JP2004331706A - High-density polyethylene resin and container using the same resin - Google Patents

High-density polyethylene resin and container using the same resin Download PDF

Info

Publication number
JP2004331706A
JP2004331706A JP2003125460A JP2003125460A JP2004331706A JP 2004331706 A JP2004331706 A JP 2004331706A JP 2003125460 A JP2003125460 A JP 2003125460A JP 2003125460 A JP2003125460 A JP 2003125460A JP 2004331706 A JP2004331706 A JP 2004331706A
Authority
JP
Japan
Prior art keywords
resin
container
density polyethylene
polyethylene resin
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003125460A
Other languages
Japanese (ja)
Inventor
Yoshimasa Watabe
善全 渡部
Masayuki Yamaguchi
政之 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003125460A priority Critical patent/JP2004331706A/en
Publication of JP2004331706A publication Critical patent/JP2004331706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-density polyethylene resin having excellent moldability, high impact resistance and excellent smoothness of the surface of a molded product and a container composed of the resin and having surface smoothness of ≤10 μm average surface roughness and suitable as a large-sized high-purity medicine container having ≥50 L inner volume. <P>SOLUTION: The high-density polyethylene resin having characteristics of (a) 0.94-0.97 g/cm<SP>3</SP>density, (b) 1-15 g/10 min melt flow rate, (c) ≥160 mN melt tension, (d) ≤0.30 MPa shear stress and (e) ≥30 kJ/m<SP>2</SP>Charpy impact strength is used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、成形性に優れ、且つ耐衝撃性の高い高密度ポリエチレン樹脂に関する。さらに本発明は、高純度薬品への使用に適する容器に関する。
【0002】
【従来の技術】
高密度ポリエチレン樹脂は、重量平均分子量が20万程度の高分子量グレードになると、大きな溶融張力を有し、また、衝撃強度や耐環境応力亀裂時間(ESCR)が優れるようになるため、高分子量グレードはガソリンタンクなどの工業部品、工業薬品缶やコンテナ容器等の大型中空成形品の製造に使用されている。
【0003】
また、近年、電子工業分野の著しい発達に伴って、例えばLSI等の電子回路の大規模集積化に伴い、高純度薬品の需要が高まっている。従来、これらの高純度薬品容器用材料として、耐薬品性、耐衝撃性、価格等の点から、ポリエチレン樹脂が使用されている。
【0004】
しかしながら、従来の高密度ポリエチレン樹脂製の容器においては、容器樹脂からの溶出物や劣化物等の汚染物質の発生により内容物である薬品が汚染される問題があり、高純度薬品容器として使用する上で支障が有った。従って、充填された高純度薬品が汚染されず、且つ繰返し使用可能な大型容器用の高密度ポリエチレン樹脂の開発が待たれている。
【0005】
大型容器用の高密度ポリエチレン樹脂においては、その流動性、溶融張力等の成形性および耐衝撃性等のバランスと共に、汚染物質の発生を抑制するという課題を同時に満足させることが求められている。このような課題の試みとして、例えば(1)溶融張力を向上させる方法として、Cr系触媒を用いて長鎖分岐を有するポリエチレンを製造したり、有機過酸化物を用いて樹脂を架橋する方法が提案されているが、Crが内溶液に流出したり(例えば、特許文献1参照)、衝撃強度が不足する(例えば、特許文献2参照)等の問題が生じる。(2)近年開発されたメタロセン触媒を使用して機械的物性を向上する方法も提案されているが、機械的物性および成形加工特性を両立させるために低分子量成分を多く含むため、大型ブロー容器としては適さない(例えば、特許文献3参照)。(3)狭い分子量分布を有するポリエチレンと高圧ラジカル重合法で得られるポリエチレンからなる組成物(例えば、特許文献4参照)、メタロセン触媒で得られるポリエチレンとCr系触媒で得られるポリエチレンの組成物(例えば、特許文献5参照)、チーグラー系触媒で得られるポリエチレンとCr系触媒で得られるポリエチレンの組成物(例えば、特許文献6参照)など、二種類のポリエチレンを組み合わせる方法が提案されているが、触媒に含まれる金属種が増加するなど、容器からの汚染物質の発生によりクリーン性は低下する傾向にある。
【0006】
【特許文献1】
特開平11−80257号公報(第2頁)
【特許文献2】
特公平2−52654号公報(第2頁)
【特許文献3】
特開2002−249518公報(第2頁)
【特許文献4】
特開平10−7848号公報(第3頁)
【特許文献5】
特開2000−129045公報(第3頁)
【特許文献6】
特開平6−299009号公報(第3頁)
【0007】
【発明が解決しようとする課題】
本発明は、成形性に優れ、耐衝撃性が高く、且つ成形体の表面平滑性に優れる高密度ポリエチレン樹脂、および該樹脂よりなる容器の提供を目的とするものである。
【0008】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意検討した結果、特定の性状を有する高密度ポリエチレン樹脂を使用することによって上記の課題を解決できることを見出し、本発明に到達した。
【0009】
すなわち、本発明は、以下の(a)〜(e)の要件を満足する高密度ポリエチレン樹脂、および該樹脂よりなる容器に関するものである。
(a)密度(JIS K6760−1981)が0.94〜0.97g/cm
(b)190℃、21.6kg荷重のメルトフローレート(JIS K7210−1976,条件7)が1〜15g/10分、
