JP2004332040A - Plating method, and method for producing electronic component - Google Patents

Plating method, and method for producing electronic component Download PDF

Info

Publication number
JP2004332040A
JP2004332040A JP2003128664A JP2003128664A JP2004332040A JP 2004332040 A JP2004332040 A JP 2004332040A JP 2003128664 A JP2003128664 A JP 2003128664A JP 2003128664 A JP2003128664 A JP 2003128664A JP 2004332040 A JP2004332040 A JP 2004332040A
Authority
JP
Japan
Prior art keywords
plating
vibration
container
plated
plating method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003128664A
Other languages
Japanese (ja)
Inventor
Akihiro Motoki
章博 元木
Shigeyuki Kuroda
茂之 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003128664A priority Critical patent/JP2004332040A/en
Publication of JP2004332040A publication Critical patent/JP2004332040A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress sticking between parts to be plated and variation in a plating film in a plating method using a vibration plating device. <P>SOLUTION: Plating is performed in such a manner that a flowing state where the contents of a container 30 flow mainly to the horizontal direction with a vibration transmission part 40 as the center and another flowing state where the contents flow mainly to the vertical direction are alternately repeated by periodically changing the frequency of the vibration generated in a vibration generating part 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、振動めっき装置を用いためっき方法に関し、さらには振動めっき装置を用いてめっき処理を施すチップ状電子部品の製造方法に関する。
【0002】
【従来の技術】
積層チップコンデンサなどのチップ状電子部品にめっきを施す方法として、本出願人は特許文献1において、被めっき物を収容した容器に偏心モータによる振動を与えて水平面方向に旋回させつつ垂直方向に揺動させながらめっきを施すめっき方法を提案した。
【0003】
この技術は、小型の電子部品に対して確実かつ精度よくめっきを施すことを目的としているが、内容物の流動状態によっては効果を得られないことがあり、また、内容物を最適に流動させるための条件設定が難しいという問題点があった。さらには、たとえ最適な流動状態を実現したとしても、めっき時間が長くなるにつれて導電性の媒体と被めっき物が分離し、めっき膜厚のバラツキが発生したり、被めっき物同士が凝隗状にくっつきを起こしたりすることがあった。
【0004】
これらの問題に鑑み、本出願人はさらに特許文献2に記載された技術を提案した。
【0005】
【特許文献1】
特開平5−70999号公報
【特許文献2】
特開平9−31697号公報
【0006】
【発明が解決しようとする課題】
特許文献2において提案された技術は、最適なめっき条件の設定が難しいという特許文献1の技術の問題点を解決するために、容器の変位を検出するための変位センサを備え、変位センサによって検出された容器の変位状態に基づいてモータの回転数を制御するというものである。
【0007】
しかしながらこの技術によってもなお、めっき時間が長くなるにつれて被めっき物と導電性媒体とが分離するという問題点は解決されなかった。
【0008】
そこで本発明は、容器の内容物の滞留や、被めっき物と導電性媒体との分離を防ぎ、析出するめっき膜厚のバラツキや、被めっき物のくっつきを発生させないめっき方法および電子部品の製造方法を提供することである。
【0009】
【課題を解決するための手段】
上記問題点を解決するために本発明のめっき方法は、容器に被めっき物を収容し、前記容器をめっき液に浸漬して、振動発生手段によって前記容器に振動を与えながら前記被めっき物にめっきを施すめっき方法であって、被めっき物が主として水平面方向に回転して流動する流動状態と、被めっき物が主として垂直面方向に回転して流動する流動状態とを交互に繰り返しながらめっきを施すことを特徴とする。
【0010】
これにより、被めっき物が滞留することを防ぐことができる。また、被めっき物に加えて導電性媒体を容器に収容する場合には、被めっき物と導電性媒体が分離することを防ぐことができる。その結果、被めっき物同士のくっつきの発生や、めっき膜厚のバラツキの発生を抑制することができる。
【0011】
また、本発明のめっき方法のより具体的な例としては、被めっき物を収容する容器と、振動発生手段と、振動伝達部とを備え、前記容器は底面と壁面とからなり、前記振動伝達部は前記容器の底面から略垂直上方に延びるように取りつけられ、前記振動発生手段は前記振動伝達部を介して前記容器に振動を与えるように構成されている振動めっき装置を用いて被めっき物にめっきを施すめっき方法であって、被めっき物が主として前記振動伝達部を中心に水平面方向に回転して流動する流動状態と、被めっき物が主として垂直面方向に回転して流動する流動状態とを交互に繰り返しながらめっきを施すことを特徴とする。
【0012】
これによって、被めっき物同士のくっつきの発生や、めっき膜厚のバラツキの発生を抑制することができる。
【0013】
さらに本発明のめっき方法では、前記容器に与える振動の周波数を変化させることによって被めっき物の流動状態を変化させ、被めっき物が主として水平面方向に回転して流動する流動状態と、被めっき物が主として垂直面方向に回転して流動する流動状態とを交互に繰り返しながらめっきを施すことを特徴とする。
【0014】
これにより、複雑な機構を必要とせず比較的簡単に被めっき物の流動状態を変化させることができる。
【0015】
また、前記振動発生手段は、偏心荷重を取りつけたモータを具備し、前記モータの回転数を変化させることによって振動の周波数を変化させるように構成してもよい。振動発生手段の構成は任意の構成を採用可能であるが、このように構成すれば機構が比較的簡単であり、かつ簡単に振動の周波数を変化させることができる。
【0016】
本発明のめっき方法では、前記容器にはさらに導電性媒体を収容してもよい。特に被めっき物の被めっき部分が微細である場合には導電性媒体を用いることが好ましい。
【0017】
さらに本発明のめっき方法では、前記容器にはさらに絶縁性粒状物を収容してもよい。絶縁性粒状物を収容することにより、被めっき物と導電性媒体とがより均一に分散し、くっつきの発生やめっき膜厚のバラツキを抑制することができる。
【0018】
また、上述のめっき方法を用いて電子部品を製造することにより、電子部品の表面に形成するめっき皮膜を均一な厚みとすることができる。さらに、めっき工程での電子部品同士のくっつきが抑制されて製造歩留まりが向上する。
【0019】
【発明の実施の形態】
以下において図を参照しつつ本発明の実施の形態について説明する。図1は本発明に係る振動めっき装置の構成を示す断面図である。この振動めっき装置は、所定の振動を発生させる振動発生部10と、振動発生部10で発生する振動の周波数を制御する振動制御部20と、被めっき物などを収容する容器30と、振動発生部20で発生した振動を容器30に伝達する振動伝達部40と、めっき液を貯留するめっき槽50を備えている。
【0020】
振動発生部10は、ケース11、バネ12、支持部13、偏心荷重14、モータ15からなる。支持部13はバネ12によってケース11に対して弾性支持されている振動受板13a、振動受板上の支柱13b、支柱によって支持された支持板13cからなり、支持板13cには偏心荷重14が取り付けられたモータ15がある。モータ15は振動制御部20からの制御信号に応じて回転数を変化させることができる。モータ15が回転することにより、偏心荷重14が偏心回転運動を行い、バネ12によって弾性支持された支持部13全体がケース11に対して周期的に揺動する。
【0021】
なお、本願発明において振動周波数とは偏心荷重14の回転数を指すものとする。すなわち、例えば振動周波数50Hzとは、偏心荷重14が毎秒50回転することを指す。
【0022】
振動伝達部40は棒状であり、支持部13の振動受板13aの下面に一端が取りつけられ、他端が容器30の底面31に取り付けられている。支持部13が上記の如く揺動するのに伴い、振動受板13aに取り付けられている振動伝達部40も揺動運動を行う。これにより、振動伝達部40を介して、振動発生部10で発生した振動が容器30に伝達される。
【0023】
図2は容器30を示す平面図である。容器30は、略円形の底面31と、側面32とからなり、めっき槽50に貯留されためっき液に浸漬されている。また、容器30には積層セラミックコンデンサなどの被めっき物、スチールボールなどの導電性媒体を収容する。容器30には陰極33が設けられており、めっき液に浸漬されている陽極51と、容器30に設けられている陰極33との間に直流電圧を印加することにより、被めっき物に電解めっきを施す。図では陰極33は容器30の底面31に設けられているが、陰極33を設ける位置および形状はこれに限られるものではない。ただし、陰極33の形状は被めっき物などの容器30の内容物の流動を妨げないようにされていることが好ましい。また底面31には、容器30をめっき槽50から引き上げたときにめっき液が容器30から抜けるようにするためのメッシュ部34が設けられている。また、容器30にはさらに絶縁性粒状物を収納してもよい。
【0024】
容器30は、振動発生部10の振動が振動伝達部40を介して伝搬されることによって、垂直方向に振動しつつ、水平方向に旋回運動をする。振動の周波数を変化させても容器30の振動モードは基本的には変化しない。
【0025】
次に、この振動めっき装置を用いた、本発明のめっき方法について説明する。積層セラミックコンデンサなどの、基体表面の少なくとも一部に導電性の部分を備える被めっき物と、スチールボールなどの導電性媒体を容器30に収容する。めっき槽50にはめっき液を貯留しておく。めっき液は公知の任意のめっき液を使用可能である。また、めっき槽50にはNiやSnなどのめっきすべき金属からなる陽極51を浸漬している。図1では陽極51は板状に示しているが、陽極51の形状は特に限定されるものではなく、例えば隗状であってもよい。
【0026】
本発明のめっき方法では、陽極51と陰極33との間に直流電流を流しつつ、容器30に振動を与えて電解めっき処理を行う。このとき、本発明のめっき方法は、振動周波数を周期的に変化させることを特徴とする。本発明者らの研究により、振動周波数によって、容器30の内容物の流動状態が変化するとの知見が得られたのでこれについて説明する。
【0027】
すなわち、振動周波数がある一定の周波数以下であるときには、図3に矢印で示すように、内容物は主として振動伝達部40を取り巻いて容器30の側壁32に沿うように水平面方向に回転して対流する。これに対して、振動周波数をある一定の周波数以上とした場合には、図4の断面図において破線の矢印で示すように、主として内容物は垂直面方向に回転して対流する。すなわち、内容物は容器30の底面31中心部から外側へ流動しつつ底面31から側壁32に沿って上方へ押し上げられ、表面部の外側から中心部に流動しているという流動状態である。
【0028】
一定以下の周波数とした場合でも、水平面方向の流動に加えてある程度の垂直面方向の流動も見られるが、主として水平面方向に流動する。周波数を上げるにつれて垂直面方向の流動が激しくなり、一定以上の周波数では垂直面方向の流動が主となる。なお垂直面方向の流動が主となっている場合でも、水平面方向の流動もある程度発生している。
【0029】
本発明では一定時間毎に振動周波数をある一定の周波数以上とそれ以下に繰り返し切り替えることによって、上記の水平方向の対流と垂直面方向の対流とを繰り返す。
【0030】
このように、所定時間毎に流動の状態を変化させることにより、被めっき物と導電性媒体との分離を防ぐことができる。その結果、析出するめっき皮膜の膜厚のバラツキや、内容物同士のくっつきの発生を抑制することができる。
【0031】
以下において本発明の詳細な実施例を示す。各実施例および比較例においては、透明な容器30を用いて、めっき処理中の内容物の流動状態を観察した。なお、ここでは外径が150mm〜200mm程度の容器30を用いてめっき処理を施したが、この場合には振動周波数が50Hz以下の場合には内容物は主として水平面方向に回転して流動し、50Hz以上の場合には主として垂直面方向に回転して流動することが本発明者の観察によりわかっている。振動の周波数が低い場合には水平面方向の流動が主であり、周波数を上げるにつれて垂直面方向の流動が多く観察されるようになり、振動周波数が50Hzのときに水平面方向の流動と垂直面方向の流動がほぼ等しく観察され、周波数がこれより高いときには垂直面方向の流動が主となった。
【0032】
(実施例1)誘電体層と電極槽を交互に積層してなる0.6×0.3×0.3mmサイズの基体の表面に、Agとガラスフリットからなる焼き付け電極を形成した積層セラミックコンデンサを50万個と、導電性媒体として直径0.5mmのスチールボールを60万個を、上記の振動めっき装置の容器30に収容した。そして、振動周波数20Hzと振動周波数70Hzを1分ごとに繰り返しながら、硫酸ニッケル、塩化ニッケル、ホウ酸を含有するNiめっき浴(いわゆるワット浴)を用いて電流値2Aで100分間のめっき処理を施した。被めっき物を水洗したのち、硫酸錫、錯化剤としてクエン酸、光沢剤を含有し弱酸性に調整された錯化剤系のSnめっき浴を用いて、電流値5Aで100分のめっき処理を施した。
【0033】
内容物の流動状態を観察したところ、振動周波数を20Hzにしたときには主として水平面方向に流動していた。また、振動周波数を70Hzとしたときには主として垂直面方向に流動していた。
【0034】
(実施例2)1.0×0.5×0.5mmのセラミック基体の表面にAgとガラスフリットからなる焼き付け電極を形成したチップ型サーミスタを30万個と、導電性媒体として直径0.9mmのスチールボールを30万個を上記の振動めっき装置の容器30に収容した。そして、振動周波数45Hzと振動周波数60Hzを20分ごとに繰り返しながら、実施例1に記載したものと同様のワット浴を用いて、電流値10Aで60分間のめっき処理を施した。被めっき物を水洗したのち、実施例1に記載したものと同様の錯化剤系Snめっき浴を用いて、電流値10Aで60分間のめっき処理を施した。
【0035】
内容物の流動状態を観察したところ、振動周波数を45Hzにしたときには主として水平面方向に流動していた。また、振動周波数を60Hzとしたときには主として垂直面方向に流動していた。
【0036】
(実施例3)誘電体層と電極槽を交互に積層してなる1.0×0.5×0.5mmの基体の表面にCuとガラスフリットからなる焼き付け電極を形成した積層セラミックコンデンサを50万個と、導電性媒体として直径0.9mmのスチールボールを50万個を上記の振動めっき装置の容器30に収容した。そして、振動周波数10Hz、20Hz、60Hzを、10Hz−60Hz−20Hz−60Hz−10Hz−…の順番に10分ごとに繰り返しながら、実施例1に記載したものと同様のワット浴を用いて、電流値10Aで60分間のめっき処理を施した。被めっき物を水洗したのち、実施例1に記載したものと同様の錯化剤系Snめっき浴を用いて、電流値10Aで50分間のめっき処理を施した。
【0037】
内容物の流動状態を観察したところ、振動周波数を10Hzあるいは20Hzにしたときには主として水平面方向に流動していた。また、振動周波数を60Hzとしたときには主として垂直面方向に流動していた。
【0038】
(比較例1−1)実施例1に記載したものと同様のめっき条件で、振動周波数を70Hzに固定してそれぞれ100分間のNiめっき処理とSnめっき処理を施した。
【0039】
内容物の流動状態を観察したところ、主として垂直面方向に流動していた。また、Niめっき、Snめっきともに、めっき時間が10分を過ぎた頃から被めっき物と導電性媒体が分離し始め、容器の周辺部で被めっき物の滞留が認められた。被めっき物と導電性媒体との分離は、めっき時間が長くなるにつれて著しくなっていった。
【0040】
(比較例1−2)実施例1に記載したものと同様のめっき条件で、振動周波数を20Hzに固定してそれぞれ100分間のNiめっき処理とSnめっき処理を施した。
【0041】
内容物の流動状態を観察したところ、主として水平面方向に流動していた。容器内での内容物の滞留は認められないが、隣接する内容物同士の位置関係が変化しないまま全体として水平面方向に流動しているため、くっつきが発生しやすい状態となっている。
【0042】
(比較例2−1)実施例2に記載したものと同様のめっき条件で、振動周波数を45Hzに固定してそれぞれ60分間のNiめっき処理とSnめっき処理を施した。
【0043】
内容物の流動状態を観察したところ、主として水平面方向に流動していた。容器内での内容物の滞留は認められないが、隣接する内容物同士の位置関係が変化しないまま全体として水平面方向に流動しているため、くっつきが発生しやすい状態となっている。
【0044】
(比較例2−2)実施例2に記載したものと同様のめっき条件で、振動周波数を60Hzに固定してそれぞれ60分間のNiめっき処理とSnめっき処理を施した。
【0045】
内容物の流動状態を観察したところ、主として垂直面方向に流動していた。また、Niめっき、Snめっきともに、めっき時間が20分を過ぎた頃から被めっき物と導電性媒体が分離し始め、容器の周辺部で被めっき物の滞留が認められた。被めっき物と導電性媒体との分離は、めっき時間が長くなるにつれて著しくなっていった。
【0046】
(比較例3−1)実施例3に記載したものと同様のめっき条件で、振動周波数を10Hzに固定して、60分間のNiめっき処理と50分間のSnめっき処理を施した。
【0047】
内容物の流動状態を観察したところ、主として水平面方向に流動していた。容器内での内容物の滞留は認められないが、隣接する内容物同士の位置関係が変化しないまま全体として水平面方向に流動しているため、くっつきが発生しやすい状態となっている。
【0048】
(比較例3−2)実施例3に記載したものと同様のめっき条件で、振動周波数を60Hzに固定して、60分間のNiめっき処理と50分間のSnめっき処理を施した。
【0049】
内容物の流動状態を観察したところ、主として垂直面方向に流動していた。また、Niめっき、Snめっきともに、めっき時間が20分を過ぎた頃から被めっき物と導電性媒体が分離し始め、容器の周辺部で被めっき物の滞留が認められた。被めっき物と導電性媒体との分離は、めっき時間が長くなるにつれて著しくなっていった。
【0050】
上記の実施例1〜3および比較例1−1〜3−2について、NiめっきとSnめっきを施した後に、くっつきを起こした被めっき物の重量を、容器に収容したすべての被めっき物の重量で除して求めた「くっつき率」、析出したNi,Snそれぞれのめっき皮膜の膜厚と膜厚のCV値を測定した。Niめっき皮膜の膜厚とCV値を表1に、Snめっき皮膜の膜厚とCV値を表2に、NiめっきとSnめっきを施した後のくっつき率を表3に示す。なおCV値は、CV={(標準偏差)/(平均値)}×100(%)によって与えられ、値が大きいほどバラツキが大きいことを意味する。
【0051】
【表1】

Figure 2004332040
【0052】
【表2】
Figure 2004332040
【0053】
【表3】
Figure 2004332040
【0054】
表1、表2から明らかなように、実施例1〜3では比較例1−1〜3−2と比較して膜厚のCV値が小さくなっている、すなわち膜厚のバラツキが小さくなっている。また、表3から明らかなように実施例1〜3ではくっつきがほとんど発生しておらず、比較例1−1〜3−2と比較してくっつきの発生率が大きく改善している。
【0055】
上記の実施例および比較例ではNiめっき浴とSnめっき浴を用いたが、本発明はこれ以外の任意のめっき浴に対しても適用可能であり、たとえばSn−Pb合金めっき浴などにも適用できる。
【0056】
また、上記の実施例では容器に被めっき物と導電性媒体を収容したが、さらに絶縁性粒体物を加えてもよい。特に、容器に収容する内容物の量が容器の容積に対して一定以上の割合(例えば容器の容積の10%程度以上)になる場合には、内容物の流動の自由度が小さくなってくっつきが発生しやすくなることから、絶縁性粒体物を加えてくっつきを抑制することが好ましい。
【0057】
この場合、上記の各実施例で用いた程度のサイズの被めっき物をめっきするならば、絶縁性粒体物の直径を1.0〜10.0mmとしたときに最も効果が大きい。また、絶縁性粒体物は被めっき物と同体積量程度投入することが好ましい。
【0058】
【発明の効果】
以上のように本発明のめっき方法では、容器の内容物が主として水平面方向に流動する流動状態と、主として垂直面方向に流動する流動状態を交互に繰り返しながらめっきを施すことにより、被めっき物同士のくっつきやめっき膜厚のバラツキを効果的に抑制することができる。
【0059】
また、本発明の電子部品の製造方法によれば、電子部品の表面に形成するめっき皮膜を均一な厚みとすることができる。さらに、めっき工程での電子部品同士のくっつきが抑制されて製造歩留まりが向上する。
【図面の簡単な説明】
【図1】本発明に係るめっき方法に用いる振動めっき装置を示す図である。
【図2】振動めっき装置の容器を示す平面図である。
【図3】容器の内容物の流動状態を示す、容器の平面図である。
【図4】容器の内容物の流動状態を示す、容器の断面図である。
【符号の説明】
10 振動発生部
11 ケース
12 バネ
13 支持部
13a 振動受板
13b 支柱
13c 支持板
14 偏心荷重
15 モータ
20 振動制御部
30 容器
31 底面
32 側面
33 陰極
34 メッシュ部
40 振動伝達部
50 めっき槽
51 陽極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plating method using a vibration plating apparatus, and further relates to a method for manufacturing a chip-shaped electronic component that is subjected to plating using a vibration plating apparatus.
[0002]
[Prior art]
As a method for plating a chip-shaped electronic component such as a multilayer chip capacitor, the present applicant has disclosed in Japanese Patent Application Laid-Open No. H11-163,447 a method of applying vibration to a container accommodating an object to be plated by an eccentric motor so that the container is swung in a horizontal plane direction while swinging in a vertical direction. A plating method for plating while moving was proposed.
[0003]
This technique aims to apply plating to small electronic components reliably and accurately. However, the effect may not be obtained depending on the flowing state of the contents, and the contents are optimally flowed. It is difficult to set conditions for this. Furthermore, even if an optimal fluidized state is realized, as the plating time increases, the conductive medium and the object to be plated are separated, causing variations in the plating film thickness, and the objects to be plated being aggregated. And sometimes caused sticking.
[0004]
In view of these problems, the present applicant further proposed a technique described in Patent Document 2.
[0005]
[Patent Document 1]
JP-A-5-70999 [Patent Document 2]
JP-A-9-31697
[Problems to be solved by the invention]
The technique proposed in Patent Literature 2 includes a displacement sensor for detecting a displacement of a container and solves the problem of the technique of Patent Literature 1 in which it is difficult to set optimal plating conditions. The number of rotations of the motor is controlled based on the displaced state of the container.
[0007]
However, even with this technique, the problem that the object to be plated and the conductive medium are separated as the plating time becomes longer has not been solved.
[0008]
Therefore, the present invention provides a plating method and a manufacturing method of an electronic component that prevents the retention of the contents of a container and the separation of an object to be plated and a conductive medium, and does not cause a variation in the thickness of a plated film to be deposited or sticking of the object to be plated. Is to provide a way.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the plating method of the present invention is to store the object to be plated in a container, immerse the container in a plating solution, and apply vibration to the container by vibration generating means. A plating method for performing plating, wherein plating is performed while alternately repeating a flowing state in which an object to be plated rotates and flows mainly in a horizontal plane direction and a flowing state in which an object to be plated mainly rotates and flows in a vertical plane direction. It is characterized by applying.
[0010]
This can prevent the object to be plated from staying. When the conductive medium is contained in the container in addition to the object to be plated, separation of the object to be plated and the conductive medium can be prevented. As a result, it is possible to suppress the occurrence of sticking between the objects to be plated and the occurrence of variations in the plating film thickness.
[0011]
Further, as a more specific example of the plating method of the present invention, the plating method includes a container for accommodating an object to be plated, a vibration generating unit, and a vibration transmitting unit, wherein the container includes a bottom surface and a wall surface, The part is attached so as to extend substantially vertically upward from the bottom surface of the container, and the vibration generating means uses a vibration plating apparatus configured to apply vibration to the container via the vibration transmission part, and A flow state in which the object to be plated mainly rotates in the horizontal plane direction around the vibration transmitting portion and a flow state in which the object to be plated mainly rotates in the vertical plane direction to flow. And plating alternately.
[0012]
As a result, it is possible to suppress the occurrence of sticking between the objects to be plated and the occurrence of variations in the plating film thickness.
[0013]
Further, in the plating method of the present invention, the flow state of the object to be plated is changed by changing the frequency of the vibration applied to the container, and the flow state in which the object to be plated rotates and flows mainly in a horizontal plane direction; Is characterized in that plating is performed while alternately repeating a flow state of rotating mainly in the vertical plane direction and flowing.
[0014]
Thus, the flow state of the object to be plated can be changed relatively easily without requiring a complicated mechanism.
[0015]
Further, the vibration generating means may include a motor having an eccentric load, and may be configured to change the frequency of the vibration by changing the rotation speed of the motor. The configuration of the vibration generating means can be any configuration, but with such a configuration, the mechanism is relatively simple and the frequency of vibration can be easily changed.
[0016]
In the plating method of the present invention, the container may further contain a conductive medium. In particular, when the portion to be plated of the object to be plated is fine, it is preferable to use a conductive medium.
[0017]
Further, in the plating method of the present invention, the container may further contain an insulating granular material. By accommodating the insulating granular material, the object to be plated and the conductive medium are more uniformly dispersed, and the occurrence of sticking and the variation in the plating film thickness can be suppressed.
[0018]
Further, by manufacturing an electronic component using the above-described plating method, a plating film formed on the surface of the electronic component can have a uniform thickness. Furthermore, sticking of the electronic components in the plating step is suppressed, and the production yield is improved.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a configuration of a vibration plating apparatus according to the present invention. This vibration plating apparatus includes a vibration generator 10 for generating a predetermined vibration, a vibration controller 20 for controlling the frequency of the vibration generated by the vibration generator 10, a container 30 for accommodating an object to be plated, and the like. A vibration transmission unit 40 for transmitting vibration generated in the unit 20 to the container 30 and a plating tank 50 for storing a plating solution are provided.
[0020]
The vibration generator 10 includes a case 11, a spring 12, a support 13, a eccentric load 14, and a motor 15. The support part 13 includes a vibration receiving plate 13a elastically supported by the spring 12 with respect to the case 11, a support 13b on the vibration support plate, and a support plate 13c supported by the support, and an eccentric load 14 is applied to the support plate 13c. There is a motor 15 attached. The rotation speed of the motor 15 can be changed according to a control signal from the vibration control unit 20. The rotation of the motor 15 causes the eccentric load 14 to perform an eccentric rotational motion, and the entire support portion 13 elastically supported by the spring 12 periodically swings with respect to the case 11.
[0021]
In the present invention, the vibration frequency indicates the number of rotations of the eccentric load 14. That is, for example, a vibration frequency of 50 Hz indicates that the eccentric load 14 rotates 50 times per second.
[0022]
The vibration transmitting unit 40 has a rod shape, and one end is attached to the lower surface of the vibration receiving plate 13 a of the support unit 13, and the other end is attached to the bottom surface 31 of the container 30. As the supporting portion 13 swings as described above, the vibration transmitting portion 40 attached to the vibration receiving plate 13a also performs a swinging motion. Thereby, the vibration generated in the vibration generation unit 10 is transmitted to the container 30 via the vibration transmission unit 40.
[0023]
FIG. 2 is a plan view showing the container 30. The container 30 has a substantially circular bottom surface 31 and a side surface 32 and is immersed in the plating solution stored in the plating tank 50. Further, the container 30 accommodates an object to be plated such as a multilayer ceramic capacitor and a conductive medium such as a steel ball. The container 30 is provided with a cathode 33. By applying a DC voltage between the anode 51 immersed in the plating solution and the cathode 33 provided in the container 30, the object to be plated is subjected to electrolytic plating. Is applied. In the figure, the cathode 33 is provided on the bottom surface 31 of the container 30, but the position and shape of the cathode 33 are not limited to this. However, it is preferable that the shape of the cathode 33 does not hinder the flow of the contents of the container 30 such as the object to be plated. Further, a mesh portion 34 is provided on the bottom surface 31 so that the plating solution can escape from the container 30 when the container 30 is pulled up from the plating tank 50. Further, the container 30 may further contain an insulating granular material.
[0024]
The container 30 revolves in the horizontal direction while vibrating in the vertical direction by the vibration of the vibration generating unit 10 being propagated through the vibration transmitting unit 40. Even if the vibration frequency is changed, the vibration mode of the container 30 does not basically change.
[0025]
Next, the plating method of the present invention using this vibration plating apparatus will be described. An object to be plated having a conductive portion on at least a part of the surface of a substrate, such as a multilayer ceramic capacitor, and a conductive medium such as a steel ball are housed in a container 30. A plating solution is stored in the plating tank 50. As the plating solution, any known plating solution can be used. An anode 51 made of a metal to be plated such as Ni or Sn is immersed in the plating tank 50. Although the anode 51 is shown in a plate shape in FIG. 1, the shape of the anode 51 is not particularly limited, and may be, for example, an aggregate shape.
[0026]
In the plating method of the present invention, the electrolytic plating is performed by applying vibration to the container 30 while flowing a direct current between the anode 51 and the cathode 33. At this time, the plating method of the present invention is characterized in that the vibration frequency is periodically changed. The present inventor has found that the flow state of the contents of the container 30 changes depending on the vibration frequency, which will be described.
[0027]
That is, when the vibration frequency is equal to or lower than a certain frequency, as shown by an arrow in FIG. 3, the contents mainly rotate around the vibration transmitting section 40 and rotate in the horizontal plane direction along the side wall 32 of the container 30 to cause convection. I do. On the other hand, when the vibration frequency is equal to or higher than a certain frequency, the contents mainly rotate in the direction of the vertical plane and convection as indicated by the dashed arrow in the sectional view of FIG. That is, the contents are in a flowing state in which the contents are pushed upward from the bottom surface 31 along the side wall 32 while flowing outward from the center of the bottom surface 31 of the container 30, and flow from the outside of the surface portion to the central portion.
[0028]
Even when the frequency is lower than a certain value, a certain amount of flow in the vertical direction is observed in addition to the flow in the horizontal direction, but the flow mainly flows in the horizontal direction. As the frequency is increased, the flow in the vertical direction becomes more intense. At a certain frequency or more, the flow in the vertical direction becomes dominant. In addition, even when the flow in the vertical plane direction is mainly performed, the flow in the horizontal plane direction is also generated to some extent.
[0029]
In the present invention, the above-described convection in the horizontal direction and convection in the vertical direction are repeated by repeatedly switching the vibration frequency to a certain frequency or more and a certain frequency or less at regular time intervals.
[0030]
As described above, by changing the flow state every predetermined time, it is possible to prevent the object to be plated from being separated from the conductive medium. As a result, it is possible to suppress variations in the thickness of the deposited plating film and the occurrence of sticking between the contents.
[0031]
Hereinafter, detailed examples of the present invention will be described. In each of the examples and comparative examples, the transparent container 30 was used to observe the flow state of the contents during the plating process. In this case, the plating process was performed using the container 30 having an outer diameter of about 150 mm to 200 mm. In this case, when the vibration frequency was 50 Hz or less, the contents mainly rotated in the horizontal direction and flowed, It has been found by the present inventors that when the frequency is 50 Hz or higher, the fluid mainly rotates and flows in the vertical plane direction. When the frequency of the vibration is low, the flow in the horizontal direction is predominant, and as the frequency is increased, the flow in the vertical direction is often observed. When the vibration frequency is 50 Hz, the flow in the horizontal direction and the flow in the vertical direction are observed. The flow was almost equally observed, and when the frequency was higher than this, the flow in the vertical direction became dominant.
[0032]
(Example 1) A multilayer ceramic capacitor in which a baked electrode made of Ag and glass frit was formed on the surface of a substrate of 0.6 × 0.3 × 0.3 mm in which dielectric layers and electrode baths were alternately laminated. And 500,000 steel balls having a diameter of 0.5 mm as a conductive medium were accommodated in the container 30 of the vibration plating apparatus. Then, while repeating the vibration frequency of 20 Hz and the vibration frequency of 70 Hz every minute, a plating treatment was performed at a current value of 2 A for 100 minutes using a Ni plating bath (a so-called Watt bath) containing nickel sulfate, nickel chloride, and boric acid. did. After the object to be plated is washed with water, plating treatment is performed at a current value of 5 A for 100 minutes using a tin plating bath of tin complex containing tin sulfate, citric acid as a complexing agent, and a brightening agent and adjusted to be weakly acidic. Was given.
[0033]
When the flow state of the contents was observed, when the vibration frequency was set to 20 Hz, the contents mainly flowed in the horizontal plane direction. When the vibration frequency was set to 70 Hz, the fluid flowed mainly in the vertical plane direction.
[0034]
(Example 2) 300,000 chip-type thermistors each having a baked electrode made of Ag and glass frit formed on the surface of a ceramic substrate of 1.0 × 0.5 × 0.5 mm and a diameter of 0.9 mm as a conductive medium 300,000 steel balls were placed in the container 30 of the vibration plating apparatus. Then, while repeating the vibration frequency of 45 Hz and the vibration frequency of 60 Hz every 20 minutes, plating was performed at a current value of 10 A for 60 minutes using the same watt bath as described in Example 1. After the object to be plated was washed with water, a plating treatment was performed at a current value of 10 A for 60 minutes using the same complexing agent-based Sn plating bath as that described in Example 1.
[0035]
Observation of the flow state of the contents revealed that the flow was mainly in the horizontal direction when the vibration frequency was 45 Hz. When the vibration frequency was set to 60 Hz, the fluid flowed mainly in the vertical plane direction.
[0036]
Example 3 A laminated ceramic capacitor in which a baked electrode made of Cu and glass frit was formed on the surface of a substrate of 1.0 × 0.5 × 0.5 mm in which dielectric layers and electrode baths were alternately laminated was used. Ten thousand and 500,000 steel balls having a diameter of 0.9 mm as a conductive medium were accommodated in the container 30 of the vibration plating apparatus. Then, while repeating the vibration frequencies of 10 Hz, 20 Hz, and 60 Hz in the order of 10 Hz-60 Hz-20 Hz-60 Hz-10 Hz-... Every 10 minutes, the current value was measured using the same watt bath as that described in Example 1. A plating treatment was performed at 10 A for 60 minutes. After the object to be plated was washed with water, a plating treatment was performed at a current value of 10 A for 50 minutes using the same complexing agent-based Sn plating bath as described in Example 1.
[0037]
Observation of the flow state of the contents revealed that the flow was mainly in the horizontal plane when the vibration frequency was 10 Hz or 20 Hz. When the vibration frequency was set to 60 Hz, the fluid flowed mainly in the vertical plane direction.
[0038]
(Comparative Example 1-1) Under the same plating conditions as those described in Example 1, the vibration frequency was fixed at 70 Hz, and Ni plating and Sn plating were performed for 100 minutes each.
[0039]
Observation of the flow state of the contents revealed that the contents mainly flowed in the vertical plane direction. In addition, in both Ni plating and Sn plating, the plating object began to separate from the conductive medium when the plating time exceeded 10 minutes, and stagnation of the plating object was observed around the container. The separation between the object to be plated and the conductive medium became remarkable as the plating time became longer.
[0040]
(Comparative Example 1-2) Under the same plating conditions as those described in Example 1, the vibration frequency was fixed at 20 Hz, and Ni plating and Sn plating were performed for 100 minutes each.
[0041]
Observation of the flow state of the contents revealed that the contents mainly flowed in the horizontal plane direction. No stagnation of the contents in the container is observed, but the contents are flowing in the horizontal plane as a whole without changing the positional relationship between the adjacent contents, so that sticking is likely to occur.
[0042]
(Comparative Example 2-1) Under the same plating conditions as those described in Example 2, the vibration frequency was fixed at 45 Hz, and Ni plating and Sn plating were performed for 60 minutes each.
[0043]
Observation of the flow state of the contents revealed that the contents mainly flowed in the horizontal plane direction. No stagnation of the contents in the container is observed, but the contents are flowing in the horizontal plane as a whole without changing the positional relationship between the adjacent contents, so that sticking is likely to occur.
[0044]
(Comparative Example 2-2) Under the same plating conditions as those described in Example 2, the vibration frequency was fixed at 60 Hz, and Ni plating and Sn plating were performed for 60 minutes each.
[0045]
Observation of the flow state of the contents revealed that the contents mainly flowed in the vertical plane direction. In both Ni plating and Sn plating, the plating object and the conductive medium started to be separated from each other after the plating time exceeded 20 minutes, and retention of the plating object was recognized at the periphery of the container. The separation between the object to be plated and the conductive medium became remarkable as the plating time became longer.
[0046]
(Comparative Example 3-1) Under the same plating conditions as those described in Example 3, the vibration frequency was fixed at 10 Hz, and Ni plating treatment for 60 minutes and Sn plating treatment for 50 minutes were performed.
[0047]
Observation of the flow state of the contents revealed that the contents mainly flowed in the horizontal plane direction. No stagnation of the contents in the container is observed, but the contents are flowing in the horizontal plane as a whole without changing the positional relationship between the adjacent contents, so that sticking is likely to occur.
[0048]
(Comparative Example 3-2) Under the same plating conditions as those described in Example 3, the vibration frequency was fixed at 60 Hz, and Ni plating treatment for 60 minutes and Sn plating treatment for 50 minutes were performed.
[0049]
Observation of the flow state of the contents revealed that the contents mainly flowed in the vertical plane direction. In both Ni plating and Sn plating, the plating object and the conductive medium started to be separated from each other after the plating time exceeded 20 minutes, and retention of the plating object was recognized at the periphery of the container. The separation between the object to be plated and the conductive medium became remarkable as the plating time became longer.
[0050]
For Examples 1 to 3 and Comparative Examples 1-1 to 3-2 above, the weight of the object to be plated that was stuck after Ni plating and Sn plating was applied to all the objects to be plated contained in the container. The "sticking rate" obtained by dividing by weight, the thickness of the deposited Ni and Sn plating films and the CV value of the thickness were measured. Table 1 shows the film thickness and the CV value of the Ni plating film, Table 2 shows the film thickness and the CV value of the Sn plating film, and Table 3 shows the sticking ratio after Ni plating and Sn plating. The CV value is given by CV = {(standard deviation) / (average value)} × 100 (%), and the larger the value, the greater the variation.
[0051]
[Table 1]
Figure 2004332040
[0052]
[Table 2]
Figure 2004332040
[0053]
[Table 3]
Figure 2004332040
[0054]
As is clear from Tables 1 and 2, in Examples 1 to 3, the CV value of the film thickness was smaller than that of Comparative Examples 1-1 to 3-2, that is, the variation in the film thickness was smaller. I have. Further, as is clear from Table 3, sticking hardly occurred in Examples 1 to 3, and the occurrence rate of sticking was greatly improved as compared with Comparative Examples 1-1 to 3-2.
[0055]
Although the Ni plating bath and the Sn plating bath are used in the above Examples and Comparative Examples, the present invention can be applied to any other plating bath, such as an Sn—Pb alloy plating bath. it can.
[0056]
Further, in the above-described embodiment, the object to be plated and the conductive medium are accommodated in the container, but an insulating granular material may be further added. In particular, when the amount of the contents to be accommodated in the container is a certain ratio or more to the volume of the container (for example, about 10% or more of the volume of the container), the degree of freedom of the flow of the contents is reduced, and the contents stick. Therefore, it is preferable to add an insulating granular material to suppress sticking.
[0057]
In this case, if the object to be plated having the size used in each of the above embodiments is plated, the greatest effect is obtained when the diameter of the insulating granular material is 1.0 to 10.0 mm. Further, it is preferable that the insulating granular material is supplied in the same volume as the object to be plated.
[0058]
【The invention's effect】
As described above, in the plating method of the present invention, the objects to be plated are plated by alternately repeating the flowing state in which the contents of the container mainly flow in the horizontal plane direction and the flowing state in which the contents mainly flow in the vertical plane direction. Sticking and variations in plating film thickness can be effectively suppressed.
[0059]
Further, according to the method for manufacturing an electronic component of the present invention, the plating film formed on the surface of the electronic component can have a uniform thickness. Furthermore, sticking of the electronic components in the plating step is suppressed, and the production yield is improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a vibration plating apparatus used in a plating method according to the present invention.
FIG. 2 is a plan view showing a container of the vibration plating apparatus.
FIG. 3 is a plan view of the container showing a flow state of the contents of the container.
FIG. 4 is a cross-sectional view of the container, showing a flowing state of the contents of the container.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Vibration generation part 11 Case 12 Spring 13 Support part 13a Vibration receiving plate 13b Column 13c Support plate 14 Eccentric load 15 Motor 20 Vibration control part 30 Container 31 Bottom surface 32 Side 33 Cathode 34 Mesh part 40 Vibration transmission part 50 Plating tank 51 Anode

Claims (7)

容器に被めっき物を収容し、前記容器をめっき液に浸漬して、振動発生手段によって前記容器に振動を与えながら前記被めっき物にめっきを施すめっき方法であって、
被めっき物が主として水平面方向に回転して流動する流動状態と、被めっき物が主として垂直面方向に回転して流動する流動状態とを交互に繰り返しながらめっきを施すことを特徴とするめっき方法。
A plating method for storing the object to be plated in a container, immersing the container in a plating solution, and plating the object to be plated while applying vibration to the container by vibration generating means,
A plating method, wherein plating is performed while alternately repeating a flow state in which an object to be plated rotates and flows mainly in a horizontal plane direction and a flow state in which an object to be plated mainly rotates and flows in a vertical plane direction.
被めっき物を収容する容器と、振動発生手段と、振動伝達部とを備え、前記容器は底面と壁面とからなり、前記振動伝達部は前記容器の底面から略垂直上方に延びるように取りつけられ、前記振動発生手段は前記振動伝達部を介して前記容器に振動を与えるように構成されている振動めっき装置を用いて被めっき物にめっきを施すめっき方法であって、
被めっき物が主として前記振動伝達部を中心に水平面方向に回転して流動する流動状態と、被めっき物が主として垂直面方向に回転して流動する流動状態とを交互に繰り返しながらめっきを施すことを特徴とするめっき方法。
A container for accommodating the object to be plated, a vibration generating means, and a vibration transmitting unit, wherein the container has a bottom surface and a wall surface, and the vibration transmitting unit is attached to extend substantially vertically upward from the bottom surface of the container. A plating method for plating the workpiece using a vibration plating apparatus configured to apply vibration to the container via the vibration transmission unit,
The plating is performed while alternately repeating a flow state in which the object to be plated rotates and flows mainly in the horizontal plane around the vibration transmitting portion, and a flow state in which the object to be plated mainly rotates and flows in the vertical direction. A plating method characterized by the following.
請求項1あるいは請求項2に記載のめっき方法であって、前記容器に与える振動の周波数を変化させることによって被めっき物の流動状態を変化させ、被めっき物が主として水平面方向に回転して流動する流動状態と、被めっき物が主として垂直面方向に回転して流動する流動状態とを交互に繰り返しながらめっきを施すことを特徴とするめっき方法。3. The plating method according to claim 1, wherein a flow state of the object to be plated is changed by changing a frequency of vibration applied to the container, and the object to be plated mainly rotates in a horizontal plane direction and flows. A plating method characterized in that plating is performed while alternately repeating a flowing state in which an object to be plated and a flowing state in which an object to be plated rotates and flows mainly in a vertical plane direction are alternately repeated. 前記振動発生手段は、偏心荷重を取りつけたモータを具備し、前記モータの回転数を変化させることによって振動の周波数を変化させることを特徴とする、請求項1ないし請求項3のいずれかに記載のめっき方法。4. The vibration generating means according to claim 1, further comprising a motor provided with an eccentric load, and changing a frequency of the vibration by changing a rotation speed of the motor. Plating method. 請求項1ないし請求項4のいずれかに記載のめっき方法であって、前記容器にはさらに導電性媒体を収容することを特徴とするめっき方法。The plating method according to any one of claims 1 to 4, wherein the container further contains a conductive medium. 請求項1ないし請求項5のいずれかに記載のめっき方法であって、前記容器にはさらに絶縁性粒状物を収容することを特徴とするめっき方法。The plating method according to any one of claims 1 to 5, wherein the container further contains an insulating granular material. 請求項1ないし請求項6のいずれかに記載のめっき方法を用いてめっきを施すことを特徴とする電子部品の製造方法。A method for manufacturing an electronic component, wherein plating is performed using the plating method according to claim 1.
JP2003128664A 2003-05-07 2003-05-07 Plating method, and method for producing electronic component Pending JP2004332040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128664A JP2004332040A (en) 2003-05-07 2003-05-07 Plating method, and method for producing electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128664A JP2004332040A (en) 2003-05-07 2003-05-07 Plating method, and method for producing electronic component

Publications (1)

Publication Number Publication Date
JP2004332040A true JP2004332040A (en) 2004-11-25

Family

ID=33504710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128664A Pending JP2004332040A (en) 2003-05-07 2003-05-07 Plating method, and method for producing electronic component

Country Status (1)

Country Link
JP (1) JP2004332040A (en)

Similar Documents

Publication Publication Date Title
JP2012089481A (en) Anisotropic conductive member
US5167779A (en) Process and apparatus for electrolyte exchange
JP2002053999A (en) Barrel electroplating method for extremely small articles
US3397126A (en) Plating of small parts
JP2004332040A (en) Plating method, and method for producing electronic component
JP2004263202A (en) Plating method and plating apparatus
JP5749302B2 (en) Plating method
GB2259523A (en) Electroplating miniature parts in bulk
JP5385669B2 (en) Plating method and plating apparatus
CN1157503C (en) Method for producing very small metal ball
KR20160033678A (en) Method for Manufacturing Solder Bumps for Flip Chips and Metal Electroplating Solution for the Same
JP2020041170A (en) Production method of aluminum-plated film
JP3697481B2 (en) Solder plating method for fine metal balls
JP4496635B2 (en) Manufacturing method of electronic parts
TWI656245B (en) Metal body manufacturing method
JP2005146397A (en) Method for manufacturing electronic component and plating apparatus used therefor
KR101596437B1 (en) Method for Manufacturing Copper Pillars for Flip Chips and Copper-Based Electroplating Solution for the Same
JP3229259B2 (en) Apparatus and method for plating small parts
JPH11131296A (en) Device and method for plating small article
JPH11131297A (en) Device and method for plating small article
JP2003086467A (en) Method for forming dielectric layer in capacitor element for solid electrolytic capacitor and apparatus thereof
US1963604A (en) Coated electrolytic product
TWI638912B (en) Copper electroplating solution, method for copper electroplating and method for forming copper pillars
JP2005520930A (en) Apparatus and method for electroplating a wafer surface
JP6706095B2 (en) Electroless plating apparatus and electroless plating method