JP2004331455A - Multiple oxide particle, method of manufacturing the same, active material for secondary battery and secondary battery - Google Patents

Multiple oxide particle, method of manufacturing the same, active material for secondary battery and secondary battery Download PDF

Info

Publication number
JP2004331455A
JP2004331455A JP2003129851A JP2003129851A JP2004331455A JP 2004331455 A JP2004331455 A JP 2004331455A JP 2003129851 A JP2003129851 A JP 2003129851A JP 2003129851 A JP2003129851 A JP 2003129851A JP 2004331455 A JP2004331455 A JP 2004331455A
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
particles
secondary battery
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003129851A
Other languages
Japanese (ja)
Other versions
JP4222093B2 (en
Inventor
Naruaki Okuda
匠昭 奥田
Hideyuki Nakano
秀之 中野
Yoshio Ukiyou
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003129851A priority Critical patent/JP4222093B2/en
Publication of JP2004331455A publication Critical patent/JP2004331455A/en
Application granted granted Critical
Publication of JP4222093B2 publication Critical patent/JP4222093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spinel type lithium manganese multiple oxide particle, a method of the same, an active material for a lithium secondary battery using the spinel type lithium manganese multiple oxide particle and the lithium secondary battery. <P>SOLUTION: The particle composed of the lithium manganese multiple oxide having the spinel type structure is manufactured by mixing an aqueous solution of a manganese compound with an aqueous solution of a lithium compound to deposit a precursor of the lithium manganese multiple oxide and hydrothermally treating the aqueous solution containing the precursor. The resultant particle has ≤100 nm average particle diameter and is mono-dispersed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池などの電極用活物質に利用できる複合酸化物粒子、その製造方法、並びに二次電池用活物質および該活物質を用いたリチウム二次電池に関する。
【0002】
【従来の技術】
電池における吸蔵・脱離する物質としてリチウムを用いたリチウム二次電池は、エネルギー密度が高いことから、携帯電話、パソコン等の通信機器、情報関連機器に普及している。また、環境、資源問題から、電気自動車における電源へ適用することも検討されている。
【0003】
現在、リチウム二次電池は、電池電圧が高く、容量が大きいなどにより、正極活物質として、リチウム遷移金属複合酸化物を用いたものが多い。
【0004】
例えば、特開平10−321227号公報では、正極活物質として、リチウムマンガン複合酸化物が用いられている。このリチウムマンガン複合酸化物は、一次粒子が凝集した二次粒子からなるスピネル型リチウムマンガン複合酸化物(以下、マンガンスピネルと略する)であり、一次粒子径を0.5〜5μm、二次粒子径を5〜30μmとすることにより、放電特性と高温保存特性のバランスが取れた非水電解液リチウム二次電池を得ることができる。
【0005】
【特許文献1】
特開平10−321227号公報
【0006】
マンガンスピネルを、非水電解液リチウム二次電池に用いる場合、60℃程度の高温時にマンガンが電解液に溶出し、電池性能を大きく低下させる場合がある。このマンガンの溶出を抑制する一つの方法として、マンガンスピネルの比表面積を低くすることが考えられている。また、現在、電極は、マンガンスピネルをポリマー溶液に分散させたペーストを均一に薄く塗工して作製するため、ハンドリングの点からマンガンスピネルの粒子径は数μm以上が好ましい。
【0007】