(c)長さ8mm、直径2.095mmであるダイスを用い、190℃での延伸比が2.4〜24における溶融張力が160mN以上、
(d)長さ20mm、直径2mmであるダイスを用い、190℃での剪断速度30.4S−1における剪断応力が0.30MPa以下、
(e)シャルピー衝撃強さ(JIS K7111)が30kJ/m以上
以下に、本発明の高密度ポリエチレン樹脂について、さらに詳細に説明する。
【0010】
本発明の高密度ポリエチレン樹脂の密度(JIS K6760−1981)は0.94〜0.97g/cmであることを特徴とする。密度が0.94g/cm未満では容器内の薬液への溶出ポリマー成分が増加し、微粒子の発生原因となり、高純度薬品用途に適さない。また、密度が0.97g/cmを超えると樹脂の耐薬品性が低下し、容器の強度が低下する。
【0011】
190℃、21.6kg荷重のメルトフローレート(JIS K7210−1976,条件7)(以下、「HLMFR」と記す。)は1〜15g/10分であることを特徴とする。HLMFRが1g/10分未満では成形時の樹脂の流動性が低下する。また、HLMFRが15g/10分を超えると樹脂成形体の落下強度が低下する。
【0012】
長さ8mm、直径2.095mmであるダイスを用い、190℃での延伸比が2.4〜24における溶融張力(以下、「MT」と記す。)は160mN以上であることを特徴とする。MTが160mN未満では樹脂成形時のパリソンの自重を支える溶融張力が低く、大型ブロー成形が困難である。また、成形時における成形体に偏肉が生じ、樹脂成形体の落下強度が低下する。
【0013】
長さ20mm、直径2mmであるダイスを用い、190℃での剪断速度30.4S−1における剪断応力(以下、「σ30.4」と記す。)は0.30MPa以下であることを特徴とする。σ30.4が0.30MPaより高いと成形体の表面の平滑性が損なわれる。
【0014】
シャルピー衝撃強さ(JIS K7111)は30kJ/m以上であることを特徴とする。シャルピー衝撃強さが30kJ/m未満では耐衝撃性が不足する。また、耐衝撃性を向上させるために容器肉厚を厚くすることは経済性を損なう。
【0015】
本発明における樹脂を用いた容器が高純度薬品用の大型容器として好適に用いられるためには、樹脂成形体の平均表面粗さ(Ra)が10μm以下であることが望ましい。
【0016】
本発明の高密度ポリエチレン樹脂は特に限定はなく、例えばエチレン単独重合樹脂、もしくはエチレン/α−オレフィン共重合樹脂が挙げられる。好ましくは、前述の(a)〜(e)の要件を満足するエチレンと炭素数3〜20のα−オレフィンとの共重合樹脂である。ここで、α−オレフィンとしてはプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン等が挙げられ、これらを1種あるいは2種以上組み合わせて使用することができる。これらのα−オレフィンのうち、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテンが、前述の要件を満足する上で、特に好ましい。
【0017】
本発明の高密度ポリエチレン樹脂の重合方法に特に限定はなく、チタン、ジルコニウム等の遷移金属化合物、マグネシウム化合物、および有機アルミニウム化合物からなる高活性チーグラー系触媒を用いる方法、もしくはCr系の重合触媒を用いる方法が挙げられる。中でも、触媒が高活性であり、樹脂中の触媒残査が少ない、即ち樹脂容器内の薬液への溶出物が少ない、高活性チーグラー系触媒を用いる方法が望ましい。また、反応方法としては特に限定はなく、スラリー重合法、気相重合法、溶液重合法等が挙げられる。中でも、薬液に溶出する金属不純物濃度を低く抑え、また、微粒子の発生の原因となる低分子重合体の樹脂への取り込みを制限できることから、炭素数が6〜10の飽和炭化水素系の重合媒体、例えば、ノルマルヘキサン、ノルマルヘプタン等を用いるスラリー重合法が望ましい。さらに、本発明の高密度ポリエチレン樹脂は、樹脂の流動性、溶融張力、成形性、耐衝撃性等をバランス良く保ち、且つ成形体表面の平滑性に優れるものとするために、樹脂に無用な熱履歴を与えず、且つ樹脂生産の経済性の良い二段重合法を用いることが望ましい。なお、二段重合法を用いる際の反応条件は、一段目の重合温度が78〜85℃であり、溶媒中の水素/エチレン比がモル比で0.03〜0.15の範囲であることが好ましく、二段目の重合温度が50〜80℃であり、溶媒中の水素/エチレン比がモル比で0〜0.01の範囲であることが好ましく、且つ一段目の重合時間と二段目の重合時間の比(二段目重合時間(分)/一段目重合時間(分))が0.05〜0.5であることが好ましい。
【0018】
本発明の高密度ポリエチレン樹脂を高純度薬品容器用として使用する場合には、酸化防止剤、中和剤、耐光安定剤等の添加剤および添加物は無添加であることが好ましいが、樹脂容器の成形条件および充填する薬液の純度の許容範囲内であれば添加してもよい。
【0019】
酸化防止剤は、薬液中に溶出して微粒子の発生原因となることを避けるために、800ppm以下であることが望ましい。用いる酸化防止剤に特に制限はなく、例えばフェノール系酸化防止剤が挙げられる。
【0020】
中和剤は、薬液中に溶出して微粒子の発生原因となることを避けるために、150ppm以下であることが望ましい。用いる中和剤に特に制限はなく、例えば脂肪酸金属塩および/またはハイドロタルサイト類が挙げられる。
【0021】
本発明の高密度ポリエチレン樹脂を用いて容器を成形する方法に特に制限はなく、ブロー成形法、回転成形法等の公知の成形方法を挙げることができる。中でも成形の容易性からブロー成形方法が好ましく、特にアキューム成形法もしくはダイレクト成形法が望ましい。
【0022】
容器の成形温度は、本発明の高密度ポリエチレン樹脂の溶融温度以上であり、且つ250℃以下が好ましい。中でも樹脂の劣化を防止し、容器のクリーン性を保つために180〜200℃が望ましい。さらに、樹脂の酸化を抑制し、成形品の肌状態を良好に保つために窒素雰囲気下で成形する、さらにダストによる汚染を防止するためにフィルターで微粒子を取り除いたエアーをブローエアーに用いる、クリーンルーム内で成形を行う等を行うことが好ましい。
【0023】
本発明の高密度ポリエチレン樹脂を用いた容器の容量および形状に特に限定はないが、その優れた成形性と耐衝撃性から内容積が50リットル以上、さらには100リットル以上の容器に用いるのが望ましい。また、形状は通常のドラム型容器のみならず、外部をFRPおよび金属等で囲った1〜4トンのコンテナ容器の内容器としての使用も可能である。
【0024】
また、薬品の種類によっては遮光性容器にする必要があり、本発明の高密度ポリエチレン樹脂を内層とし、有機顔料あるいは無機顔料等の遮光性材料を含む層を外層の少なくとも一層として含む多層容器としてもよい。
【0025】
【実施例】
以下に、実施例を挙げて本発明を説明するが、これらは例示的なものであって、本発明はこれら実施例に限定されるものではない。
【0026】
[A]溶融張力(MT)、剪断応力(σ30.4)の測定方法
[溶融張力(MT)、剪断応力(σ30.4)測定用試料の調製]
高密度ポリエチレン樹脂に酸化防止剤(チバスペシャルティーケミカルズ社製、(商品名)イルガノックスB225)6000ppmを、バッチ式ミキサー(東洋精機製作所製、(商品名)ラボプラストミル60ccミキサー)(以下、「バッチ式ミキサー」と記す。)を用いて、温度180℃、ミキサー回転数20rpmで5分間混練して添加した。
【0027】
[溶融張力(MT)の測定]
