JP2004331432A - Method and apparatus for recovering fluorine - Google Patents

Method and apparatus for recovering fluorine Download PDF

Info

Publication number
JP2004331432A
JP2004331432A JP2003126845A JP2003126845A JP2004331432A JP 2004331432 A JP2004331432 A JP 2004331432A JP 2003126845 A JP2003126845 A JP 2003126845A JP 2003126845 A JP2003126845 A JP 2003126845A JP 2004331432 A JP2004331432 A JP 2004331432A
Authority
JP
Japan
Prior art keywords
tower
recovery
fluorine
reaction tower
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003126845A
Other languages
Japanese (ja)
Other versions
JP4344536B2 (en
Inventor
Makoto Morisawa
誠 森澤
Kunihiko Koike
国彦 小池
Manabu Saeda
学 佐枝
Nobuyuki Okada
信幸 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Industrial Gases Corp
Iwatani Corp
Original Assignee
Iwatani Industrial Gases Corp
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Industrial Gases Corp, Iwatani International Corp filed Critical Iwatani Industrial Gases Corp
Priority to JP2003126845A priority Critical patent/JP4344536B2/en
Publication of JP2004331432A publication Critical patent/JP2004331432A/en
Application granted granted Critical
Publication of JP4344536B2 publication Critical patent/JP4344536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of efficiently recovering fluorine from a decomposition product gas of a PFC gas used in a CVD apparatus or the like. <P>SOLUTION: Method of recovering fluorine from the decomposition product gas produced by the decomposition of the PFC gas is performed by removing a solid powdery component contained in the decomposition production gas by passing the decomposition product gas through a dry powder removing apparatus (4) to obtain a dust-free gas and supplying the dust-free gas to a dry fluorine recovering reaction apparatus (5) in which a fluorine absorbent composed of a salt, hydroxide or oxide of an alkaline earth metal alone or the mixture of them is filled to react hydrogen fluoride in the decomposition production gas with the alkaline earth metal to recover as alkaline earth metal fluoride. As the fluorine absorbent, calcium carbonate or calcium hydroxide is suitably used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体の製膜工程等で使用されるPFC(Perfluorocompounds)ガスの分解により生成するHF(フッ化水素)等の有害成分を含む分解生成ガスの処理方法と装置に関するものである。
【0002】
【従来の技術】
PFCガスは、CF4 ,C2 F6 ,C3 F8 ,NF3 ,SF6 ,WF6 等のフッ素含有ガスの総称であって、半導体製造工程ではエッチングガスとして、或いはクリーニングガスとして使用されているガスである。このPFCガスは安定なガスであり、NF3 以外は無害なガスであるが、使用後のPFCガスは、有害成分を除去すると共に、PFCガスも分解処理して大気中に放出されていた。
【0003】
このPFCガスの処理法は、PFCガスを分解して生成したHF等の有害ガスを含む分解生成ガスの処理法であり、近年各種処理法が提案されている。この代表的な処理法は、PFCガスを加水分解,燃焼分解,酸化分解,熱分解等によって分解し、この分解によって生成したHFを含む生成ガスを、水或いはアルカリ水で洗浄して無害化する湿式方法である(例えば特許文献1,2参照)。この従来の処理法を図3に基づいて説明する。
【0004】
図3は、CVD装置のクリーニングにPFCガスを使用した場合のガス処理工程を示す工程図であり、製膜工程では、CVD装置1にシランガス(SiH4 )等の原料ガスが配管L1から供給され、該CVD装置1内で分解して基材の表面にシリコン皮膜を形成し、未反応のシランガスは配管L2から真空ポンプ2で吸引されると共に該真空ポンプ2内で配管L8から送給される窒素ガスによって希釈されて配管L3から燃焼式除害装置3に供給される。ここでは、前記シランガスは配管L9から供給される燃料ガスと共に燃焼されて固体のシリコン酸化物となり(SiH4 +2O2 →SiO2 +2H2 O)、無害化されて配管L4を経て湿式の除害装置20に供給され、微細粉塵である前記シリコン酸化物が水洗除去されて配管L6から無害ガスとして大気中に放出される。
【0005】
一方、上記製膜工程で副生するアモルファスシリコン等の反応性のシリコン化合物やその他の副反応生成物が、前記CVD装置1内や配管L2内の表面に付着堆積し、この堆積物が基板の製膜面に付着すると製品の品質低下を招くおそれがあるので、定期的に該CVD装置1内にPFCガスを供給してクリーニングを行う。このクリーニング工程では、クリーニングガスとしてのPFCガスを配管L7から前記CVD装置1内に供給し、該CVD装置1内に堆積した前記反応性シリコン化合物を分解し、未反応のPFCガスと共に配管L2で配管L8から送給される窒素ガスで希釈されて前記真空ポンプ2を経て配管L3から前記燃焼式除害装置3に送給される。ここで、PFCガスは配管L9から供給される燃料ガスの燃焼によって生じる水との反応によりHFを生成する(例えばCF4 の場合にはCF4 +2H2 O→4HF+CO2 )。このHFを含む分解生成ガスは、配管L4を通って前記湿式除害装置20に送給される。このHFは腐食性が強く極めて有害なガスであるが、水に可溶であるので、該湿式除害装置20内で水に吸収され、酸性廃液となって配管L22から系外に排出される。この酸性廃液は、適宜アルカリ処理されて排水される事になるが、前記湿式除害装置20にアルカリ水を供給して、HFの吸収と中和反応を同時に進行させる方法もある。尚、HFの吸収除去されたガスは、無害化ガスとして配管L6から系外に排出される。
【0006】
ところが、湿式除害装置20で気液接触によるガス吸収反応を行うと、ガス中に液体成分がミストとなって気流に同伴する事は避けられず、しかも、係るミストには、HFが溶解したフッ酸が含まれているので、このミスト処理が必要となる。そこで、特許文献3に記載されている如く、前記湿式除害装置20の排ガスを、大気に放出する前にミスト除去する方法等が提案されている。
【0007】
【特許文献1】
特開平10−337439号公報(図1及び要約参照)
【特許文献2】
特開平11−70322号公報(図1及び特許請求の範囲参照)
【特許文献3】
特開2001−149749号公報(図1及び要約参照)
【0008】
【発明が解決しようとする課題】
上述した如き従来のPFCガスの分解生成ガスを湿式で処理する方法においては、特許文献3に示されている様にミスト処理の問題があるので、この為にはミスト除去装置としてサイクロンやフィルタ等の設置が必要となるが、除去したミストをアルカリ水で洗浄処理する工程も必要となり、設備コストのみならず、ランニングコストの上昇は不可避である。
【0009】
又、前記HFをアルカリ水としてのアルカリ金属水酸化物の水溶液やアルカリ土類金属水酸化物の水溶液を用いて中和処理すると、アルカリ金属フッ化物やアルカリ土類金属フッ化物が生成するが、これを回収して再使用するには不純物が多過ぎるので、産業廃棄物として廃棄されており、結局、有害な排ガスを形を変えて廃棄しているに過ぎないと言える。これは、従来の湿式除害方法の根本的な問題として残されている。
【0010】
本発明は、上記した問題点に鑑み、湿式除害装置の有するミスト同伴の問題やフッ素を形を変えて廃棄する問題を一挙に解決する新たな処理方法と、そのための装置の提供を目的とするものである。
【0011】
【課題を解決するための手段】
本発明は、上記目的を同時に達成するためになされたもので、本発明のフッ素回収方法の特徴とするところは、前記除害装置として乾式の除害装置を用いる事によってミスト同伴の問題を根本的に解決し、且つ、該乾式除害装置の有害ガス吸収剤としてアルカリ土類金属の各種塩類,酸化物,水酸化物の単独若しくはこれらの混合物を用いる事により、フッ素をアルカリ金属フッ化物として回収するものである。具体的には、PFCガスの分解により生成した分解生成ガスよりフッ素を回収する方法であって、前記分解生成ガスを、乾式の粉体除去装置を通して該分解生成ガス中に含有されている固体粉末成分を除去して無塵ガスとなした後に、前記アルカリ土類金属の各種塩類,酸化物,水酸化物の単独若しくはこれらの混合物からなるフッ素吸収剤を充填した乾式フッ素回収反応装置に供給する事により、前記分解生成ガス中のフッ素を前記アルカリ土類金属と反応させてアルカリ土類金属フッ化物として回収することを特徴とするものである。
【0012】
尚、前記フッ素吸収剤としては、カルシウムの炭酸塩,硝酸塩,硫酸塩,蓚酸塩,水酸化物又は酸化物の単独若しくはこれらの混合物からなるカルシウム化合物が好ましく、特にPFCガス製造工程において副製するカルシウム化合物を用いれば、PFCガス製造の原料のリサイクルが実現する事になる。
【0013】
又、本発明に係るフッ素回収装置は、前記分解生成ガス中の固体微粒子を除去する乾式の粉体除去装置と、該粉体除去装置で固体微粒子の除去された無塵ガスからフッ素を回収するためのフッ素吸収剤が充填された乾式フッ素回収反応装置と、を有し、
前記フッ素吸収剤は、アルカリ土類金属の炭酸塩又は水酸化物若しくはこれらの混合物から適宜形状に成形されたものであり、
前記乾式フッ素回収反応装置は、主反応塔と回収反応塔と窒素パージ塔と吸収剤入替塔とが、工程を順次切り替え可能に構成されており、
前記無塵ガスは、前記主反応塔を経て前記回収反応塔に直列に供給され、該反応塔の切り替え工程では、前記回収反応塔は主反応塔に、主反応塔は窒素パージ塔に、窒素パージ塔は吸収剤入替塔に、吸収剤入替塔は回収反応塔に、それぞれ順次切り替えられる様に構成されている事を特徴とするものである。
【0014】
又、前記乾式フッ素回収反応装置は、前記フッ素吸収剤を充填した複数の反応塔で構成され、前記無塵ガスを、前記反応塔内に順次切り替えつつ供給する方式が好ましく、更に具体的には、該反応塔を、主反応塔と回収反応塔と窒素パージ塔と吸収剤入替塔とで構成し、前記無塵ガスは前記主反応塔を経て前記回収反応塔に直列に供給され、該反応塔の切り替え工程では、回収反応塔は主反応塔に、主反応塔は窒素パージ塔に、窒素パージ塔は吸収剤入替塔に、吸収剤入替塔は回収反応塔に、それぞれ順次切り替えられる様になすのが好ましい。
【0015】
又、前記回収反応塔は、第1回収反応塔と第2回収反応塔とを直列に配置し、前記反応塔の切り替え工程では、第1回収反応塔が主反応塔に、第2回収反応塔が第1回収反応塔に、吸収剤入替塔は第2回収反応塔に、それぞれ順次切り替えられるようになすのが好ましい態様である。
【0016】
更に、前記窒素パージ塔からの排出ガスは、前記主反応塔の出口ガスと合流させて前記回収反応塔に供給する方式と前記無塵ガスと合流させて前記主反応塔に供給する方式とがあり、いずれも好ましい態様である。
【0017】
【発明の実施の形態】
以下に、本発明について図面を用いて説明する。図1は、本発明のフッ素回収方法のフロー図であり、図3と同一構成は、同一符号を付して重複説明は省略する。前記CVD装置1のクリーニング工程において、クリーニングガスとして供給されたPFCガスは、真空ポンプ2を経て前記燃焼式除害装置3に供給され、前述の通り加水分解されて有害ガスであるHFガスと固形物としての二酸化珪素(SiO2 )の微粒子を生成し、分解生成ガスとして配管L4から本発明の主要機器の1つである乾式粉体除去装置4に流入する。ここでは、前記SiO2 の微粒子が除去されて無塵ガスとなる。この乾式粉体除去装置4は、前記分解生成ガスが高温であるので、この高温に耐えるフィルタや電気集塵機が使用される。
【0018】
前記微粒子の除去された無塵ガスは、配管L5を経て本発明の特徴的機器である乾式のフッ素回収反応装置5に供給される。該乾式フッ素回収反応装置5内には、アルカリ土類金属の各種塩類又は水酸化物若しくは酸化物の1種又はこれらの混合物の1種以上からなるフッ素吸収剤が、ペレット,ブリケット,顆粒状或いはハニカム状に成形されて充填されている。例えば、炭酸カルシウム〔CaCO3 〕,炭酸バリウム〔BaCO3 〕,炭酸マグネシウム〔MgCO3 〕,炭酸ストロンチウム〔SrCO3 〕等の炭酸塩、硫酸カルシウム〔CaSO4 〕,硫酸バリウム〔BaSO4 〕,硫酸マグネシウム〔MgSO4 〕,硫酸ストロンチウム〔SrSO4 〕等の硫酸塩、硝酸カルシウム〔Ca(NO3 )2 〕,硝酸バリウム〔Ba(NO3 )2 〕,硝酸マグネシウム〔Mg(NO3 )2 〕,硝酸ストロンチウム〔Sr(NO3 )2 〕等の硝酸塩、蓚酸カルシウム〔(COO)2Ca〕,蓚酸バリウム〔(COO)2 Ba〕,蓚酸マグネシウム〔(COO)2Mg〕,蓚酸ストロンチウム〔(COO)2 Sr〕等の蓚酸塩、水酸化カルシウム〔Ca(OH)2 〕,水酸化バリウム〔Ba(OH)2 〕, 水酸化マグネシウム〔Mg(OH)2 〕,水酸化ストロンチウム〔Sr(OH)2 〕等の水酸化物、或いは酸化カルシウム〔CaO〕,酸化バリウム〔BaO〕, 酸化マグネシウム〔MgO〕,酸化ストロンチウム〔SrO〕等の酸化物が上げられるが、最も好ましいものは、価格的にも安価で入手の容易な炭酸カルシウム或いは水酸化カルシウムであるので、以下の説明においては、代表例として炭酸カルシウムを例に説明する。係るフッ素吸収剤とHFが接触すると、CaCO3 +2HF→CaF2 +H2 O+CO2 の反応によりフッ素は、安定して無害なCaF2 (フッ化カルシウム)となる。そして該乾式フッ素回収反応装置5から排出されるガスは、前記配管L8から希釈ガスとして導入された窒素ガスと、上記反応により生じた水蒸気と炭酸ガスであるので、配管L6から無害ガスとして大気中に放出される事になる。
【0019】
前記乾式フッ素回収反応装置5内で生成したフッ化カルシウムは、所定の反応率に達すると該装置5から取り出し、PFCガスの原料であるフッ素源として、或いは溶接用フラックスの原料として再利用する事が可能である。特に、高品位の炭酸カルシウムを原料にしてフッ素吸収剤を成形した様な場合には、生成するフッ化カルシウムも高純度のものとなるので、極めて有用なフッ素源として再利用する事が可能となる。
【0020】
上記乾式フッ素回収反応装置5の構造としては、前記フッ素吸収剤をペレットやブリケットや顆粒状やハニカム状に成形して反応塔内に充填した固定床式反応塔や前記フッ素吸収剤を適度の粒度に粉砕したものを流動化させて反応させる流動床式反応塔があるが、いずれの反応塔を用いても本発明を実施できる事は言うまでもないが、図2に示した固定床式反応塔について説明する。
【0021】
即ち、図2は、固定床式反応塔によるフッ素回収反応装置5の構成例を示すフロー図であり、反応塔は5塔(R1〜R5)で構成され、各塔を切り替えながら運転するものである。この反応塔内には、炭酸カルシウムから成形されたペレット等のフッ素吸収剤が充填されて固定床式反応層を形成している。又、この反応塔は、主反応塔R3と第1回収反応塔R4と第2回収反応塔R5と窒素パージ塔R2と吸収剤入替塔R1とからなっており、新しいフッ素回収剤が充填される吸収剤入替塔R1は、切り替えにより第2回収反応塔R5に、該第2回収反応塔R5は第1回収反応塔R4に、該第1回収反応塔R4は主反応塔R3に、該主反応塔R3は窒素パージ塔R2に、夫々切り替わる様に構成されている。
【0022】
係る構成の反応塔列において、前記粉体除去装置4で含有微粒子が除去された無塵ガスは、配管L5から、先ず主反応塔R3に供給され、続いて配管L14,L15を経て第1回収反応塔R4に入り、続いて配管L16を経て第2回収反応塔R5に入り、HFガスを含まない無害化ガスとして配管L6から大気中に放出される。ここで、主反応塔R3と第1,第2回収反応塔R4,R5とは直列に接続されており、前記無塵ガス中のHFは、主として該主反応塔R3で殆どは吸収され、第1,第2回収反応塔R4,R5で残存HFが回収される事になる。
【0023】
前記窒素パージ塔R2は、前工程では主反応塔R3であり、内部のフッ素回収剤によるフッ素吸収反応が所定の反応率に達し、炭酸カルシウムの殆どがフッ化カルシウムとなっているものである。該塔内には、前工程において配管L5から供給されたHFを含むガスが残留しているので、配管L12から窒素ガスを供給して内部のガスを窒素で置換し、残留HFガスを含む出口ガスは、配管L13を経て前記主反応塔R3の出口ガスと配管L15で合流して前記第1回収配管L4に供給されて残留HFガスからのフッ素回収反応が行われる。尚、この残留HFガスの回収は、図中点線で示した配管L17から前記主反応塔R3の入口側に供給する事も可能である。
【0024】
次に、前記窒素パージ塔R2は、次工程では吸収剤入替塔R1となり、内部に充填されていたフッ素吸収剤はフッ化カルシウムとして取り出され、所定の用途に再利用されるために出荷される。同時に、空となった反応塔内には新たなフッ素吸収剤が充填され、次工程では第2回収反応塔R5となる。
【0025】
この様にして、複数の反応塔R1〜R5が順次切り替えられてフッ素の回収が行われるが、この切り替え時期の判定方法としては、前記第1回収反応塔R4の出口配管L16にHFモニターを設置して出口ガス中の含有HF濃度を測定し、この測定濃度がHFガス排出基準の3ppmに達した時点で切替えを行う方法がある。この場合には、3ppmのHFガスを含む第1回収反応塔R4の排出ガスからは、更に第2回収反応塔R5によってフッ素回収が行われるので、第2回収反応塔R5の出口配管L6から排出されるガス中のHF濃度は確実に3ppm以下となす事ができる。尚、この場合に、前記第1回収反応塔R4の出口ガス中のHF濃度が3ppmに達した時点で、前記主反応塔R3内のフッ素吸収剤の反応率が所定の反応率レベル、例えば90%以上に達する様に、フッ素吸収剤の充填量を予め設定しておく必要がある。
【0026】
以上の要領で、各反応塔R1〜R5を順次切り替えていく事により、PFCガスの分解により生成するガス中のフッ素は、殆どフッ化カルシウムとして回収され、その回収フッ化カルシウムの純度は、石灰石をフッ素吸収剤として使用すれば、90%以上がフッ化カルシウムで残部は殆ど炭酸カルシウムとなる高品位のフッ素源となる。
【0027】
尚、上記説明ではフッ素吸収剤として炭酸カルシウムを例にして説明したが、PFCガスの製造は、フッ化カルシウムを原料とし、原料中のカルシウムは硫酸カルシウムとして回収されているので、このPFCガス製造工程で副生する硫酸カルシウムを前記フッ素吸収剤として用いれば、フッ素とカルシウムの完全リサイクルシステムを構築する事も可能となる。又、フッ素吸収剤として副生硫酸カルシウムの代表的な排煙脱硫石膏を用いれば、排脱石膏の用途拡大に寄与する事になる。
【0028】
又、以上の説明において、回収反応塔は、第1回収反応塔R4と第2回収反応塔R5の2塔を用いているが、これは1塔となす事も可能である。要は、配管L6から大気中に排出される排ガス中のHF濃度が3ppm以下となる様に反応塔のフッ素吸収能力が設定されておれば良い。
【0029】
又、前記窒素パージ塔R2では、窒素ガスを配管L12から供給しているが、乾燥空気をパージガスとして使用する事も可能である。この意味で、本発明における窒素パージは空気パージも含む意味において使用されている。
【0030】
又、上記説明では、PFCガスの除害装置として燃焼式除害装置を例示しているが、本発明が適用される除害装置は、これに限定されるものではなく、PFCガスの熱分解装置や加水分解装置その他のPFCガス分解装置によってHFを生成する分解装置であれば、その形態は任意である。
【0031】
更に図1では、CVD装置1から排気するための真空ポンプ2は、1台のみを図示しているが、これは直列に真空ポンプを複数段設置して、排ガス処理能力を高める様になす事も可能である。
【0032】
又、図1は、CVD装置1に供給するシラン等の原料ガスの処理ラインとPFCガスの処理ラインを同一ラインとする場合の例を示しているが、PFCガスとしてNF3 を用いる場合には、SiH4 とNF3 とが混合すると爆発するおそれがあるので、図1におけるCVD装置1の出口配管L2から燃焼式除害装置3までの経路を並列に設置して、一方は原料ガス処理ラインとし、他方はPFCガスの処理ラインとなす事も可能である。しかしながら、設備費用の増加をもたらすので、図示の如く窒素ガスを配管L8から前記CVD装置1の出口ガスに注入して排出ガス中のSiH4 濃度やPFCガス濃度を希釈して爆発限界以下に抑制する様になすのが実用的な方策である。
【0033】
又、図1ではPFCガスを使用する装置としてCVD装置を示しているが、本発明においてはPFCガスを使用する装置はCVD装置に限定されるものではなく、エッチング装置その他のPFCガスを使用する装置におけるPFCガスの分解反応ガスの処理技術として本発明が適用できる事は言うまでもない。
【0034】
次に本発明の実施例について説明する。
〔実施例1〕
(1)フッ素吸収剤
精製炭酸カルシウム粉末にバインダーを添加して押出成形法によって粒径1〜2mmのペレットを製作した。
(2)反応塔
内径22mmの円筒パイプ内に前記フッ素吸収剤ペレットを充填層高さ75mmに充填したものを2本直列に配置し、一方を主反応塔とし他方を回収反応塔とした反応塔列を3組製作した。
(3)フッ素回収試験
前記3組の反応塔列の温度を100℃に保持した状態で、HF2.0%(残部窒素)の試料ガスを、5,10,20リットル/分(空筒速度(SV)換算で夫々約5000,10000,20000hr−1)の流量で、前記主反応塔から回収反応塔に直流で流通させてフッ素回収反応を行って、SV値の違いによる反応率の相違を評価した。尚、反応試験中の回収反応塔の出口ガス中のHF濃度を分析し、その分析値が3ppmを越えた時点で反応試験を終了した。反応終了後、前記3組の反応塔列の各主反応と及び各回収反応塔内の前記ペレットを取り出してCaF2 の転化率(反応率)を測定した。転化率の測定は、JIS−K1468−1978に基づく化学分析に従って算出した。
(4)試験結果
(a)第1組反応塔列(SV=5000hr−1)
・主反応塔内ペレットのCaF2 転化率:95.7%
・回収応塔内ペレットのCaF2 転化率:63.8%
・合計転化率:79.7%
(b)第2組反応塔列(SV=10000hr−1)
・主反応塔内ペレットのCaF2 転化率:95.1%
・回収応塔内ペレットのCaF2 転化率:36.6%
・合計転化率:65.8%
(c)第3組反応塔列(SV=20000hr−1)
・主反応塔内ペレットのCaF2 転化率:94.0%
・回収応塔内ペレットのCaF2 転化率:14.7%
・合計転化率:54.3%
【0035】
上記試験結果から明らかな様に、SV値が高くなると各反応塔の転化率(反応率)が低下する傾向が認められたが、いずれの主反応塔においても、90%以上の炭酸カルシウムがフッ化カルシウムに転化している事が分かる。特にSV値が10000hr−1以下の条件では、95%以上の高い転化率が得られている事から、運転条件を適宜選択すれば高品位のフッ化カルシウムが容易に製造できる事が理解されよう。尚、回収反応塔の反応率は、15%弱〜60%強のレベルであるが、これは前述した様に反応塔の切り替えによって次は主反応塔となるべきものであり、又、回収反応塔からの出口ガス中のHF濃度は、反応試験終了時点までは3ppm未満であるので、この回収反応塔の反応率の高低によって排出ガス中のHF濃度が影響される訳ではないが、出口ガス中のHF濃度が3ppmに達した時点での回収反応塔の反応率の高低に応じて回収反応塔の本数を1本にしたり2本に増やしたりすることは任意である。
【0036】
【発明の効果】
以上詳述した如く本発明によれば、PFCガスの分解により生成するHFガスを含む有害ガスを、炭酸カルシウムに代表されるフッ素吸収剤を用いて乾式で吸収反応させているので、従来の湿式吸収法において問題となっていたHFを含む酸性ミストの処理の問題や、HFを吸収溶解した腐食性の強い酸性排水処理の問題や、更には、この酸性排水を中和させて得られたフッ化物スラリーを含む排水の問題が完全に解消される事になる。
【0037】
更に、特筆すべきは、上述の通り従来の湿式処理法では産業廃棄物でしかなかった副生フッ化物を、高品位のフッ化カルシウム等の有用なフッ素源として回収する事ができ、このフッ化カルシウム等を用いてPFCガスを製造すれば、フッ素のリサイクルシステムを構築する事が可能となる。特に、フッ素源としてのフッ化カルシウムの供給を中国に依存している現状は、産業政策上も好ましい状態ではないので、上記フッ素リサイクルシステムの構築は、我が国産業界にとっても極めて有用な方策と言える。
【0038】
又、乾式フッ素回収反応装置として、複数の反応塔を切り替えながら運転する方法を採用すれば、単純な構成の反応塔で効率良く高品位のフッ化カルシウムを製造する事が可能となり、安価な設備投資でフッ素のリサイクルシステムを構築する事が可能となる。
【0039】
特に、フッ素吸収剤としてPFCガス製造工程で副生する硫酸カルシウムを用いると、生成したフッ化カルシウムのフッ素分もカルシウム分も元のフッ化カルシウムの成分となるので、フッ素とカルシウムの完全リサイクルシステムを構築する事も可能となる。
【0040】
更に、湿式除害装置を用いてPFC分解ガスの処理を行っている工場においては、前記湿式除害装置に代えて乾式の粉体除去装置と乾式の除害装置を設置すれば本発明のフッ素回収方法の実施が可能となるので、既存の設備を有効に活用しつつフッ素のリサイクルシステムの構築が可能となる。
【図面の簡単な説明】
【図1】本発明に係るPFC分解生成ガスからのフッ素回収方法を示すフロー図である。
【図2】本発明で使用する乾式フッ素回収反応装置の切り替え運転要領を示すフロー図である。
【図3】従来のPFC分解生成ガスの処理方法を示すフロー図である。
【符号の説明】
1 CVD装置 2 真空ポンプ
3 燃焼式除害装置 4 乾式粉体除去装置
5 乾式フッ素回収反応装置 R1 吸収剤入替塔
R2 窒素パージ塔 R3 主反応塔
R4 第1回収反応塔 R5 第2回収反応塔
L1〜9,L12〜L16 配管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for processing a decomposition product gas containing a harmful component such as HF (hydrogen fluoride) generated by decomposing a PFC (Perfluorocompounds) gas used in a semiconductor film formation process or the like.
[0002]
[Prior art]
The PFC gas is a general term for fluorine-containing gases such as CF4, C2F6, C3F8, NF3, SF6, and WF6, and is a gas used as an etching gas or a cleaning gas in a semiconductor manufacturing process. This PFC gas is a stable gas and is harmless except for NF3. However, the used PFC gas removes harmful components and also decomposes the PFC gas to be released into the atmosphere.
[0003]
This PFC gas treatment method is a treatment method of a decomposition product gas containing a harmful gas such as HF generated by decomposing the PFC gas, and various treatment methods have been proposed in recent years. In this typical treatment method, PFC gas is decomposed by hydrolysis, combustion decomposition, oxidative decomposition, thermal decomposition, etc., and the generated gas containing HF generated by this decomposition is washed with water or alkaline water to make it harmless. This is a wet method (for example, see Patent Documents 1 and 2). This conventional processing method will be described with reference to FIG.
[0004]
FIG. 3 is a process diagram showing a gas processing step when a PFC gas is used for cleaning the CVD apparatus. In a film forming step, a source gas such as silane gas (SiH4) is supplied to the CVD apparatus 1 from a pipe L1, It is decomposed in the CVD apparatus 1 to form a silicon film on the surface of the substrate, and the unreacted silane gas is sucked from the pipe L2 by the vacuum pump 2 and is supplied from the pipe L8 in the vacuum pump 2 It is diluted with the gas and supplied to the combustion type abatement apparatus 3 from the pipe L3. Here, the silane gas is burned together with the fuel gas supplied from the pipe L9 to form a solid silicon oxide (SiH4 + 2O2 → SiO2 + 2H2O), detoxified, and supplied to the wet detoxifier 20 via the pipe L4. The silicon oxide, which is fine dust, is washed away with water and released into the atmosphere from the pipe L6 as a harmless gas.
[0005]
On the other hand, a reactive silicon compound such as amorphous silicon by-produced in the film forming step and other by-products adhere to and deposit on the surface of the CVD apparatus 1 and the pipe L2, and the deposit is deposited on the substrate. If adhered to the film forming surface, the quality of the product may be degraded. Therefore, PFC gas is periodically supplied into the CVD apparatus 1 for cleaning. In this cleaning step, a PFC gas as a cleaning gas is supplied from the pipe L7 into the CVD apparatus 1, the reactive silicon compound deposited in the CVD apparatus 1 is decomposed, and the unreacted PFC gas and the unreacted PFC gas are supplied through the pipe L2. It is diluted with the nitrogen gas sent from the pipe L8 and sent to the combustion type abatement apparatus 3 from the pipe L3 via the vacuum pump 2. Here, the PFC gas generates HF by a reaction with water generated by combustion of the fuel gas supplied from the pipe L9 (for example, in the case of CF4, CF4 + 2H2O → 4HF + CO2). The decomposition product gas containing HF is supplied to the wet detoxification apparatus 20 through the pipe L4. This HF is a highly corrosive gas that is highly corrosive, but is soluble in water. Therefore, it is absorbed by water in the wet detoxification apparatus 20 and discharged as an acidic waste liquid from the pipe L22 to the outside of the system. . The acidic waste liquid is appropriately drained after being subjected to an alkali treatment. Alternatively, there is a method in which alkaline water is supplied to the wet-type abatement apparatus 20 to allow the HF absorption and the neutralization reaction to proceed simultaneously. The gas from which HF has been absorbed and removed is discharged out of the system from the pipe L6 as a detoxifying gas.
[0006]
However, when a gas absorption reaction is performed by gas-liquid contact in the wet detoxification apparatus 20, it is inevitable that the liquid component in the gas becomes a mist and accompanies the gas stream, and HF is dissolved in the mist. Since hydrofluoric acid is contained, this mist treatment is required. Therefore, as described in Patent Document 3, there has been proposed a method of removing the mist of the exhaust gas from the wet abatement apparatus 20 before discharging the exhaust gas to the atmosphere.
[0007]
[Patent Document 1]
JP-A-10-337439 (see FIG. 1 and abstract)
[Patent Document 2]
JP-A-11-70322 (see FIG. 1 and claims)
[Patent Document 3]
JP 2001-149749 A (see FIG. 1 and abstract)
[0008]
[Problems to be solved by the invention]
In the conventional method of treating a gas produced by decomposing PFC gas by a wet method as described above, there is a problem of mist treatment as shown in Patent Document 3. Therefore, a cyclone, a filter, or the like is used as a mist removal device. However, a step of cleaning the removed mist with alkaline water is also required, and an increase in not only equipment costs but also running costs is inevitable.
[0009]
Further, when the HF is neutralized with an aqueous solution of an alkali metal hydroxide or an aqueous solution of an alkaline earth metal hydroxide as alkaline water, an alkali metal fluoride or an alkaline earth metal fluoride is generated. Since there are too many impurities to collect and reuse the waste gas, it is discarded as industrial waste, and after all, it can be said that harmful exhaust gas is merely changed and discarded. This remains as a fundamental problem of the conventional wet abatement method.
[0010]
The present invention has been made in view of the above-described problems, and aims to provide a new treatment method that solves the problem of mist entrainment and the problem of disposing and changing fluorine in a wet type abatement device at once, and to provide an apparatus therefor. Is what you do.
[0011]
[Means for Solving the Problems]
The present invention has been made to achieve the above object at the same time, and the feature of the fluorine recovery method of the present invention is that the problem of mist entrainment is basically solved by using a dry type abatement device as the abatement device. By using various salts, oxides and hydroxides of alkaline earth metals alone or as a mixture thereof as a harmful gas absorbent for the dry abatement system, fluorine can be converted into alkali metal fluoride. To be collected. Specifically, it is a method for recovering fluorine from a decomposition product gas generated by decomposition of a PFC gas, wherein the decomposition product gas is passed through a dry powder removing device to obtain solid powder contained in the decomposition product gas. After removing the components to form a dust-free gas, the mixture is supplied to a dry fluorine recovery reactor filled with a fluorine absorbent consisting of various salts, oxides, and hydroxides of the alkaline earth metal alone or a mixture thereof. In this case, fluorine in the decomposition product gas is reacted with the alkaline earth metal and recovered as an alkaline earth metal fluoride.
[0012]
The fluorine absorbent is preferably a calcium compound consisting of calcium carbonate, nitrate, sulfate, oxalate, hydroxide or oxide alone or a mixture thereof. If a calcium compound is used, the recycling of raw materials for PFC gas production will be realized.
[0013]
Further, the fluorine recovery device according to the present invention is a dry powder removal device for removing solid fine particles in the decomposition product gas, and recovers fluorine from the dust-free gas from which the solid fine particles are removed by the powder removal device. And a dry fluorine recovery reactor filled with a fluorine absorbent for
The fluorine absorbent is formed into an appropriate shape from an alkaline earth metal carbonate or hydroxide or a mixture thereof,
The dry fluorine recovery reactor, the main reaction tower, the recovery reaction tower, the nitrogen purge tower and the absorbent replacement tower, is configured to be able to sequentially switch the process,
The dust-free gas is supplied in series to the recovery reaction tower via the main reaction tower, and in the switching step of the reaction tower, the recovery reaction tower is the main reaction tower, the main reaction tower is the nitrogen purge tower, and the nitrogen The purge tower is configured to be sequentially switched to an absorbent replacement tower, and the absorbent replacement tower is configured to be sequentially switched to a recovery reaction tower.
[0014]
Further, the dry-type fluorine recovery reactor is constituted by a plurality of reaction towers filled with the fluorine absorbent, and a method of supplying the dust-free gas while sequentially switching into the reaction tower is preferable, and more specifically, The reaction tower is composed of a main reaction tower, a recovery reaction tower, a nitrogen purge tower, and an absorbent replacement tower, and the dust-free gas is supplied in series to the recovery reaction tower via the main reaction tower, In the tower switching step, the recovery reaction tower is switched to the main reaction tower, the main reaction tower is switched to the nitrogen purge tower, the nitrogen purge tower is switched to the absorbent replacement tower, and the absorbent replacement tower is switched to the recovery reaction tower. Eggplant is preferred.
[0015]
Further, in the recovery reaction tower, a first recovery reaction tower and a second recovery reaction tower are arranged in series, and in the step of switching the reaction towers, the first recovery reaction tower is the main reaction tower and the second recovery reaction tower is It is a preferred embodiment that the first recovery reaction tower and the absorbent replacement tower can be sequentially switched to the second recovery reaction tower, respectively.
[0016]
Further, the exhaust gas from the nitrogen purge tower is combined with the outlet gas of the main reaction tower and supplied to the recovery reaction tower, and the exhaust gas from the nitrogen purge tower is combined with the dust-free gas and supplied to the main reaction tower. And both are preferred embodiments.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a flow chart of the fluorine recovery method of the present invention. The same components as those in FIG. 3 are denoted by the same reference numerals, and redundant description is omitted. In the cleaning step of the CVD apparatus 1, the PFC gas supplied as a cleaning gas is supplied to the combustion type abatement apparatus 3 via a vacuum pump 2, and is hydrolyzed as described above to form a harmful HF gas and a solid gas. Fine particles of silicon dioxide (SiO2) as a substance are generated, and flow into the dry powder removing device 4 as one of the main devices of the present invention from the pipe L4 as a decomposition product gas. Here, the fine particles of SiO2 are removed to form a dust-free gas. Since the decomposition product gas has a high temperature, the dry powder removing device 4 uses a filter or an electric dust collector that can withstand the high temperature.
[0018]
The dust-free gas from which the fine particles have been removed is supplied via a pipe L5 to a dry fluorine recovery reactor 5 which is a characteristic device of the present invention. In the dry fluorine recovery reactor 5, a fluorine absorbent composed of one or more of various salts of alkaline earth metals, hydroxides or oxides, or one or more of mixtures thereof is charged in pellets, briquettes, granules, or the like. It is formed into a honeycomb shape and filled. For example, carbonates such as calcium carbonate [CaCO3], barium carbonate [BaCO3], magnesium carbonate [MgCO3], strontium carbonate [SrCO3], calcium sulfate [CaSO4], barium sulfate [BaSO4], magnesium sulfate [MgSO4], strontium sulfate Sulfates such as [SrSO4], nitrates such as calcium nitrate [Ca (NO3) 2], barium nitrate [Ba (NO3) 2], magnesium nitrate [Mg (NO3) 2], strontium nitrate [Sr (NO3) 2] Oxalates such as calcium oxalate [(COO) 2Ca], barium oxalate [(COO) 2 Ba], magnesium oxalate [(COO) 2Mg], strontium oxalate [(COO) 2 Sr], calcium hydroxide [Ca (OH ) 2], barium hydroxide [Ba (OH 2), magnesium hydroxide [Mg (OH) 2], hydroxide such as strontium hydroxide [Sr (OH) 2], or calcium oxide [CaO], barium oxide [BaO], magnesium oxide [MgO], Oxides such as strontium oxide [SrO] can be used, but the most preferred one is calcium carbonate or calcium hydroxide which is inexpensive and easily available. Will be described as an example. When such a fluorine absorbent comes into contact with HF, fluorine becomes stable and harmless CaF2 (calcium fluoride) by the reaction of CaCO3 + 2HF → CaF2 + H2O + CO2. The gas discharged from the dry fluorine recovery reactor 5 is a nitrogen gas introduced as a diluent gas from the pipe L8, and water vapor and carbon dioxide gas generated by the above reaction. Will be released.
[0019]
The calcium fluoride generated in the dry-type fluorine recovery reactor 5 is taken out of the device 5 when a predetermined reaction rate is reached, and is reused as a fluorine source which is a raw material of PFC gas or a raw material of a welding flux. Is possible. In particular, when a fluorine absorbent is formed from high-grade calcium carbonate as a raw material, the generated calcium fluoride also has a high purity, so that it can be reused as an extremely useful fluorine source. Become.
[0020]
As the structure of the dry fluorine recovery reactor 5, a fixed bed type reaction tower in which the fluorine absorbent is formed into pellets, briquettes, granules, or honeycombs, and filled in the reaction tower, or the fluorine absorbent has an appropriate particle size. There is a fluidized bed type reaction tower which fluidizes and reacts the pulverized material, and it goes without saying that the present invention can be carried out using any of the reaction towers. However, the fixed bed type reaction tower shown in FIG. explain.
[0021]
That is, FIG. 2 is a flowchart showing a configuration example of the fluorine recovery reactor 5 using a fixed-bed type reaction tower. The reaction tower is composed of five towers (R1 to R5) and operates while switching each tower. is there. This reaction tower is filled with a fluorine absorbent such as pellets formed from calcium carbonate to form a fixed bed type reaction layer. This reaction tower is composed of a main reaction tower R3, a first recovery reaction tower R4, a second recovery reaction tower R5, a nitrogen purge tower R2, and an absorbent replacement tower R1, and is filled with a new fluorine recovery agent. The absorbent replacement tower R1 is switched to the second recovery reaction tower R5, the second recovery reaction tower R5 to the first recovery reaction tower R4, the first recovery reaction tower R4 to the main reaction tower R3, and the main reaction The column R3 is configured to switch to a nitrogen purge column R2.
[0022]
In the reactor column having the above configuration, the dust-free gas from which the fine particles are removed by the powder removing device 4 is first supplied from the pipe L5 to the main reaction tower R3, and then to the first recovery via the pipes L14 and L15. The gas enters the reaction tower R4, then enters the second recovery reaction tower R5 via the pipe L16, and is discharged into the atmosphere from the pipe L6 as a detoxifying gas containing no HF gas. Here, the main reaction tower R3 and the first and second recovery reaction towers R4 and R5 are connected in series, and most of the HF in the dust-free gas is mainly absorbed in the main reaction tower R3. First, the residual HF is recovered in the second recovery reaction towers R4 and R5.
[0023]
The nitrogen purge tower R2 is a main reaction tower R3 in the previous step, and the fluorine absorption reaction by the internal fluorine recovery agent reaches a predetermined reaction rate, and most of the calcium carbonate is calcium fluoride. Since the gas containing HF supplied from the pipe L5 in the previous step remains in the tower, a nitrogen gas is supplied from the pipe L12 to replace the internal gas with nitrogen, and an outlet containing the residual HF gas is provided. The gas joins with the outlet gas of the main reaction tower R3 via the pipe L13 at the pipe L15, is supplied to the first recovery pipe L4, and the fluorine recovery reaction from the residual HF gas is performed. The residual HF gas can be recovered from the pipe L17 indicated by the dotted line in the figure and supplied to the inlet side of the main reaction tower R3.
[0024]
Next, the nitrogen purge tower R2 becomes an absorbent replacement tower R1 in the next step, and the fluorine absorbent filled therein is taken out as calcium fluoride and shipped for reuse for a predetermined use. . At the same time, the empty reaction tower is filled with a new fluorine absorbent, and in the next step, it becomes the second recovery reaction tower R5.
[0025]
In this way, the plurality of reaction towers R1 to R5 are sequentially switched to recover fluorine. As a method for determining the switching time, an HF monitor is installed at the outlet pipe L16 of the first recovery reaction tower R4. Then, the concentration of HF contained in the outlet gas is measured, and when the measured concentration reaches 3 ppm of the HF gas discharge standard, switching is performed. In this case, the fluorine is recovered from the exhaust gas of the first recovery reaction tower R4 containing 3 ppm of HF gas by the second recovery reaction tower R5, so that it is discharged from the outlet pipe L6 of the second recovery reaction tower R5. The HF concentration in the gas to be used can reliably be 3 ppm or less. In this case, when the HF concentration in the outlet gas of the first recovery reaction tower R4 reaches 3 ppm, the reaction rate of the fluorine absorbent in the main reaction tower R3 reaches a predetermined reaction rate level, for example, 90%. %, It is necessary to previously set the filling amount of the fluorine absorbent.
[0026]
By sequentially switching the respective reaction towers R1 to R5 in the above manner, fluorine in the gas generated by the decomposition of the PFC gas is almost recovered as calcium fluoride, and the purity of the recovered calcium fluoride is limestone. When used as a fluorine absorbent, 90% or more is calcium fluoride, and the balance is almost calcium carbonate, which is a high-grade fluorine source.
[0027]
In the above description, calcium carbonate was used as an example of the fluorine absorbent. However, PFC gas was produced using calcium fluoride as a raw material and calcium in the raw material was recovered as calcium sulfate. If calcium sulfate by-produced in the process is used as the fluorine absorbent, a complete recycling system of fluorine and calcium can be constructed. In addition, if flue gas desulfurization gypsum, which is a typical by-product calcium sulfate, is used as the fluorine absorbent, it will contribute to expanding the applications of the gypsum.
[0028]
Further, in the above description, two recovery reaction towers, the first recovery reaction tower R4 and the second recovery reaction tower R5, are used, but this may be one tower. In short, what is necessary is just to set the fluorine absorption capacity of the reaction tower so that the HF concentration in the exhaust gas discharged into the atmosphere from the pipe L6 becomes 3 ppm or less.
[0029]
In the nitrogen purge tower R2, nitrogen gas is supplied from the pipe L12, but dry air can be used as a purge gas. In this sense, the nitrogen purge in the present invention is used in the sense including the air purge.
[0030]
Further, in the above description, a combustion type abatement device is exemplified as the abatement device for the PFC gas. However, the abatement device to which the present invention is applied is not limited to this, and the thermal abatement device of the PFC gas may be used. Any form can be used as long as it is a decomposer that generates HF by a device, a hydrolysis device, or another PFC gas decomposer.
[0031]
Further, in FIG. 1, only one vacuum pump 2 for evacuating the CVD apparatus 1 is shown. However, this may be achieved by installing a plurality of vacuum pumps in series to increase the exhaust gas treatment capacity. It is possible.
[0032]
FIG. 1 shows an example in which the processing line for the source gas such as silane supplied to the CVD apparatus 1 and the processing line for the PFC gas are the same line. However, when NF3 is used as the PFC gas, Since there is a risk of explosion when SiH4 and NF3 are mixed, a path from the outlet pipe L2 of the CVD apparatus 1 to the combustion type abatement apparatus 3 in FIG. Can be used as a PFC gas processing line. However, since this causes an increase in equipment cost, nitrogen gas is injected into the outlet gas of the CVD apparatus 1 from the pipe L8 to dilute the concentration of SiH4 or PFC gas in the exhaust gas to suppress the explosion below the explosion limit, as shown in the figure. This is a practical measure.
[0033]
Further, FIG. 1 shows a CVD apparatus as an apparatus using a PFC gas. However, in the present invention, an apparatus using a PFC gas is not limited to a CVD apparatus, and an etching apparatus or other PFC gas is used. It goes without saying that the present invention can be applied as a technique for treating a PFC gas decomposition reaction gas in an apparatus.
[0034]
Next, examples of the present invention will be described.
[Example 1]
(1) Fluorine absorbent Purified calcium carbonate powder was added with a binder, and pellets having a particle size of 1 to 2 mm were produced by an extrusion molding method.
(2) Two reactors in which the above-mentioned fluorine absorbent pellets are packed in a cylindrical pipe having an inner diameter of 22 mm and filled at a height of a packed bed of 75 mm are arranged in series, one of which is a main reactor and the other is a recovery reactor. Three sets of rows were made.
(3) Fluorine recovery test With the temperature of the three sets of reaction tower rows maintained at 100 ° C., a sample gas of HF 2.0% (remaining nitrogen) was supplied at 5, 10, 20 liters / min (vacuum speed ( At a flow rate of about 5000, 10000, 20000 hr-1) in terms of SV), a fluorine recovery reaction was carried out by flowing DC from the main reaction tower to the recovery reaction tower, and the difference in the reaction rate due to the difference in SV value was evaluated. did. Note that the HF concentration in the outlet gas of the recovery reaction tower during the reaction test was analyzed, and the reaction test was terminated when the analysis value exceeded 3 ppm. After the completion of the reaction, each of the main reactions in the three sets of reaction tower rows and the pellets in each of the recovery reaction towers were taken out, and the conversion rate (reaction rate) of CaF2 was measured. The conversion was calculated according to a chemical analysis based on JIS-K1468-1978.
(4) Test results (a) First set of reaction tower rows (SV = 5000 hr-1)
・ CaF2 conversion of pellets in the main reaction tower: 95.7%
・ CaF2 conversion of pellets in the recovery tower: 63.8%
・ Total conversion: 79.7%
(B) Second set of reaction tower rows (SV = 10000 hr-1)
・ CaF2 conversion of pellets in the main reaction tower: 95.1%
・ CaF2 conversion of pellets in the recovery tower: 36.6%
・ Total conversion: 65.8%
(C) Third set of reaction tower rows (SV = 20,000 hr-1)
・ CaF2 conversion of pellets in the main reaction tower: 94.0%
・ CaF2 conversion of pellets in the recovery tower: 14.7%
・ Total conversion: 54.3%
[0035]
As is evident from the above test results, the conversion rate (reaction rate) of each reaction tower tended to decrease as the SV value increased. However, in all the main reaction towers, 90% or more of calcium carbonate was fluorinated. It can be seen that it has been converted to calcium iodide. In particular, under the condition that the SV value is 10,000 hr-1 or less, a high conversion of 95% or more is obtained, so that it can be understood that high-grade calcium fluoride can be easily produced by appropriately selecting the operating conditions. . The reaction rate of the recovery reaction tower is a level of slightly less than 15% to slightly more than 60%, which should be the next main reaction tower by switching the reaction tower as described above. Since the HF concentration in the outlet gas from the column is less than 3 ppm until the end of the reaction test, the HF concentration in the exhaust gas is not affected by the degree of the reaction rate of the recovery reactor. It is optional to increase the number of the recovery reactors to one or two according to the degree of the reaction rate of the recovery reactor when the HF concentration in the reactor reaches 3 ppm.
[0036]
【The invention's effect】
As described above in detail, according to the present invention, the harmful gas including the HF gas generated by the decomposition of the PFC gas is subjected to a dry absorption reaction using a fluorine absorbent represented by calcium carbonate. The problem of the treatment of acidic mist containing HF, which was a problem in the absorption method, the problem of the treatment of highly corrosive acidic wastewater that absorbed and dissolved HF, and the hydrofluoric acid obtained by neutralizing this acidic wastewater. The problem of wastewater containing the compound slurry will be completely eliminated.
[0037]
Furthermore, it should be noted that by-product fluoride, which was only an industrial waste in the conventional wet treatment method as described above, can be recovered as a useful fluorine source such as high-grade calcium fluoride. If a PFC gas is produced using calcium fluoride or the like, a fluorine recycling system can be constructed. In particular, the current situation of relying on China for the supply of calcium fluoride as a fluorine source is not favorable in terms of industrial policy, so the construction of the above-mentioned fluorine recycling system can be said to be an extremely useful measure for Japanese industry as well. .
[0038]
Also, if a method of operating while switching a plurality of reaction towers is adopted as a dry-type fluorine recovery reaction apparatus, it becomes possible to efficiently produce high-grade calcium fluoride with a reaction tower having a simple configuration, and inexpensive equipment. It will be possible to build a fluorine recycling system with investment.
[0039]
In particular, if calcium sulfate produced as a by-product in the PFC gas production process is used as a fluorine absorbent, both the fluorine and calcium components of the generated calcium fluoride will be the components of the original calcium fluoride. Can also be constructed.
[0040]
Further, in a factory where a PFC decomposition gas is treated using a wet-type abatement apparatus, if a dry-type powder removal apparatus and a dry-type abatement apparatus are installed instead of the wet-type abatement apparatus, the fluorine of the present invention can be obtained. Since the recovery method can be implemented, it is possible to construct a fluorine recycling system while effectively utilizing existing facilities.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method for recovering fluorine from a PFC decomposition product gas according to the present invention.
FIG. 2 is a flow chart showing a switching operation procedure of the dry fluorine recovery reactor used in the present invention.
FIG. 3 is a flowchart showing a conventional method for treating PFC decomposition product gas.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 CVD apparatus 2 Vacuum pump 3 Combustion type abatement apparatus 4 Dry powder removal apparatus 5 Dry fluorine recovery reactor R1 Absorbent replacement tower R2 Nitrogen purge tower R3 Main reaction tower R4 First recovery reaction tower R5 Second recovery reaction tower L1 ~ 9, L12 ~ L16 Piping

Claims (12)

PFCガスの分解により生成した分解生成ガスよりフッ素を回収する方法において、
前記分解生成ガスを、乾式の粉体除去装置(4)を通して該分解生成ガス中に含有されている固体粉末成分を除去して無塵ガスとなした後、アルカリ土類金属の塩類,水酸化物又は酸化物の単独若しくはこれらの混合物からなるフッ素吸収剤を充填した乾式フッ素回収反応装置(5)に供給する事により、前記分解生成ガス中のフッ化水素を前記アルカリ土類金属と反応させてアルカリ土類金属フッ化物として回収することを特徴とするフッ素回収方法
In a method of recovering fluorine from a decomposition product gas generated by decomposition of a PFC gas,
The decomposition product gas is passed through a dry-type powder removal device (4) to remove solid powder components contained in the decomposition product gas to form a dust-free gas. Hydrogen fluoride in the decomposition product gas is reacted with the alkaline earth metal by supplying to a dry fluorine recovery reactor (5) filled with a fluorine absorbent consisting of a substance or an oxide alone or a mixture thereof. For recovering fluorine as alkaline earth metal fluoride by heating
前記フッ素吸収剤が、カルシウムの炭酸塩,硝酸塩,硫酸塩,蓚酸塩,水酸化物又は酸化物の単独若しくはこれらの混合物からなるカルシウム化合物である請求項1に記載のフッ素回収方法The method for recovering fluorine according to claim 1, wherein the fluorine absorbent is a calcium compound composed of calcium carbonate, nitrate, sulfate, oxalate, hydroxide or oxide alone or a mixture thereof. 前記カルシウム化合物が、PFCガス製造工場で副生するカルシウム化合物を用いるものである請求項2に記載のフッ素回収方法The method for recovering fluorine according to claim 2, wherein the calcium compound uses a calcium compound by-produced in a PFC gas production plant. 前記乾式フッ素回収反応装置(5)は、前記フッ素吸収剤を充填した複数の反応塔(R1〜R5)で構成され、前記無塵ガスを、前記反応塔内に順次切り替えつつ供給する請求項1乃至3のいずれかに記載のフッ素回収方法The dry fluorine recovery reactor (5) includes a plurality of reaction towers (R1 to R5) filled with the fluorine absorbent, and supplies the dust-free gas while sequentially switching the inside of the reaction tower. The method for recovering fluorine according to any one of claims 1 to 3, 前記反応塔(R1〜R5)は、主反応塔(R3)と回収反応塔(R4,R5)と窒素パージ塔(R2)と吸収剤入替塔(R1)とで構成されており、前記無塵ガスは、前記主反応塔(R3)を経て前記回収反応塔(R4,R5)に直列に供給され、該反応塔の切り替え工程では、前記回収反応塔は主反応塔に、主反応塔は窒素パージ塔に、窒素パージ塔は吸収剤入替塔に、吸収剤入替塔は回収反応塔に、それぞれ順次切り替えられるようになっている請求項4に記載のフッ素回収方法The reaction tower (R1 to R5) includes a main reaction tower (R3), a recovery reaction tower (R4, R5), a nitrogen purge tower (R2), and an absorbent replacement tower (R1). The gas is supplied in series to the recovery reactors (R4, R5) via the main reactor (R3). In the process of switching the reactors, the recovery reactor is the main reactor and the main reactor is the nitrogen. 5. The fluorine recovery method according to claim 4, wherein the purge tower, the nitrogen purge tower, and the absorbent replacement tower are sequentially switched to a recovery reaction tower, respectively. 前記回収反応塔は、第1回収反応塔(R4)と第2回収反応塔(R5)とが直列に配置されたものであり、前記反応塔の切り替え工程では、第1回収反応塔が主反応塔に、第2回収反応塔が第1回収反応塔に、吸収剤入替塔は第2回収反応塔に、それぞれ順次切り替えられるようになっている請求項5に記載のフッ素回収方法The recovery reaction tower has a first recovery reaction tower (R4) and a second recovery reaction tower (R5) arranged in series, and in the step of switching the reaction towers, the first recovery reaction tower is a main reaction tower. 6. The fluorine recovery method according to claim 5, wherein the first recovery reaction tower is switched to the first recovery reaction tower, and the absorbent replacement tower is switched to the second recovery reaction tower. 前記窒素パージ塔(R2)からの排出ガスを、前記主反応塔(R3)の出口ガスと合流させて前記回収反応塔(R4)に供給する請求項5又は6に記載のフッ素回収方法7. The fluorine recovery method according to claim 5, wherein an exhaust gas from the nitrogen purge tower (R2) is combined with an outlet gas of the main reaction tower (R3) and supplied to the recovery reaction tower (R4). 前記窒素パージ塔(R2)からの排出ガスを、前記主反応塔(R3)に供給される無塵ガスと合流させて該主反応塔(R3)に供給する請求項5又は6に記載のフッ素回収方法The fluorine according to claim 5 or 6, wherein the exhaust gas from the nitrogen purge tower (R2) is combined with the dust-free gas supplied to the main reaction tower (R3) and supplied to the main reaction tower (R3). Collection method PFCガスの分解により生成した分解生成ガスよりフッ素を回収するフッ素回収装置であって、
前記分解生成ガス中の固体微粒子を除去する乾式の粉体除去装置(4)と、
該粉体除去装置(4)で固体微粒子の除去された無塵ガスからフッ素を回収するためのフッ素吸収剤が充填された乾式フッ素回収反応装置(5)と、
を有し、
前記フッ素吸収剤は、アルカリ土類金属の塩類,水酸化物又は酸化物の単独若しくはこれらの混合物から適宜形状に成形されたものであり、
前記乾式フッ素回収反応装置(5)は、主反応塔(R3)と、回収反応塔(R4,R5)と、窒素パージ塔(R2)と、吸収剤入替塔(R1)とが、工程を順次切り替え可能に構成されており、
前記無塵ガスは、前記主反応塔(R3)を経て前記回収反応塔(R4,R5)に直列に供給され、該反応塔の切り替え工程では、前記回収反応塔は主反応塔に、主反応塔は窒素パージ塔に、窒素パージ塔は吸収剤入替塔に、吸収剤入替塔は回収反応塔に、それぞれ順次切り替えられる様に構成されている事を特徴とするフッ素回収装置
A fluorine recovery apparatus for recovering fluorine from a decomposition product gas generated by decomposition of a PFC gas,
A dry powder removing device (4) for removing solid fine particles in the decomposition product gas;
A dry fluorine recovery reactor (5) filled with a fluorine absorbent for recovering fluorine from the dust-free gas from which solid fine particles have been removed by the powder removal device (4);
Has,
The fluorine absorbent is formed into an appropriate shape from an alkaline earth metal salt, a hydroxide or an oxide alone or a mixture thereof,
The dry-type fluorine recovery reactor (5) includes a main reaction tower (R3), a recovery reaction tower (R4, R5), a nitrogen purge tower (R2), and an absorbent replacement tower (R1) in order. It is configured to be switchable,
The dust-free gas is supplied in series to the recovery reaction towers (R4, R5) via the main reaction tower (R3). In the step of switching the reaction towers, the recovery reaction tower is connected to the main reaction tower, A fluorine recovery apparatus characterized in that the tower is configured to be sequentially switched to a nitrogen purge tower, the nitrogen purge tower to an absorbent replacement tower, and the absorbent replacement tower to a recovery reaction tower.
前記回収反応塔は、第1回収反応塔(R4)と第2回収反応塔(R5)とが直列に配置されたものであり、前記反応塔の切り替え工程では、第1回収反応塔が主反応塔に、第2回収反応塔が第1回収反応塔に、吸収剤入替塔は第2回収反応塔に、それぞれ順次切り替えられるようになっている請求項9に記載のフッ素回収装置The recovery reaction tower has a first recovery reaction tower (R4) and a second recovery reaction tower (R5) arranged in series, and in the step of switching the reaction towers, the first recovery reaction tower is a main reaction tower. 10. The fluorine recovery apparatus according to claim 9, wherein the tower, the second recovery reaction tower is switched to the first recovery reaction tower, and the absorbent replacement tower is switched to the second recovery reaction tower, respectively. 前記窒素パージ塔(R2)からの排出ガスを、前記主反応塔(R3)の出口ガスと合流させて前記第1回収反応塔(R4)に供給する請求項10に記載のフッ素回収装置The fluorine recovery apparatus according to claim 10, wherein an exhaust gas from the nitrogen purge tower (R2) is combined with an outlet gas of the main reaction tower (R3) and supplied to the first recovery reaction tower (R4). 前記窒素パージ塔(R2)からの排出ガスを、前記主反応塔(R3)に供給される無塵ガスと合流させて前記主反応塔(R3)に供給する請求項9又は10に記載のフッ素回収装置The fluorine according to claim 9 or 10, wherein an exhaust gas from the nitrogen purge tower (R2) is combined with a dust-free gas supplied to the main reaction tower (R3) and supplied to the main reaction tower (R3). Collection device
JP2003126845A 2003-05-02 2003-05-02 Fluorine recovery method and apparatus Expired - Lifetime JP4344536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126845A JP4344536B2 (en) 2003-05-02 2003-05-02 Fluorine recovery method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126845A JP4344536B2 (en) 2003-05-02 2003-05-02 Fluorine recovery method and apparatus

Publications (2)

Publication Number Publication Date
JP2004331432A true JP2004331432A (en) 2004-11-25
JP4344536B2 JP4344536B2 (en) 2009-10-14

Family

ID=33503604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126845A Expired - Lifetime JP4344536B2 (en) 2003-05-02 2003-05-02 Fluorine recovery method and apparatus

Country Status (1)

Country Link
JP (1) JP4344536B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122790A (en) * 2004-10-28 2006-05-18 Central Res Inst Of Electric Power Ind Fluorine-containing gas decomposing treatment apparatus and fluorine compound recovery method using it
JP2006225219A (en) * 2005-02-21 2006-08-31 Iwatani Internatl Corp Method for recovering fluorine
JP2007137739A (en) * 2005-11-22 2007-06-07 Central Glass Co Ltd METHOD FOR RECOVERING CaF2
JP2008162859A (en) * 2006-12-28 2008-07-17 Toyo Denka Kogyo Co Ltd Manufacture method of synthetic fluorite, and manufacturing apparatus for synthetic fluorite
JP2009242215A (en) * 2008-04-01 2009-10-22 Iwatani Internatl Corp Method for recovering fluorine and method for purifying calcium fluoride
JP2012194042A (en) * 2011-03-16 2012-10-11 Taiyo Nippon Sanso Corp Preprocessing apparatus for gas analyzer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122790A (en) * 2004-10-28 2006-05-18 Central Res Inst Of Electric Power Ind Fluorine-containing gas decomposing treatment apparatus and fluorine compound recovery method using it
JP4698201B2 (en) * 2004-10-28 2011-06-08 財団法人電力中央研究所 Fluorine-containing gas decomposition treatment apparatus and fluorine compound recovery method using the same
JP2006225219A (en) * 2005-02-21 2006-08-31 Iwatani Internatl Corp Method for recovering fluorine
JP2007137739A (en) * 2005-11-22 2007-06-07 Central Glass Co Ltd METHOD FOR RECOVERING CaF2
JP2008162859A (en) * 2006-12-28 2008-07-17 Toyo Denka Kogyo Co Ltd Manufacture method of synthetic fluorite, and manufacturing apparatus for synthetic fluorite
JP4523936B2 (en) * 2006-12-28 2010-08-11 東洋電化工業株式会社 Synthetic fluorite manufacturing method and synthetic fluorite manufacturing apparatus
JP2009242215A (en) * 2008-04-01 2009-10-22 Iwatani Internatl Corp Method for recovering fluorine and method for purifying calcium fluoride
JP2012194042A (en) * 2011-03-16 2012-10-11 Taiyo Nippon Sanso Corp Preprocessing apparatus for gas analyzer

Also Published As

Publication number Publication date
JP4344536B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
KR100507735B1 (en) Apparatus for treating perfluoride
US8168148B2 (en) Flue-gas purification and reclamation system and method thereof
EA036691B1 (en) Method and apparatus for removing nitrogen oxides from gas streams
KR101699217B1 (en) Perfluoride decomposition treatment method and treatment device
JP5346482B2 (en) Fluorine recovery method and calcium fluoride purification method
AU2002226536B2 (en) Decomposition of fluorine containing compounds
US20030103883A1 (en) Method for treating exhaust gas containing fluorine-containing compound
JP4344536B2 (en) Fluorine recovery method and apparatus
AU2002226536A1 (en) Decomposition of fluorine containing compounds
KR100801265B1 (en) Cleaning apparatus of exhaust gas for processing by-products generated during the decomposition of perfluorocompound and method thereof
JP5468216B2 (en) Perfluoride treatment apparatus and perfluoride treatment method
KR101640976B1 (en) Apparatus and method for treating perfluorocompounds, and recording medium
JP2003240226A (en) Exhaust gas processing device and processing method
JP2007319782A (en) Exhaust gas treatment method
KR101579374B1 (en) Method for manufacturing calcium fluoride and apparatus for manufacturing calcium fluoride
JP4831924B2 (en) HF-containing gas dry processing apparatus and processing method
JP2006225219A (en) Method for recovering fluorine
WO2005077496A1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
JP2004181299A (en) Method for detoxifying vent gas
CN109813131B (en) Method for treating gypsum calcination flue gas
KR102312962B1 (en) Device and method for treating perfluoro compound by using reaction-separation simultaneous process
JP2006150260A (en) Exhaust gas treatment apparatus in semiconductor manufacturing line
JP5170040B2 (en) HF-containing gas dry processing apparatus and processing method
JP6085203B2 (en) Perfluoride treatment apparatus and perfluoride treatment method
RU2575714C2 (en) Flue gas cleaning and recycling system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4344536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term