このように、非水電解液リチウム二次電池においては、マンガンスピネルの粒子径を大きくすることが考えられている。
【0008】
一方、現在検討が進められている全固体型リチウム二次電池では、非水電解液を用いないため、上記のようなマンガンの溶出の問題がない。また、電解質のイオン導電性が非水電解液よりも小さいため、マンガンの比表面積、すなわち反応面積を大きくすることが利点となる。
【0009】
【発明が解決しようとする課題】
しかし、粒子径が十分に小さいマンガンスピネル粒子は得られていない。マンガンスピネルの粒子を製造する方法として、一般的な固相合成方では、マンガン源とリチウム源との混合体を600〜900℃程度で焼成し、粒成長させている。しかし、ナノオーダーの単分散粒子を得ることは困難である。
【0010】
従って、例えば、全固体型リチウム二次電池にマンガンスピネル粒子を利用する場合、十分な電池特性を得ることが困難である。
【0011】
本発明は、上記の課題に鑑みてなされたものであり、粒子径が小さいスピネル型リチウムマンガン複合酸化物粒子、その製造方法、このスピネル型リチウムマンガン複合酸化物粒子を用いたリチウム二次電池用活物質およびリチウム二次電池を提供するものである。
【0012】
【課題を解決するための手段】
本発明の複合酸化物粒子は、スピネル型構造のリチウムマンガン複合酸化物からなる粒子であり、該粒子の平均直径が100nm以下であることを特徴とするものである。
【0013】
本発明の複合酸化物粒子の製造方法は、マンガン化合物の水溶液と、リチウム化合物の水溶液とを混合させて、リチウムマンガン複合酸化物の前駆体を析出させる第一工程と、前記前駆体を含む水溶液を水熱処理して、スピネル型構造のリチウムマンガン複合酸化物からなる粒子を得る第二工程とからなることを特徴とするものである。
【0014】
本発明の二次電池用活物質は、スピネル型構造のリチウムマンガン複合酸化物からなる粒子であり、該粒子の平均直径が100nm以下であることを特徴とするものである。
【0015】
本発明の二次電池は、スピネル型構造のリチウムマンガン複合酸化物からなる粒子であり、該粒子の平均直径が100nm以下であるリチウム電池用活物質を含むことを特徴とするものである。
【発明の実施の形態】
【0016】
本発明の複合酸化物粒子は、スピネル型構造のリチウムマンガン複合酸化物からなる粒子である。
【0017】
スピネル型構造のリチウムマンガン複合酸化物は、LiMnで示されるものである。なお、Mnの一部をニッケル(Ni)、アルミニウム(Al)、マグネシウム(Mg)、コバルト(Co)、クロム(Cr)、リチウム(Li)のうちの少なくとも1種で置換してもよい。
【0018】
複合酸化物粒子の平均直径(一次粒子径)が100nm以下であり、単分散粒子(二次粒子状を呈していない)であることが望ましい。単分散で非常に微小粒径であることにより、例えば、リチウム二次電池の活物質として利用した際、以下の効果が得られる。
【0019】
複合酸化物粒子が微小粒子であるため、リチウムが挿入脱離する反応面積が非常に大きい。それに起因して、反応速度が速くなり、急速充放電が可能となる。また、将来型電池系として注目されている全固体電池は、電解質のイオン導電性が低いため、それを補うためには反応面積の増大が有効である。本発明の複合酸化物粒子は、反応面積の増大に寄与することが可能である。
【0020】
望ましくは、複合酸化物粒子の平均直径は、10〜50nmの範囲がよい。この範囲の粒子は、リチウム二次電池の活物質として利用した際、反応速度がより速くなり、急速充放電などの電池特性を向上することができる。
【0021】
本発明の複合酸化物粒子の製造方法は、マンガン化合物の水溶液と、リチウム化合物の水溶液とを混合させて、リチウムマンガン複合酸化物の前駆体を析出させる第一工程と、前記前駆体を含む水溶液を水熱処理して、スピネル型構造のリチウムマンガン複合酸化物からなる粒子を得る第二工程とからなる。
【0022】
前駆体を含む溶液を水熱合成する際、溶解と析出とが繰返して結晶化が起こるため、粒成長が進みにくく、ナノオーダーの微小な粒子を得ることができる。
【0023】
第1工程において、マンガン化合物の水溶液は、マンガン(Mn)を陽イオンとする塩を水に溶解させたものである。マンガン化合物としては、マンガンの硝酸塩、硫酸塩などを使用することができる。
【0024】
リチウム化合物の水溶液は、リチウム(Li)を陽イオンとする塩を水に溶解させたものである。リチウム化合物としては、リチウムの水酸化塩、炭酸塩などを使用することができる。望ましくは、水酸化リチウム(LiOH)を過酸化水素(H)水溶液に溶解させたものを使用するのがよい。
【0025】
製造する複合酸化物中のMnの一部を遷移金属や典型金属元素で置換する場合、遷移金属や典型金属元素を陽イオンとする塩を水に溶解させた水溶液を混合する。遷移金属や典型金属元素は、Ni、Al、Mg、Co、Crなどを使用することができる。
【0026】
マンガン化合物の水溶液と、リチウム化合物の水溶液との混合割合は、リチウム(Li)/マンガン(Mn)=1〜10(モル比)となる範囲が望ましい。この範囲であれば、効率的に前駆体を析出させることができる。Mnの一部を遷移金属や典型金属元素で置換する場合、置換金属をMeとすると、Me/Mn=0〜0.5(モル比)、Li/(Mn+Me)=1〜10(モル比)となる範囲が望ましい。
【0027】
第1工程では、前記の溶液を混合することにより、反応が生じて複合酸化物の前駆体が析出する。
【0028】
第2工程では、前駆体を含む溶液を加熱して、水熱合成(水熱処理)を行なう。すなわち、密閉状態、水の存在下で加熱する。加熱条件は、70〜160℃の範囲で5分間以上の範囲が望ましい。この範囲であれば、微小な複合酸化物粒子を形成することができる。
【0029】
本発明のリチウムマンガン複合酸化物粒子は、リチウム二次電池の活物質として利用することができる。この活物質を用いたリチウム二次電池は、電池の反応速度が速いため、急速充放電が可能となる。
【0030】
【発明の作用・効果】
本発明の複合酸化物粒子は、微小の粒子であるため、リチウム二次電池の活物質として利用した際、反応速度がより速くなり、急速充放電などの電池特性を向上することができる。
【0031】
本発明の複合酸化物粒子の製造方法では、ナノオーダーの微小の粒子を製造することができる。
【0032】
【実施例】
以下、本発明の実施例を説明する。
【0033】
1.0MのMn(NO水溶液30mLをステーラで攪拌しつつ、150mLの1.0MのLiOH/3wt%H水溶液を混合させた後、5分間反応させて複合酸化物の前駆体を析出させた。続いて、この前駆体を混合溶液ごとテフロン(登録商標)製密閉容器に入れ、2.45GHzの電磁波を照射し、混合溶液の温度を80℃に15分間保持する水熱処理を施した。その後、室温になるまで放置した後、濾過、水洗、乾燥を行ない、スピネル型リチウムマンガン複合酸化物粒子を得た。
【0034】
得られた複合酸化物粒子のSEM(走査型電子顕微鏡)写真を図1に示す。図1より、スピネル型に特有の八面体の結晶であること、粒子径(平均)が約40nmであること、二次粒子状を呈せず単分散粒子であることは分かる。なお、この合成物がスピネル型リチウムマンガン複合酸化物であることは、X線回折および下記のコイン型電池の充放電カーブからも確認された。
【0035】
コイン型電池の正極電極には、前記スピネル型リチウムマンガン複合酸化物、導電助材(カーボンブラック)およびバインダ(テフロン(登録商標))を70/25/5wt%で混合したもの14mgをφ10mmのペレット状に成型し、200℃、10hrで真空乾燥したものを用いた。負極電極には、金属リチウムを用いた。セパレータには、PE(ポリエチレン)製のもの(厚み25μm)を用い、電解液には、1MのLiPF6溶液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)=1/1(vol比))を用いた。
【0036】
コイン型電池は、20℃にて電流密度を0.1〜2.0mA/cmの間で変化させて充放電を行ない、放電容量の変化を測定した。他の充放電条件は、4.2VCC充電/3.0VCC放電とした。CC充電とは定電流充電、CC放電とは定電流放電である。
【0037】
比較のため、市販のスピネル型リチウムマンガン複合酸化物粒子を正極活物質に用いた場合のコイン型電池についても、上記と同様にして充放電試験を行なった。市販のスピネル型リチウムマンガン複合酸化物粒子は、一次粒子径が0.5μm、二次粒子径が10μmのものである。
【0038】
表1に、本実施例の微小単分散のスピネル型リチウムマンガン複合酸化物粒子を用いた電池および比較例のスピネル型リチウムマンガン複合酸化物を用いた電池の充放電容量の電流密度依存性を示す。
【0039】
【表1】

Figure 2004331455
【0040】
粒子径の大きな市販の複合酸化物粒子を用いた場合(比較例)、電流密度の増大に伴って,放電容量が大きく低下し、2.0mA/cmでは0.1mA/cmの67%になった。一方、本実施例の微粒子単分散の複合酸化物粒子を用いた場合、2.0mA/cmの条件においても0.1mA/cmの94%以上の放電容量を維持している。これは、反応面積の大きな増大にょり反応抵抗が激減したことに起因すると考えられる。
【0041】
なお、本実施例では、水熱処理の加熱源に電磁波を用いたが、一般的な電気炉加熱による水熱処理でもほぼ同じナノオーダーの複合酸化物粒子が得られた。
【0042】
さらに、本実施例ではMnの一部を置換していない例を示したが、置換元素(Me)としてNi,Alを用いた場合にも、ナノオーダーの複合酸化物粒子が得られた。表2〜表4に、各置換元素における複合酸化物が得られた条件を示す。置換元素としてNi,Alを用いても複合酸化物粒子が得られたことから、Co、Mg、Crを置換元素として用いて場合にもほぼ同様に複合酸化物粒子が得られると考えられる。
【0043】
なお、表2は、置換元素なしの複合酸化物粒子の合成条件、表3は、置換元素(Me)がNiである複合酸化物粒子の合成条件、表4は、置換元素(Me)がAlである複合酸化物粒子の合成条件である。
【0044】
【表2】
Figure 2004331455
【0045】
【表3】
Figure 2004331455
【0046】
【表4】
Figure 2004331455
【0047】
以上のように、本実施例で得られたスピネル型リチウムマンガン複合酸化物粒子は、ナノオーダーの非常に微小な単分散粒子であるため、反応面積が極めて大きく、反応抵抗が小さい。そのため、現在各所で検討中の全固体型リチウム二次電池の正極活物質として有用であると判断できる。
【図面の簡単な説明】
【図1】本実施例のスピネル型リチウムマンガン複合酸化物粒子のSEM写真である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite oxide particle that can be used as an active material for an electrode such as a lithium secondary battery, a method for producing the same, an active material for a secondary battery, and a lithium secondary battery using the active material.
[0002]
[Prior art]
BACKGROUND ART Lithium secondary batteries using lithium as a substance that can be inserted and extracted in batteries have a high energy density, and thus are widely used in communication devices such as mobile phones and personal computers, and information-related devices. Also, due to environmental and resource issues, application to electric power sources in electric vehicles is also being studied.