調製した試料をキャピラリーレオメータ(東洋精機製作所製、(商品名)キャピログラフ)(以下、「キャピラリーレオメータ」と記す。)にて評価した。シリンダー内径は9.55mm、ダイスのL/Dは8/2.095(mm)とし、シリンダー温度190℃、ピストンの降下速度10mm/分、延伸比2.4〜24の条件で延伸した際の張力を測定した。
【0028】
[剪断応力(σ30.4)の測定]
調製した試料をキャピラリーレオメータにて評価した。シリンダー内径は9.55mm、ダイスのL/Dは20/2(mm)とし、シリンダー温度190℃、見かけの剪断速度30.4S−1として、ダイス流入口からピストンの先端が20cmとなった時の応力を測定した。
【0029】
[B]成形体の表面平滑性の測定
高密度ポリエチレン樹脂を、酸化防止剤を加えずに、バッチ式ミキサーにて実成形機と同様の熱処理を施した(温度:180℃、ミキサー回転数:1rpm、時間:30分)。
【0030】
熱処理後、直ちに酸化防止剤(チバスペシャルティーケミカルズ社製、(商品名)イルガノックスB225)6000ppmを加え、さらに20rpmで5分間混練した。本方法にて調製した樹脂を表面平滑性測定用のサンプルとした。
【0031】
表面平滑性は「低速押出し」と「高速押出し」で評価した。低速押出しはキャピラリーレオメータを用い、シリンダー内径は9.55mm、ダイスのL/Dは20/2(mm)、見かけの剪断速度は30.4S−1、シリンダー温度は190℃に設定して実施し、高速押出しはキャピラリーレオメータを用い、シリンダー内径は9.55mm、ダイスのL/Dは20/2(mm)、見かけの剪断速度は300〜760S−1、シリンダー温度は190℃に設定して実施した。
【0032】
押出された溶融樹脂は、室温で徐冷した後、樹脂表面の凹凸をMitutoyo社製Surftest−402にて測定し、その平均値をもって平均表面粗さ(Ra)とした。
【0033】
高速押出しにおいては、押出物の平均表面粗さ(Ra)が10μm以下のものを平滑性良好、10μmより大きなものを平滑性不良とした。
【0034】
実施例1
(1)固体触媒成分(A)の調製
攪拌装置を備えた10リットルのステンレス製オートクレーブに、i−プロパノール 108.2g(1.80モル)とn−ブタノール 134.6g(1.82モル)を入れ、これにヨウ素2.0g、金属マグネシウム粉末40g(1.65モル)およびチタンテトラブトキシド224.1g(0.66モル)を加え、さらにヘキサン2.1リットルを加えた後80℃まで昇温し、発生する水素ガスを排除しながら窒素シール下で1時間攪拌した。引き続き120℃まで昇温して1時間反応を行い、MgとTiを含む均一溶液を得た。オートクレーブの内温を45℃に保ち、ジエチルアルミニウムクロライドの30%ヘキサン溶液1.32kg(3.3モル)を1時間かけて加えた。すべてを加えた後60℃で1時間攪拌した。次にメチルヒドロポリシロキサン(25℃における粘度約30センチストークス、含有ケイ素3.3グラム原子)197.0gを加え、還流下に1時間反応させた。45℃に冷却後、i−ブチルアルミニウムジクロライドの50%ヘキサン溶液2.81kg(9.1モル)を2時間かけて加えた。すべてを加えた後、70℃で1時間攪拌を行い、固体触媒成分(A)を得た。得られた固体触媒成分(A)はノルマルヘキサンを用いて残存する未反応物および副生物を除去した後、ノルマルヘキサンスラリーとして次の重合工程に用いた。
【0035】
(2)重合
内容積10リットルのステンレススチール製電磁攪拌式オートクレーブ内を充分窒素で置換し、ノルマルヘキサン6リットルを仕込み、内温を80℃に調節した。その後、触媒成分(B)としてトリイソブチルアルミニウム160mgおよび前記で得た固体触媒成分(A)17.9mgを含有するスラリーを順次添加した。オートクレーブ内圧を0.1MPaに調節した後、水素を圧力で0.6MPa分加え、次いでオートクレーブ内の全圧が1.3MPaになるように、連続的にエチレンを加えながら1時間反応させて一段目の重合を行った。この際、一段目の溶媒中の水素/エチレン比はモル比で0.12であった。一段目の重合終了後60℃まで冷却し、未反応ガスを追い出すために、充分窒素ガスで置換した。次に、内温を65℃、オートクレーブ内圧を0.1MPaに調節した後、水素を圧力で0.005MPa分加え、次いでオートクレーブ内の全圧が0.705MPaになるように、連続的にエチレンを加えながら9分間反応させて二段目の重合を行った。この際、二段目の溶媒中の水素/エチレン比はモル比で0.001であった。重合終了後冷却し、未反応ガスを追い出してポリエチレンを取り出し、濾過により溶媒から分離して乾燥した。
【0036】
上記の方法で得られた樹脂の密度は0.960g/cm、HLMFRは4.2g/10分、MTは490mN、σ30.4は0.29MPa、シャルピー衝撃強度は67kJ/mであった。
【0037】
また、得られた樹脂を用いて成形体の表面平滑性測定をしたところ、高速押出しの外観は良好、低速押出しの平均表面粗さ(Ra)は2.6μmであった。
【0038】
比較例1
実施例1と同じ固体触媒成分(A)を用いて次の方法で重合を行った。内容積10リットルのステンレススチール製電磁攪拌式オートクレーブ内を充分窒素で置換し、ヘキサン6リットルを仕込み、内温を80℃に調節した。その後、触媒成分(B)としてトリイソブチルアルミニウム160mgおよび前記で得た固体触媒成分(A)24mgを含有するスラリーを順次添加した。オートクレーブ内圧を0.1MPaに調節した後、水素を圧力で0.6MPa分加え、次いでオートクレーブ内の全圧が1.3MPaになるように、連続的にエチレンを加えながら50分間反応させて一段目の重合を行った。この際、一段目の溶媒中の水素/エチレン比はモル比で0.12であった。一段目の重合終了後60℃まで冷却し、未反応ガスを追い出すために、充分窒素ガスで置換した。次に、内温を80℃、オートクレーブ内圧を0.1MPaに調節した後、水素を圧力で0.01MPa分加え、次いでオートクレーブ内の全圧が0.71MPaになるように、連続的にエチレンを加えながら30分間反応させて二段目の重合を行った。この際、二段目の溶媒中の水素/エチレン比はモル比で0.002であった。重合終了後冷却し、未反応ガスを追い出してポリエチレンを取り出し、濾過により溶媒から分離して乾燥した。
【0039】
上記の方法で得られた樹脂の密度は0.960g/cm、HLMFRは1.5g/10分、MTは490mN、σ30.4は0.40MPa、シャルピー衝撃強度は78kJ/mであった。
【0040】
また、得られた樹脂を用いて成形体の表面平滑性測定をしたところ、高速押出しの外観は不良、低速押出しの平均表面粗さ(Ra)は22μmであり、成形体の表面平滑性が劣っていた。
【0041】
【発明の効果】
本発明によれば、成形性に優れ、耐衝撃性が高く、且つ高純度薬品用容器に要求される成形体の表面平滑性に優れる高密度ポリエチレン樹脂、および該樹脂よりなる高純度薬品用等の容器が得られるものである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-density polyethylene resin having excellent moldability and high impact resistance. The invention further relates to a container suitable for use in high purity chemicals.
[0002]
[Prior art]
When a high-density polyethylene resin becomes a high molecular weight grade having a weight average molecular weight of about 200,000, it has a large melt tension, and also has excellent impact strength and environmental stress cracking time (ESCR). Is used for manufacturing industrial parts such as gasoline tanks and large hollow molded products such as industrial chemical cans and container containers.
[0003]
In recent years, with the remarkable development of the electronics industry, for example, with the large-scale integration of electronic circuits such as LSIs, the demand for high-purity chemicals has increased. Conventionally, polyethylene resin has been used as a material for these high-purity chemical containers from the viewpoint of chemical resistance, impact resistance, price, and the like.
[0004]
However, the conventional high-density polyethylene resin container has a problem in that the content of the chemical is contaminated due to the generation of contaminants such as elutes and degraded substances from the container resin, and is used as a high-purity chemical container. There was trouble on the above. Therefore, the development of a high-density polyethylene resin for a large container that can be used repeatedly without contaminating the filled high-purity chemical is awaited.
[0005]
In high-density polyethylene resins for large containers, it is required to simultaneously satisfy the problem of suppressing the generation of contaminants as well as the balance of flowability, moldability such as melt tension, and impact resistance. As an attempt to solve such a problem, for example, (1) a method of producing a polyethylene having a long chain branch using a Cr-based catalyst or a method of cross-linking a resin using an organic peroxide is used as a method for improving the melt tension. Although proposed, there arise problems such as Cr flowing out into the internal solution (for example, see Patent Literature 1) and insufficient impact strength (for example, see Patent Literature 2). (2) A method for improving mechanical properties using a metallocene catalyst developed in recent years has also been proposed. However, a large blow container is used because it contains a large amount of low molecular weight components in order to achieve both mechanical properties and molding characteristics. (For example, see Patent Document 3). (3) A composition composed of polyethylene having a narrow molecular weight distribution and polyethylene obtained by a high-pressure radical polymerization method (for example, see Patent Document 4), a composition of polyethylene obtained with a metallocene catalyst and polyethylene obtained with a Cr-based catalyst (for example, A method of combining two types of polyethylene has been proposed, such as a polyethylene composition obtained with a Ziegler-based catalyst and a polyethylene composition obtained with a Cr-based catalyst (for example, see Patent Document 6). The cleanliness tends to decrease due to the generation of contaminants from the container, such as an increase in metal species contained in the container.
[0006]
[Patent Document 1]
JP-A-11-80257 (page 2)
[Patent Document 2]
Japanese Patent Publication No. 2-52654 (page 2)
[Patent Document 3]
JP-A-2002-249518 (page 2)
[Patent Document 4]
JP-A-10-7848 (page 3)
[Patent Document 5]
Japanese Patent Application Laid-Open No. 2000-129045 (page 3)
[Patent Document 6]
JP-A-6-299909 (page 3)
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-density polyethylene resin having excellent moldability, high impact resistance, and excellent surface smoothness of a molded article, and a container made of the resin.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the above-mentioned problems can be solved by using a high-density polyethylene resin having specific properties, and have reached the present invention.
[0009]
That is, the present invention relates to a high-density polyethylene resin which satisfies the following requirements (a) to (e) and a container made of the resin.
(A) a density (JIS K6760-1981) of 0.94 to 0.97 g / cm 3 ,
(B) a melt flow rate at 190 ° C. under a load of 21.6 kg (JIS K7210-1976, condition 7) is 1 to 15 g / 10 min,
(C) Using a die having a length of 8 mm and a diameter of 2.095 mm, the melt tension at a stretching ratio of 2.4 to 24 at 190 ° C. of 160 mN or more,
(D) using a dice having a length of 20 mm and a diameter of 2 mm, the shear stress at 190 ° C. at a shear rate of 30.4 S −1 is not more than 0.30 MPa;
(E) The high-density polyethylene resin of the present invention will be described in more detail with a Charpy impact strength (JIS K7111) of 30 kJ / m 2 or more.
[0010]
The high-density polyethylene resin of the present invention has a density (JIS K6760-1981) of 0.94 to 0.97 g / cm 3 . If the density is less than 0.94 g / cm 3 , the amount of the polymer component eluted into the drug solution in the container increases, causing the generation of fine particles, and is not suitable for high-purity chemical applications. On the other hand, when the density exceeds 0.97 g / cm 3 , the chemical resistance of the resin decreases, and the strength of the container decreases.
[0011]
The melt flow rate at 190 ° C. under a load of 21.6 kg (JIS K7210-1976, condition 7) (hereinafter referred to as “HLMFR”) is 1 to 15 g / 10 min. If the HLMFR is less than 1 g / 10 minutes, the fluidity of the resin at the time of molding decreases. If the HLMFR exceeds 15 g / 10 minutes, the drop strength of the resin molded article decreases.
[0012]
Using a die having a length of 8 mm and a diameter of 2.095 mm, the melt tension (hereinafter, referred to as “MT”) at a draw ratio of 2.4 to 24 at 190 ° C. is 160 mN or more. If the MT is less than 160 mN, the melt tension for supporting the weight of the parison during resin molding is low, and large blow molding is difficult. In addition, uneven thickness occurs in the molded body during molding, and the drop strength of the resin molded body is reduced.
[0013]
Using a die having a length of 20 mm and a diameter of 2 mm, a shear stress at 190 ° C. at a shear rate of 30.4 S −1 (hereinafter referred to as “σ 30.4 ”) is 0.30 MPa or less. I do. If σ 30.4 is higher than 0.30 MPa, the smoothness of the surface of the molded body is impaired.
[0014]
The Charpy impact strength (JIS K7111) is characterized by being 30 kJ / m 2 or more. If the Charpy impact strength is less than 30 kJ / m 2 , the impact resistance will be insufficient. Increasing the wall thickness of the container in order to improve impact resistance impairs economic efficiency.
[0015]
In order for the container using the resin according to the present invention to be suitably used as a large container for high-purity chemicals, it is desirable that the average surface roughness (Ra) of the resin molded product is 10 μm or less.
[0016]
The high-density polyethylene resin of the present invention is not particularly limited, and includes, for example, an ethylene homopolymer resin or an ethylene / α-olefin copolymer resin. Preferably, it is a copolymer resin of ethylene and an α-olefin having 3 to 20 carbon atoms, which satisfies the requirements (a) to (e) described above. Here, the α-olefin includes propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene and the like, and these may be used alone or in combination of two or more. be able to. Among these α-olefins, 1-butene, 1-pentene, 1-hexene, and 1-octene are particularly preferable in satisfying the above-mentioned requirements.
[0017]
The method for polymerizing the high-density polyethylene resin of the present invention is not particularly limited, and a method using a highly active Ziegler-based catalyst composed of a transition metal compound such as titanium or zirconium, a magnesium compound, and an organoaluminum compound, or a Cr-based polymerization catalyst The method used is mentioned. Among them, a method using a highly active Ziegler-based catalyst, in which the catalyst is highly active and the amount of the catalyst residue in the resin is small, that is, the amount of the elution to the chemical solution in the resin container is small, is desirable. The reaction method is not particularly limited, and examples thereof include a slurry polymerization method, a gas phase polymerization method, and a solution polymerization method. Among them, a saturated hydrocarbon-based polymerization medium having 6 to 10 carbon atoms can be used because the concentration of metal impurities eluted in the chemical solution can be suppressed low and the incorporation of a low-molecular polymer that causes fine particles into the resin can be restricted. For example, a slurry polymerization method using normal hexane, normal heptane, or the like is desirable. Furthermore, the high-density polyethylene resin of the present invention has a good balance of fluidity, melt tension, moldability, impact resistance, and the like of the resin, and in order to make the surface of the molded body excellent in smoothness. It is desirable to use a two-stage polymerization method which does not give a heat history and is economical in resin production. The reaction conditions when using the two-stage polymerization method are such that the first-stage polymerization temperature is 78 to 85 ° C., and the hydrogen / ethylene ratio in the solvent is in the range of 0.03 to 0.15 in molar ratio. It is preferable that the polymerization temperature in the second stage is 50 to 80 ° C., the hydrogen / ethylene ratio in the solvent is in the range of 0 to 0.01 in molar ratio, and the polymerization time in the first stage is The ratio of the second polymerization time (second polymerization time (min) / first polymerization time (min)) is preferably 0.05 to 0.5.
[0018]
When the high-density polyethylene resin of the present invention is used for a high-purity chemical container, additives and additives such as an antioxidant, a neutralizing agent, and a light-resistant stabilizer are preferably free of additives. May be added as long as it is within the allowable range of the molding conditions and the purity of the chemical solution to be filled.
[0019]
The antioxidant is desirably 800 ppm or less in order to prevent the antioxidant from being eluted into the chemical solution and causing the generation of fine particles. There is no particular limitation on the antioxidant used, and examples thereof include a phenolic antioxidant.
[0020]
The neutralizing agent is desirably 150 ppm or less in order to avoid elution into the chemical solution and causing the generation of fine particles. The neutralizing agent used is not particularly limited, and examples thereof include fatty acid metal salts and / or hydrotalcites.
[0021]
The method for molding a container using the high-density polyethylene resin of the present invention is not particularly limited, and examples thereof include known molding methods such as a blow molding method and a rotational molding method. Above all, a blow molding method is preferred from the viewpoint of ease of molding, and particularly, an accumulation molding method or a direct molding method is desirable.
[0022]
The molding temperature of the container is not lower than the melting temperature of the high-density polyethylene resin of the present invention and is preferably not higher than 250 ° C. Above all, the temperature is preferably from 180 to 200 ° C. in order to prevent the deterioration of the resin and keep the container clean. In addition, the clean room is molded under a nitrogen atmosphere in order to suppress the oxidation of the resin and maintain the skin condition of the molded product in good condition, and the air from which fine particles have been removed by a filter is used as blow air to prevent contamination by dust. It is preferable to perform molding or the like in the inside.
[0023]
Although the capacity and shape of the container using the high-density polyethylene resin of the present invention are not particularly limited, the container is preferably used for a container having an inner volume of 50 liters or more, and even 100 liters or more from its excellent moldability and impact resistance. desirable. The shape can be used not only as a normal drum type container, but also as an inner container of a 1 to 4 ton container container whose outside is surrounded by FRP, metal, or the like.
[0024]
Also, depending on the type of chemicals, it is necessary to make the container a light-shielding container. Is also good.
[0025]
【Example】
Hereinafter, the present invention will be described with reference to examples. However, these are merely examples, and the present invention is not limited to these examples.
[0026]
[A] the melt tension (MT), method of measuring shear stress (sigma 30.4) [melt tension (MT), the preparation of the shear stress (sigma 30.4) measurement sample]
To a high-density polyethylene resin, 6000 ppm of an antioxidant (trade name: Irganox B225, manufactured by Ciba Specialty Chemicals Co., Ltd.) was mixed with a batch mixer (trade name: Labo Plastomill 60 cc mixer, manufactured by Toyo Seiki Seisaku-sho, Ltd.) The mixture was kneaded for 5 minutes at a temperature of 180 ° C. and a mixer rotation speed of 20 rpm for 5 minutes.
[0027]
[Measurement of melt tension (MT)]
The prepared sample was evaluated using a capillary rheometer (manufactured by Toyo Seiki Seisaku-sho, Ltd., (trade name) Capillograph) (hereinafter referred to as “capillary rheometer”). The cylinder inner diameter was 9.55 mm, the die L / D was 8 / 2.095 (mm), the cylinder temperature was 190 ° C., the piston descending speed was 10 mm / min, and the stretching ratio was 2.4 to 24 when stretched. The tension was measured.
[0028]
[Measurement of shear stress (σ 30.4 )]
The prepared sample was evaluated with a capillary rheometer. When the inner diameter of the cylinder is 9.55 mm, the L / D of the die is 20/2 (mm), the cylinder temperature is 190 ° C., the apparent shear rate is 30.4 S- 1 , and the tip of the piston is 20 cm from the die inlet. Was measured.
[0029]
[B] Measurement of Surface Smoothness of Molded Product A high-density polyethylene resin was subjected to the same heat treatment as in an actual molding machine using a batch mixer without adding an antioxidant (temperature: 180 ° C., mixer rotation speed: 1 rpm, time: 30 minutes).
[0030]
Immediately after the heat treatment, 6000 ppm of an antioxidant (Irganox B225, trade name, manufactured by Ciba Specialty Chemicals) was added, and the mixture was further kneaded at 20 rpm for 5 minutes. The resin prepared by this method was used as a sample for measuring surface smoothness.
[0031]
The surface smoothness was evaluated by "low speed extrusion" and "high speed extrusion". The low-speed extrusion was carried out using a capillary rheometer, the inner diameter of the cylinder was 9.55 mm, the L / D of the die was 20/2 (mm), the apparent shear rate was 30.4 S −1 , and the cylinder temperature was 190 ° C. High-speed extrusion uses a capillary rheometer, the cylinder inner diameter is 9.55 mm, the die L / D is 20/2 (mm), the apparent shear rate is 300 to 760 S -1 , and the cylinder temperature is 190 ° C. did.
[0032]
After the extruded molten resin was gradually cooled at room temperature, the unevenness of the resin surface was measured by Surftest-402 manufactured by Mitutoyo, and the average value was defined as the average surface roughness (Ra).
[0033]
In high-speed extrusion, those having an average surface roughness (Ra) of 10 μm or less were regarded as having good smoothness, and those having a mean roughness of more than 10 μm were regarded as having poor smoothness.
[0034]
Example 1
(1) Preparation of solid catalyst component (A) In a 10-liter stainless steel autoclave equipped with a stirring device, 108.2 g (1.80 mol) of i-propanol and 134.6 g (1.82 mol) of n-butanol were added. 2.0 g of iodine, 40 g (1.65 mol) of metal magnesium powder and 224.1 g (0.66 mol) of titanium tetrabutoxide were added thereto, and 2.1 liter of hexane was further added, followed by heating to 80 ° C. Then, the mixture was stirred for 1 hour under a nitrogen seal while removing generated hydrogen gas. Subsequently, the temperature was raised to 120 ° C., and the reaction was carried out for 1 hour to obtain a homogeneous solution containing Mg and Ti. While maintaining the internal temperature of the autoclave at 45 ° C., 1.32 kg (3.3 mol) of a 30% hexane solution of diethylaluminum chloride was added over 1 hour. After adding all, the mixture was stirred at 60 ° C. for 1 hour. Next, 197.0 g of methylhydropolysiloxane (viscosity of about 30 centistokes at 25 ° C., containing 3.3 g atom of silicon) was added, and the mixture was reacted under reflux for 1 hour. After cooling to 45 ° C., 2.81 kg (9.1 mol) of a 50% hexane solution of i-butylaluminum dichloride was added over 2 hours. After adding all, the mixture was stirred at 70 ° C. for 1 hour to obtain a solid catalyst component (A). The obtained solid catalyst component (A) was used as a normal hexane slurry in the next polymerization step after removing remaining unreacted substances and by-products using normal hexane.
[0035]
(2) The inside of a stainless steel electromagnetic stirring type autoclave having a polymerization inner volume of 10 liters was sufficiently replaced with nitrogen, 6 liters of normal hexane was charged, and the internal temperature was adjusted to 80 ° C. Thereafter, a slurry containing 160 mg of triisobutylaluminum as the catalyst component (B) and 17.9 mg of the solid catalyst component (A) obtained above was sequentially added. After adjusting the internal pressure of the autoclave to 0.1 MPa, hydrogen was added by a pressure of 0.6 MPa, and then the reaction was carried out for 1 hour while continuously adding ethylene so that the total pressure in the autoclave became 1.3 MPa. Was polymerized. At this time, the hydrogen / ethylene ratio in the first-stage solvent was 0.12 in molar ratio. After the completion of the first-stage polymerization, the system was cooled to 60 ° C. and sufficiently purged with nitrogen gas to drive off unreacted gas. Next, after adjusting the internal temperature to 65 ° C. and the internal pressure of the autoclave to 0.1 MPa, hydrogen was added by a pressure of 0.005 MPa, and then ethylene was continuously added so that the total pressure in the autoclave became 0.705 MPa. The mixture was reacted for 9 minutes to perform the second polymerization. At this time, the hydrogen / ethylene ratio in the solvent in the second stage was 0.001 in molar ratio. After the completion of the polymerization, the system was cooled, unreacted gas was expelled, polyethylene was taken out, separated from the solvent by filtration and dried.
[0036]
The resin obtained by the above method had a density of 0.960 g / cm 3 , an HLMFR of 4.2 g / 10 min, an MT of 490 mN, a σ 30.4 of 0.29 MPa, and a Charpy impact strength of 67 kJ / m 2. Was.
[0037]
When the surface smoothness of the molded article was measured using the obtained resin, the appearance of high-speed extrusion was good, and the average surface roughness (Ra) of low-speed extrusion was 2.6 μm.
[0038]
Comparative Example 1
Using the same solid catalyst component (A) as in Example 1, polymerization was carried out by the following method. The inside of a stainless steel electromagnetic stirring type autoclave having an internal volume of 10 liters was sufficiently replaced with nitrogen, 6 liters of hexane was charged, and the internal temperature was adjusted to 80 ° C. Thereafter, a slurry containing 160 mg of triisobutylaluminum as the catalyst component (B) and 24 mg of the solid catalyst component (A) obtained above was sequentially added. After adjusting the internal pressure of the autoclave to 0.1 MPa, hydrogen was added by a pressure of 0.6 MPa, and then the reaction was carried out for 50 minutes while continuously adding ethylene so that the total pressure in the autoclave became 1.3 MPa. Was polymerized. At this time, the hydrogen / ethylene ratio in the first-stage solvent was 0.12 in molar ratio. After the completion of the first-stage polymerization, the system was cooled to 60 ° C. and sufficiently purged with nitrogen gas to drive off unreacted gas. Next, after adjusting the internal temperature to 80 ° C. and the internal pressure of the autoclave to 0.1 MPa, hydrogen was added at a pressure of 0.01 MPa, and then ethylene was continuously added so that the total pressure in the autoclave became 0.71 MPa. The reaction was allowed to proceed for 30 minutes to perform the second stage polymerization. At this time, the hydrogen / ethylene ratio in the solvent in the second stage was 0.002 in molar ratio. After the completion of the polymerization, the system was cooled, unreacted gas was expelled, polyethylene was taken out, separated from the solvent by filtration and dried.
[0039]
The resin obtained by the above method had a density of 0.960 g / cm 3 , an HLMFR of 1.5 g / 10 min, an MT of 490 mN, a σ 30.4 of 0.40 MPa, and a Charpy impact strength of 78 kJ / m 2. Was.
[0040]
When the surface smoothness of the molded article was measured using the obtained resin, the appearance of high-speed extrusion was poor, the average surface roughness (Ra) of low-speed extrusion was 22 μm, and the surface smoothness of the molded article was poor. I was
[0041]
【The invention's effect】
According to the present invention, a high-density polyethylene resin having excellent moldability, high impact resistance, and excellent surface smoothness of a molded article required for a container for high-purity chemicals, and a high-purity chemical resin comprising the resin Is obtained.

Claims (3)

下記(a)〜(e)の要件を満足する高密度ポリエチレン樹脂。
(a)密度(JIS K6760−1981)が0.94〜0.97g/cm
(b)190℃、21.6kg荷重のメルトフローレート(JIS K7210−1976,条件7)が1〜15g/10分、
(c)長さ8mm、直径2.095mmであるダイスを用い、190℃での延伸比が2.4〜24における溶融張力が160mN以上、
(d)長さ20mm、直径2mmであるダイスを用い、190℃での剪断速度30.4S−1における剪断応力が0.30MPa以下、
(e)シャルピー衝撃強さ(JIS K7111)が30kJ/m以上
A high-density polyethylene resin that satisfies the following requirements (a) to (e).
(A) a density (JIS K6760-1981) of 0.94 to 0.97 g / cm 3 ,
(B) a melt flow rate at 190 ° C. under a load of 21.6 kg (JIS K7210-1976, condition 7) is 1 to 15 g / 10 min,
(C) Using a die having a length of 8 mm and a diameter of 2.095 mm, the melt tension at a draw ratio of 2.4 to 24 at 190 ° C. of 160 mN or more,
(D) Using a die having a length of 20 mm and a diameter of 2 mm, the shear stress at 190 ° C. at a shear rate of 30.4 S −1 is 0.30 MPa or less;
(E) Charpy impact strength (JIS K7111) of 30 kJ / m 2 or more
請求項1に記載の高密度ポリエチレン樹脂に酸化防止剤を800ppm以下配合してなることを特徴とする高密度ポリエチレン樹脂組成物。A high-density polyethylene resin composition comprising the high-density polyethylene resin according to claim 1 and 800 ppm or less of an antioxidant. 請求項1〜2に記載の高密度ポリエチレン樹脂または樹脂組成物からなる容器。A container comprising the high-density polyethylene resin or the resin composition according to claim 1.
JP2003125460A 2003-04-30 2003-04-30 High-density polyethylene resin and container using the same resin Pending JP2004331706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125460A JP2004331706A (en) 2003-04-30 2003-04-30 High-density polyethylene resin and container using the same resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125460A JP2004331706A (en) 2003-04-30 2003-04-30 High-density polyethylene resin and container using the same resin

Publications (1)

Publication Number Publication Date
JP2004331706A true JP2004331706A (en) 2004-11-25

Family

ID=33502722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125460A Pending JP2004331706A (en) 2003-04-30 2003-04-30 High-density polyethylene resin and container using the same resin

Country Status (1)

Country Link
JP (1) JP2004331706A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022610A (en) * 2005-07-20 2007-02-01 Aicello Chemical Co Ltd Low foaming polyethylene container
JP2008179774A (en) * 2006-12-25 2008-08-07 Asahi Kasei Chemicals Corp Polyethylene resin composition for clean container packaging
JP2009138122A (en) * 2007-12-07 2009-06-25 Tosoh Corp Polyethylene-based resin composition and blow-molded container comprising the same
JPWO2007094383A1 (en) * 2006-02-15 2009-07-09 三井化学株式会社 Environmental stress fracture resistance improving agent and environmental stress fracture resistance improving resin composition comprising the same
JP2016520459A (en) * 2013-06-05 2016-07-14 マークフォージド,インコーポレーテッド Fiber reinforced additive manufacturing method
WO2017170316A1 (en) * 2016-03-28 2017-10-05 日本ポリエチレン株式会社 Polyethylene and molded body of same
US10076876B2 (en) 2013-03-22 2018-09-18 Markforged, Inc. Three dimensional printing
US10076875B2 (en) 2013-03-22 2018-09-18 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US10099427B2 (en) 2013-03-22 2018-10-16 Markforged, Inc. Three dimensional printer with composite filament fabrication
US10259160B2 (en) 2013-03-22 2019-04-16 Markforged, Inc. Wear resistance in 3D printing of composites
US10434702B2 (en) 2013-03-22 2019-10-08 Markforged, Inc. Additively manufactured part including a compacted fiber reinforced composite filament
US10603841B2 (en) 2013-03-22 2020-03-31 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US10611082B2 (en) 2013-03-22 2020-04-07 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US10682844B2 (en) 2013-03-22 2020-06-16 Markforged, Inc. Embedding 3D printed fiber reinforcement in molded articles
US10696039B2 (en) 2013-03-22 2020-06-30 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US10717228B2 (en) 2013-03-22 2020-07-21 Markforged, Inc. Three dimensional printing
US10953609B1 (en) 2013-03-22 2021-03-23 Markforged, Inc. Scanning print bed and part height in 3D printing
US11065861B2 (en) 2013-03-22 2021-07-20 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US11148409B2 (en) 2013-03-22 2021-10-19 Markforged, Inc. Three dimensional printing of composite reinforced structures
US11237542B2 (en) 2013-03-22 2022-02-01 Markforged, Inc. Composite filament 3D printing using complementary reinforcement formations
US11787104B2 (en) 2013-03-22 2023-10-17 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US11981069B2 (en) 2013-03-22 2024-05-14 Markforged, Inc. Three dimensional printing of composite reinforced structures

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022610A (en) * 2005-07-20 2007-02-01 Aicello Chemical Co Ltd Low foaming polyethylene container
JPWO2007094383A1 (en) * 2006-02-15 2009-07-09 三井化学株式会社 Environmental stress fracture resistance improving agent and environmental stress fracture resistance improving resin composition comprising the same
JP2008179774A (en) * 2006-12-25 2008-08-07 Asahi Kasei Chemicals Corp Polyethylene resin composition for clean container packaging
JP2009138122A (en) * 2007-12-07 2009-06-25 Tosoh Corp Polyethylene-based resin composition and blow-molded container comprising the same
US10611082B2 (en) 2013-03-22 2020-04-07 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US10717228B2 (en) 2013-03-22 2020-07-21 Markforged, Inc. Three dimensional printing
US11981069B2 (en) 2013-03-22 2024-05-14 Markforged, Inc. Three dimensional printing of composite reinforced structures
US10040252B2 (en) 2013-03-22 2018-08-07 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US10076876B2 (en) 2013-03-22 2018-09-18 Markforged, Inc. Three dimensional printing
US10076875B2 (en) 2013-03-22 2018-09-18 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US10099427B2 (en) 2013-03-22 2018-10-16 Markforged, Inc. Three dimensional printer with composite filament fabrication
US10259160B2 (en) 2013-03-22 2019-04-16 Markforged, Inc. Wear resistance in 3D printing of composites
US10434702B2 (en) 2013-03-22 2019-10-08 Markforged, Inc. Additively manufactured part including a compacted fiber reinforced composite filament
US10603841B2 (en) 2013-03-22 2020-03-31 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US11787104B2 (en) 2013-03-22 2023-10-17 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US10682844B2 (en) 2013-03-22 2020-06-16 Markforged, Inc. Embedding 3D printed fiber reinforcement in molded articles
US10696039B2 (en) 2013-03-22 2020-06-30 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US11759990B2 (en) 2013-03-22 2023-09-19 Markforged, Inc. Three dimensional printing
US10821662B2 (en) 2013-03-22 2020-11-03 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US10953609B1 (en) 2013-03-22 2021-03-23 Markforged, Inc. Scanning print bed and part height in 3D printing
US10953610B2 (en) 2013-03-22 2021-03-23 Markforged, Inc. Three dimensional printer with composite filament fabrication
US11014305B2 (en) 2013-03-22 2021-05-25 Markforged, Inc. Mid-part in-process inspection for 3D printing
US11065861B2 (en) 2013-03-22 2021-07-20 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US11148409B2 (en) 2013-03-22 2021-10-19 Markforged, Inc. Three dimensional printing of composite reinforced structures
US11237542B2 (en) 2013-03-22 2022-02-01 Markforged, Inc. Composite filament 3D printing using complementary reinforcement formations
US11420382B2 (en) 2013-03-22 2022-08-23 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US11577462B2 (en) 2013-03-22 2023-02-14 Markforged, Inc. Scanning print bed and part height in 3D printing
JP2016520459A (en) * 2013-06-05 2016-07-14 マークフォージド,インコーポレーテッド Fiber reinforced additive manufacturing method
WO2017170316A1 (en) * 2016-03-28 2017-10-05 日本ポリエチレン株式会社 Polyethylene and molded body of same
JP2017179015A (en) * 2016-03-28 2017-10-05 日本ポリエチレン株式会社 Polyethylene and molded body

Similar Documents

Publication Publication Date Title
JP2004331706A (en) High-density polyethylene resin and container using the same resin
EP0022376B1 (en) Process for preparing a chemically blended composition of non-elastomeric ethylene resins, and shaped articles of such a composition
JP4805430B2 (en) Method for producing a composition comprising an ethylene polymer
JP4233454B2 (en) Transparent and flexible propylene polymer composition
KR910005579B1 (en) Polyolefin composition for injection molding
EP1646668B1 (en) Injection moulding polymer
EP1927628B1 (en) Propylene resin composition
EP0318190B1 (en) Polyolefin composition
KR20190079656A (en) Process for producing polyolefin film composition and film produced therefrom
JP4942525B2 (en) Polyethylene resin composition for bottle caps
EP2226337A1 (en) Process for the production of polypropylene random copolymers for injection moulding applications
JP2002256024A (en) Polybutene-based resin, pipe material and pipe comprising the same
JP2003327642A (en) Propylene-ethylene block copolymer
JP3752759B2 (en) Ethylene polymer and method for producing the same
JP2009173901A (en) Polypropylene copolymer, and film comprising the same
JP2000129044A (en) Vessel made of polyethylene for high-purity chemicals
JP6252311B2 (en) Polyethylene for containers and molded body comprising the same
JP2000129045A (en) Clean vessel made of polyethylene
WO2001018110A1 (en) Propylene resin composition
JP4759235B2 (en) Polypropylene-based laminated film
JP7056304B2 (en) Polyethylene for high-purity chemical containers and high-purity chemical containers
JP3666384B2 (en) Propylene copolymer
JP2021024641A (en) Drawn container
JP5283891B2 (en) Polyethylene resin composition for clean container packaging
JP2003213053A (en) Polyethylene composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007