132073 A JP 2003132073A JP 2003132073 A JP2003132073 A JP 2003132073A JP 2004332076 A JP2004332076 A JP 2004332076A
Authority
JP
Japan
Prior art keywords
carburizing
gas
furnace
exhaust gas
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003132073A
Other languages
Japanese (ja)
Other versions
JP3992144B2 (en
Inventor
Satoshi Haneki
敏 羽木
Moriyoshi Tamura
守淑 田村
Yoshito Umeda
良人 梅田
Masahiro Okumiya
正洋 奥宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2003132073A priority Critical patent/JP3992144B2/en
Publication of JP2004332076A publication Critical patent/JP2004332076A/en
Application granted granted Critical
Publication of JP3992144B2 publication Critical patent/JP3992144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carburizing apparatus capable of saving the energy and the cost. <P>SOLUTION: The carburizing apparatus comprises a carburizing gas introduction pipeline 7a to introduce carburizing gas into a carburizing furnace 1 to carburize a work 8 to be carburized, a carburizing exhaust gas pipeline 2a to exhaust in-furnace atmospheric gas introduced in the carburizing furnace 1, and an exhaust gas introducing means to introduce the in-furnace atmospheric gas exhausted from the carburizing exhaust gas pipeline 2a into a fuel gas combustion type heating source to heat the in-furnace atmospheric gas in the carburizing furnace 1. While the carburizing exhaust gas is not exhausted from the carburizing furnace 1 or the exhausted carburizing exhaust gas is not burned in the combustion type heating source, the fuel gas and air for combustion are fed to the combustion type heating source, the combustion gas is burned to heat the inside of the carburizing furnace 1. While the carburizing exhaust gas is burned in the combustion type heating source, the feed of the fuel gas is stopped, and the inside of the carburizing furnace 1 is heated and controlled only by the combustion of the carburizing exhaust gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は浸炭処理装置に関し、更に詳しくは、減圧下の浸炭炉内で被浸炭処理材である鋼材の浸炭処理に供した浸炭ガスの炉外に排出される浸炭排ガスを浸炭炉の炉内雰囲気ガス加熱のためのエネルギー源として主にはその浸炭炉に再利用することにより、省エネルギー及び省コストで浸炭処理をすることができる浸炭処理装置に関する。
【0002】
【従来の技術】
従来の浸炭処理方法としては、例えば常圧ガス雰囲気下で行う常圧浸炭法が知られている。常圧浸炭法は、一酸化炭素(CO)ガスなどを浸炭ガスとして用い、これを高温・常圧下で被浸炭処理材(例えば鋼材)とを反応させて炭素(C)と二酸化炭素(CO)を生成し、生成した炭素を被浸炭処理材の表面から固溶して表面近傍の領域に拡散させる方法である。
【0003】
現在では、省エネルギー・省資源や公害防止に極めて有効な方法として減圧下での浸炭処理が注目を浴びている。この方法は、減圧下で浸炭ガスとして炭化水素系ガスを導入することにより被浸炭処理材表面の浸炭処理を行うものであり、高温且つ減圧下において炭化水素系ガスが被浸炭処理材との反応によって炭素(C)と水素ガス(H)に分解し、分解により生成した炭素が被浸炭処理材の表面から固溶させ表面近傍の領域に拡散させる方法である。減圧下での浸炭処理によれば、高温度での熱処理により高品質の浸炭処理品が得られ、また浸炭処理の熱エネルギーの無駄がなくなり、ガス消費量も常圧浸炭処理プロセスに比べて少なくて済むうえ、二酸化炭素の排出がないため環境特性にも優れるという利点を有する。
【0004】
図5は、減圧下で使用される一般的な浸炭処理装置の構成の模式図である。図1に示されるように従来の浸炭処理装置100は、被浸炭処理材8を載置して浸炭を行う浸炭炉1と、浸炭炉1内の被浸炭処理材8を加熱する加熱手段と、図示しない浸炭ガス源から浸炭ガスの供給を受け(図中では浸炭ガスの流れを矢印cで示す)浸炭炉1内に放出するための浸炭ガス導入管路7a及び散気管7bと、浸炭炉1内のガスを浸炭排ガスとして吸引する吸引ポンプ51及び浸炭排ガス導出管路2とを備える。なお、加熱手段としては浸炭炉1内の気体の成分に影響を及ぼさないラジアントチューブバーナが広く用いられており、図5ではバーナ部4とラジアントチューブ3を有するラジアントチューブバーナを備える構成を示す。
【0005】
そして、浸炭炉1には炉内の温度を測定する温度測定手段10と、炉内圧力を測定する圧力測定手段9を備え、それぞれの測定値がコントローラ12に伝送され得るように構成される。そしてコントローラ12は設定された条件と実際の状態とに基づいて、浸炭ガス導入管路7a、浸炭排ガス導出管路2、燃焼用空気導入管路5、燃料ガス導入管路6など配設される弁類11、13(燃焼用空気導入管路5、燃料ガス導入管路6に配設される弁類は図示せず)、吸引ポンプ51などを制御する。
【0006】
前記構成によれば、燃料ガス(矢印b)と燃焼用空気(矢印a)が混合されてバーナ部4で燃焼して高温の燃焼ガスを発生させ、浸炭炉1内に配設されるラジアントチューブ3に燃焼ガスを通過させて浸炭炉1内に載置した被浸炭処理材8(例えば鋼材)を加熱する。そして浸炭ガスが図示しない浸炭ガス源(ガスボンベなど)から浸炭ガス導入管路7aを通じて浸炭炉1内に導入され、散気管7bにより浸炭炉1内に放出される。これにより浸炭炉1内に載置された被浸炭処理材8が浸炭される。一方、浸炭炉1内の浸炭雰囲気ガスは、浸炭排ガスとして例えば吸引ポンプ51などの吸引手段により浸炭排ガス導出管路2へ導出され、熱交換器51で冷却された後、処理バーナ53で燃焼し大気中に放散される。
【0007】
ところで、前記浸炭排ガスは浸炭ガスと被浸炭処理材8との反応(浸炭反応)により生成したガスのみならず、反応に寄与しないまま吸引・排出された浸炭ガスも混合していることから、処理バーナ53で燃焼・大気放散処理によれば浸炭ガスの消費に無駄が生じていた。特に、このような減圧下での浸炭処理では、排出される浸炭排ガスの約50%が浸炭ガスである未反応の炭化水素と浸炭ガスが分解して生成される水素から構成される可燃性のガスであり、かつ浸炭排ガスが排出されたときの温度は900℃程度であるため、そのまま燃焼・大気放散処理することはエネルギーの利用の観点からも無駄が生じていた。