[0003]
At present, many lithium secondary batteries use a lithium transition metal composite oxide as a positive electrode active material due to a high battery voltage and a large capacity.
[0004]
For example, in Japanese Patent Application Laid-Open No. 10-32227, a lithium manganese composite oxide is used as a positive electrode active material. This lithium manganese composite oxide is a spinel-type lithium manganese composite oxide (hereinafter abbreviated as manganese spinel) composed of secondary particles in which primary particles are aggregated, and has a primary particle diameter of 0.5 to 5 μm, By setting the diameter to 5 to 30 μm, a non-aqueous electrolyte lithium secondary battery having a good balance between discharge characteristics and high-temperature storage characteristics can be obtained.
[0005]
[Patent Document 1]
JP 10-322227 A
When manganese spinel is used for a non-aqueous electrolyte lithium secondary battery, manganese elutes into the electrolyte at a high temperature of about 60 ° C., which may significantly reduce battery performance. As one method of suppressing the elution of manganese, it is considered to lower the specific surface area of manganese spinel. Further, at present, since the electrode is produced by uniformly and thinly applying a paste in which manganese spinel is dispersed in a polymer solution, the particle diameter of manganese spinel is preferably several μm or more from the viewpoint of handling.
[0007]
As described above, in the non-aqueous electrolyte lithium secondary battery, it is considered to increase the particle diameter of manganese spinel.
[0008]
On the other hand, the all-solid-state lithium secondary battery currently under study does not use a non-aqueous electrolyte, and thus does not have the problem of manganese elution as described above. In addition, since the ionic conductivity of the electrolyte is smaller than that of the nonaqueous electrolyte, it is advantageous to increase the specific surface area of manganese, that is, the reaction area.
[0009]
[Problems to be solved by the invention]
However, manganese spinel particles having a sufficiently small particle size have not been obtained. As a method of producing manganese spinel particles, in a general solid-phase synthesis method, a mixture of a manganese source and a lithium source is fired at about 600 to 900 ° C. to grow grains. However, it is difficult to obtain nano-order monodisperse particles.
[0010]
Therefore, for example, when manganese spinel particles are used in an all-solid-state lithium secondary battery, it is difficult to obtain sufficient battery characteristics.
[0011]
The present invention has been made in view of the above problems, and has a small particle diameter spinel-type lithium manganese composite oxide particles, a method for producing the same, and a lithium secondary battery using the spinel-type lithium manganese composite oxide particles. An active material and a lithium secondary battery are provided.
[0012]
[Means for Solving the Problems]
The composite oxide particles of the present invention are particles made of a lithium manganese composite oxide having a spinel structure, and have an average diameter of 100 nm or less.
[0013]
The method for producing composite oxide particles according to the present invention includes a first step of mixing an aqueous solution of a manganese compound and an aqueous solution of a lithium compound to precipitate a precursor of a lithium manganese composite oxide, and an aqueous solution containing the precursor. And a second step of obtaining a particle comprising a lithium manganese composite oxide having a spinel structure by hydrothermally treating the particles.
[0014]
The active material for a secondary battery according to the present invention is a particle made of a lithium manganese composite oxide having a spinel structure, wherein the particle has an average diameter of 100 nm or less.
[0015]
The secondary battery of the present invention is a particle made of a lithium manganese composite oxide having a spinel structure, and contains an active material for a lithium battery having an average diameter of 100 nm or less.
BEST MODE FOR CARRYING OUT THE INVENTION
[0016]
The composite oxide particles of the present invention are particles composed of a lithium manganese composite oxide having a spinel structure.
[0017]
The lithium manganese composite oxide having a spinel structure is represented by LiMn 2 O 4 . Note that part of Mn may be replaced with at least one of nickel (Ni), aluminum (Al), magnesium (Mg), cobalt (Co), chromium (Cr), and lithium (Li).
[0018]
It is desirable that the composite oxide particles have an average diameter (primary particle diameter) of 100 nm or less and are monodisperse particles (not exhibiting secondary particle shape). The monodisperse and extremely fine particle size provides the following effects when used as an active material of a lithium secondary battery, for example.
[0019]
Since the composite oxide particles are minute particles, the reaction area where lithium is inserted and desorbed is very large. As a result, the reaction speed is increased, and rapid charging and discharging can be performed. In addition, an all-solid-state battery, which is attracting attention as a future battery system, has a low ionic conductivity of the electrolyte, and therefore, an increase in the reaction area is effective to compensate for the low ionic conductivity. The composite oxide particles of the present invention can contribute to an increase in the reaction area.
[0020]
Desirably, the average diameter of the composite oxide particles is in the range of 10 to 50 nm. When the particles in this range are used as an active material of a lithium secondary battery, the reaction speed becomes faster, and battery characteristics such as rapid charge and discharge can be improved.
[0021]
The method for producing composite oxide particles according to the present invention includes a first step of mixing an aqueous solution of a manganese compound and an aqueous solution of a lithium compound to precipitate a precursor of a lithium manganese composite oxide, and an aqueous solution containing the precursor. A hydrothermal treatment to obtain particles comprising a lithium manganese composite oxide having a spinel structure.
[0022]
When the solution containing the precursor is hydrothermally synthesized, crystallization occurs due to repetition of dissolution and precipitation, so that grain growth does not easily proceed, and nano-order fine particles can be obtained.
[0023]
In the first step, the aqueous solution of a manganese compound is obtained by dissolving a salt having manganese (Mn) as a cation in water. As the manganese compound, nitrates and sulfates of manganese can be used.
[0024]
The aqueous solution of a lithium compound is obtained by dissolving a salt having lithium (Li) as a cation in water. As the lithium compound, lithium hydroxide, carbonate and the like can be used. Desirably, lithium hydroxide (LiOH) dissolved in a hydrogen peroxide (H 2 O 2 ) aqueous solution is used.
[0025]
When a part of Mn in the composite oxide to be produced is replaced with a transition metal or a typical metal element, an aqueous solution in which a salt having the transition metal or the typical metal element as a cation is dissolved in water is mixed. As the transition metal or the typical metal element, Ni, Al, Mg, Co, Cr, or the like can be used.
[0026]
The mixing ratio of the aqueous solution of the manganese compound and the aqueous solution of the lithium compound is desirably in the range of lithium (Li) / manganese (Mn) = 1 to 10 (molar ratio). Within this range, the precursor can be efficiently deposited. When a part of Mn is substituted with a transition metal or a typical metal element, if the substituted metal is Me, Me / Mn = 0 to 0.5 (molar ratio) and Li / (Mn + Me) = 1 to 10 (molar ratio). Is desirable.
[0027]
In the first step, by mixing the above-mentioned solutions, a reaction occurs to precipitate a composite oxide precursor.
[0028]
In the second step, a solution containing the precursor is heated to perform hydrothermal synthesis (hydrothermal treatment). That is, heating is performed in a sealed state in the presence of water. The heating condition is desirably in the range of 70 to 160 ° C. for 5 minutes or more. Within this range, fine composite oxide particles can be formed.
[0029]
The lithium manganese composite oxide particles of the present invention can be used as an active material of a lithium secondary battery. A lithium secondary battery using this active material has a high battery reaction rate, and thus can be rapidly charged and discharged.
[0030]
[Action and Effect of the Invention]
Since the composite oxide particles of the present invention are fine particles, when used as an active material of a lithium secondary battery, the reaction rate becomes faster, and battery characteristics such as rapid charge and discharge can be improved.
[0031]
According to the method for producing composite oxide particles of the present invention, minute particles on the order of nanometers can be produced.
[0032]
【Example】
Hereinafter, examples of the present invention will be described.
[0033]
While stirring 30 mL of a 1.0 M Mn (NO 3 ) 2 aqueous solution with a stirrer, 150 mL of a 1.0 M LiOH / 3 wt% H 2 O 2 aqueous solution was mixed, and then reacted for 5 minutes to form a precursor of a composite oxide. The body was deposited. Subsequently, the precursor was placed together with the mixed solution in a Teflon (registered trademark) sealed container, irradiated with an electromagnetic wave of 2.45 GHz, and subjected to hydrothermal treatment for maintaining the temperature of the mixed solution at 80 ° C. for 15 minutes. Thereafter, the mixture was allowed to reach room temperature, and then filtered, washed with water and dried to obtain spinel-type lithium manganese composite oxide particles.
[0034]
FIG. 1 shows an SEM (scanning electron microscope) photograph of the obtained composite oxide particles. From FIG. 1, it can be seen that the crystals are octahedral crystals unique to the spinel type, the particle diameter (average) is about 40 nm, and the particles are not secondary particles and are monodisperse particles. The fact that this composite was a spinel-type lithium manganese composite oxide was also confirmed from X-ray diffraction and the following charge / discharge curve of a coin-type battery.
[0035]
For the positive electrode of the coin-type battery, 14 mg of a mixture of the spinel-type lithium manganese composite oxide, a conductive additive (carbon black) and a binder (Teflon (registered trademark)) at 70/25/5 wt% was pelletized into a φ10 mm pellet. What was molded into a shape and vacuum-dried at 200 ° C. for 10 hours was used. Metallic lithium was used for the negative electrode. A separator made of PE (polyethylene) (thickness: 25 μm) is used as a separator, and a 1 M LiPF6 solution (solvent: ethylene carbonate (EC) / diethyl carbonate (DEC) = 1/1 (vol ratio)) is used as an electrolyte. Was used.
[0036]
The coin-type battery was charged and discharged at 20 ° C. while changing the current density between 0.1 and 2.0 mA / cm 2 , and the change in discharge capacity was measured. The other charge / discharge conditions were 4.2 VCC charge / 3.0 VCC discharge. CC charging is constant current charging, and CC discharging is constant current discharging.
[0037]
For comparison, a charge / discharge test was performed in the same manner as described above for a coin-type battery using commercially available spinel-type lithium manganese composite oxide particles as the positive electrode active material. Commercially available spinel-type lithium manganese composite oxide particles have a primary particle size of 0.5 μm and a secondary particle size of 10 μm.
[0038]
Table 1 shows the current density dependence of the charge / discharge capacity of the battery using the micromonodispersed spinel-type lithium manganese composite oxide particles of the present example and the battery using the spinel-type lithium manganese composite oxide of the comparative example. .
[0039]
[Table 1]
Figure 2004331455
[0040]
When commercially available composite oxide particles having a large particle diameter were used (Comparative Example), the discharge capacity was significantly reduced with an increase in current density, and at 2.0 mA / cm 2 , the discharge capacity was 67% of 0.1 mA / cm 2 . Became. On the other hand, in the case of using the monodispersed composite oxide particles of the present example, the discharge capacity of 94% or more of 0.1 mA / cm 2 is maintained even under the condition of 2.0 mA / cm 2 . This is considered to be due to a drastic decrease in reaction resistance with a large increase in the reaction area.
[0041]
In this example, although electromagnetic waves were used as the heating source of the hydrothermal treatment, composite oxide particles of substantially the same nano-order were obtained by hydrothermal treatment using general electric furnace heating.
[0042]
Further, in this example, an example in which part of Mn was not substituted was shown. However, even when Ni or Al was used as the substitution element (Me), nano-order composite oxide particles were obtained. Tables 2 to 4 show the conditions under which the composite oxide was obtained for each substitution element. Since composite oxide particles were obtained even when Ni or Al was used as a substitution element, it is considered that composite oxide particles can be obtained almost similarly when Co, Mg, or Cr is used as a substitution element.
[0043]
Table 2 shows the conditions for synthesizing the composite oxide particles without the substituting element, Table 3 shows the conditions for synthesizing the composite oxide particles having the substituting element (Me) of Ni, and Table 4 shows the conditions for synthesizing the composite oxide particles having the substituting element (Me) of Al. These are the conditions for synthesizing the composite oxide particles.
[0044]
[Table 2]
Figure 2004331455
[0045]
[Table 3]
Figure 2004331455
[0046]
[Table 4]
Figure 2004331455
[0047]
As described above, since the spinel-type lithium manganese composite oxide particles obtained in this example are very fine monodisperse particles on the order of nanometers, the reaction area is extremely large and the reaction resistance is small. Therefore, it can be determined that it is useful as a positive electrode active material of an all-solid-state lithium secondary battery currently under study at various places.
[Brief description of the drawings]
FIG. 1 is an SEM photograph of spinel-type lithium manganese composite oxide particles of the present example.

Claims (7)

スピネル型構造のリチウムマンガン複合酸化物からなる粒子であり、該粒子の平均直径が100nm以下であることを特徴とする複合酸化物粒子。Composite oxide particles comprising particles of a spinel-type lithium manganese composite oxide, wherein the particles have an average diameter of 100 nm or less. 前記粒子は、平均直径が100nm以下で単分散している請求項1に記載の複合酸化物粒子。The composite oxide particles according to claim 1, wherein the particles have a mean diameter of 100 nm or less and are monodispersed. マンガン化合物の水溶液と、リチウム化合物の水溶液とを混合させて、リチウムマンガン複合酸化物の前駆体を析出させる第一工程と、
前記前駆体を含む水溶液を水熱処理して、スピネル型構造のリチウムマンガン複合酸化物からなる粒子を得る第二工程
とからなることを特徴とする複合酸化物粒子の製造方法。
A first step of mixing an aqueous solution of a manganese compound and an aqueous solution of a lithium compound to precipitate a precursor of a lithium-manganese composite oxide,
A step of hydrothermally treating the aqueous solution containing the precursor to obtain particles of a lithium manganese composite oxide having a spinel-type structure.
前記第一工程におけるマンガン化合物の水溶液と、リチウム化合物の水溶液との混合は、リチウム/マンガン=1〜10(モル比)となる比率で行なう請求項3に記載の複合酸化物粒子の製造方法。The method for producing composite oxide particles according to claim 3, wherein the mixing of the aqueous solution of a manganese compound and the aqueous solution of a lithium compound in the first step is performed at a ratio of lithium / manganese = 1 to 10 (molar ratio). 前記第二工程における水熱処理は、70〜160℃の範囲で5分間以上行なう請求項3に記載の複合酸化物粒子の製造方法。The method for producing composite oxide particles according to claim 3, wherein the hydrothermal treatment in the second step is performed at 70 to 160 ° C for 5 minutes or more. スピネル型構造のリチウムマンガン複合酸化物からなる粒子であり、該粒子の平均直径が100nm以下であることを特徴とする二次電池用活物質。An active material for a secondary battery, comprising particles made of a lithium manganese composite oxide having a spinel structure, wherein the particles have an average diameter of 100 nm or less. スピネル型構造のリチウムマンガン複合酸化物からなる粒子であり、該粒子の平均直径が100nm以下であるリチウム電池用活物質を含むことを特徴とする二次電池。A secondary battery comprising particles made of a lithium manganese composite oxide having a spinel structure and containing an active material for a lithium battery having an average particle diameter of 100 nm or less.
JP2003129851A 2003-05-08 2003-05-08 Composite oxide particles, production method thereof, active material for secondary battery, and secondary battery Expired - Fee Related JP4222093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129851A JP4222093B2 (en) 2003-05-08 2003-05-08 Composite oxide particles, production method thereof, active material for secondary battery, and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129851A JP4222093B2 (en) 2003-05-08 2003-05-08 Composite oxide particles, production method thereof, active material for secondary battery, and secondary battery

Publications (2)

Publication Number Publication Date
JP2004331455A true JP2004331455A (en) 2004-11-25
JP4222093B2 JP4222093B2 (en) 2009-02-12

Family

ID=33505535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129851A Expired - Fee Related JP4222093B2 (en) 2003-05-08 2003-05-08 Composite oxide particles, production method thereof, active material for secondary battery, and secondary battery

Country Status (1)

Country Link
JP (1) JP4222093B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089320A (en) * 2004-09-22 2006-04-06 Univ Kanagawa Lithium manganese-based multiple oxide powder, method of manufacturing the same, positive electrode active material for lithium secondary cell and lithium secondary cell
JP2014107033A (en) * 2012-11-23 2014-06-09 Nippon Chemicon Corp Lithium ion secondary battery electrode material, method for manufacturing lithium ion secondary battery electrode material, and lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089320A (en) * 2004-09-22 2006-04-06 Univ Kanagawa Lithium manganese-based multiple oxide powder, method of manufacturing the same, positive electrode active material for lithium secondary cell and lithium secondary cell
JP2014107033A (en) * 2012-11-23 2014-06-09 Nippon Chemicon Corp Lithium ion secondary battery electrode material, method for manufacturing lithium ion secondary battery electrode material, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP4222093B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4556377B2 (en) Positive electrode active material and manufacturing method thereof, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP2870741B2 (en) Lithium manganate particulate composition, method for producing the same, and lithium ion secondary battery
KR101577179B1 (en) Cathod active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
KR101562686B1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP5392036B2 (en) Manganese composite hydroxide particles for non-aqueous electrolyte secondary battery positive electrode active material and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP2005310744A (en) Cathode activator for nonaqueous lithium secondary battery, manufacturing method of the same, and nonaqueous lithium secondary battery using the cathode activator
JPWO2010053174A1 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JPH10236826A (en) Two-layer structure particulate composition and lithium ion secondary cell
JP2012246199A (en) Manganese composite hydroxide particle, positive pole active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, and method for producing them
JP6544579B2 (en) Method for producing lithium tungstate, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using lithium tungstate
JP2006344567A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material
JP2000058059A (en) Positive-electrode active material for lithium secondary battery and its manufacture
US11677065B2 (en) Cathode active material of lithium secondary battery
JP7172301B2 (en) Transition metal composite hydroxide, method for producing transition metal composite hydroxide, lithium transition metal composite oxide active material, and lithium ion secondary battery
JPH111324A (en) Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
Fang et al. Simple glycerol-assisted and morphology-controllable solvothermal synthesis of lithium-ion battery-layered Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode materials
JP5392035B2 (en) Nickel-manganese composite hydroxide particles for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
JP7183815B2 (en) Nickel-manganese-cobalt-containing composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP4360143B2 (en) Method for producing active material for lithium secondary battery
JP4441678B2 (en) Method for producing orthorhombic lithium manganese composite oxide particulate composition represented by LiMnO 2
JP2004355986A (en) Positive electrode active material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
JP2008159543A (en) Positive electrode active material for non-aqueous type electrolyte secondary battery, and method for manufacturing the material, and non-aqueous type electrolyte secondary battery using the material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees