JP2004330507A - Gas barrier polymer laminated film suitable for display - Google Patents

Gas barrier polymer laminated film suitable for display Download PDF

Info

Publication number
JP2004330507A
JP2004330507A JP2003126965A JP2003126965A JP2004330507A JP 2004330507 A JP2004330507 A JP 2004330507A JP 2003126965 A JP2003126965 A JP 2003126965A JP 2003126965 A JP2003126965 A JP 2003126965A JP 2004330507 A JP2004330507 A JP 2004330507A
Authority
JP
Japan
Prior art keywords
gas barrier
film
laminated film
group
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003126965A
Other languages
Japanese (ja)
Inventor
Toru Hanada
亨 花田
Toshiaki Yatabe
俊明 谷田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2003126965A priority Critical patent/JP2004330507A/en
Publication of JP2004330507A publication Critical patent/JP2004330507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel gas barrier polymer laminated film having excellent gas barrier properties against steam and oxygen. <P>SOLUTION: For example, a specific cured resin layer and a metal oxide layer are used on a film, which comprises polycarbonate containing 10-90 mol% of a fluorene skeleton as a copolymer component, in a contact state to obtain the gas barrier polymer laminated film characterized in that the absorbance originating from four specific bonds of the cured resin layer is within a specific range. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高温高湿下において優れたガスバリア性を有する高分子積層フィルムに関する。この積層フィルムは、例えば液晶表示素子、光導電性感光体、面発光体、無機ならびに有機EL素子、電気泳動、フィールドエミッション素子、プラズマ素子、面発熱体などのフラットパネルディスプレイ用の基板として好適に用いられる。
【0002】
【従来の技術】
近年、液晶表示素子等のフラットパネルディスプレイ分野において、耐破損性の向上、軽量化、薄型化の要望から、透明高分子からなるフィルム上に、酸化インジウム、酸化錫、或いは錫−インジウム合金の酸化物等の半導体膜、金、銀、パラジウム合金の酸化膜等の金属膜、該半導体膜と該金属膜とを組み合わせて形成された膜を透明導電層として設けたガスバリア性高分子積層体を液晶表示素子の電極基板として用いる検討が続けられている。かかる電極基板には、パネルの組立て工程における、電極のパターニングや配向膜の積層時及び各種洗浄時において使用される各種有機溶媒、酸、アルカリに対する高い耐薬品性が要求されている。また通常、パネルの液晶セル内部に発生する気泡に対する信頼性を向上させるために高いガスバリア性が要求されている。このガスバリア性については、例えば下記特許文献1には、透明高分子基板にビニルアルコール系ポリマーや塩化ビニリデン系ポリマーなどの有機ガスバリア層、及び酸化珪素や酸化アルミニウムなどの無機ガスバリア層が積層された基板が記載されている。また、下記特許文献2には両面に有機ケイ素化合物および/またはその加水分解物から得られるシロキサン樹脂を主成分とするハードコート被膜を有するプラスチック基板の片面の少なくともその一部に、導電性を有する被膜を設け、さらに該基板の反対面に金属酸化物被膜を設けたことを特徴とする導電性を有するプラスチック成形体が記載されている。
【0003】
しかし、これら有機または無機のガスバリア層を1層で用いたり、それらを複数積層したり、さらには有機及び無機のガスバリア層を組み合わせて用いた場合でも、従来用いられているガラス基板と同等のガスバリア性、特に水蒸気バリア性を達成することは困難である。実際このような基板を使用した液晶パネルを高温高湿環境下に長時間放置すると、液晶セル内部に水蒸気が入り込み、液晶セルの対向する2枚の電極間及び基板の面内における隣り合う2つの電極間のインピーダンスが低下し、画像にじみやクロストークといったパネルの表示欠陥が発生しやすくなるという問題があった。
【0004】
【特許文献1】
WO94/23332号公報
【0005】
【特許文献2】
特許第2790144号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、水蒸気及び酸素のガスバリア性に優れた新規なガスバリア性高分子積層フィルムを提供することにある。
【0007】
また本発明の他の目的は、高温高湿環境下に長時間放置しても表示品位の劣化が生じにくい液晶表示素子等のフラットパネルディスプレイ用の基板として好適なガスバリア性高分子積層フィルムを提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記の問題を解決すべく鋭意検討した結果、かかる問題点はフルオレン環を有する特定のポリカーボネートからなる透明高分子フィルム上に、特定の硬化樹脂層と接して金属酸化物層を形成することにより解決できることを見出し本発明に至った。
【0009】
すなわち本発明は、次のとおりのものである。
1.下記式(I)
【0010】
【化3】

Figure 2004330507
【0011】
[上記式(I)において、R〜Rはそれぞれ独立に水素原子、ハロゲン原子および炭素数1〜6の炭化水素基から選ばれる少なくとも一種の基である。]
で表されるフルオレン骨格を有する繰り返し単位を含むポリカーボネート系樹脂からなる透明高分子フィルム(S)に、少なくとも一層の金属酸化物層(X)が硬化樹脂層(U)と接して配置され、硬化樹脂層(U)がエポキシ基含有珪素化合物及びアミノ基含有珪素化合物、さらにはビニルアルコール系ポリマーを含むコーティング組成物から得られ、かつ(U)の赤外線吸収スペクトルにおける3500cm−1付近に存在するO−H伸縮振動に帰属される吸光度(a)と、3000cm−1付近に存在するC−H伸縮振動に帰属される吸光度(b)と、1600cm−1付近に存在する−NH面内変角振動に帰属される吸光度(c)と、1100cm−1付近に存在するSi−Oに由来する吸光度(d)が下記式(1)、(2)および(3)の関係を満たすことを特徴とするガスバリア性高分子積層フィルム。
0.1≦(a)/(b)≦2.0 (1)
0.05≦(c)/(b)≦2.0 (2)
0.1≦(d)/(b)≦2 .0 (3)
【0012】
2.透明高分子フィルム(S)が、下記式(II)
【0013】
【化4】
Figure 2004330507
【0014】
(上記式(II)において、R〜R16はそれぞれ独立に水素原子、ハロゲン原子および炭素数1〜6の炭化水素基から選ばれ、Xは炭素数1〜15の炭化水素基である。)
で表される繰り返し単位を含み、上記式(II)で表される繰り返し単位が繰り返し単位全体の10〜90モル%を占めるポリカーボネートからなる、上記1のガスバリア性高分子積層フィルム。
【0015】
3.金属酸化物層(X)がSi、Al、Ti、Mg、ZrおよびTaから選ばれた少なくとも1種の金属あるいは2種以上の金属混合物の酸化物、フッ化物、窒化物、酸窒化物のいずれかである上記1または2のガスバリア性高分子積層フィルム。
【0016】
4.透明高分子フィルム(S)の少なくとも一方の面に、硬化樹脂層(U)、金属酸化物層(X)の順で積層されている、上記1〜3のガスバリア性高分子積層フィルム。
【0017】
5.少なくとも一方の最外面に透明導電層を有することを特徴とする上記1〜4のガスバリア性高分子積層フィルム。
【0018】
6.上記1〜5のガスバリア性高分子積層フィルムの、液晶素子、有機EL素子、電気泳動素子、フィールドエミッション素子またはプラズマ素子用の基板としての利用。
【0019】
【発明の実施の形態】
[透明高分子フィルム(S)]
透明高分子フィルム(S)を構成する材料としては、下記式(I)
【0020】
【化5】
Figure 2004330507
【0021】
で表されるフルオレン骨格を有する繰り返し単位を含むポリカーボネート系樹脂が、透明性、耐熱性に優れ、光学異方性が小さく、さらに水蒸気及び酸素ガスバリア性も特にポリマー材料として優れているという観点から用いられる。
【0022】
ここで上記式(I)において、R〜Rはそれぞれ独立に水素原子、ハロゲン原子、炭素数1〜6の炭化水素基が挙げられる。かかる炭化水素基としては、例えばメチル基、エチル基、イソプロピル基、シクロヘキシレン基等の(シクロ)アルキル基、フェニル基等のアリール基が挙げられる。好ましくは水素原子、メチル基である。
【0023】
ここで、上記式(I)における繰り返し単位を該高分子中に導入するために用いるモノマーの具体的な例として、フルオレン−9,9−ジ(4−フェノール)、フルオレン−9,9−ジ(3−メチル−4−フェノール)が挙げられる。上記式(I)で表される繰り返し単位は、ポリカーボネート系樹脂を構成する全繰り返し単位の10〜90モル%を占めることが好ましく、30〜80モル%占めることがより好ましい。10モル%よりも少ない場合は、後述の十分な優れた等方性、耐熱性が得られず、高温加熱前後の寸法変化も大きくなり、90モル%よりも多いと光線透過率が低下しフィルムが脆くなるので好ましくない。
【0024】
ここで、ポリカーボネート系樹脂とは、ポリカーボネート、ポリエステルカーボネートを主成分とするポリマーを含む。またポリカーボネート系樹脂とは、2種類以上の繰り返し単位からなるポリカーボネート共重合体、1種類の繰り返し単位からなるポリカーボネートの2種以上の組成物、1種類以上のポリカーボネート共重合体と、1種類以上の繰り返し単位からなるポリカーボネートとの組成物等を含むものである。
【0025】
上記ポリカーボネートとしては、上記式(I)で表される繰り返し単位と、下記式(II)
【0026】
【化6】
Figure 2004330507
【0027】
で表される繰り返し単位からなるポリカーボネート共重合体が好適である。
【0028】
ここで、上記繰り返し単位(II)において、R〜R16はそれぞれ独立に水素原子、ハロゲン原子および炭素数1〜6の炭化水素基から選ばれる。ここで、炭素数1〜6の炭化水素基としては、例えばメチル基、エチル基、イソプロピル基、シクロヘキシレン基等の(シクロ)アルキル基、フェニル基等のアリール基が挙げられる。この中で水素原子が好ましい。
【0029】
Xはアルキレン基、シクロアルキレン基、アリールアルキレン基等の炭素数1〜15の炭化水素基及び/またはそのハロゲン化炭化水素基である。Xの具体例としては、メチレン、1,1−エチレン、2,2−プロピレン、2,2−ブチレン、2,2−(4−メチル)ペンチレン、1,1−シクロへキシレン、1,1−(3,3,5−トリメチル)シクロへキシレン、ノルボルナン−2,2−ジイル、トリシクロ[5.2.1.02,6]デカン−8,8’−ジイル、フェニルメチレン、ジフェニルメチレン、1,1−(1−フェニル)エチレン、2,2−ヘキサフルオロプロピレン、2,2−(1,1,3,3−テトラフルオロ−1,3−ジクロロ)プロピレン等が挙げられる。この中で、Xは2,2−プロピレンが好ましい。
【0030】
特に好ましいポリカーボネートとしては、フルオレン−9,9−ジ(3−メチル−4−フェノール)から誘導される、上記式(I)で表される繰り返し単位において、RとRの一方がメチル基であり、RとRの一方がメチル基であり、残りのR〜Rは全て水素原子であり、上記式(II)で表される繰り返し単位において、Xが2,2−プロピレンであり、R〜R16がすべて水素原子であるポリカーボネート共重合体である。
【0031】
ここで、上記式(I)で表される繰り返し単位は、上記式(I)で表される繰り返し単位と上記式(II)で表される繰り返し単位の合計を基準にして全体の10〜90モル%が好ましく、さらには30〜80モル%が好ましい。上記式(I)で表される繰り返し単位を10モル%以上にすることで、ガラス転移温度が170℃以上となり優れた耐熱性が得られ、水蒸気透過度が小さい。また、鉛筆硬度等で評価できる表面硬度も格段に向上し、特に高温加熱後の寸法変化が極めて少なくなるためディスプレイ用基板として好ましい特性を示すようになる。また、シアノ系の各種液晶に対する耐性も良好となるので、液晶ディスプレイ用途で特に有用である。さらに、上記式(I)で表される繰り返し単位が多くなるにつれて、フィルムの光学等方性が高くなり、30モル%よりも大きくなると、波長450nmの光に対する面内位相差R(450)と波長550nmの光に対する面内位相差R(550)の夫々の値を小さくすることが可能になり、さらにはR(450)/R(550)≦1.06となるため、光の分散性が極めて小さくなりディスプレイ用途に好適なフィルムとなる。
【0032】
特に、上記式(I)で表される繰り返し単位を50モル%以上含むポリカーボネートを用いてフィルムを成形した場合、後述する溶液流延法でフィルムを成形すると、180℃2時間熱処理した後のフィルム寸法変化率が極めて少なく、SRaが10nm以下の表面平滑性が極めて良好な透明高分子フィルムが得られる。また、下記式(A)ならびに(B)を同時に満足するようになり、光学等方性にいっそう優れる透明高分子フィルムを得ることができる。
|R(550)|≦20(nm) (A)
K=|[nz−(nx+ny)/2]×d|≦100(nm) (B)
【0033】
ここで光学等方性に優れるとは、上記式(A)及び(B)を満たすことをいう。上記式(B)において、nx、ny、nzはフィルムの厚み方向をz軸としたx軸、y軸、z軸方向の波長550nmの光に対する三次元屈折率であり、dはフィルム厚さである。
【0034】
更に、上記式(I)で表される繰り返し単位を多くするにつれて、R(450)/R(550)の値が小さくなり、約55モル%以上になるとR(450)/R(550)<1の特性を示すようになる。この特性は、特に本発明のガスバリア性高分子積層フィルムを液晶表示体に用いる場合、液晶表示体の視野角特性や旋光分散を補償する上で非常に有益である。しかし、上記式(I)で表される繰り返し単位が90モル%を超えると、光線透過率が低下し、またフィルムが脆くなるので好ましくない。
【0035】
本発明における透明高分子フィルムを構成するポリマー材料として挙げられるポリエステルカーボネートにおける酸成分としては、炭酸、脂肪族ジカルボン酸、芳香族ジカルボン酸を用いることができる。芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸が好ましい。
【0036】
なお、上記ポリカーボネート、ポリエステルカーボネートは二種類以上混合して用いてもよい。
【0037】
これら上記のポリカーボネート、ポリエステルカーボネートの分子量は、数平均分子量で20,000〜300,000が好ましい。分子量が大きなポリマーほど機械特性ならびに耐熱性が向上するが、大きすぎると成形が難しくなる。
【0038】
一般に、フィルムの成形方法には、溶融押出し製膜法と溶液流延製膜法が挙げられるが、上記式(A)及び(B)を満足するような光学等方性に優れた上記透明高分子フィルムを得るのに好適な成形方法は、溶液流延法である。溶液流延法は生産性においては溶融押出し法に劣るが、ダイライン、ゲル化物、フィッシュアイ等の欠点が少なく表面平滑性も溶融押出し法に比較し遥かに優れている。また、溶液流延法では溶融押出しでは溶融粘度が高すぎたり着色しやすかったり成形が不可能な高分子量の樹脂でも、用いる溶媒に可溶であれば成形が可能であることから、機械特性ならびに耐熱性に優れたフィルムが得られる。また、溶液流延法では、ダイの特性、キャスティングベルトの状況、乾燥条件およびフィルム張力と搬送条件等を調整することにより、フィルムの三次元屈折率を制御できる。上記式(A)ならびに(B)を満足させるためには、成形工程内のフィルムが含有する溶媒量と乾燥温度ならびにフィルムに加わる張力の調整が特に重要である。フィルムが含有する溶媒量によりフィルムの見かけ上のガラス転移点温度(Tg)が決まるが、乾燥温度はこの見かけ上のTg以下に設定することが好ましい。また、フィルムに加わる張力は、例えばロール巻き取り方式により成形を行う場合は、フィルム搬送方向の張力が大きくなる傾向があるが、フィルム搬送方向と垂直方向にも張力を加えることができる装置を用い、両張力の差が小さい条件でかつ張力を抑えて成形することも有効である。
【0039】
溶液流延法では、フィルム中に製膜に使用した溶媒が残存する場合がある。残留溶媒はフィルムを可塑化させ、ガラス転移温度の低下および機械特性の低下などをもたらす。このため乾燥後の最終製品としての高分子フィルム中の残留溶媒はできる限り除去することが好ましく、1重量%以下、より好ましくは0.5重量%以下にすることが好ましい。なお、フィルムに可塑化剤または界面活性剤等を添加する場合は、これらの残存量は溶媒残存量に含めない。
【0040】
ところで残留溶媒量を低減させる方法は、主に加熱処理であるが、効果と経済性を考慮した場合にはジクロロメタン等の低沸点溶媒を、溶液流延法の主溶媒にするのが好ましい。なお低沸点溶媒に限らず、ジオキソラン等の溶媒を用いることも可能である。
【0041】
本発明の透明高分子フィルムの厚さは、各種ディスプレイに加工された時の表示品位と、高分子フィルムを成形する工程での取り扱いやすさと、ディスプレイ組立て工程での取り扱いやすさ、さらには溶液流延製膜時の製膜効率の観点から、20〜500μm、好ましくは50〜400μm、さらには好ましくは70〜200μmである。また、本発明の透明高分子積層フィルムの最外層に透明導電層からなる電極を設けて液晶ディスプレイ用電極として使用する場合、液晶セルのギャップ斑が表示品位を劣化させるため、高分子フィルムの厚み斑を±5%以下にすることが好ましく、さらには±2.5%以下にするのが好ましい。
【0042】
[金属酸化物層(X)]
本発明のガスバリア性高分子積層フィルムにはガスバリア性を付与するために金属酸化物層(X)を少なくとも一層有することが重要である。かかる金属酸化物層としては、例えば珪素、アルミニウム、マグネシウム、亜鉛、ジルコニウム、チタン、イットリウム、タンタルからなる群から選ばれる1種または2種以上の金属を主成分とする金属酸化物、珪素、アルミニウム、ホウ素の金属窒化物または酸窒化物、及びこれらの混合物を挙げることができる。この中でも、ガスバリア性のみならず、透明性、屈曲性、膜応力等の点から珪素酸化物を主成分とする金属酸化物が良好である。これらの無機材料からなる金属酸化物層は例えばスパッタ法、真空蒸着法、イオンプレーティング法、プラズマCVD法等の気相中より材料を堆積させて膜形成する気相堆積法により作製することができる。なかでも、特に優れたガスバリア性が得られるという観点からスパッタリング法が好ましい。
【0043】
上記金属酸化物層の膜厚としては、2nm〜1μmの範囲が好ましい。金属酸化物層の厚みが2nm未満では均一に膜を形成することは困難であり、膜が形成されない部分が発生するため気体透過度が大きくなる。一方、1μmよりも厚くなると透明性を欠くだけでなく、本発明のガスバリア性高分子積層フィルムを屈曲させた際に、ガスバリア層にクラックが発生して気体透過度が上昇する。
【0044】
[硬化樹脂層(U)]
さらに、液晶表示素子等に求められる極めて高度のガスバリア性を達成するために、金属酸化物層(X)を特定の硬化樹脂層(U)と接して配置させる。該硬化樹脂層(U)は、エポキシ基含有珪素化合物およびアミノ基含有珪素化合物、さらにはビニルアルコール系ポリマーを含むコーティング組成物を用いて得ることができる。
【0045】
ここで、エポキシ基含有珪素化合物はエポキシ基及びアルコキシシリル基を有する珪素化合物、その(部分)加水分解物、その(部分)縮合物、及びこれらの混合物からなる群から選ばれ、例えば下記式(III)で表される。
X−R11−Si(R12)n(OR133−n (III)
【0046】
ここで、R11は炭素数1〜4のアルキレン基、R12及びR13は炭素数1〜4のアルキル基、Xはグリシドキシ基またはエポキシシクロヘキシル基であり、nは0または1である。
【0047】
特に好ましいエポキシ基含有珪素化合物としては、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランである。これらの化合物は単独で用いても、2種以上を併用してもよい。
【0048】
アミノ基含有珪素化合物はアミノ基及びアルコキシシリル基を有する珪素化合物、その(部分)加水分解物、その(部分)縮合物、及びこれらの混合物からなる群から選ばれ、例えば下記式(IV)で表される。
Y−HN−R14−Si(R15)m(OR163−m (IV)
【0049】
ここで、R14は炭素数1〜4のアルキレン基、R15及びR16は炭素数1〜4のアルキル基、Yは水素原子またはアミノアルキル基であり、mは0または1である。この中で特に好ましいアミノ基含有珪素化合物は3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−メチル−3−アミノプロピルトリメトキシシラン、3−アミノプロピルメチルジエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシランである。これらの化合物は単独で用いても、2種以上を併用してもよい。
【0050】
なお、本発明におけるエポキシ基含有珪素化合物ならびにアミノ基含有珪素化合物の(部分)加水分解物及びその(部分)縮合物は、上述のエポキシ基含有珪素化合物ならびにアミノ基含有珪素化合物の一部または全部が加水分解したもの、該加水分解物の一部又は全部が縮合反応した縮合物、及び該縮合物と加水分解していない原料のエポキシ基含有珪素化合物ならびにアミノ基含有珪素化合物とが縮合したものであり、これらはいわゆるゾルゲル反応させることにより得られるものである。ここで加水分解物は、例えば塩酸等の無機酸、酢酸等の有機酸などの酸性水溶液または水と混合することにより得られる。また、コーティング液は、保存安定性ならびに塗工安定性を考慮して、アルコール系、エステル系、エーテル系、ケトン系、セロソルブ系等の各種有機溶媒で希釈されていることが好ましい。
【0051】
さらに、ここで用いるビニルアルコール系ポリマーとは、ビニルアルコールをモノマー成分として50モル%以上含有するビニルアルコール共重合体、またはビニルアルコールのホモポリマーをいう。このビニルアルコール共重合体としては、例えばビニルアルコール−酢酸ビニル共重合体、ビニルアルコールビニルブチラール共重合体、エチレン−ビニルアルコール共重合体、あるいは分子内にシリル基を有するポリビニルアルコールが挙げられる。なかでも、エチレン−ビニルアルコール共重合体を用いると、耐薬品性、耐水性、耐久性にいっそう優れた硬化樹脂層(U)が得られる。
【0052】
該ビニルアルコール系ポリマーは、水、アルコール、ジメチルイミダゾリン等の有機溶媒に溶解してコーティング組成物の成分とする。例えば、エチレン−ビニルアルコール共重合体は、水とプロパノールを主成分とする混合溶媒に溶解してコーティング組成物の成分として用いるのがよい。
【0053】
エポキシ基含有珪素化合物とアミノ基含有珪素化合物の混合比率は、エポキシ基モル当量換算量Ep、アミノ基モル当量換算量Apの比率で1/3<Ep/Ap<3/1の範囲内が好ましい。混合比がこの範囲から外れる場合、密着性、耐熱性、耐溶剤性、耐水性、耐久性が低下する。この様なエポキシ基含有珪素化合物とアミノ基含有珪素化合物の混合物をポリビニルアルコール系ポリマーに混合するに際し、硬化後の重量比率で20重量%以上、80重量%未満となるように混合する。20重量部よりも少ない場合は、耐水性、耐薬品性に劣る傾向となり、80重量%以上ではガスバリア性が低下する傾向となる。ここで、エポキシ基含有珪素化合物とアミノ基含有珪素化合物との混合物の硬化後の重量は、X−R11−Si(R12(3−n)/2とY−HN−R14−Si(R15(3−m)/2で示される重量基準である。ここでこの重量換算式は、各珪素化合物中のアルコキシシリル基の全てが加水分解ならびに縮合反応したことを仮定して上記のように定義した。
【0054】
上記コーティング組成物中には、ビニルアルコール系ポリマー、エポキシ基含有珪素化合物、アミノ基含有珪素化合物の他に、有機溶媒、酢酸等の触媒、安定剤、レベリング剤を含有することができる。該組成物中の酢酸の濃度としては、コーティング組成物中のアミノ基のモル濃度に対して0.2〜5モル当量倍の範囲で添加するのが好ましい。また、作業性を考慮して、また得られる硬化樹脂層の膜厚を勘案して有機溶媒、安定剤、レベリング剤の量を調整すればよい。
【0055】
この組成物を透明高分子フィルム(S)等の基材上に塗布し、ついでこれを加熱等によって硬化反応させることにより硬化樹脂層(U)を得ることができる。加熱温度は通常室温以上透明高分子フィルム(S)のガラス転移点温度以下で行う。この加熱によって、エポキシ基含有珪素化合物とアミノ基含有珪素化合物のいわゆるゾルゲル反応が進行し硬化膜が硬化樹脂層(U)として得られる。
【0056】
該硬化樹脂層(U)の膜厚は、概して0.01〜20μmの範囲から適宜選択することができる。
【0057】
かかる硬化樹脂層(U)は、赤外線吸収スペクトルにおいて、3500cm−1付近にピークを有するO−H伸縮振動に基づく吸収の吸光度(a)と、3000cm−1付近にピークを有するC−H伸縮振動に基づく吸収の吸光度(b)と、1600cm−1付近にピークを有する−NH面内変角振動に基づく吸収の吸光度(c)と、1100cm−1付近にピークを有するSi−Oに由来する吸光度(d)が下記式(1)、(2)及び(3)を満たす。
0.1<(a)/(b)<2.0 (1)
0.05<(c)/(b)<2.0 (2)
0.1<(d)/(b)<2.0 (3)
【0058】
なお、C−H伸縮振動に由来する吸光度(b)は、同じ結合の伸縮振動が隣接したときは、対称と非対称の二つの吸収が認められるが、吸光度が最も大きいC−H伸縮振動を(b)とする。硬化樹脂層(U)が上記式(1)〜(3)を同時に満たすことにより、優れたガスバリア性の他、硬化樹脂層(U)は金属酸化物層との密着性に優れて、液晶表示パネル製造工程で必要とされる酸、アルカリ、NMP等の薬品に対する耐性が良好であり、可視光線透過率が高く、さらには表面平滑性に極めて優れる。上記式(1)、(2)及び(3)を満たさない場合は、これらの良好な特性は同時には得ることは難しい。
【0059】
本発明のディスプレイ用に適したガスバリア性積層フィルムは、その用途に応じて、かかる積層フィルムの最外層に透明導電層を形成し、例えば電極とすることができる。透明導電層としては、公知の金属膜、金属酸化物膜等が適用できるが、中でも、透明性、導電性、機械的特性の点から、金属酸化物膜が好ましい。例えば、不純物としてスズ、テルル、カドミウム、モリブテン、タングステン、フッ素、亜鉛、ゲルマニウム等を添加した酸化インジウム、酸化カドミウム及び酸化スズ、不純物としてアルミニウムを添加した酸化亜鉛、酸化チタン等の金属酸化物膜が挙げられる。なかでも、インジウム酸化物を主成分とし、酸化錫及び酸化亜鉛からなる群から選ばれた1種以上の酸化物を含むことを特徴とし、酸化錫が2〜20重量%及び/または酸化亜鉛が2〜20重量%含有するインジウム酸化物からなる透明導電層が透明性、導電性に優れており好ましく用いられる。また、本発明のフィルムを有機ELに用いる場合、透明導電層の仕事関数を制御して発光効率を向上させる目的で、インジウム酸化物を主成分とし、酸化錫及び/又は酸化亜鉛を含む膜に、さらに錫、亜鉛以外の元素を添加してもよい。
【0060】
透明導電層を形成する方法は、主にスパッタリング法が使用され、直流マグネトロンスパッタリング法、高周波マグネトロンスパッタリング法、イオンビームスパッタリング法などが適用できる。透明導電層の膜厚は、十分な導電性を得るために、10〜1000nmであることが好ましい。本発明のディスプレイ用透明高分子積層フィルムは、可視光領域に対する全光線透過率が80%以上であることが好ましく、さらには85%以上が好ましい。80%未満では、視認性の低下を招く等の問題が生じることがある。
【0061】
本発明のガスバリア性高分子積層フィルムは、透明高分子フィルム(S)、金属酸化物層(X)、硬化樹脂層(U)、透明導電層(E)を用いた場合、例えば
(S)/(U)/(X)、
(S)/(X)/(U)、
(S)/(U)/(X)/(U)、
(S)/(X)/(U)/(X)、
(S)/(U)/(X)/(U)/(X)、
(S)/(X)/(U)/(X)/(U)、
(S)/(U)/(X)/(E)、
(S)/(X)/(U)/(E)、
(S)/(U)/(X)/(U)/(E)、
(S)/(X)/(U)/(X)/(E)、
(S)/(U)/(X)/(U)/(X)/(E)、
(S)/(X)/(U)/(X)/(U)/(E)、
(X)/(U)/(S)/(U)/(X)、
(U)/(X)/(S)/(X)/(U)、
(U)/(X)/(S)/(X)/(U)/(X)、
(U)/(X)/(U)/(S)/(U)/(X)/(U)/(X)、
(X)/(U)/(S)/(U)/(X)/(E)、
(U)/(X)/(S)/(X)/(U)/(E)、
(U)/(X)/(S)/(X)/(U)/(X)/(E)、
(U)/(X)/(U)/(S)/(U)/(X)/(U)/(X)/(E)
の順で積層されたガスバリア性高分子積層フィルムが好ましい。この中でも特に、
(E)/(X)/(U)/(X)/(S)、
(E)/(X)/(U)/(X)/(S)/(X)/(U)、
(E)/(X)/(U)/(X)/(U)/(S)、
(E)/(X)/(U)/(S)/(U)/(X)/(U)、
(E)/(X)/(U)/(X)/(U)/(S)/(U)/(X)、
(E)/(X)/(U)/(X)/(U)/(S)/(U)/(X)/(U)
の構成のガスバリア性高分子積層フィルムを用いて作製した液晶表示素子や有機EL素子、また電気泳動素子は、高温高湿環境下に長時間放置しても表示劣化が生じ難い。そして、液晶表示素子の組立て工程において、電極のパターニングや配向膜の積層、また各種洗浄工程において各種有機溶媒ならびに酸、アルカリに対する耐薬品性が良好で、良好な層間密着性が得られるので好ましい。
【0062】
なお、本発明の効果を低下させない範囲内で、金属酸化物層(X)と硬化樹脂層(U)以外の各層間の密着性を強化するための各種アンダーコート層の積層等の化学処理、あるいはコロナ処理、プラズマ処理、UV照射等の物理的処理法をおこなってもよい。
【0063】
更に、本発明のガスバリア性高分子積層フィルムには、例えばこれを用いて作成した液晶表示素子にカラー表示機能を付与する目的で、カラーフィルター層を設けてもよい。カラーフィルターは、染色法、顔料分散法、電着法、印刷法等の公知の技術で形成できる。該カラーフィルター層は、ガスバリア性高分子基板の金属酸化物層(X)と硬化樹脂層(U)の層間以外の層間に形成してもよい。
【0064】
【発明の効果】
本発明のガスバリア性高分子積層フィルムは、特定のビスフェノール成分を含むポリカーボネート系樹脂を用い、かつ特定の硬化樹脂層と金属酸化物層を接して使用しなおかつかかる硬化樹脂層の特定の4つの結合に由来する吸光度が特定の範囲とすることにより、を極めてガスバリア性に優れ、透明性、光学等方性、耐薬品性、表面平滑性、層間密着性が良好で、しかも高温高湿環境下に長時間放置しても表示品位の劣化が生じにくい液晶表示素子、有機EL素子、電気泳動素子、フィールドエミッション素子またはプラズマ素子用の基板として極めて有用である。
【0065】
【実施例】
以下、実施例を挙げ、本発明をさらに具体的に説明するが、本発明は、かかる実施例に限定されるものではない。なお、実施例中、部および%は、特に断らない限り重量基準である。また、実施例中における各種の測定は、下記のとおり行った。
【0066】
水蒸気バリア性: MOCON社製、パーマトランW1Aを用いて、40℃90%RH雰囲気下における水蒸気透過度を測定した。
【0067】
酸素バリア性: MOCON社製オキシトラン2/20MLを用いて、40℃90%RHの雰囲気下における酸素透過度を測定した。
【0068】
赤外線吸収スペクトル:ガスバリア性高分子基板の硬化樹脂層を削り取り、吸着水を除去する目的で60℃DRYの条件で1時間乾燥させた後、KBr法にて赤外線吸収スペクトルを測定した。なお、測定サンプルはKBrを100重量部に対して試料を0.3重量部の割合で混合した。測定装置はパーキンエルマー製のFT−IRを用いた。3500cm−1付近にピークを有する0−H伸縮振動に帰属される吸収の吸光度(a)と、3000cm−1付近にピークを有するC−H伸縮振動に帰属される吸収の吸光度(b)と、1600cm−1付近にピークを有する−NH面内変角振動に帰属される吸収の吸光度(c)と、1100cm−1付近にピークを有するSi−Oに由来する吸収の吸光度(d)を測定した。
【0069】
層間密着性:ASTM D2196−68に準拠した方法により、ガスバリア性高分子積層フィルムを構成する各々の層間の密着性を評価した。
【0070】
液晶パネル信頼性: 透明導電層が積層されたガスバリア性高分子積層フィルムを用いてフォトリソグラフィー法により160×100ドット用の表示電極を形成した。ついで、該電極面に厚さ1000オングストロームの配向膜を形成し、ツイスト角が220°となるようにラビング処理を施した。次いで粒径6.5μmのプラスチックビーズをギャップ剤として電極面のうち面に分散密度150個/mmとなるように分散し、エポキシ接着剤により電極面を内側にして2枚のガスバリア性高分子フィルムを貼り合せてセルを作製した。次いで、このセルにカイラルネマチック液晶を含有するネマチック液晶を注入口より注入した後、加圧法によりセルギャップを均一化し、注入口を封入した。次にセルの両側に偏光板を貼り液晶パネルを得た。こうして得られた液晶パネルを50℃90%RH環境下に250hr放置し、液晶セルのインピーダンス低下率が初期の2割以内を合格とした。
【0071】
有機EL素子の信頼性:透明導電層が積層されたガスバリア性高分子積層フィルムを用いてフォトリソグラフィー法により、表示電極を形成した。次に透明電極上に真空蒸着法により、正孔輸送層としてトリフェニルアミン誘導体であるTPD(N,N’−ビス(3−メチルフェニル)1,1’−ビフェニル−4,4’−ジアミン)を50nm積層し、次に発光層としてAlq3(トリス−(8−ヒドロキシキノリン)アルミニウム)を50nmの厚さに蒸着させた。さらにマグネシウムと銀をこの上に200nmの厚さに蒸着させ金属電極とし有機EL層を形成した。続いて、透明導電層が形成する前の、上記のEL層を形成したディスプレイ用フィルムと同じフィルムを用い、透明導電層を形成する側の面上に紫外線硬化型のシール剤を塗布した後、有機EL層を形成した前述のフィルムの有機EL面を内側にして両基板を貼り合わせ、紫外線照射により有機EL層を封止した。この有機EL素子に電流を加えてEL発光の安定性を確認した。
【0072】
なお、後掲の化合物名は以下の略号を用いた。
BisA−PC:2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA;BisA)をビスフェノール成分とするポリカーボネート
BisA/BCF−PC:ビスフェノールAと9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(BCF)をビスフェノール成分とするポリカーボネート共重合体
BisA/IP−PC:ビスフェノールAと3,3,5−トリメチル−1,1−ジ(4−フェノール)シクロヘキシリデン(IP)をビスフェノール成分とするポリカーボネート共重合体
ITO:インジウム−スズ酸化物
ECHETMOS:2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランAPTMOS:3−アミノプロピルトリメトキシシラン
EVOH:エチレンビニルアルコール共重合体(クラレ製「エバール」)
【0073】
[実施例1]
BisA/BCF=1/1(モル比)で平均分子量37,00であり、Tgが215℃のポリカーボネート共重合体(BisA/BCF−PC)をメチレンクロライドに20重量%になるように溶解した。そしてこの溶液をダイコーティング法により厚さ175mのポリエステルフィルム上に流延した。次いで、乾燥炉で残留溶媒濃度が13重量%になるまで乾燥し、ポリエステルフィルムから剥離した。そして、得られたポリカーボネートフィルムを温度190℃の乾燥炉で縦横の張力をバランスさせながら、該フィルム中の残留溶媒濃度が0.08重量%になるまで乾燥させた。
【0074】
こうして得られた透明高分子フィルム(S)は、厚みが150μm、波長550nmにおける光線透過率は91%であった。
【0075】
次に、硬化樹脂層(U)を形成するコーティング組成物を以下のように調整した。
【0076】
EVOH100部を、水720部、n−プロパノール1080部の混合溶媒に加熱溶解させ、均一溶液を得た。この溶液にレベリング剤(東レダウコーニング社製「SH30PA」)を0.1部、酢酸を39部加えた後、ECHETMOSを211部加え10分間撹拌した。更にこの溶液にAPTMOSを77部加えて3時間撹拌してコーティング組成物を得た。
【0077】
このコーティング組成物を、上述の透明高分子フィルム(S)の片面上にコーティングし、130℃3分熱処理を行い、厚みが0.7μmの(U)層を形成した。
【0078】
さらに、(U)層上に、DCマグネトロンスパッタリング法により、厚さ300オングストロームの酸化ケイ素からなる(X)層を設けることによりガスバリア性高分子積層フィルムを得た。得られたガスバリア性高分子積層フィルムの評価結果は表1に示すように良好であった。
【0079】
続いて、(X)層上にDCマグネトロンスパッタリング法により、厚さ1200オングストロームのITO積層し、この基板を用いて液晶パネルを作成し信頼性を評価したところ良好な結果が得られた。
【0080】
[実施例2]
積層フィルムの構成を(S)/(U)/(X)/(U)/(X)にする以外は、実施例1と同様にしてガスバリア性高分子積層フィルムを得た。得られた積層フィルムの評価結果は表1に示すように良好であった。
【0081】
続いて、(X)層上にDCマグネトロンスパッタリング法により、厚さ1200オングストロームのITO積層し、この基板を用いて有機ELパネルを作成し信頼性を評価したところ良好な結果が得られた。
【0082】
[実施例3]
積層フィルムの構成を(X)/(U)/(S)/(U)/(X)にする以外は、実施例1と同様にしてガスバリア性高分子積層フィルムを得た。得られたガスバリア性高分子積層フィルムの評価結果は表1に示すように良好であった。
【0083】
[比較例1]
(U)層を設けない以外は、実施例1と同様にしてガスバリア性高分子積層フィルムを得た。得られたガスバリア性高分子積層フィルムの評価結果は表1に示すように、ガスバリア性に劣るものであった。
【0084】
[比較例2]
硬化樹脂層(U)を形成するコーティング組成物を以下のように調整した以外は実施例1と同様にしてガスバリア性高分子積層フィルムを得た。得られた積層フィルムの評価結果は表1に示すようにガスバリア性、層間密着性に劣るものであった。
【0085】
水720部、n−プロパノール1080部の混合溶媒にレベリング剤(東レダウコーニング社製「SH30PA」)を0.1部、酢酸を39部加えた後、ECHETMOSを211部加えて3時間撹拌してコーティング組成物を得た。
【0086】
[比較例3]
硬化樹脂層(U)を形成するコーティング組成物を以下のように調整した以外は、実施例1と同様にしてガスバリア性高分子積層フィルムを得た。得られた積層フィルムの評価結果は表1に示すようにガスバリア性、層間密着性に劣るものであった。
【0087】
水720部、n−プロパノール1080部の混合溶媒にレベリング剤(東レダウコーニング社製「SH30PA」)を0.1部、酢酸を39部加えた後、APTMOSを77部加えて3時間撹拌してコーティング組成物を得た。
【0088】
[比較例4]
硬化樹脂層(U)を形成するコーティング組成物を以下のように調整した以外は、実施例1と同様にしてガスバリア性高分子フィルムを得た。得られた積層フィルムの評価結果は表1に示すように層間密着性に劣るものであった。
【0089】
EVOH100部を、水720部、n−プロパノール1080部の混合溶媒に加熱溶解させ、均一溶液を得た。この溶液にレベリング剤(東レダウコーニング社製「SH30PA」)を0.1部加えてコーティング組成物を得た。
【0090】
【表1】
Figure 2004330507
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer laminated film having excellent gas barrier properties under high temperature and high humidity. This laminated film is suitable as a substrate for a flat panel display such as a liquid crystal display element, a photoconductive photoreceptor, a surface light emitter, an inorganic and organic EL element, electrophoresis, a field emission element, a plasma element, and a surface heating element. Used.
[0002]
[Prior art]
In recent years, in the field of flat panel displays such as liquid crystal display devices, there has been a demand for improvement of breakage resistance, weight reduction, and thinning, so that indium oxide, tin oxide, or tin-indium alloy has been oxidized on a film made of a transparent polymer. A gas barrier polymer laminate in which a film formed by combining the semiconductor film and the metal film as a transparent conductive layer is formed of a semiconductor film such as a product, a metal film such as an oxide film of gold, silver, or a palladium alloy as a transparent conductive layer. Studies on use as an electrode substrate of a display element have been continued. Such electrode substrates are required to have high chemical resistance to various organic solvents, acids, and alkalis used during patterning of electrodes, lamination of an alignment film, and various cleanings in a panel assembling process. Further, usually, a high gas barrier property is required in order to improve the reliability of bubbles generated inside the liquid crystal cell of the panel. Regarding this gas barrier property, for example, Patent Document 1 listed below discloses a substrate in which an organic gas barrier layer such as a vinyl alcohol polymer or a vinylidene chloride polymer and an inorganic gas barrier layer such as silicon oxide or aluminum oxide are laminated on a transparent polymer substrate. Is described. Patent Document 2 below discloses that at least a part of one surface of a plastic substrate having a hard coat film mainly composed of a siloxane resin obtained from an organosilicon compound and / or a hydrolyzate thereof has conductivity on both surfaces. There is described a plastic molded article having conductivity, provided with a coating and further provided with a metal oxide coating on the opposite surface of the substrate.
[0003]
However, even when these organic or inorganic gas barrier layers are used as a single layer, a plurality of these layers are stacked, or a combination of organic and inorganic gas barrier layers is used, a gas barrier equivalent to a conventionally used glass substrate is used. It is difficult to achieve the properties, especially the water vapor barrier properties. In fact, when a liquid crystal panel using such a substrate is left for a long time in a high-temperature, high-humidity environment, water vapor enters into the liquid crystal cell, and two adjacent electrodes in the liquid crystal cell between two opposing electrodes and in the plane of the substrate. There is a problem in that the impedance between the electrodes is reduced, and display defects such as image bleeding and crosstalk are likely to occur on the panel.
[0004]
[Patent Document 1]
WO94 / 23332
[0005]
[Patent Document 2]
Japanese Patent No. 2790144
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel gas barrier polymer laminated film having excellent gas barrier properties against water vapor and oxygen.
[0007]
Another object of the present invention is to provide a gas-barrier polymer laminated film suitable as a substrate for a flat panel display such as a liquid crystal display element in which display quality hardly deteriorates even when left in a high-temperature and high-humidity environment for a long time. Is to do.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, such a problem was found on a transparent polymer film made of a specific polycarbonate having a fluorene ring, in contact with a specific cured resin layer and a metal oxide layer. The present invention was found to be able to be solved by forming.
[0009]
That is, the present invention is as follows.
1. The following formula (I)
[0010]
Embedded image
Figure 2004330507
[0011]
[In the above formula (I), R 1 ~ R 8 Is independently at least one group selected from a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 6 carbon atoms. ]
At least one metal oxide layer (X) is disposed in contact with a cured resin layer (U) on a transparent polymer film (S) made of a polycarbonate resin containing a repeating unit having a fluorene skeleton represented by The resin layer (U) is obtained from a coating composition containing an epoxy group-containing silicon compound and an amino group-containing silicon compound, and further includes a vinyl alcohol-based polymer, and has an infrared absorption spectrum of (U) of 3500 cm. -1 The absorbance (a) attributed to the O—H stretching vibration present in the vicinity and 3000 cm -1 Absorbance (b) attributed to C—H stretching vibration existing in the vicinity and 1600 cm -1 -NH present in the vicinity 2 Absorbance (c) attributed to in-plane bending vibration and 1100 cm -1 A gas barrier polymer laminated film, wherein the absorbance (d) derived from Si-O present in the vicinity satisfies the following formulas (1), (2) and (3).
0.1 ≦ (a) / (b) ≦ 2.0 (1)
0.05 ≦ (c) / (b) ≦ 2.0 (2)
0.1 ≦ (d) / (b) ≦ 2. 0 (3)
[0012]
2. The transparent polymer film (S) has the following formula (II)
[0013]
Embedded image
Figure 2004330507
[0014]
(In the above formula (II), R 9 ~ R 16 Is independently selected from a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 6 carbon atoms, and X is a hydrocarbon group having 1 to 15 carbon atoms. )
The gas barrier polymer laminated film according to 1 above, comprising a repeating unit represented by the formula (II), wherein the repeating unit represented by the formula (II) accounts for 10 to 90 mol% of the entire repeating unit.
[0015]
3. Any one of oxide, fluoride, nitride, and oxynitride of at least one metal selected from Si, Al, Ti, Mg, Zr and Ta or a mixture of two or more metals, wherein the metal oxide layer (X) is Or the gas-barrier polymer laminated film according to 1 or 2 above.
[0016]
4. The gas barrier polymer laminated film according to any one of the above 1 to 3, wherein the cured resin layer (U) and the metal oxide layer (X) are laminated in this order on at least one surface of the transparent polymer film (S).
[0017]
5. The gas-barrier polymer laminated film according to any one of the above items 1 to 4, further comprising a transparent conductive layer on at least one outermost surface.
[0018]
6. Use of the gas barrier polymer laminated film of the above 1 to 5 as a substrate for a liquid crystal element, an organic EL element, an electrophoretic element, a field emission element or a plasma element.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
[Transparent polymer film (S)]
As a material constituting the transparent polymer film (S), the following formula (I)
[0020]
Embedded image
Figure 2004330507
[0021]
Polycarbonate resin containing a repeating unit having a fluorene skeleton represented by, is used from the viewpoint that transparency, heat resistance is excellent, optical anisotropy is small, and water vapor and oxygen gas barrier properties are particularly excellent as a polymer material. Can be
[0022]
Here, in the above formula (I), R 1 ~ R 8 Each independently represents a hydrogen atom, a halogen atom, or a hydrocarbon group having 1 to 6 carbon atoms. Examples of such a hydrocarbon group include a (cyclo) alkyl group such as a methyl group, an ethyl group, an isopropyl group and a cyclohexylene group, and an aryl group such as a phenyl group. Preferred are a hydrogen atom and a methyl group.
[0023]
Here, specific examples of the monomer used for introducing the repeating unit in the above formula (I) into the polymer include fluorene-9,9-di (4-phenol) and fluorene-9,9-diene. (3-methyl-4-phenol). The repeating unit represented by the above formula (I) preferably accounts for 10 to 90 mol%, more preferably 30 to 80 mol% of all the repeating units constituting the polycarbonate resin. When the amount is less than 10 mol%, sufficient excellent isotropy and heat resistance described below cannot be obtained, and the dimensional change before and after high-temperature heating becomes large. Is not preferred because it becomes brittle.
[0024]
Here, the polycarbonate resin includes a polymer containing polycarbonate and polyester carbonate as main components. The polycarbonate resin is a polycarbonate copolymer composed of two or more types of repeating units, a composition of two or more types of polycarbonate composed of one type of repeating units, one type of polycarbonate copolymer, and one or more types of polycarbonate. It includes a composition with a polycarbonate comprising a repeating unit, and the like.
[0025]
As the polycarbonate, a repeating unit represented by the above formula (I) and the following formula (II)
[0026]
Embedded image
Figure 2004330507
[0027]
A polycarbonate copolymer comprising a repeating unit represented by the following formula is preferable.
[0028]
Here, in the repeating unit (II), R 9 ~ R 16 Are each independently selected from a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 6 carbon atoms. Here, examples of the hydrocarbon group having 1 to 6 carbon atoms include a (cyclo) alkyl group such as a methyl group, an ethyl group, an isopropyl group and a cyclohexylene group, and an aryl group such as a phenyl group. Of these, a hydrogen atom is preferred.
[0029]
X is a hydrocarbon group having 1 to 15 carbon atoms such as an alkylene group, a cycloalkylene group, an arylalkylene group and / or a halogenated hydrocarbon group thereof. Specific examples of X include methylene, 1,1-ethylene, 2,2-propylene, 2,2-butylene, 2,2- (4-methyl) pentylene, 1,1-cyclohexylene, 1,1- (3,3,5-trimethyl) cyclohexylene, norbornane-2,2-diyl, tricyclo [5.2.1.02,6] decane-8,8'-diyl, phenylmethylene, diphenylmethylene, Examples thereof include 1- (1-phenyl) ethylene, 2,2-hexafluoropropylene, and 2,2- (1,1,3,3-tetrafluoro-1,3-dichloro) propylene. Among them, X is preferably 2,2-propylene.
[0030]
Particularly preferred polycarbonates include a repeating unit represented by the above formula (I) derived from fluorene-9,9-di (3-methyl-4-phenol). 2 And R 3 Is a methyl group, and R 5 And R 8 Is a methyl group and the remaining R 1 ~ R 8 Are all hydrogen atoms, and in the repeating unit represented by the formula (II), X is 2,2-propylene; 9 ~ R 16 Is a polycarbonate copolymer in which all are hydrogen atoms.
[0031]
Here, the repeating unit represented by the above formula (I) is a total of 10 to 90 based on the total of the repeating unit represented by the above formula (I) and the repeating unit represented by the above formula (II). Mol% is preferred, and more preferably 30 to 80 mol%. By setting the repeating unit represented by the above formula (I) to 10 mol% or more, the glass transition temperature becomes 170 ° C. or more, excellent heat resistance is obtained, and the water vapor permeability is small. In addition, the surface hardness, which can be evaluated by pencil hardness or the like, is remarkably improved, and particularly, the dimensional change after high-temperature heating is extremely small, so that the display substrate exhibits favorable characteristics. In addition, since resistance to various cyano-based liquid crystals is improved, it is particularly useful for liquid crystal display applications. Furthermore, as the number of repeating units represented by the above formula (I) increases, the optical isotropy of the film increases, and when it exceeds 30 mol%, the in-plane retardation R (450) with respect to light having a wavelength of 450 nm increases. It is possible to reduce each value of the in-plane phase difference R (550) with respect to light having a wavelength of 550 nm, and furthermore, R (450) / R (550) ≦ 1.06, so that light dispersibility is reduced. It becomes extremely small and becomes a film suitable for display applications.
[0032]
In particular, when a film is formed by using a polycarbonate containing the repeating unit represented by the above formula (I) in an amount of 50 mol% or more, when the film is formed by a solution casting method described below, the film after heat treatment at 180 ° C. for 2 hours. A transparent polymer film having an extremely small dimensional change rate and an extremely good surface smoothness having an SRa of 10 nm or less can be obtained. Further, the following formulas (A) and (B) are satisfied at the same time, and a transparent polymer film having more excellent optical isotropy can be obtained.
| R (550) | ≦ 20 (nm) (A)
K = | [nz− (nx + ny) / 2] × d | ≦ 100 (nm) (B)
[0033]
Here, “excellent in optical isotropy” means that the above formulas (A) and (B) are satisfied. In the above formula (B), nx, ny, and nz are three-dimensional refractive indices with respect to light having a wavelength of 550 nm in the x-axis, y-axis, and z-axis directions where the thickness direction of the film is the z-axis, and d is the film thickness. is there.
[0034]
Furthermore, as the number of repeating units represented by the above formula (I) increases, the value of R (450) / R (550) decreases, and when it exceeds about 55 mol%, R (450) / R (550) < 1 is obtained. This property is extremely useful in compensating for viewing angle characteristics and optical rotatory dispersion of the liquid crystal display particularly when the gas barrier polymer laminated film of the present invention is used for a liquid crystal display. However, if the repeating unit represented by the above formula (I) exceeds 90 mol%, the light transmittance is lowered and the film becomes brittle, which is not preferable.
[0035]
As the acid component in the polyester carbonate which is mentioned as the polymer material constituting the transparent polymer film in the present invention, carbonic acid, aliphatic dicarboxylic acid and aromatic dicarboxylic acid can be used. As the aromatic dicarboxylic acid, terephthalic acid and isophthalic acid are preferable.
[0036]
The polycarbonate and the polyester carbonate may be used as a mixture of two or more kinds.
[0037]
These polycarbonates and polyester carbonates preferably have a number average molecular weight of 20,000 to 300,000. A polymer having a higher molecular weight improves mechanical properties and heat resistance, but if it is too large, molding becomes difficult.
[0038]
In general, a film forming method includes a melt extrusion film forming method and a solution casting film forming method, and the transparent height having excellent optical isotropy satisfying the above formulas (A) and (B). A suitable molding method for obtaining a molecular film is a solution casting method. The solution casting method is inferior to the melt extrusion method in terms of productivity, but has few defects such as die lines, gels, fish eyes and the like, and has much better surface smoothness than the melt extrusion method. Also, in the solution casting method, even in the case of a high molecular weight resin that is too high in melt viscosity or easily colored or cannot be molded by melt extrusion, molding is possible if it is soluble in the solvent used, so that the mechanical properties and A film with excellent heat resistance can be obtained. In the solution casting method, the three-dimensional refractive index of the film can be controlled by adjusting the characteristics of the die, the state of the casting belt, the drying conditions, the film tension and the transport conditions. In order to satisfy the above formulas (A) and (B), it is particularly important to adjust the amount of solvent contained in the film in the forming step, the drying temperature, and the tension applied to the film. Although the apparent glass transition temperature (Tg) of the film is determined by the amount of the solvent contained in the film, the drying temperature is preferably set to be equal to or lower than the apparent Tg. Also, the tension applied to the film, for example, when forming by a roll winding method, the tension in the film transport direction tends to increase, but using a device that can also apply tension in the direction perpendicular to the film transport direction It is also effective to perform molding under the condition that the difference between the two tensions is small and the tension is suppressed.
[0039]
In the solution casting method, the solvent used for film formation may remain in the film. Residual solvents plasticize the film, leading to lower glass transition temperatures and lower mechanical properties. For this reason, it is preferable to remove the residual solvent in the polymer film as the final product after drying as much as possible, preferably 1% by weight or less, more preferably 0.5% by weight or less. When a plasticizer or a surfactant is added to the film, the remaining amount thereof is not included in the remaining amount of the solvent.
[0040]
By the way, the method of reducing the amount of the residual solvent is mainly heat treatment, but it is preferable to use a low-boiling solvent such as dichloromethane as the main solvent in the solution casting method in consideration of the effect and economy. Note that a solvent such as dioxolan is not limited to a low boiling point solvent, and may be used.
[0041]
The thickness of the transparent polymer film of the present invention depends on the display quality when processed into various displays, the ease of handling in the process of forming the polymer film, the ease of handling in the display assembly process, and the solution flow. From the viewpoint of film forming efficiency at the time of film forming, the thickness is 20 to 500 μm, preferably 50 to 400 μm, and more preferably 70 to 200 μm. Further, when an electrode made of a transparent conductive layer is provided on the outermost layer of the transparent polymer laminated film of the present invention to be used as an electrode for a liquid crystal display, unevenness in the gap of the liquid crystal cell deteriorates the display quality. The plaque is preferably set to ± 5% or less, more preferably ± 2.5% or less.
[0042]
[Metal oxide layer (X)]
It is important that the gas barrier polymer laminated film of the present invention has at least one metal oxide layer (X) in order to impart gas barrier properties. As such a metal oxide layer, for example, a metal oxide containing one or two or more metals selected from the group consisting of silicon, aluminum, magnesium, zinc, zirconium, titanium, yttrium, and tantalum, silicon, aluminum , Boron metal nitrides or oxynitrides, and mixtures thereof. Among them, a metal oxide containing silicon oxide as a main component is preferable from the viewpoint of not only gas barrier properties but also transparency, flexibility, film stress and the like. The metal oxide layer made of these inorganic materials can be formed by a vapor deposition method of depositing a material from a gas phase such as a sputtering method, a vacuum deposition method, an ion plating method, or a plasma CVD method to form a film. it can. Among them, the sputtering method is preferred from the viewpoint that particularly excellent gas barrier properties can be obtained.
[0043]
The thickness of the metal oxide layer is preferably in the range of 2 nm to 1 μm. If the thickness of the metal oxide layer is less than 2 nm, it is difficult to form a uniform film, and a portion where the film is not formed occurs, so that the gas permeability increases. On the other hand, when the thickness is more than 1 μm, not only does the film lack transparency, but when the gas barrier polymer laminated film of the present invention is bent, cracks are generated in the gas barrier layer and the gas permeability increases.
[0044]
[Cured resin layer (U)]
Further, in order to achieve a very high gas barrier property required for a liquid crystal display device or the like, the metal oxide layer (X) is disposed in contact with a specific cured resin layer (U). The cured resin layer (U) can be obtained using a coating composition containing an epoxy group-containing silicon compound and an amino group-containing silicon compound, and further, a vinyl alcohol-based polymer.
[0045]
Here, the epoxy group-containing silicon compound is selected from the group consisting of a silicon compound having an epoxy group and an alkoxysilyl group, a (partly) hydrolyzate thereof, a (partly) condensate thereof, and a mixture thereof. III).
X-R 11 -Si (R 12 ) N (OR Thirteen ) 3-n (III)
[0046]
Where R 11 Is an alkylene group having 1 to 4 carbon atoms, R 12 And R Thirteen Is an alkyl group having 1 to 4 carbon atoms, X is a glycidoxy group or an epoxycyclohexyl group, and n is 0 or 1.
[0047]
Particularly preferred epoxy group-containing silicon compounds are 3-glycidoxypropyltrimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. These compounds may be used alone or in combination of two or more.
[0048]
The amino group-containing silicon compound is selected from the group consisting of a silicon compound having an amino group and an alkoxysilyl group, a (partial) hydrolyzate thereof, a (partial) condensate thereof, and a mixture thereof. expressed.
Y-HN-R 14 -Si (R Fifteen ) M (OR 16 ) 3-m (IV)
[0049]
Where R 14 Is an alkylene group having 1 to 4 carbon atoms, R Fifteen And R 16 Is an alkyl group having 1 to 4 carbon atoms, Y is a hydrogen atom or an aminoalkyl group, and m is 0 or 1. Among them, particularly preferred amino group-containing silicon compounds are 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-methyl-3-aminopropyltrimethoxysilane, 3-aminopropylmethyldiethoxysilane, (2-aminoethyl) -3-aminopropyltrimethoxysilane and N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane. These compounds may be used alone or in combination of two or more.
[0050]
In the present invention, the (partial) hydrolyzate of the epoxy group-containing silicon compound and the amino group-containing silicon compound and the (partial) condensate thereof are part or all of the above-described epoxy group-containing silicon compound and amino group-containing silicon compound. Is hydrolyzed, a condensate in which a part or all of the hydrolyzate is subjected to a condensation reaction, and a condensate of the condensate with an unhydrolyzed raw material of an epoxy group-containing silicon compound and an amino group-containing silicon compound These are obtained by a so-called sol-gel reaction. Here, the hydrolyzate is obtained by mixing with an aqueous acidic solution such as an inorganic acid such as hydrochloric acid or an organic acid such as acetic acid, or with water. The coating liquid is preferably diluted with various organic solvents such as alcohols, esters, ethers, ketones, and cellosolves in consideration of storage stability and coating stability.
[0051]
Further, the vinyl alcohol-based polymer used herein refers to a vinyl alcohol copolymer containing 50 mol% or more of vinyl alcohol as a monomer component or a homopolymer of vinyl alcohol. Examples of the vinyl alcohol copolymer include a vinyl alcohol-vinyl acetate copolymer, a vinyl alcohol vinyl butyral copolymer, an ethylene-vinyl alcohol copolymer, and a polyvinyl alcohol having a silyl group in a molecule. Among them, when an ethylene-vinyl alcohol copolymer is used, a cured resin layer (U) having more excellent chemical resistance, water resistance and durability can be obtained.
[0052]
The vinyl alcohol-based polymer is dissolved in an organic solvent such as water, alcohol, and dimethylimidazoline to form a component of the coating composition. For example, the ethylene-vinyl alcohol copolymer is preferably dissolved in a mixed solvent containing water and propanol as main components and used as a component of the coating composition.
[0053]
The mixing ratio between the epoxy group-containing silicon compound and the amino group-containing silicon compound is preferably in the range of 1/3 <Ep / Ap <3/1 in the ratio of the epoxy group molar equivalent conversion amount Ep and the amino group molar equivalent conversion amount Ap. . When the mixing ratio is out of this range, adhesion, heat resistance, solvent resistance, water resistance, and durability are reduced. When such a mixture of an epoxy group-containing silicon compound and an amino group-containing silicon compound is mixed with a polyvinyl alcohol-based polymer, they are mixed so that the weight ratio after curing becomes 20% by weight or more and less than 80% by weight. When the amount is less than 20 parts by weight, water resistance and chemical resistance tend to be inferior, and when it is 80% by weight or more, gas barrier properties tend to decrease. Here, the weight of the mixture of the epoxy group-containing silicon compound and the amino group-containing silicon compound after curing is XR 11 -Si (R 12 ) n O (3-n) / 2 And Y-HN-R 14 -Si (R Fifteen ) m O (3-m) / 2 It is a weight standard shown by. Here, this weight conversion formula was defined as above, assuming that all of the alkoxysilyl groups in each silicon compound had undergone hydrolysis and condensation reactions.
[0054]
The coating composition may contain an organic solvent, a catalyst such as acetic acid, a stabilizer, and a leveling agent in addition to the vinyl alcohol-based polymer, the epoxy group-containing silicon compound, and the amino group-containing silicon compound. The concentration of acetic acid in the composition is preferably 0.2 to 5 molar equivalent times the molar concentration of amino groups in the coating composition. Further, the amounts of the organic solvent, the stabilizer, and the leveling agent may be adjusted in consideration of workability and the thickness of the obtained cured resin layer.
[0055]
This composition is applied on a substrate such as a transparent polymer film (S) and then cured by heating or the like to obtain a cured resin layer (U). The heating temperature is usually not lower than room temperature and not higher than the glass transition temperature of the transparent polymer film (S). By this heating, a so-called sol-gel reaction between the epoxy group-containing silicon compound and the amino group-containing silicon compound proceeds, and a cured film is obtained as a cured resin layer (U).
[0056]
The thickness of the cured resin layer (U) can generally be appropriately selected from the range of 0.01 to 20 μm.
[0057]
The cured resin layer (U) has an infrared absorption spectrum of 3500 cm -1 Absorbance (a) of absorption based on OH stretching vibration having a peak around 3000 cm -1 Absorbance (b) of absorption based on CH stretching vibration having a peak in the vicinity, and 1600 cm -1 -NH with a peak near 2 Absorbance (c) of absorption based on in-plane bending vibration and 1100 cm -1 The absorbance (d) derived from Si-O having a peak in the vicinity satisfies the following formulas (1), (2) and (3).
0.1 <(a) / (b) <2.0 (1)
0.05 <(c) / (b) <2.0 (2)
0.1 <(d) / (b) <2.0 (3)
[0058]
The absorbance (b) derived from the CH stretching vibration is such that when stretching vibrations of the same bond are adjacent to each other, two symmetric and asymmetric absorptions are recognized, but the CH stretching vibration having the largest absorbance is ((b)). b). When the cured resin layer (U) satisfies the above formulas (1) to (3) at the same time, the cured resin layer (U) has excellent adhesion to the metal oxide layer in addition to excellent gas barrier properties. It has good resistance to chemicals such as acids, alkalis, and NMP required in the panel manufacturing process, has high visible light transmittance, and is extremely excellent in surface smoothness. If the above equations (1), (2) and (3) are not satisfied, it is difficult to obtain these good properties at the same time.
[0059]
The gas-barrier laminated film suitable for the display of the present invention can have a transparent conductive layer formed on the outermost layer of the laminated film, for example, as an electrode, depending on the application. As the transparent conductive layer, a known metal film, metal oxide film, or the like can be used. Among them, a metal oxide film is preferable from the viewpoint of transparency, conductivity, and mechanical properties. For example, metal oxide films such as tin, tellurium, cadmium, molybdenum, tungsten, fluorine, zinc, germanium, and the like added with indium oxide, cadmium oxide, and tin oxide, and aluminum added with zinc as an impurity, titanium oxide, and the like. No. Above all, indium oxide is a main component, and at least one oxide selected from the group consisting of tin oxide and zinc oxide is contained, wherein 2 to 20% by weight of tin oxide and / or zinc oxide is contained. A transparent conductive layer made of indium oxide containing 2 to 20% by weight is excellent in transparency and conductivity and is preferably used. When the film of the present invention is used for an organic EL, a film containing indium oxide as a main component and containing tin oxide and / or zinc oxide is used for the purpose of controlling the work function of the transparent conductive layer and improving luminous efficiency. Further, an element other than tin and zinc may be added.
[0060]
As a method for forming the transparent conductive layer, a sputtering method is mainly used, and a DC magnetron sputtering method, a high-frequency magnetron sputtering method, an ion beam sputtering method, or the like can be applied. The thickness of the transparent conductive layer is preferably 10 to 1000 nm in order to obtain sufficient conductivity. The transparent polymer laminated film for a display of the present invention preferably has a total light transmittance of at least 80% in the visible light region, more preferably at least 85%. If it is less than 80%, problems such as a decrease in visibility may occur.
[0061]
When the gas barrier polymer laminated film of the present invention uses a transparent polymer film (S), a metal oxide layer (X), a cured resin layer (U), and a transparent conductive layer (E), for example,
(S) / (U) / (X),
(S) / (X) / (U),
(S) / (U) / (X) / (U),
(S) / (X) / (U) / (X),
(S) / (U) / (X) / (U) / (X),
(S) / (X) / (U) / (X) / (U),
(S) / (U) / (X) / (E),
(S) / (X) / (U) / (E),
(S) / (U) / (X) / (U) / (E),
(S) / (X) / (U) / (X) / (E),
(S) / (U) / (X) / (U) / (X) / (E),
(S) / (X) / (U) / (X) / (U) / (E),
(X) / (U) / (S) / (U) / (X),
(U) / (X) / (S) / (X) / (U),
(U) / (X) / (S) / (X) / (U) / (X),
(U) / (X) / (U) / (S) / (U) / (X) / (U) / (X),
(X) / (U) / (S) / (U) / (X) / (E),
(U) / (X) / (S) / (X) / (U) / (E),
(U) / (X) / (S) / (X) / (U) / (X) / (E),
(U) / (X) / (U) / (S) / (U) / (X) / (U) / (X) / (E)
Are preferred. Among them,
(E) / (X) / (U) / (X) / (S),
(E) / (X) / (U) / (X) / (S) / (X) / (U),
(E) / (X) / (U) / (X) / (U) / (S),
(E) / (X) / (U) / (S) / (U) / (X) / (U),
(E) / (X) / (U) / (X) / (U) / (S) / (U) / (X),
(E) / (X) / (U) / (X) / (U) / (S) / (U) / (X) / (U)
The liquid crystal display element, the organic EL element, and the electrophoretic element manufactured using the gas barrier polymer laminated film having the above structure hardly cause display deterioration even when left for a long time in a high temperature and high humidity environment. In the process of assembling the liquid crystal display element, it is preferable because it has good chemical resistance to various organic solvents, acids, and alkalis and good interlayer adhesion in various electrode cleaning processes and patterning of electrodes and various cleaning processes.
[0062]
In addition, chemical treatment such as lamination of various undercoat layers for strengthening the adhesion between the layers other than the metal oxide layer (X) and the cured resin layer (U) within a range that does not reduce the effect of the present invention; Alternatively, a physical treatment such as corona treatment, plasma treatment, or UV irradiation may be performed.
[0063]
Further, the gas barrier polymer laminated film of the present invention may be provided with a color filter layer for the purpose of imparting a color display function to, for example, a liquid crystal display device produced using the same. The color filter can be formed by a known technique such as a dyeing method, a pigment dispersion method, an electrodeposition method, and a printing method. The color filter layer may be formed between layers other than the layer between the metal oxide layer (X) and the cured resin layer (U) of the gas barrier polymer substrate.
[0064]
【The invention's effect】
The gas-barrier polymer laminated film of the present invention uses a polycarbonate resin containing a specific bisphenol component, and uses a specific cured resin layer and a metal oxide layer in contact with each other, and further uses the specific four bonds of the cured resin layer. When the absorbance derived from is within a specific range, the gas barrier property is extremely excellent, and the transparency, optical isotropy, chemical resistance, surface smoothness, interlayer adhesion are good, and even in a high temperature and high humidity environment. It is extremely useful as a substrate for a liquid crystal display element, an organic EL element, an electrophoretic element, a field emission element, or a plasma element, in which display quality is unlikely to deteriorate even when left for a long time.
[0065]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In the examples, parts and% are by weight unless otherwise specified. Various measurements in the examples were performed as described below.
[0066]
Water Vapor Barrier Property: The water vapor permeability at 40 ° C. and 90% RH atmosphere was measured using Percontran W1A manufactured by MOCON.
[0067]
Oxygen barrier property: Oxytrans 2/20 ML manufactured by MOCON was used to measure oxygen permeability in an atmosphere of 40 ° C. and 90% RH.
[0068]
Infrared absorption spectrum: The cured resin layer of the gas barrier polymer substrate was scraped off, dried for 1 hour at 60 ° C. DRY for the purpose of removing adsorbed water, and then the infrared absorption spectrum was measured by the KBr method. As a measurement sample, 0.3 part by weight of KBr was mixed with 100 part by weight of KBr. An FT-IR manufactured by Perkin Elmer was used as a measuring device. 3500cm -1 Absorbance (a) of absorption attributed to 0-H stretching vibration having a peak in the vicinity and 3000 cm -1 Absorbance (b) of absorption attributed to C—H stretching vibration having a peak in the vicinity and 1600 cm -1 -NH with a peak near 2 Absorbance (c) of absorption attributed to in-plane bending vibration and 1100 cm -1 The absorbance (d) of absorption derived from Si-O having a peak in the vicinity was measured.
[0069]
Interlayer adhesion: The adhesion between the respective layers constituting the gas-barrier polymer laminated film was evaluated by a method according to ASTM D2196-68.
[0070]
Liquid crystal panel reliability: A display electrode for 160 × 100 dots was formed by a photolithography method using a gas barrier polymer laminated film on which a transparent conductive layer was laminated. Next, an alignment film having a thickness of 1000 Å was formed on the electrode surface, and rubbing treatment was performed so that a twist angle became 220 °. Next, using plastic beads having a particle size of 6.5 μm as a gap agent, a dispersion density of 150 beads / mm was formed on one of the electrode surfaces. 2 Then, two gas barrier polymer films were bonded together with the electrode surface facing inward using an epoxy adhesive to produce a cell. Next, a nematic liquid crystal containing a chiral nematic liquid crystal was injected into the cell from the injection port, the cell gap was made uniform by a pressure method, and the injection port was sealed. Next, polarizing plates were attached to both sides of the cell to obtain a liquid crystal panel. The liquid crystal panel thus obtained was left in an environment of 50 ° C. and 90% RH for 250 hours, and the impedance reduction rate of the liquid crystal cell was judged to be acceptable if it was within the initial 20%.
[0071]
Reliability of Organic EL Element: A display electrode was formed by a photolithography method using a gas barrier polymer laminated film on which a transparent conductive layer was laminated. Next, TPD (N, N'-bis (3-methylphenyl) 1,1'-biphenyl-4,4'-diamine) which is a triphenylamine derivative is used as a hole transport layer on the transparent electrode by a vacuum evaporation method. Was laminated thereon, and Alq3 (tris- (8-hydroxyquinoline) aluminum) was deposited as a light emitting layer to a thickness of 50 nm. Further, magnesium and silver were deposited thereon to a thickness of 200 nm to form an organic EL layer as a metal electrode. Subsequently, before the transparent conductive layer was formed, using the same film as the display film on which the EL layer was formed, after applying a UV-curable sealant on the surface on which the transparent conductive layer was formed, The two substrates were bonded together with the organic EL surface of the film on which the organic EL layer was formed facing inside, and the organic EL layer was sealed by ultraviolet irradiation. A current was applied to the organic EL device to confirm the stability of EL light emission.
[0072]
In addition, the following abbreviations were used for the compound names described later.
BisA-PC: polycarbonate containing 2,2-bis (4-hydroxyphenyl) propane (bisphenol A; BisA) as a bisphenol component
BisA / BCF-PC: a polycarbonate copolymer containing bisphenol A and 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (BCF) as a bisphenol component
BisA / IP-PC: a polycarbonate copolymer containing bisphenol A and 3,3,5-trimethyl-1,1-di (4-phenol) cyclohexylidene (IP) as a bisphenol component
ITO: Indium-tin oxide
ECHEMOS: 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane APTMOS: 3-aminopropyltrimethoxysilane
EVOH: Ethylene vinyl alcohol copolymer (“EVAL” manufactured by Kuraray)
[0073]
[Example 1]
A polycarbonate copolymer (BisA / BCF-PC) having a BisA / BCF = 1/1 (molar ratio), an average molecular weight of 37,00 and a Tg of 215 ° C. was dissolved in methylene chloride so as to be 20% by weight. This solution was cast on a 175 m-thick polyester film by a die coating method. Next, it was dried in a drying oven until the residual solvent concentration became 13% by weight, and was peeled off from the polyester film. Then, the obtained polycarbonate film was dried in a drying oven at a temperature of 190 ° C. while balancing the longitudinal and horizontal tensions until the residual solvent concentration in the film became 0.08% by weight.
[0074]
The transparent polymer film (S) thus obtained had a thickness of 150 μm and a light transmittance at a wavelength of 550 nm of 91%.
[0075]
Next, the coating composition for forming the cured resin layer (U) was prepared as follows.
[0076]
100 parts of EVOH was heated and dissolved in a mixed solvent of 720 parts of water and 1080 parts of n-propanol to obtain a homogeneous solution. After 0.1 part of a leveling agent (“SH30PA” manufactured by Dow Corning Toray Co., Ltd.) and 39 parts of acetic acid were added to this solution, 211 parts of ECHETMMOS were added and stirred for 10 minutes. Further, 77 parts of APTMOS was added to this solution and stirred for 3 hours to obtain a coating composition.
[0077]
This coating composition was coated on one surface of the above-mentioned transparent polymer film (S), and heat-treated at 130 ° C. for 3 minutes to form a 0.7 μm-thick (U) layer.
[0078]
Further, a gas barrier polymer laminated film was obtained by providing an (X) layer made of silicon oxide having a thickness of 300 Å on the (U) layer by a DC magnetron sputtering method. The evaluation results of the obtained gas barrier polymer laminated film were good as shown in Table 1.
[0079]
Subsequently, a 1200-Å-thick ITO layer was formed on the (X) layer by DC magnetron sputtering, and a liquid crystal panel was formed using this substrate. The reliability was evaluated. Good results were obtained.
[0080]
[Example 2]
A gas barrier polymer laminated film was obtained in the same manner as in Example 1, except that the configuration of the laminated film was changed to (S) / (U) / (X) / (U) / (X). The evaluation results of the obtained laminated film were good as shown in Table 1.
[0081]
Subsequently, a 1200-Å-thick ITO layer was formed on the (X) layer by DC magnetron sputtering, and an organic EL panel was formed using this substrate. The reliability was evaluated. As a result, good results were obtained.
[0082]
[Example 3]
A gas barrier polymer laminated film was obtained in the same manner as in Example 1, except that the configuration of the laminated film was changed to (X) / (U) / (S) / (U) / (X). The evaluation results of the obtained gas barrier polymer laminated film were good as shown in Table 1.
[0083]
[Comparative Example 1]
A gas-barrier polymer laminated film was obtained in the same manner as in Example 1 except that the (U) layer was not provided. As shown in Table 1, the evaluation results of the obtained gas barrier polymer laminated film were poor in gas barrier properties.
[0084]
[Comparative Example 2]
A gas barrier polymer laminated film was obtained in the same manner as in Example 1, except that the coating composition for forming the cured resin layer (U) was adjusted as follows. As shown in Table 1, the evaluation results of the obtained laminated film were inferior in gas barrier properties and interlayer adhesion.
[0085]
To a mixed solvent of 720 parts of water and 1080 parts of n-propanol, 0.1 part of a leveling agent (“SH30PA” manufactured by Toray Dow Corning Co., Ltd.) and 39 parts of acetic acid are added, and 211 parts of ECHETMMOS are added, followed by stirring for 3 hours. A coating composition was obtained.
[0086]
[Comparative Example 3]
A gas barrier polymer laminated film was obtained in the same manner as in Example 1, except that the coating composition for forming the cured resin layer (U) was adjusted as follows. As shown in Table 1, the evaluation results of the obtained laminated film were inferior in gas barrier properties and interlayer adhesion.
[0087]
To a mixed solvent of 720 parts of water and 1080 parts of n-propanol, 0.1 part of a leveling agent (“SH30PA” manufactured by Dow Corning Toray Co., Ltd.) and 39 parts of acetic acid are added, and 77 parts of APTMOS is added, followed by stirring for 3 hours. A coating composition was obtained.
[0088]
[Comparative Example 4]
A gas barrier polymer film was obtained in the same manner as in Example 1, except that the coating composition for forming the cured resin layer (U) was adjusted as follows. The evaluation results of the obtained laminated film were poor in interlayer adhesion as shown in Table 1.
[0089]
100 parts of EVOH was heated and dissolved in a mixed solvent of 720 parts of water and 1080 parts of n-propanol to obtain a homogeneous solution. To this solution, 0.1 part of a leveling agent (“SH30PA” manufactured by Dow Corning Toray Co., Ltd.) was added to obtain a coating composition.
[0090]
[Table 1]
Figure 2004330507

Claims (6)

下記式(I)
Figure 2004330507
[上記式(I)において、R〜Rはそれぞれ独立に水素原子、ハロゲン原子および炭素数1〜6の炭化水素基から選ばれる少なくとも一種の基である。]
で表されるフルオレン骨格を有する繰り返し単位を含むポリカーボネート系樹脂からなる透明高分子フィルム(S)に、少なくとも一層の金属酸化物層(X)が硬化樹脂層(U)と接して配置され、硬化樹脂層(U)がエポキシ基含有珪素化合物及びアミノ基含有珪素化合物、さらにはビニルアルコール系ポリマーを含むコーティング組成物から得られ、かつ(U)の赤外線吸収スペクトルにおける3500cm−1付近に存在するO−H伸縮振動に帰属される吸光度(a)と、3000cm−1付近に存在するC−H伸縮振動に帰属される吸光度(b)と、1600cm−1付近に存在する−NH面内変角振動に帰属される吸光度(c)と、1100cm−1付近に存在するSi−Oに由来する吸光度(d)が下記式(1)、(2)および(3)の関係を満たすことを特徴とするガスバリア性高分子積層フィルム。
Figure 2004330507
The following formula (I)
Figure 2004330507
[In the above formula (I), R 1 to R 8 are each independently at least one group selected from a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 6 carbon atoms. ]
At least one metal oxide layer (X) is disposed in contact with a cured resin layer (U) on a transparent polymer film (S) made of a polycarbonate resin containing a repeating unit having a fluorene skeleton represented by The resin layer (U) is obtained from a coating composition containing an epoxy group-containing silicon compound and an amino group-containing silicon compound, and further includes a vinyl alcohol-based polymer, and the resin layer (U) exists near 3500 cm −1 in the infrared absorption spectrum of (U). absorbance attributed to -H stretching vibration (a), the absorbance attributed to a C-H stretching vibration existing near 3000 cm -1 and (b), -NH 2 plane bending present in the vicinity of 1600 cm -1 absorbance attributed to a vibration (c), the absorbance derived from Si-O existing near 1100 cm -1 (d) is represented by the following formula (1), (2) And the gas barrier polymer laminate film characterized by satisfying the relation (3).
Figure 2004330507
透明高分子フィルム(S)が、下記式(II)
Figure 2004330507
(上記式(II)において、R〜R16はそれぞれ独立に水素原子、ハロゲン原子および炭素数1〜6の炭化水素基から選ばれ、Xは炭素数1〜15の炭化水素基である。)
で表される繰り返し単位を含み、上記式(II)で表される繰り返し単位が繰り返し単位全体の10〜90モル%を占めるポリカーボネートからなる、請求項1記載のガスバリア性高分子積層フィルム。
The transparent polymer film (S) has the following formula (II)
Figure 2004330507
(In the above formula (II), R 9 to R 16 are each independently selected from a hydrogen atom, a halogen atom and a hydrocarbon group having 1 to 6 carbon atoms, and X is a hydrocarbon group having 1 to 15 carbon atoms. )
The gas-barrier polymer laminated film according to claim 1, comprising a repeating unit represented by the formula (II), wherein the repeating unit represented by the formula (II) comprises 10 to 90 mol% of the entire repeating unit.
金属酸化物層(X)がSi、Al、Ti、Mg、ZrおよびTaから選ばれた少なくとも1種の金属あるいは2種以上の金属混合物の酸化物、フッ化物、窒化物、酸窒化物のいずれかである請求項1または2に記載のガスバリア性高分子積層フィルム。Any one of oxide, fluoride, nitride, and oxynitride of at least one metal selected from Si, Al, Ti, Mg, Zr and Ta or a mixture of two or more metals, wherein the metal oxide layer (X) is The gas-barrier polymer laminated film according to claim 1 or 2, wherein 透明高分子フィルム(S)の少なくとも一方の面に、硬化樹脂層(U)、金属酸化物層(X)の順で積層されている、請求項1〜3のいずれかに記載のガスバリア性高分子積層フィルム。The gas barrier property according to any one of claims 1 to 3, wherein a cured resin layer (U) and a metal oxide layer (X) are laminated in this order on at least one surface of the transparent polymer film (S). Molecular laminated film. 少なくとも一方の最外面に透明導電層を有することを特徴とする請求項1〜4のいずれかに記載のガスバリア性高分子積層フィルム。The gas barrier polymer laminated film according to any one of claims 1 to 4, further comprising a transparent conductive layer on at least one outermost surface. 請求項1〜5のいずれかに記載のガスバリア性高分子積層フィルムの、液晶素子、有機EL素子、電気泳動素子、フィールドエミッション素子またはプラズマ素子用の基板としての利用。Use of the gas barrier polymer laminated film according to any one of claims 1 to 5 as a substrate for a liquid crystal element, an organic EL element, an electrophoretic element, a field emission element, or a plasma element.
JP2003126965A 2003-05-02 2003-05-02 Gas barrier polymer laminated film suitable for display Pending JP2004330507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126965A JP2004330507A (en) 2003-05-02 2003-05-02 Gas barrier polymer laminated film suitable for display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126965A JP2004330507A (en) 2003-05-02 2003-05-02 Gas barrier polymer laminated film suitable for display

Publications (1)

Publication Number Publication Date
JP2004330507A true JP2004330507A (en) 2004-11-25

Family

ID=33503694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126965A Pending JP2004330507A (en) 2003-05-02 2003-05-02 Gas barrier polymer laminated film suitable for display

Country Status (1)

Country Link
JP (1) JP2004330507A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216344A (en) * 2005-02-03 2006-08-17 Dainippon Printing Co Ltd Flexible clear electrode substrate and organic electroluminescent display device
JP2006269338A (en) * 2005-03-25 2006-10-05 Dainippon Printing Co Ltd Flexible transparent electrode substrate and organic el display device
JP2006289627A (en) * 2005-04-06 2006-10-26 Fuji Photo Film Co Ltd Gas barrier film and organic device using the same
JP2006297737A (en) * 2005-04-20 2006-11-02 Fuji Photo Film Co Ltd Gas-barrier film
JP2006310070A (en) * 2005-04-28 2006-11-09 Dainippon Printing Co Ltd Flexible and transparent electrode substrate and organic el display device
JP2007030387A (en) * 2005-07-28 2007-02-08 Fujifilm Corp Film substrate having barrier property and organic electroluminescence element using the same
JP2007134203A (en) * 2005-11-11 2007-05-31 Dainippon Printing Co Ltd Conductive substrate
JP2010275415A (en) * 2009-05-28 2010-12-09 Tosoh Corp Polyolefin resin composition film, sealing film for solar cell using the same, and solar cell using the same
WO2011114870A1 (en) * 2010-03-16 2011-09-22 コニカミノルタホールディングス株式会社 Production method for organic electroluminescent element
JPWO2010090087A1 (en) * 2009-02-03 2012-08-09 コニカミノルタホールディングス株式会社 Organic electronic device and method for manufacturing the same
WO2019071820A1 (en) * 2017-10-12 2019-04-18 惠科股份有限公司 Pre-baking device and pre-baking system for display substrate
CN109778149A (en) * 2017-11-14 2019-05-21 株式会社神户制钢所 The manufacturing method of gas barrier film, gas barrier film, organic electroluminescent device and Electronic Paper and gas barrier film

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216344A (en) * 2005-02-03 2006-08-17 Dainippon Printing Co Ltd Flexible clear electrode substrate and organic electroluminescent display device
JP2006269338A (en) * 2005-03-25 2006-10-05 Dainippon Printing Co Ltd Flexible transparent electrode substrate and organic el display device
JP2006289627A (en) * 2005-04-06 2006-10-26 Fuji Photo Film Co Ltd Gas barrier film and organic device using the same
JP4716773B2 (en) * 2005-04-06 2011-07-06 富士フイルム株式会社 Gas barrier film and organic device using the same
JP2006297737A (en) * 2005-04-20 2006-11-02 Fuji Photo Film Co Ltd Gas-barrier film
JP4717497B2 (en) * 2005-04-20 2011-07-06 富士フイルム株式会社 Gas barrier film
JP2006310070A (en) * 2005-04-28 2006-11-09 Dainippon Printing Co Ltd Flexible and transparent electrode substrate and organic el display device
JP2007030387A (en) * 2005-07-28 2007-02-08 Fujifilm Corp Film substrate having barrier property and organic electroluminescence element using the same
JP2007134203A (en) * 2005-11-11 2007-05-31 Dainippon Printing Co Ltd Conductive substrate
JP5418505B2 (en) * 2009-02-03 2014-02-19 コニカミノルタ株式会社 Organic electronic device and method for manufacturing the same
JPWO2010090087A1 (en) * 2009-02-03 2012-08-09 コニカミノルタホールディングス株式会社 Organic electronic device and method for manufacturing the same
JP2010275415A (en) * 2009-05-28 2010-12-09 Tosoh Corp Polyolefin resin composition film, sealing film for solar cell using the same, and solar cell using the same
WO2011114870A1 (en) * 2010-03-16 2011-09-22 コニカミノルタホールディングス株式会社 Production method for organic electroluminescent element
JPWO2011114870A1 (en) * 2010-03-16 2013-06-27 コニカミノルタ株式会社 Method for manufacturing organic electroluminescence element
JP5660129B2 (en) * 2010-03-16 2015-01-28 コニカミノルタ株式会社 Method for manufacturing organic electroluminescence element
US8962364B2 (en) 2010-03-16 2015-02-24 Konica Minolta Holdings, Inc. Production method for organic electroluminescent element
WO2019071820A1 (en) * 2017-10-12 2019-04-18 惠科股份有限公司 Pre-baking device and pre-baking system for display substrate
US11561474B2 (en) * 2017-10-12 2023-01-24 HKC Corporation Limited Prebaking device and prebaking system for display substrate
CN109778149A (en) * 2017-11-14 2019-05-21 株式会社神户制钢所 The manufacturing method of gas barrier film, gas barrier film, organic electroluminescent device and Electronic Paper and gas barrier film
CN109778149B (en) * 2017-11-14 2020-12-29 株式会社神户制钢所 Gas barrier film, organic electroluminescent element, electronic paper, and method for producing gas barrier film

Similar Documents

Publication Publication Date Title
EP1063560B1 (en) Liquid crystal device and transparent conductive substrate preferable to the same
US6171663B1 (en) Liquid crystal display element with a transparent electrode substrate, and the transparent electrode substrate
JP2000227603A (en) Liquid crystal display device and transparent conductive substrate suitable for the same
WO2014192684A1 (en) Aromatic polyamide solution for manufacturing display elements, optical elements or lighting elements
JP2004330507A (en) Gas barrier polymer laminated film suitable for display
JP3970022B2 (en) Gas barrier transparent film
JP2004122429A (en) Multi-layered film
JP2006035737A (en) Gas barrier polymer laminated film suitable for display
JP3403880B2 (en) Transparent gas barrier laminated film and method for producing the same
JP2004330623A (en) Gas barrier polymer laminated film suitable for display
JP4429467B2 (en) Transparent conductive film
JP3655704B2 (en) Transparent conductive laminate
JPH10146929A (en) Transparent gas barrier laminated film
JP2004099754A (en) Optical film
JP3667933B2 (en) Transparent electrode substrate and liquid crystal display element using the same
JP4068872B2 (en) Transparent conductive film
JP2002052636A (en) Transparent conductive substrate
JP4037144B2 (en) Transparent film for display
JP5204358B2 (en) Transparent film for display
JP2006281505A (en) Gas barrier transparent laminated film
JP4170238B2 (en) Polyarylate and film using the same
JPH10180928A (en) Transparent electrical conductive laminate
JP2002098833A (en) Transparent conductive substrate and display element by using the same
JP3798492B2 (en) Substrate for liquid crystal display element
JP2013091290A (en) Transparent gas barrier laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081224