【0008】
浸炭排ガスの有効利用の途として、浸炭排ガスを再生し再び浸炭ガスとして用いる方法がある。例えば、炉気中から少なくとも酸素ガス、二酸化炭素ガス、アンモニアガス、炭化水素ガス又は水蒸気の何れか1つ以上にガスを冷熱により液化又は固化させて分離する構成が開発されている(特許文献1参照)。この特許文献1に記載の構成によれば、浸炭排ガス中に含有される再利用可能なキャリヤーガス(本発明にいう浸炭ガス)をその他のガス(例えば酸素ガス、二酸化炭素ガス、アンモニアガス、炭化水素ガス)を固化あるいは液化することにより分離して再利用するものであるから、キャリヤーガスの有効利用を図り浸炭ガスの無駄をなくすことができる。しかしながらキャリヤーガスを分離するためには前記ガスの固化あるいは液化の設備が必要であり、設備コストの上昇を招くという問題点を有する。
【0009】
また、浸炭炉の加熱源の熱効率を上げる手段としては、例えばラジアントチューブバーナにおいてラジアントチューブの排気ガスの有する熱を熱交換器により燃焼用空気を加熱することにより省エネルギーを図ろうとする構成(特許文献2参照)が開発さてれいる。しかしながらこの技術によれば燃料ガスの排気ガスが有する熱の有効利用により省エネルギーを図ることができるが、浸炭排ガスについては何ら有効利用の考慮がされておらず無駄が生じていた。
【0010】
【特許文献1】
特開2000−212644号公報
【特許文献2】
特開2001−165407号公報
【0011】
【発明が解決しようとする課題】
本発明の解決しようとする課題は、従来減圧下での浸炭処理に供した浸炭ガスを、処理後に炉外に排出し燃焼・大気放散処理していたものを、浸炭排ガスを主には浸炭炉の炉内雰囲気加熱用の燃料として利用し、あるいは、浸炭排ガスの有する熱を回収することにより、省エネルギー化・省コスト化を図ることができる浸炭処理装置を提供することである。
【0012】
【課題を解決するための手段】
この課題を解決するため本願請求項1に係る発明は、被浸炭処理材を浸炭処理する浸炭炉に浸炭ガスを導入する浸炭ガス導入管路と、浸炭炉に導入された炉内雰囲気ガスを排出する浸炭排ガス導出管路と、この浸炭排ガス導出管路より排出される炉内雰囲気ガスをこの浸炭炉の炉内雰囲気ガス加熱のための燃料ガス燃焼式加熱源へ導入する排出ガス導入手段とを備えることを要旨とするものである。
【0013】
かかる構成によれば、浸炭炉から吸引された浸炭排ガスを燃焼式加熱源で燃焼させて炉内雰囲気ガスの熱源の一部又は全部として用いるため、燃料ガスの消費量を減少させ省エネルギー・省コスト化を図ることができるという効果を奏する。
【0014】
請求項2に記載の発明は、被浸炭処理材を浸炭処理する浸炭炉に浸炭ガスを導入する浸炭ガス導入管路と、浸炭炉に導入された炉内雰囲気ガスを排出する浸炭排ガス導出管路と、この浸炭排ガス導出管路より排出される炉内雰囲気ガスをこの浸炭炉の炉内雰囲気ガス加熱のための燃料ガス燃焼式加熱源とは別個の同じく炉内雰囲気ガス加熱のための浸炭排ガス燃焼式加熱源へ導入する排出ガス導入手段と、を備えることを要旨とするものである。
【0015】
かかる構成によれば、燃料ガスを燃焼する加熱源と浸炭排ガスを燃焼する加熱源とを別個に備えるため、浸炭排ガス及び燃料ガスをそれぞれ最適な条件で燃焼させて燃焼効率を上げることができ、省エネルギー化を図ることができるという効果を奏する。特に燃料ガスと浸炭排ガスの組成が相違するために共通の加熱源で燃焼させることができない場合や、共通の加熱源で燃焼させると著しく燃焼効率が低下する場合等に好適に適用できる。また、燃焼ガスや浸炭ガスの種類の変更などに対応しやすい。
【0016】
これらの場合において請求項3に記載のように、前記浸炭排ガス導出管路より排出される浸炭排ガスを前記燃焼式熱源へ導入する前に予め復圧する浸炭排ガス復圧手段を備えることが望ましい。かかる構成によれば、浸炭排ガスの吸引・排出のための構成は従来の浸炭処理装置の構成をそのまま用いることができるため、設備改良を低コストで行うことができるという効果を奏する。
【0017】
また請求項4に記載のように、前記浸炭排ガス導出管路より排出される浸炭排ガスを前記燃焼式加熱源の燃焼用空気流を作動媒体として吸引し燃焼用空気と混合させる吸引混合手段を備える構成であっても良い。かかる構成によれば、吸引ポンプを用いることなく前記吸引手段が浸炭炉内のガスを吸引して減圧下で行う浸炭処理装置であれば浸炭炉内を所定の圧力に保つことができると共に、この吸引手段により吸引された浸炭排ガスは作動媒体である燃焼用空気と混合して燃焼式加熱源に送られて燃焼される。すなわち前記吸引混合手段は、従来の構成における吸引ポンプとしての機能と、浸炭排ガスと燃焼用空気と混合する混合器としての機能を兼備するため、構造を単純化して設備コストの低減を図ることができるという効果を奏する。
【0018】
また請求項5に記載されるように、前記浸炭炉に導入された浸炭ガスを排出する浸炭排ガス導出管路の中間の一部位が前記燃焼式の加熱源の熱交換手段に導入され、浸炭排ガスと燃焼用空気と熱交換可能に構成されることが望ましい。かかる構成によれば、浸炭排ガスの有する熱を浸炭炉の熱源の一部として再利用されるため、浸炭処理装置のエネルギー効率を上げ省エネルギー化を図ることができるという効果を奏する。
【0019】
更に請求項6に記載されるように、浸炭処理において、浸炭炉から浸炭排ガスが排出されない間または排出された浸炭排ガスを燃焼式加熱源で燃焼しない間は燃料ガス及び燃焼用空気を燃焼式加熱源に供給して燃料ガスを燃焼させて浸炭炉内を加熱し、浸炭排ガスを燃焼式加熱源で燃焼している間は燃料ガスの供給を停止し浸炭排ガスの燃焼のみによって浸炭炉内を加熱する制御手段を備えることが望ましい。このような制御手段を備えると、燃料ガスのみの燃焼により浸炭炉の内部を加熱する場合に比較して燃料ガスの消費量を減少させて省エネルギー化・省コスト化を図ることができる。
【0020】
【発明の実施の形態】
以下に本発明の好適な実施の形態とその各種実施例について図面を参照して詳細に説明する。また、図5に示す従来の浸炭処理装置と共通する構成については、同一の符号を付して用い以下における説明は省略する。
【0021】
図1は、本発明の一実施の形態に係る減圧下で使用する浸炭処理装置の第1の実施例の構成の模式図である。本実施例における浸炭処理装置100aは、浸炭排ガス導出管路2aが浸炭炉1内と浸炭炉1の燃焼加熱源(この場合にはラジアントチューブバーナのバーナ部4)に接続され、浸炭炉1から吸引された浸炭排ガスをバーナ部4へ導くように構成される。かかる構成によれば、吸引ポンプ51により浸炭炉1内から吸引・排出された浸炭排ガスは、燃焼加熱源のバーナ部4に送られて燃焼用空気と混合され、バーナ部4で燃焼されて浸炭炉1の加熱源として用いられる。
【0022】
この場合に使用される浸炭ガスのガス種としては、アセチレンガス(例えば特開平8−325701号公報)、エチレンガス(特開2002−146512号公報)、エチレンと水素の混合ガス(特開2001−262313号公報)、エチレンとアセチレンとの混合ガス(特開2000−1765号公報)、プロパンガスの他、本出願人による先の出願に係る都市ガス(特願2002−335666)等が用いられる。一方、燃焼式加熱源の燃料ガスとしてはプロパンガス、都市ガスなどが一般的に使用されることから、浸炭ガスがプロパンガスで燃料ガスもプロパンガス、あるいは浸炭ガスが都市ガスで燃料ガスも都市ガスなどのようにガス種が共通している場合には浸炭排ガスを燃料ガスに混合させても燃料ガスの組成が変動することはほとんどないことになる。
【0023】
図2は、本発明の第2の実施例の構成を示した模式図である。本実施例の浸炭処理装置100bは、燃焼用空気導入管路5に浸炭排ガスの吸引手段としてのエジェクタ20bが配設され、浸炭排ガス導出管路2b浸炭炉1内とエジェクタ20bとを接続するように配設される。このエジェクタ20bは燃焼用空気を作動媒体として浸炭排ガスを吸引するよう構成され、浸炭炉1内の気圧を所定の気圧に維持する。一方でこのエジェクタ20bは燃焼用空気と吸引した浸炭排ガスとを混合して燃焼式加熱源のバーナ部4に供給することからインジェクタとしての機能も有する。このようエジェクタ20bが減圧のための吸引ポンプと混合器の機能を兼備するため吸引ポンプと混合器を別個に配設する必要がなく、特にエジェクタは構造が簡単で外部からの動力源が不要であることからも浸炭処理装置の構成を単純化して省コストをはかることができるという効果を奏する。
【0024】
図3は、本発明の第3の実施例の構成の模式図である。本実施例の浸炭処理装置100cは、浸炭排ガス導出管路2cが浸炭炉1と浸炭排ガス吸引手段としてのエジェクタ20cとを接続して浸炭炉1から浸炭炉内のガスを浸炭排ガスとして吸引し、燃焼用空気と混合して浸炭排ガスを浸炭炉1の加熱源の一部として利用すると共に、浸炭排ガス導出管路2cの中間部位を燃焼式加熱源の熱交換器を通過させる構成を有する(図においては、バーナ部4の熱交換器からエジェクタ20cまでの間には符号「2c’」を付して示す)。燃焼式加熱源の熱交換器は、特に図示しないが一般的な熱交換器の構成でよく、燃焼前に浸炭排ガスの熱で予め燃焼用空気を加熱しうる構成を有する。このような構成によれば前記第1及び第2の実施例と同様の作用効果が得られることに加え、浸炭排ガス自体の有する熱を浸炭炉の加熱源の一部として利用することができ、更なる省エネルギー化を図ることができる。
【0025】
図4は本発明の第4の実施例の構成の模式図である。本実施例においては前記第1から第3の実施例とは異なり、燃料ガスを燃焼する燃焼式加熱源(ラジアントチューブ3及びバーナ部4dを備える)と浸炭排ガスを燃焼する専用の燃焼式加熱源(ラジアントチューブ3及び専用のバーナ部4d’を備える)とを有し、エジェクタ20dにより浸炭排ガスが燃焼用空気と混合されてバーナ部4d’に送られて燃焼する構成である。浸炭排ガスと燃料ガスの種類などが相違すると、共通のバーナ部で燃焼することができない場合や燃焼効率が著しく低下する場合があることから、燃料ガス及び浸炭排ガスをそれぞれ別個のバーナ部4d、4d’により燃焼させて燃焼効率を落とさないようにするものである。
【0026】
なお、第4の実施例においても第3の実施例と同様に燃焼手段に熱交換器を配設し、浸炭排ガス導出管路2dの中間の一部位をこの熱交換器を通して浸炭排ガスにより予め燃焼用空気を加熱する構成としても良い。また、浸炭排ガスを浸炭炉1から吸引し燃焼式加熱源に導入する手段としては、図4に示されるようにエジェクタ20d’を用いる構成の他、第2の実施例に示すような従来の実施例と略同一の構成、すなわちエジェクタ20d’を用いずに直接バーナ4dへ送られる構成であっても良い。
【0027】
以上説明した第1から第4に実施例における燃料ガス及び浸炭排ガスの燃焼は、以下に示す制御の態様を適用することができる。
【0028】
浸炭処理装置100aの運転開始時などにおいて、浸炭炉1内が所定の温度となるよう加熱し、浸炭処理を開始するまでの間は、燃料ガス導入管路6により燃料ガス(矢印b)の供給を行い、燃料ガスを燃焼させることにより浸炭炉1内を加熱する。
【0029】
浸炭処理を開始し浸炭炉1内から浸炭排ガスの吸引を開始した以降は、浸炭排ガスを燃焼させて浸炭炉1の加熱源として用い、燃料ガスの供給を止めるように制御される。浸炭処理中は浸炭ガスの供給と浸炭排ガスの排出が継続するため浸炭排ガスの燃焼で浸炭炉1の温度を維持することができ、燃料ガスの供給が必要となるのは例えば浸炭処理開始前の準備段階において浸炭炉の内部を加熱する間や、何らかの原因で浸炭排ガスの排出が停止している間のみである。このため燃料ガスの消費量を削減して省エネルギー化を図ることができる。
【0030】
なお、浸炭排ガスの燃焼中であっても燃料ガスの供給を完全に停止しないよう制御してもよい。例えば、浸炭排ガスの排出量が少なく熱量が不足する場合などに補助的に燃料ガスの燃焼を続ける場合などである。この場合でも燃料ガスのみを燃焼させる従来の構成に比較して燃料ガスの消費量を減少させることができ、省エネルギーを図ることができるという効果を奏する。
【0031】
以上、本発明の一実施の形態に係る各種の実施例について説明したが、本発明は上記した実施の形態及び実施例に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の改変が可能である。また各図は模式図であり、例えば各実施例において図では燃料ガス導入管路6と燃焼用空気導入管路5とが別個にバーナ部に接続され、燃焼用空気導入管路5にエジェクタ20b、20c、20dが配設される構成を示しているが、燃料ガスと燃焼用空気を予め混合し、燃料ガスと燃焼用空気の混合ガスをバーナ部に導入する管路を設けこの管路に吸引手段であるエジェクタを配設する構成であっても良く、燃焼式加熱源の数なども現実の数を示すものではない。
【0032】
【発明の効果】
本発明の請求項1に係る浸炭処理装置によれば、従来大気放出あるいは燃焼処理していた浸炭排ガスを浸炭処理装置の加熱源で燃焼させることにより、燃料ガスは浸炭処理装置の浸炭炉内を加熱する浸炭処理準備中のみ供給して燃焼させれば良く、浸炭処理開始後は浸炭炉から吸引・排出される浸炭排ガスを本浸炭処理装置の燃焼式加熱源に導入して燃焼させることにより、燃料ガスの供給は不要となるから、従来に方法に比較して省エネルギー化を図ることができる。また、浸炭排ガス及び燃料ガスを共通の燃焼式加熱源で燃焼させるため、構造が単純で設備コストを低く抑制することができる。
【0033】
また、請求項2に係る発明によれば請求項1と同様に浸炭排ガスを加熱源で燃焼させて浸炭炉の熱源を得る構成であるため、省エネルギー化を図ることができる。また、請求項1にかかる構成とは異なり、燃料ガスと浸炭排ガスを燃焼するか熱源はそれぞれ別個のものであるが、かかる構成とすれば、燃料ガス及び浸炭ガスの種類が異なるために共通の加熱源では効率よく燃焼させることができない場合などに、それぞれ最も効率の良い燃焼状態で燃焼させることができるため、省エネルギー化を図ることができる。
【0034】
請求項3に係る発明によれば、吸引手段としてポンプを用いるなど、浸炭排ガスの吸引などは従来の浸炭処理装置と同様の構成にて行うことができるため、既存の設備の改良を低コストで行うことができる。
【0035】
請求項4に係る発明によれば、1の吸引手段が浸炭炉内のガスを吸引して浸炭炉内を所定の圧力に保持すると共に、浸炭排ガスと燃焼用空気との混合手段としての機能をも有するため、浸炭処理装置の構成を単純化することができ、設備コストの低減を図ることができる。また、前記吸引手段としてエジェクタを用いることにより、動作効率を高め省エネルギーの効果を高めることができる。
【0036】
請求項5にかかる発明によれば、浸炭排ガスの有する熱を浸炭炉の熱源の一部として再利用することができ、浸炭処理装置のエネルギー効率を上げ省エネルギー化を図ることができる。
【0037】
請求項6に係る発明によれば、燃料ガスが必要となるのは浸炭処理を開始する前の準備段階においてのみであり、浸炭処理開始後は燃料ガスの供給が不要となるため、燃料ガスの消費量を削減することができ、省エネルギーを図ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る浸炭処理装置の構造の模式図である。
【図2】本発明の第2の実施の形態に係る浸炭処理装置の構造の模式図である。
【図3】本発明の第3の実施の形態に係る浸炭処理装置の構造の模式図である。
【図4】本発明の第4の実施の形態に係る浸炭処理装置の構造の模式図である。
【図5】従来の浸炭処理装置の構造の模式図である。
【符号の説明】
100a 本発明の一実施の形態に係る第1の実施例の浸炭処理装置
1 浸炭炉
2a 浸炭排ガス導出管路
3 ラジアントチューブ
4 ラジアントチューブバーナのバーナ部
5 燃焼用空気導入管路
6 燃料ガス導入管路
7a 浸炭ガス導入管路
7b 散気管
8 被浸炭処理材
9 圧力測定手段
10 温度測定手段
11 弁
12 コントローラ
13 弁
51 吸引ポンプ
52 熱交換器(冷却器)
a 燃焼用空気の流れ
b 燃料ガスの流れ
c 浸炭ガスの流れ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carburizing apparatus, and more particularly, to a carburizing furnace atmosphere of a carburizing furnace, in which a carburizing exhaust gas discharged outside a furnace of a carburizing gas subjected to a carburizing process of a steel material as a material to be carburized in a carburizing furnace under reduced pressure. The present invention relates to a carburizing apparatus capable of performing carburizing treatment with energy saving and cost saving by mainly reusing the carburizing furnace as an energy source for gas heating.
[0002]
[Prior art]
As a conventional carburizing method, for example, a normal pressure carburizing method performed in a normal pressure gas atmosphere is known. In the normal pressure carburizing method, carbon monoxide (CO) gas or the like is used as a carburizing gas, which is reacted with a material to be carburized (for example, a steel material) at a high temperature and a normal pressure to form carbon (C) and carbon dioxide (CO 2 ). ) Is generated, and the generated carbon is solid-dissolved from the surface of the material to be carburized and diffused into a region near the surface.
[0003]
At present, carburizing treatment under reduced pressure has attracted attention as a very effective method for energy and resource saving and pollution prevention. In this method, the surface of the material to be carburized is carburized by introducing a hydrocarbon-based gas as a carburizing gas under reduced pressure, and the hydrocarbon-based gas reacts with the material to be carburized at high temperature and reduced pressure. Is decomposed into carbon (C) and hydrogen gas (H 2 ), and the carbon generated by the decomposition is solid-dissolved from the surface of the material to be carburized and diffused into a region near the surface. According to the carburizing treatment under reduced pressure, high quality carburized products can be obtained by heat treatment at high temperature, and the heat energy of the carburizing treatment is not wasted, and the gas consumption is less than that of the normal carburizing process. In addition, there is an advantage that it is excellent in environmental characteristics because there is no emission of carbon dioxide.
[0004]
FIG. 5 is a schematic diagram of a configuration of a general carburizing apparatus used under reduced pressure. As shown in FIG. 1, a conventional carburizing apparatus 100 includes a carburizing furnace 1 for placing a carburizing material 8 thereon to perform carburizing, a heating unit for heating the carburizing material 8 in the carburizing furnace 1, A carburizing gas introduction pipe 7a and a diffuser pipe 7b for receiving a carburizing gas from a carburizing gas source (not shown) and discharging the carburizing gas into the carburizing furnace 1 (in the figure, the flow of the carburizing gas is indicated by an arrow c); It is provided with a suction pump 51 for sucking gas in the inside as carburized exhaust gas and a carburized exhaust gas outlet pipe 2. Note that a radiant tube burner that does not affect the gas components in the carburizing furnace 1 is widely used as a heating unit. FIG. 5 shows a configuration including a radiant tube burner having a burner unit 4 and a radiant tube 3.
[0005]
The carburizing furnace 1 is provided with a temperature measuring means 10 for measuring the temperature in the furnace and a pressure measuring means 9 for measuring the pressure in the furnace, and each measured value can be transmitted to the controller 12. The controller 12 is provided with a carburizing gas introduction pipe 7a, a carburizing exhaust gas derivation pipe 2, a combustion air introduction pipe 5, a fuel gas introduction pipe 6, and the like based on the set conditions and the actual state. The valves 11 and 13 (the valves provided in the combustion air introduction line 5 and the fuel gas introduction line 6 are not shown), the suction pump 51 and the like are controlled.
[0006]
According to the configuration, the fuel gas (arrow b) and the combustion air (arrow a) are mixed and burned in the burner unit 4 to generate high-temperature combustion gas, and the radiant tube disposed in the carburizing furnace 1. The combustion gas is passed through 3 to heat the carburized material 8 (for example, steel) placed in the carburizing furnace 1. Then, a carburizing gas is introduced into the carburizing furnace 1 from a carburizing gas source (not shown) (a gas cylinder or the like) through a carburizing gas introduction pipe 7a, and is discharged into the carburizing furnace 1 by a diffuser pipe 7b. Thereby, the carburized material 8 placed in the carburizing furnace 1 is carburized. On the other hand, the carburizing atmosphere gas in the carburizing furnace 1 is led out to the carburizing flue gas lead-out line 2 by a suction means such as a suction pump 51 as a carburizing flue gas, cooled by the heat exchanger 51 and then burnt by the treatment burner 53. Dissipated into the atmosphere.
[0007]
By the way, the carburizing exhaust gas is not only a gas generated by the reaction between the carburizing gas and the material to be carburized (carburizing reaction) 8, but also a carburizing gas sucked and discharged without contributing to the reaction. According to the burner 53, the carburizing gas is wastefully consumed by the combustion and air emission treatment. In particular, in such carburizing treatment under reduced pressure, about 50% of the discharged carburizing exhaust gas is composed of unreacted hydrocarbon which is a carburizing gas and hydrogen which is generated by decomposition of the carburizing gas. Since it is a gas and the temperature at which the carburized exhaust gas is discharged is about 900 ° C., it is wasteful to perform the combustion and air emission treatment as it is from the viewpoint of energy utilization.
[0008]
As a way to effectively use the carburized exhaust gas, there is a method of regenerating the carburized exhaust gas and using it again as a carburizing gas. For example, a configuration has been developed in which at least one of oxygen gas, carbon dioxide gas, ammonia gas, hydrocarbon gas, and water vapor is separated from the furnace air by liquefying or solidifying the gas by cooling and separating (Patent Document 1). reference). According to the configuration described in Patent Document 1, a reusable carrier gas (carburized gas referred to in the present invention) contained in a carburized exhaust gas is converted into another gas (for example, oxygen gas, carbon dioxide gas, ammonia gas, carbonized gas). Since hydrogen gas) is separated and reused by solidification or liquefaction, the carrier gas can be effectively used and waste of carburizing gas can be eliminated. However, in order to separate the carrier gas, a facility for solidifying or liquefying the gas is required, and there is a problem that the facility cost is increased.
[0009]
As means for increasing the thermal efficiency of the heating source of the carburizing furnace, for example, a configuration in which the heat of the exhaust gas of the radiant tube is heated by a heat exchanger in a radiant tube burner to heat the combustion air to save energy (Patent Document 1) 2) has been developed. However, according to this technique, energy can be saved by effectively utilizing the heat of the exhaust gas of the fuel gas, but no effective use of carburized exhaust gas is taken into consideration, and waste is caused.
[0010]
[Patent Document 1]
JP 2000-212644 A [Patent Document 2]
JP 2001-165407 A
[Problems to be solved by the invention]
The problem to be solved by the present invention is that a carburizing gas conventionally subjected to carburizing treatment under reduced pressure was discharged outside the furnace after the treatment and then subjected to combustion and air emission treatment. It is an object of the present invention to provide a carburizing apparatus which can save energy and cost by using it as a fuel for heating the atmosphere in a furnace or by collecting heat of carburizing exhaust gas.
[0012]
[Means for Solving the Problems]
In order to solve this problem, the invention according to claim 1 of the present application provides a carburizing gas introduction pipe for introducing a carburizing gas into a carburizing furnace for carburizing a material to be carburized, and discharges a furnace atmosphere gas introduced into the carburizing furnace. And a discharge gas introducing means for introducing the furnace atmosphere gas discharged from the carburizing exhaust gas leading pipe to a fuel gas combustion type heating source for heating the furnace atmosphere gas of the carburizing furnace. The point is to prepare.
[0013]
According to this configuration, the carburized exhaust gas sucked from the carburizing furnace is burned by the combustion-type heating source and used as a part or all of the heat source of the atmosphere gas in the furnace, so that the consumption of fuel gas is reduced, thereby saving energy and cost. This has the effect of realizing the effect.
[0014]
According to a second aspect of the present invention, there is provided a carburizing gas introduction pipe for introducing a carburizing gas into a carburizing furnace for carburizing a material to be carburized, and a carburizing exhaust gas deriving pipe for discharging a furnace atmosphere gas introduced into the carburizing furnace. And the carburizing exhaust gas for heating the furnace atmosphere gas which is separate from the fuel gas combustion type heating source for heating the furnace atmosphere gas of the carburizing furnace. Exhaust gas introducing means for introducing the gas into the combustion heating source.
[0015]
According to such a configuration, since a heating source for burning the fuel gas and a heating source for burning the carburized exhaust gas are separately provided, the carburized exhaust gas and the fuel gas can be burned under optimal conditions, respectively, so that the combustion efficiency can be increased. This has the effect of saving energy. In particular, it can be suitably applied to a case where combustion cannot be performed by a common heating source due to a difference in composition between a fuel gas and a carburized exhaust gas, or a case where combustion efficiency is significantly reduced by burning with a common heating source. Further, it is easy to cope with a change in the type of combustion gas or carburizing gas.
[0016]
In these cases, it is preferable to provide a carburizing exhaust gas recompression means for preliminarily recovering the pressure of the carburizing exhaust gas discharged from the carburizing exhaust gas outlet pipe before introducing the carburizing exhaust gas to the combustion heat source. According to this configuration, since the configuration for suctioning and discharging the carburized exhaust gas can use the configuration of the conventional carburizing apparatus as it is, there is an effect that the equipment can be improved at low cost.
[0017]
Further, as set forth in claim 4, a suction mixing means for sucking the carburized exhaust gas discharged from the carburized exhaust gas outlet pipe with the combustion air flow of the combustion type heating source as a working medium and mixing with the combustion air is provided. A configuration may be used. According to such a configuration, if the suction means sucks the gas in the carburizing furnace without using a suction pump and is a carburizing treatment apparatus that is performed under reduced pressure, the inside of the carburizing furnace can be maintained at a predetermined pressure, and The carburized exhaust gas sucked by the suction means is mixed with combustion air as a working medium, sent to a combustion heating source and burned. That is, since the suction mixing means has both a function as a suction pump in the conventional configuration and a function as a mixer for mixing carburized exhaust gas and combustion air, the structure can be simplified and the equipment cost can be reduced. It has the effect of being able to do it.
[0018]
Further, as described in claim 5, one part of the middle of the carburizing exhaust gas outlet pipe for discharging the carburizing gas introduced into the carburizing furnace is introduced into the heat exchange means of the combustion type heating source, and the carburizing exhaust gas is introduced. It is desirable to be able to exchange heat with the combustion air. According to this configuration, since the heat of the carburizing exhaust gas is reused as a part of the heat source of the carburizing furnace, there is an effect that the energy efficiency of the carburizing apparatus can be increased and energy can be saved.
[0019]
Further, as described in claim 6, in the carburizing treatment, the fuel gas and the combustion air are heated by combustion while the carburized exhaust gas is not discharged from the carburizing furnace or the discharged carburized exhaust gas is not burned by the combustion heating source. The fuel gas is supplied to the source to burn the fuel gas and the inside of the carburizing furnace is heated, and while the carburizing exhaust gas is burned by the combustion heating source, the supply of the fuel gas is stopped and the inside of the carburizing furnace is heated only by burning the carburizing exhaust gas. It is desirable to provide a control means for performing this. By providing such a control means, it is possible to reduce the fuel gas consumption compared to a case where the inside of the carburizing furnace is heated by burning only the fuel gas, thereby achieving energy saving and cost saving.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention and various examples thereof will be described in detail with reference to the drawings. The same components as those of the conventional carburizing apparatus shown in FIG. 5 are denoted by the same reference numerals, and the description thereof is omitted.
[0021]
FIG. 1 is a schematic diagram of a configuration of a first example of a carburizing apparatus used under reduced pressure according to an embodiment of the present invention. In the carburizing apparatus 100a in this embodiment, the carburizing exhaust gas outlet pipe 2a is connected to the inside of the carburizing furnace 1 and the combustion heating source of the carburizing furnace 1 (in this case, the burner section 4 of the radiant tube burner). It is configured to guide the sucked carburized exhaust gas to the burner section 4. According to this configuration, the carburized exhaust gas sucked and discharged from the inside of the carburizing furnace 1 by the suction pump 51 is sent to the burner unit 4 of the combustion heating source, mixed with the combustion air, burned in the burner unit 4, and carburized. Used as a heating source for the furnace 1.
[0022]
Examples of the carburizing gas used in this case include acetylene gas (for example, JP-A-8-325701), ethylene gas (for example, JP-A-2002-146512), and a mixed gas of ethylene and hydrogen (for example, JP-A-2001-146512). No. 262313), mixed gas of ethylene and acetylene (Japanese Patent Application Laid-Open No. 2000-1765), propane gas, and city gas (Japanese Patent Application No. 2002-335666) according to the earlier application by the present applicant are used. On the other hand, since propane gas and city gas are generally used as the fuel gas for the combustion heating source, the carburizing gas is propane gas and the fuel gas is also propane gas, or the carburizing gas is city gas and the fuel gas is city gas. When the gas type is common, such as gas, even if the carburized exhaust gas is mixed with the fuel gas, the composition of the fuel gas hardly fluctuates.
[0023]
FIG. 2 is a schematic diagram showing the configuration of the second embodiment of the present invention. In the carburizing apparatus 100b of the present embodiment, an ejector 20b as suction means for carburizing exhaust gas is provided in the combustion air introducing pipe 5, and the carburizing exhaust gas outlet pipe 2b connects the inside of the carburizing furnace 1 and the ejector 20b. It is arranged in. The ejector 20b is configured to suck the carburizing exhaust gas using the combustion air as a working medium, and maintains the pressure in the carburizing furnace 1 at a predetermined pressure. On the other hand, the ejector 20b also has a function as an injector because it mixes the combustion air and the sucked carburized exhaust gas and supplies the mixture to the burner section 4 of the combustion heating source. As described above, since the ejector 20b has the functions of a suction pump and a mixer for reducing pressure, it is not necessary to separately provide the suction pump and the mixer. In particular, the ejector has a simple structure and does not require an external power source. This also has the effect of simplifying the configuration of the carburizing device and saving costs.
[0024]
FIG. 3 is a schematic diagram of the configuration of the third embodiment of the present invention. In the carburizing apparatus 100c of the present embodiment, the carburizing flue gas outlet pipe 2c connects the carburizing furnace 1 and the ejector 20c as a carburizing flue gas suction means to suck the gas in the carburizing furnace from the carburizing furnace 1 as carburizing flue gas, It has a configuration in which the carburized exhaust gas is mixed with the combustion air to use the carburized exhaust gas as a part of the heating source of the carburizing furnace 1 and the intermediate portion of the carburized exhaust gas outlet pipe 2c is passed through a heat exchanger of the combustion-type heating source (FIG. In the figure, the portion from the heat exchanger of the burner section 4 to the ejector 20c is denoted by reference numeral "2c '"). Although not particularly shown, the heat exchanger of the combustion heating source may have a general heat exchanger configuration, and has a configuration in which the combustion air can be heated in advance by the heat of the carburizing exhaust gas before combustion. According to such a configuration, in addition to obtaining the same effects as the first and second embodiments, the heat of the carburizing exhaust gas itself can be used as a part of the heating source of the carburizing furnace, Further energy saving can be achieved.
[0025]
FIG. 4 is a schematic diagram of the configuration of the fourth embodiment of the present invention. In the present embodiment, unlike the first to third embodiments, a combustion heating source (including a radiant tube 3 and a burner 4d) for burning fuel gas and a dedicated combustion heating source for burning carburized exhaust gas are provided. (Including a radiant tube 3 and a dedicated burner section 4d '), and the carburized exhaust gas is mixed with combustion air by the ejector 20d and sent to the burner section 4d' for combustion. If the types of the carburized exhaust gas and the fuel gas are different, it may not be possible to burn in a common burner portion or the combustion efficiency may be significantly reduced. Therefore, the fuel gas and the carburized exhaust gas are separated into separate burner portions 4d and 4d, respectively. 'To prevent combustion efficiency from dropping.
[0026]
In the fourth embodiment, a heat exchanger is provided in the combustion means as in the third embodiment, and one portion of the middle portion of the carburizing exhaust gas outlet pipe 2d is preliminarily burned by the carburizing exhaust gas through this heat exchanger. It may be configured to heat the air for use. As means for sucking the carburized exhaust gas from the carburizing furnace 1 and introducing it to the combustion type heating source, in addition to the configuration using the ejector 20d 'as shown in FIG. The configuration may be substantially the same as the example, that is, the configuration may be such that the ejector 20d 'is directly sent to the burner 4d without using the ejector 20d'.
[0027]
For the combustion of the fuel gas and the carburized exhaust gas in the first to fourth embodiments described above, the following control modes can be applied.
[0028]
At the start of the operation of the carburizing apparatus 100a or the like, the inside of the carburizing furnace 1 is heated to a predetermined temperature, and the fuel gas (arrow b) is supplied by the fuel gas introducing pipe 6 until the carburizing processing is started. To heat the carburizing furnace 1 by burning the fuel gas.
[0029]
After the carburizing process is started and the suction of the carburizing exhaust gas from the inside of the carburizing furnace 1 is started, the carburizing exhaust gas is burned and used as a heating source of the carburizing furnace 1 so that the supply of the fuel gas is stopped. During the carburizing process, the supply of the carburizing gas and the discharge of the carburizing exhaust gas are continued, so that the temperature of the carburizing furnace 1 can be maintained by the burning of the carburizing exhaust gas. This is only during the heating of the inside of the carburizing furnace in the preparatory stage or while the discharge of the carburizing exhaust gas is stopped for some reason. For this reason, energy consumption can be achieved by reducing fuel gas consumption.
[0030]
It should be noted that control may be performed such that the supply of the fuel gas is not completely stopped even during the combustion of the carburized exhaust gas. For example, there is a case where combustion of fuel gas is continued supplementarily when the amount of carburized exhaust gas is small and the calorific value is insufficient. Also in this case, the fuel gas consumption can be reduced as compared with the conventional configuration in which only the fuel gas is burned, and the effect of saving energy can be achieved.
[0031]
As described above, various examples according to one embodiment of the present invention have been described. However, the present invention is not limited to the above-described embodiments and examples, and various modifications may be made without departing from the spirit of the present invention. Can be modified. Each drawing is a schematic view. For example, in each embodiment, the fuel gas introduction pipe 6 and the combustion air introduction pipe 5 are separately connected to the burner section, and the ejector 20 b is connected to the combustion air introduction pipe 5. , 20c and 20d are shown, but a pipe is provided in which fuel gas and combustion air are preliminarily mixed and a mixed gas of fuel gas and combustion air is introduced into the burner section. An ejector serving as a suction means may be provided, and the number of combustion-type heating sources does not indicate the actual number.
[0032]
【The invention's effect】
According to the carburizing apparatus according to claim 1 of the present invention, by burning the carburized exhaust gas which has been conventionally released to the atmosphere or subjected to the burning treatment by the heating source of the carburizing apparatus, the fuel gas flows into the carburizing furnace of the carburizing apparatus. It is sufficient to supply and burn only during the preparation of the carburizing treatment to be heated.After the start of the carburizing treatment, the carburizing exhaust gas sucked and discharged from the carburizing furnace is introduced into the combustion type heating source of the carburizing treatment device and burned, Since the supply of the fuel gas is not required, energy saving can be achieved as compared with the conventional method. Further, since the carburized exhaust gas and the fuel gas are burned by the common combustion heating source, the structure is simple and the equipment cost can be reduced.
[0033]
Further, according to the second aspect of the present invention, since the carburized exhaust gas is burned by the heating source to obtain the heat source of the carburizing furnace as in the first aspect, energy can be saved. Further, unlike the configuration according to claim 1, the fuel gas and the carburized exhaust gas are burned or the heat sources are respectively different. However, with such a configuration, since the types of the fuel gas and the carburized gas are different, a common When the combustion cannot be efficiently performed by the heating source, for example, the combustion can be performed in the most efficient combustion state, so that energy can be saved.
[0034]
According to the third aspect of the invention, since the carburizing exhaust gas can be sucked in the same configuration as the conventional carburizing apparatus, for example, using a pump as the suction means, the existing equipment can be improved at low cost. It can be carried out.
[0035]
According to the invention according to claim 4, the one suction means sucks the gas in the carburizing furnace to maintain the inside of the carburizing furnace at a predetermined pressure, and has a function as a mixing means of the carburizing exhaust gas and the combustion air. Therefore, the configuration of the carburizing apparatus can be simplified, and the equipment cost can be reduced. In addition, by using an ejector as the suction means, it is possible to improve the operation efficiency and the effect of energy saving.
[0036]
According to the invention according to claim 5, the heat of the carburizing exhaust gas can be reused as a part of the heat source of the carburizing furnace, and the energy efficiency of the carburizing apparatus can be increased to save energy.
[0037]
According to the invention according to claim 6, the fuel gas is required only in the preparatory stage before the start of the carburizing process, and the supply of the fuel gas is not required after the start of the carburizing process. The amount of consumption can be reduced, and energy can be saved.
[Brief description of the drawings]
FIG. 1 is a schematic view of the structure of a carburizing apparatus according to a first embodiment of the present invention.
FIG. 2 is a schematic diagram of a structure of a carburizing apparatus according to a second embodiment of the present invention.
FIG. 3 is a schematic diagram of a structure of a carburizing apparatus according to a third embodiment of the present invention.
FIG. 4 is a schematic view of a structure of a carburizing apparatus according to a fourth embodiment of the present invention.
FIG. 5 is a schematic view of the structure of a conventional carburizing apparatus.
[Explanation of symbols]
100a Carburizing apparatus 1 of a first embodiment according to one embodiment of the present invention 1 Carburizing furnace 2a Carburizing exhaust gas lead-out line 3 Radiant tube 4 Burner part of radiant tube burner 5 Combustion air inlet line 6 Fuel gas inlet line Channel 7a Carburizing gas introduction pipe 7b Air diffuser 8 Carburizing material 9 Pressure measuring means 10 Temperature measuring means 11 Valve 12 Controller 13 Valve 51 Suction pump 52 Heat exchanger (cooler)
a Flow of combustion air b Flow of fuel gas c Flow of carburizing gas

Claims (6)

被浸炭処理材を浸炭処理する浸炭炉に浸炭ガスを導入する浸炭ガス導入管路と、浸炭炉に導入された炉内雰囲気ガスを排出する浸炭排ガス導出管路と、この浸炭排ガス導出管路より排出される炉内雰囲気ガスをこの浸炭炉の炉内雰囲気ガス加熱のための燃料ガス燃焼式加熱源へ導入する排出ガス導入手段と、を備えることを特徴とする浸炭処理装置。A carburizing gas introduction pipe for introducing a carburizing gas into a carburizing furnace for carburizing a material to be carburized, a carburizing flue gas discharging pipe for discharging a furnace atmosphere gas introduced into the carburizing furnace, and a carburizing flue gas discharging pipe. Exhaust gas introducing means for introducing the discharged furnace atmosphere gas into a fuel gas combustion type heating source for heating the furnace atmosphere gas of the carburizing furnace. 被浸炭処理材を浸炭処理する浸炭炉に浸炭ガスを導入する浸炭ガス導入管路と、浸炭炉に導入された炉内雰囲気ガスを排出する浸炭排ガス導出管路と、この浸炭排ガス導出管路より排出される炉内雰囲気ガスをこの浸炭炉の炉内雰囲気ガス加熱のための燃料ガス燃焼式加熱源とは別個の同じく炉内雰囲気ガス加熱のための浸炭排ガス燃焼式加熱源へ導入する排出ガス導入手段と、を備えることを特徴とする浸炭処理装置。A carburizing gas introduction pipe for introducing a carburizing gas into a carburizing furnace for carburizing a material to be carburized, a carburizing flue gas discharging pipe for discharging a furnace atmosphere gas introduced into the carburizing furnace, and a carburizing flue gas discharging pipe. Exhaust gas for introducing the discharged atmosphere gas into a carburizing exhaust gas combustion heating source for heating the furnace atmosphere gas, which is separate from the fuel gas combustion heating source for heating the furnace atmosphere gas of the carburizing furnace And a introducing means. 前記浸炭排ガス導出管路より排出される浸炭排ガスを前記燃焼式熱源へ導入する前に予め復圧する浸炭排ガス復圧手段を備えることを特徴とする請求項1又は2に記載の浸炭処理装置。3. The carburizing apparatus according to claim 1, further comprising a carburizing flue gas decompression unit that recovers the pressure of the carburizing flue gas discharged from the carburizing flue gas discharge pipe before introducing the carburizing flue gas into the combustion type heat source. 4. 前記浸炭排ガス導出管路より排出される浸炭排ガスを前記燃焼式加熱源の燃焼用空気流を作動媒体として吸引し燃焼用空気と混合させる吸引混合手段を備えることを特徴とする請求項1又は2に記載の浸炭処理装置。3. A suction mixing means for sucking carburizing exhaust gas discharged from the carburizing exhaust gas outlet pipe using a combustion air flow of the combustion type heating source as a working medium and mixing with the combustion air. 3. The carburizing apparatus according to item 1. 前記浸炭炉に導入された浸炭ガスを排出する浸炭排ガス導出管路の中間の一部位が前記燃焼式の加熱源の熱交換手段に導入され、浸炭排ガスと燃焼用空気と熱交換可能に構成されることを特徴とする請求項1乃至4に記載の浸炭処理装置。One part in the middle of the carburizing exhaust gas outlet pipe for discharging the carburizing gas introduced into the carburizing furnace is introduced into the heat exchange means of the combustion type heating source, and is configured to be able to exchange heat with the carburizing exhaust gas and combustion air. The carburizing apparatus according to any one of claims 1 to 4, wherein 浸炭処理において、浸炭炉から浸炭排ガスが排出されない間または排出された浸炭排ガスを燃焼式加熱源で燃焼しない間は燃料ガス及び燃焼用空気を燃焼式加熱源に供給して燃料ガスを燃焼させて浸炭炉内を加熱し、浸炭排ガスを燃焼式加熱源で燃焼している間は燃料ガスの供給を停止し浸炭排ガスの燃焼のみによって浸炭炉内を加熱する制御手段を備えることを特徴とする請求項1乃至5に記載の浸炭処理装置。In the carburizing process, while the carburized exhaust gas is not discharged from the carburizing furnace or the discharged carburized exhaust gas is not burned by the combustion heating source, the fuel gas and the combustion air are supplied to the combustion heating source to burn the fuel gas. Control means for heating the inside of the carburizing furnace, stopping the supply of the fuel gas while burning the carburizing exhaust gas by the combustion type heating source, and heating the inside of the carburizing furnace only by burning the carburizing exhaust gas. Item 6. The carburizing apparatus according to any one of Items 1 to 5.
JP2003132073A 2003-05-09 2003-05-09 Carburizing equipment Expired - Fee Related JP3992144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132073A JP3992144B2 (en) 2003-05-09 2003-05-09 Carburizing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132073A JP3992144B2 (en) 2003-05-09 2003-05-09 Carburizing equipment

Publications (2)

Publication Number Publication Date
JP2004332076A true JP2004332076A (en) 2004-11-25
JP3992144B2 JP3992144B2 (en) 2007-10-17

Family

ID=33507076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132073A Expired - Fee Related JP3992144B2 (en) 2003-05-09 2003-05-09 Carburizing equipment

Country Status (1)

Country Link
JP (1) JP3992144B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045193A (en) * 2006-08-21 2008-02-28 Taiyo Nippon Sanso Corp Apparatus for generating carburizing atmospheric gas and generation method therefor
JP2018162475A (en) * 2017-03-24 2018-10-18 大陽日酸株式会社 Operation method of carburization furnace
CN113481466A (en) * 2021-07-07 2021-10-08 安徽新力电业科技咨询有限责任公司 Tubular furnace device system for gas nitriding
KR20220065170A (en) * 2020-11-13 2022-05-20 한국생산기술연구원 An energy saving Vacuum purge type carburizing gas furnace applied with gas burner heating system
CN115029684A (en) * 2022-05-31 2022-09-09 四川铭能科技开发有限公司 Gas heating deposition furnace and system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045193A (en) * 2006-08-21 2008-02-28 Taiyo Nippon Sanso Corp Apparatus for generating carburizing atmospheric gas and generation method therefor
JP2018162475A (en) * 2017-03-24 2018-10-18 大陽日酸株式会社 Operation method of carburization furnace
KR20220065170A (en) * 2020-11-13 2022-05-20 한국생산기술연구원 An energy saving Vacuum purge type carburizing gas furnace applied with gas burner heating system
KR102417969B1 (en) * 2020-11-13 2022-07-07 한국생산기술연구원 An energy saving Vacuum purge type carburizing gas furnace applied with gas burner heating system
CN113481466A (en) * 2021-07-07 2021-10-08 安徽新力电业科技咨询有限责任公司 Tubular furnace device system for gas nitriding
CN113481466B (en) * 2021-07-07 2023-05-26 安徽新力电业科技咨询有限责任公司 Tubular furnace device system for gas nitriding
CN115029684A (en) * 2022-05-31 2022-09-09 四川铭能科技开发有限公司 Gas heating deposition furnace and system

Also Published As

Publication number Publication date
JP3992144B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
RU2316083C2 (en) Solid-state oxide fuel cell system
RU2010154445A (en) METHOD AND SYSTEM FOR ENERGY GENERATION BY BURNING IN PURE OXYGEN
WO2009144366A3 (en) Method of and system for generating power by oxyfuel combustion
JP2005162580A5 (en)
JPH10259736A (en) Low nox combustor
WO2007136077A3 (en) Fuel cell system and method of operating same
JP6411430B2 (en) Energy saving system for integrated combustion equipment
JP2004332076A (en) Carburizing apparatus
US10557180B2 (en) Heat treating device
JPS5456234A (en) Dynamo-blower for internal engine driving
EP2065570A2 (en) Burner for generating reductive atmosphere of exhaust gas in engine cogeneration plant having denitrification process
CN109678124A (en) Gaseous carbon carries purification process
KR20110074155A (en) Gas circulation device for coke oven
CN205172697U (en) Marine diesel NOX reduces discharging start -up heating device of device SCR system response ware
EP1055638A3 (en) Hydrogen generator
JP2005023798A (en) Regenerative cycle gas turbine and regenerator of gas turbine
JP2014048020A (en) Continuous type heating furnace
JP3937232B2 (en) Carbonization equipment
JP2006003024A (en) Device for burning/detoxifying exhaust gas
JP3871457B2 (en) Furnace air regeneration method and apparatus
JP2019168118A (en) Exhaust gas using system
CN210874774U (en) Multistage energy utilization dispersion oxidation waste gas treatment device
JP2005264730A (en) Biomass gas combustion gas engine device
JP2002039684A (en) Heat treatment device and method thereof
JP3147105B2 (en) Hydrogen / oxygen combustion method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070718

R150 Certificate of patent or registration of utility model

Ref document number: 3992144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140803

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees