JPH10259736A - Low nox combustor - Google Patents

Low nox combustor

Info

Publication number
JPH10259736A
JPH10259736A JP9066250A JP6625097A JPH10259736A JP H10259736 A JPH10259736 A JP H10259736A JP 9066250 A JP9066250 A JP 9066250A JP 6625097 A JP6625097 A JP 6625097A JP H10259736 A JPH10259736 A JP H10259736A
Authority
JP
Japan
Prior art keywords
gas
fuel
combustor
air
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9066250A
Other languages
Japanese (ja)
Inventor
Shigemi Bandai
Mitsuru Inada
Tetsuo Itsura
Hiroyuki Nishida
哲雄 五良
満 稲田
重実 萬代
啓之 西田
Original Assignee
Mitsubishi Heavy Ind Ltd
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Ind Ltd, 三菱重工業株式会社 filed Critical Mitsubishi Heavy Ind Ltd
Priority to JP9066250A priority Critical patent/JPH10259736A/en
Publication of JPH10259736A publication Critical patent/JPH10259736A/en
Application status is Pending legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle

Abstract

PROBLEM TO BE SOLVED: To burn and react fuel containing a nitrogen content in fuel in low oxygen air and suppress to the lower extent a rate that the nitrogen content is converted into NOx in a combustor using fuel containing the nitrogen content such as ammonia in fuel, by adding gas whose oxygen content is lower than the atmosphere in air for combustion.
SOLUTION: A gas turbine for coal gasification gas, drives a generator and the like in a manner that atmosphere 1 is compressed by a compressor 2 and led to flow into a combustor 3, coal gas is burnt as fuel 4 in the combustor 3, and the high temperature gas of coal gas is introduced to a gas turbine 5. In this case, a cooler 7 is arranged, by which exhaust gas 6 delivered from the gas turbine 5 is cooled. Exhaust gas 6 has a high concentration therefore, the temperature of the exhaust gas 6 is lowered by being passed through the cooler 7, and after that, it is supplied to the intake duct of the gas turbine 5 and mixed with the atmosphere 1 thereby, an oxygen content in air in the inlet part of a compressor 2, can be lowered. Thusly, exhaust gas 6 is added to air for combustion, therefore the conversion rate into NOx of a nitrogen content contained in fuel, can be suppressed to the lower extent.
COPYRIGHT: (C)1998,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、石炭ガス化ガスのように燃料中にアンモニア (NH 3 )等の窒素分(Fuel The present invention relates to an ammonia (NH 3) in the fuel as coal gasification gas nitrogen components such as (Fuel
N)を含んだガスを燃料とするガスタービン燃焼器等に適用される低NO x燃焼器に関する。 The gas containing N) to low NO x combustor which is applied to the gas turbine combustor such that the fuel.

【0002】 [0002]

【従来の技術】従来の石炭ガス化ガス用ガスタービンの系統例を図4に示す。 BACKGROUND ART The system of a conventional coal gasification gas for gas turbine shown in FIG. 大気空気1は空気圧縮機2にて圧縮されたあと、燃焼器3に流入し、ガス化プラント(図示せず)で発生した石炭ガスを燃料4として燃焼器3内で燃焼させ、その高温ガスをガスタービン5に導き膨張させて出力として取り出し、発電機等を回し、通常排気ガス6として系外に排出される。 After ambient air 1 is compressed by the air compressor 2 flows into the combustor 3, the coal gas generated in the gasification plant (not shown) is burned in the combustor 3 as the fuel 4, the hot gas was removed as an output by leads expanded to the gas turbine 5, by turning the power generator or the like, is discharged as normal exhaust gas 6 to the outside of the system.

【0003】 [0003]

【発明が解決しようとする課題】石炭ガス化ガスでは原料の石炭中に含まれるアンモニア成分等が燃料ガス中に存在し、これが燃焼する際にNO xに転換する。 Ammonia component like contained in coal feedstock is coal gasification gas [0006] are present in the fuel gas, which is converted to NO x in the combustion. これは、いわゆるFuel NO xと称されるものであり、このように燃料中に存在する窒素分によってプラントから排出されるNO x濃度が高くなる。 This is what is referred to as so-called Fuel NO x, the concentration of NO x discharged from the plant by the nitrogen content present in this manner in the fuel becomes higher. これは、アンモニア等N分を含む燃料を使用する燃焼器ではさけられない問題である。 This is a problem inevitable in combustors that use fuel containing N content such as ammonia.

【0004】そのため、一段目では燃料過剰燃焼を行なってNOのN 2への還元を促進し、二段目で未燃成分を完全燃焼するいわゆる二段燃焼法等の燃焼手法をとってはいるものの、例えば、大気圧燃焼条件での試験結果の一例では、アンモニアを含まない石炭ガス化ガス相当成分ガスでのNO x濃度は数ppm であるのに対し、燃料中にNH 3が約900ppm 存在するとNO x濃度は約14 [0004] Accordingly, to promote the reduction of NO to N 2 by performing an excess fuel combustion in the first stage, there took combustion technique such as so-called two-stage combustion method for complete combustion of the unburned components in the second stage although, for example, in an example of the test results at atmospheric pressure combustion conditions, nO x concentration in the coal gasification gas corresponding component gas containing no ammonia whereas the number ppm, NH 3 is about 900ppm present in the fuel Then, NO x concentration is about 14
0ppm と大幅に増加する結果からみても、更なる低NO It is seen from the results that significantly increases the 0 ppm, further low NO
x燃焼が要求されている。 x combustion is required.

【0005】本発明は、燃料中に窒素分を含む燃料を使用しても、その窒素分のNO xへの転換率を低く抑えることのできる低NO x燃焼器を提供することを課題としている。 [0005] The present invention, even when using a fuel containing nitrogen component in the fuel, has an object to provide a low NO x combustor that can suppress the conversion to the nitrogen content of the NO x low .

【0006】 [0006]

【課題を解決するための手段】基礎試験結果により、燃焼空気中の酸素濃度を低下することにより燃焼によるFu The basic test results SUMMARY OF THE INVENTION, Fu due to combustion by lowering the oxygen concentration in the combustion air
el N分のNO x転換率を低下できることが明らかとなった。 It has been found that can reduce the NO x conversion rate of el N min. その試験結果の一例を図3に示すが、空気で燃焼させた場合のFuel N分のNO x転換率は約40%(図中○印)であるのに対し、燃焼空気中の酸素濃度を約1 Although an example of the test results in FIG. 3, about 40% NO x conversion of Fuel N component when burned in air whereas a (in FIG ○ mark), the oxygen concentration in the combustion air about 1
5%にすると約30%(図中△印)まで、NO x転換率を低減することができる。 If 5% to about 30% to (in the figure △ mark), it is possible to reduce the NO x conversion.

【0007】本発明は、この知見に基づき、燃料中にアンモニア等の窒素分を含む燃料を使用する燃焼器において、燃焼用空気に大気よりも酸素濃度の低いガスを添加するよう構成した低NO x燃焼器を提供する。 [0007] The present invention is based on this finding, in the combustor using a fuel containing nitrogen components such as ammonia in the fuel, low and configured to add a low oxygen concentration than the atmosphere in the combustion air gas NO to provide the x combustor.

【0008】本発明による低NO x燃焼器に用いる酸素濃度の低いガスとして酸素濃度の低下している自身の燃焼排気ガスを再循環させることができ、その供給形態としては、排気ガス中の燃焼排気ガスを冷却器を介してガス温度を低下させ圧縮機の入口部に供給するように構成したり、あるいは、排気ダクト中の燃焼排気ガスをコンプレッサで昇圧し、燃焼器入口部に供給するように構成することができる。 [0008] The present invention according to can be recycled its combustion exhaust gas are reduced in the oxygen concentration to as low oxygen concentration gas used in the low NO x combustor, as its supply form, the combustion in the exhaust gas as the exhaust gas through a cooler or configured to provide the inlet of the compressor to lower the gas temperature, or the combustion exhaust gas in the exhaust duct is pressurized by the compressor and supplied to the combustor inlet it can be configured to.

【0009】本発明による低NO x燃焼器によれば、燃焼空気中に自身の燃焼排気ガスなど大気よりも酸素濃度の低いガスを添加することにより、燃焼空気中の酸素濃度が低下する。 According to the low NO x combustor of the present invention, by adding a low gas oxygen concentration than air, such as its combustion exhaust gas into the combustion air, the oxygen concentration in the combustion air decreases. 燃焼空気中の酸素濃度が低い場合、燃焼による燃料中NH 3のNO x転換率が空気の場合より小さくなる。 If a low oxygen concentration in the combustion air, NO x conversion in the fuel NH 3 by combustion is smaller than that of air. 従って、本発明の燃焼器によればプラントから排出されるNO x濃度を低くすることができる。 Therefore, it is possible to make the concentration of NO x discharged from the plant according to the combustor of the present invention low.

【0010】 [0010]

【発明の実施の形態】以下、本発明による低NO x燃焼器について図1,図2に示した実施の形態に基づいて具体的に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, FIG. 1 for the low NO x combustor of the present invention will be specifically described based on the embodiment shown in FIG. なお、以下の実施の形態において、図4に示した従来の装置と同じ構成の部分には説明を簡単にするため同じ符号を付してあり、それらについての重複する説明は省略する。 In the following embodiments, parts having the same configuration as the conventional apparatus shown in FIG. 4 are denoted by the same reference numerals for simplicity of explanation, the redundant description of them will be omitted.

【0011】(実施の第1形態)まず、図1に示した本発明の実施の第1形態による燃焼器について説明する。 [0011] (First Embodiment) First, a description will be given of a combustor according to the first embodiment of the present invention shown in FIG.
図1において、7は冷却器で、ガスタービン5から出る燃焼排気ガス6を冷却する。 1, 7 is a cooler to cool the combustion exhaust gas 6 leaving the gas turbine 5. 図1のその他の機器構成は図4に示したものと実質同じである。 Other configuration of the device in FIG. 1 is a substantially same as that shown in FIG.

【0012】ガスタービン5自身の排気ガス6は濃度が高いため、冷却器7を通すことによりガス温度を下げ、 [0012] exhaust gas 6 of the gas turbine 5 itself has a high concentration, lowering the gas temperature by passage through the cooler 7,
その後ガスタービンの吸気ダクトに供給し、大気1と混合して圧縮機2の入口部での空気中の酸素濃度を低下させ、その後圧縮機2で昇圧して燃焼器3に低酸素濃度の燃焼用空気を供給している。 Then supplied to the intake duct of the gas turbine, to reduce the oxygen concentration in the air at the inlet of the compressor 2 is mixed with air 1, the combustion of the subsequent low oxygen concentration in the booster to the combustor 3 by the compressor 2 It is providing use air.

【0013】このように、燃焼用空気に酸素濃度が大気よりも低いガスタービンの排気ガスを添加することにより燃料中に含まれる窒素分のNO xへの転化率を低く抑えることができる。 [0013] Thus, the oxygen concentration in the combustion air can be suppressed low conversion of the nitrogen content of the NO x contained in the fuel by adding exhaust gases lower the gas turbine than the atmosphere.

【0014】(実施の第2形態)次に、図2に示した本発明の実施の第2形態による燃焼器について説明する。 [0014] (Second Embodiment) Next, description will be given combustor according to a second embodiment of the present invention shown in FIG.
図2において、8はコンプレッサで、ガスタービン5の排気ガス6を加圧して燃焼器入口空気に供給する。 2, 8 by the compressor is supplied to the combustor inlet air exhaust gas 6 of the gas turbine 5 pressurized. 図2 Figure 2
のその他の構成は、図4に示したものと実質同じである。 Other configurations of the are those substantially the same as shown in FIG.

【0015】燃焼器部は圧力が高いため、排気ダクト内圧ではガスタービンの排気ガスを燃焼器3に供給できない。 The combustor section because the pressure is high, can not be supplied to the combustor 3 exhaust gas of the gas turbine in the exhaust duct pressure. そこで、ガスタービンの排気ガスをコンプレッサ8 Therefore, the compressor 8 the exhaust gas of the gas turbine
に導き、昇圧させた後、燃焼器3入口部に供給することにより、燃焼器3に低酸素濃度の燃焼用空気を供給することができる。 The guidance, after boosting, by supplying the combustor 3 inlet, it is possible to supply combustion air of low oxygen concentration in the combustor 3. こうして、燃焼用空気中に酸素濃度が大気よりも低いガスタービン排気ガスを添加して燃料中の窒素が燃焼によりNO xへ転化する率を低く抑えることができる。 Thus, it is possible to suppress the rate at which nitrogen of the oxygen concentration in the combustion air added low gas turbine exhaust gases than air in the fuel is converted to NO x by the combustion low.

【0016】 [0016]

【発明の効果】以上説明したように、本発明の燃焼器では、燃焼用空気に酸素濃度の低下したガスタービン排気ガスなど大気よりも酸素濃度の低いガスを添加することにより、燃焼器に流入する燃焼空気は酸素濃度が低下した状態となっており、燃料中に窒素分を含む燃料がこの低酸素空気内で燃焼反応を行うことにより、その窒素分がNO xに転換する割合を低く抑えることができる。 As described in the foregoing, in the combustor of the present invention, by adding a low gas oxygen concentration than air, such as reduced gas turbine exhaust gas of oxygen concentration in the combustion air, flowing into the combustor combustion air is in a state in which the oxygen concentration decreases, the fuel containing nitrogen content in the fuel by performing burning reaction in the hypoxic air, reduce the rate at which the nitrogen content is converted to NO x be able to.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施の第1形態による低NO x燃焼器の構成を示すガスタービンの系統図。 [1] system diagram of a gas turbine illustrating a configuration of a low NO x combustor according to the first embodiment of the present invention.

【図2】本発明の実施の第2形態による低NO x燃焼器の構成を示すガスタービンの系統図。 [Figure 2] system diagram of a gas turbine illustrating a configuration of a low NO x combustor according to a second embodiment of the present invention.

【図3】燃焼用空気中酸素濃度と燃料中窒素分のNO x [3] During the combustion air oxygen concentration and the fuel nitrogen content of the NO x
転化率の関係を示す、本発明の基となる基礎試験結果の一例を示す線図。 It shows the relationship between the conversion rate, the diagram showing an example of a group to become basic test results of the present invention.

【図4】従来のガスタービンの系統図。 [4] system diagram of a conventional gas turbine.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 大気 2 圧縮機 3 燃焼器 4 燃料 5 ガスタービン 6 排気ガス 7 冷却器 8 コンプレッサ 1 Air 2 compressor 3 combustor 4 fuel 5 Gas turbine 6 exhaust gas 7 cooler 8 compressor

フロントページの続き (72)発明者 稲田 満 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂製作所内 Of the front page Continued (72) inventor Mitsuru Inada Hyogo Prefecture Takasago Araichoshinhama 2 chome No. 1 Mitsubishi Heavy Industries, Ltd. Takasago Works

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 アンモニア等の窒素分を含む燃料を使用する燃焼器において、燃焼用空気に大気よりも酸素濃度の低いガスを添加するよう構成したことを特徴とする低NO x燃焼器。 1. A combustor using a fuel containing nitrogen component such as ammonia, low NO x combustor characterized by being configured to add a low oxygen concentration than air gases to the combustion air.
  2. 【請求項2】 前記ガスとして自らの燃焼排気ガスを再循環する、請求項1記載の低NO x燃焼器。 2. A recycled their combustion exhaust gas as the gas, a low NO x combustor as in claim 1.
  3. 【請求項3】 前記自らの燃焼排気ガスを冷却する冷却器を備え、同冷却器で温度低下させた燃焼排気ガスを燃焼用空気用のコンプレッサ入口部に供給するようにした、請求項2記載の低NO x燃焼器。 3. A equipped with a condenser for cooling the own combustion exhaust gas, and to supply the combustion exhaust gas was lowered temperature at the same condenser to the compressor inlet for combustion air, according to claim 2, wherein low NO x combustor.
  4. 【請求項4】 前記自らの燃焼排気ガスを排気ガス昇圧用コンプレッサで圧力を高くして燃焼器入口空気に供給するよう構成した、請求項2記載の低NO x燃焼器。 4. A was configured to supply the high to the combustor inlet air pressure at the own exhaust gas boost compressor combustion exhaust gas, low NO x combustor of claim 2 wherein.
JP9066250A 1997-03-19 1997-03-19 Low nox combustor Pending JPH10259736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9066250A JPH10259736A (en) 1997-03-19 1997-03-19 Low nox combustor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9066250A JPH10259736A (en) 1997-03-19 1997-03-19 Low nox combustor
CA002231749A CA2231749A1 (en) 1997-03-19 1998-03-11 Low-nox combustor and gas turbine apparatus employing said combustor
DE19810820A DE19810820A1 (en) 1997-03-19 1998-03-12 Burner with low NOx-value using fuel gas containing oxygen

Publications (1)

Publication Number Publication Date
JPH10259736A true JPH10259736A (en) 1998-09-29

Family

ID=13310441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9066250A Pending JPH10259736A (en) 1997-03-19 1997-03-19 Low nox combustor

Country Status (3)

Country Link
JP (1) JPH10259736A (en)
CA (1) CA2231749A1 (en)
DE (1) DE19810820A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389796B1 (en) 1999-10-05 2002-05-21 Mitsubishi Heavy Industries, Ltd. Gas turbine system and combined plant comprising the same
US7204077B2 (en) 2002-10-08 2007-04-17 Kawasaki Jukogyo Kabushiki Kaisha Atmospheric pressure combustion turbine system
JP2009216091A (en) * 2008-03-10 2009-09-24 General Electric Co <Ge> Method for injecting diluent to gas turbine assembly
JP2009276053A (en) * 2008-05-15 2009-11-26 General Electric Co <Ge> Dry type three-way catalytic reduction method for gas turbine nox
JP2010514981A (en) * 2006-12-28 2010-05-06 ヨルゲン スコムスヴォルド,アーゲ Rotating device
WO2010082360A1 (en) 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
WO2010082359A1 (en) 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
JP2014095370A (en) * 2012-11-12 2014-05-22 Central Research Institute Of Electric Power Industry Turbine equipment and power generation facility
JP2015190466A (en) * 2014-03-31 2015-11-02 株式会社Ihi Combustion device, gas turbine and power generation device

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO982504D0 (en) * 1998-06-02 1998-06-02 Aker Eng As Removal of CO2 ir ° kgass
JP2005516141A (en) 2001-10-26 2005-06-02 アルストム テクノロジー リミテッド Configuration gas turbine and its operating method to operate with high exhaust gas recirculation rate
WO2008155242A1 (en) * 2007-06-19 2008-12-24 Alstom Technology Ltd Gas turbine system having exhaust gas recirculation
WO2009121008A2 (en) 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
AU2009228283B2 (en) 2008-03-28 2015-02-05 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
US20090301054A1 (en) * 2008-06-04 2009-12-10 Simpson Stanley F Turbine system having exhaust gas recirculation and reheat
US20100003123A1 (en) 2008-07-01 2010-01-07 Smith Craig F Inlet air heating system for a gas turbine engine
JP5580320B2 (en) 2008-10-14 2014-08-27 エクソンモービル アップストリーム リサーチ カンパニー Method and system for controlling the combustion products
EP2438281B1 (en) 2009-06-05 2016-11-02 Exxonmobil Upstream Research Company Combustor system
EA023673B1 (en) 2009-11-12 2016-06-30 Эксонмобил Апстрим Рисерч Компани Low emission power generation and hydrocarbon recovery system and method
TWI564475B (en) 2010-07-02 2017-01-01 Exxonmobil Upstream Res Co Low emission triple-cycle power generation systems and methods
CA2801499C (en) 2010-07-02 2017-01-03 Exxonmobil Upstream Research Company Low emission power generation systems and methods
MX341981B (en) 2010-07-02 2016-09-08 Exxonmobil Upstream Res Company * Stoichiometric combustion with exhaust gas recirculation and direct contact cooler.
BR112012031505A2 (en) 2010-07-02 2016-11-01 Exxonmobil Upstream Res Co stoichiometric combustion enriched air with exhaust gas recirculation
US9903279B2 (en) 2010-08-06 2018-02-27 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
WO2012018458A1 (en) 2010-08-06 2012-02-09 Exxonmobil Upstream Research Company System and method for exhaust gas extraction
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI593872B (en) 2011-03-22 2017-08-01 Exxonmobil Upstream Res Co Integrated system and methods of generating power
TWI564474B (en) 2011-03-22 2017-01-01 Exxonmobil Upstream Res Co Integrated systems for controlling stoichiometric combustion in turbine systems and methods of generating power using the same
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
US9810050B2 (en) 2011-12-20 2017-11-07 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US10100741B2 (en) 2012-11-02 2018-10-16 General Electric Company System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (en) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co Reducing oxygen in a gas turbine exhaust
RU2637609C2 (en) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани System and method for turbine combustion chamber
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
EP2964735A1 (en) 2013-03-08 2016-01-13 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
TW201500635A (en) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co Processing exhaust for use in enhanced oil recovery
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
TWI654368B (en) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 For controlling exhaust gas recirculation in the gas turbine system in the exhaust stream of a system, method and media
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389796B1 (en) 1999-10-05 2002-05-21 Mitsubishi Heavy Industries, Ltd. Gas turbine system and combined plant comprising the same
US7204077B2 (en) 2002-10-08 2007-04-17 Kawasaki Jukogyo Kabushiki Kaisha Atmospheric pressure combustion turbine system
JP2010514981A (en) * 2006-12-28 2010-05-06 ヨルゲン スコムスヴォルド,アーゲ Rotating device
JP2009216091A (en) * 2008-03-10 2009-09-24 General Electric Co <Ge> Method for injecting diluent to gas turbine assembly
JP2009276053A (en) * 2008-05-15 2009-11-26 General Electric Co <Ge> Dry type three-way catalytic reduction method for gas turbine nox
US8991149B2 (en) 2008-05-15 2015-03-31 General Electric Company Dry 3-way catalytic reduction of gas turbine NOX
WO2010082360A1 (en) 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
WO2010082359A1 (en) 2009-01-14 2010-07-22 トヨタ自動車株式会社 Engine
US8943826B2 (en) 2009-01-14 2015-02-03 Toyota Jidosha Kabushiki Kaisha Engine
US9145849B2 (en) 2009-01-14 2015-09-29 Toyota Jidosha Kabushiki Kaisha Engine fueled by ammonia with selective reduction catalyst
JP2014095370A (en) * 2012-11-12 2014-05-22 Central Research Institute Of Electric Power Industry Turbine equipment and power generation facility
JP2015190466A (en) * 2014-03-31 2015-11-02 株式会社Ihi Combustion device, gas turbine and power generation device

Also Published As

Publication number Publication date
DE19810820A1 (en) 1998-09-24
CA2231749A1 (en) 1998-09-19

Similar Documents

Publication Publication Date Title
CN102953818B (en) Power plant and method of operation
US4297842A (en) NOx suppressant stationary gas turbine combustor
CN102588113B (en) The method of gas turbine engine components and exhaust gas, and fuel control system analysis and control of the gas turbine engine
CN102953815B (en) Power means and operating methods
US2624172A (en) Process of generating power involving catalytic oxidation
US20130269356A1 (en) Method and system for controlling a stoichiometric egr system on a regenerative reheat system
US7765810B2 (en) Method for obtaining ultra-low NOx emissions from gas turbines operating at high turbine inlet temperatures
US7624564B2 (en) Apparatus and method for providing an off-gas to a combustion system
CN102953819B (en) Power apparatus and method of operation
US20050144961A1 (en) System and method for cogeneration of hydrogen and electricity
US20050026095A1 (en) Multi-stage combustion using nitrogen-enriched air
US20110138766A1 (en) System and method of improving emission performance of a gas turbine
EP1949952A2 (en) Method for reducing NOx from exhaust gases produced by industrial processes
US4893468A (en) Emissions control for gas turbine engine
US20180283273A1 (en) Method and system for controlling secondary flow system
US4313300A (en) NOx reduction in a combined gas-steam power plant
US7007487B2 (en) Recuperated gas turbine engine system and method employing catalytic combustion
US6442941B1 (en) Compressor discharge bleed air circuit in gas turbine plants and related method
CN102979621B (en) Power plant and method of operation
CN1179121C (en) Method and apparatus for recovering sensible heat from hot exhaust gas
US5235804A (en) Method and system for combusting hydrocarbon fuels with low pollutant emissions by controllably extracting heat from the catalytic oxidation stage
JP3196549B2 (en) Power generation system provided with a fuel reformer
CN102301108B (en) A method of operating a fuel oxidizer in a multiple operating mode and a fuel oxidation system
US8312725B2 (en) Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel
US20090301054A1 (en) Turbine system having exhaust gas recirculation and reheat

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020430