JP2004330397A - Gear wheel honing method and working machine - Google Patents

Gear wheel honing method and working machine Download PDF

Info

Publication number
JP2004330397A
JP2004330397A JP2003133411A JP2003133411A JP2004330397A JP 2004330397 A JP2004330397 A JP 2004330397A JP 2003133411 A JP2003133411 A JP 2003133411A JP 2003133411 A JP2003133411 A JP 2003133411A JP 2004330397 A JP2004330397 A JP 2004330397A
Authority
JP
Japan
Prior art keywords
gear
wheel
work
grinding wheel
worked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003133411A
Other languages
Japanese (ja)
Inventor
Akira Takenoshita
明 竹ノ下
Shinya Miki
慎也 三木
Kenji Kawamoto
憲二 河本
Nobuaki Nishimura
順昭 西村
Joichi Murata
丈一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIWA TEKKO KK
Original Assignee
SEIWA TEKKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIWA TEKKO KK filed Critical SEIWA TEKKO KK
Priority to JP2003133411A priority Critical patent/JP2004330397A/en
Publication of JP2004330397A publication Critical patent/JP2004330397A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gear Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for gear-wheel honing in which tooth doubling is carried out so that a working allowance becomes equal by simple formation, and by synchronously spinning a grinding stone gear-wheel and a worked gear-wheel with high accuracy, by a synchronous rotation by which a highly accurate gear-wheel is manufactured with efficiency and at a low cost. <P>SOLUTION: In this gear-wheel working method, a driving spinning phase is fixed by performing the engagement spinning of both spindles by synchronous control by driving the worked gear-wheel 2 and the grinding stone gear-wheel 1 together, by performing the mounting of the worked gear-wheel to the supporting shaft of the worked gear-wheel, by clamping the worked gear-wheel to the above supporting shaft of the worked gear-wheel, by measuring a spinning phase difference between the worked gear-wheel and the supporting shaft of the worked gear-wheel with a device for positioning the worked gear-wheel, by synchronizing the worked gear-wheel and the grinding stone gear-wheel by the controlling of each control motor and by doubling and spinning a spinning phase so as to cancel the spinning phase difference, in a condition in which the driving torque of the worked gear-wheel or the grinding stone gear-wheel is lowered to a degree not to receive cutting due to the grinding stone gear-wheel, by approaching the worked gear-wheel and the grinding stone gear-wheel up to the vicinity of a backlash zero position, by reading the spinning phase difference between the worked gear-wheel and the grinding stone gear-wheel at the vicinity of the backlash zero position and by making adjustment so as to cancel the spinning phase difference of each control motor between the worked gear-wheel and the grinding stone gear-wheel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車のエンジンやトランスミッション等に用いられる歯車の製造工程で、被加工歯車を焼き入れ後に歯面仕上げをする歯車ホーニング加工に関し、歯車の精度を向上し噛合い時の騒音低減とコスト削減を目指すものである。
【0002】
【従来の技術】
歯車のホーニング加工は、焼入れ硬化後の歯車に対し研削加工を行い、効率よく歯面の粗さを良くする加工法である。一般には、歯車形の砥石歯車を用い、焼き入れ硬化した被加工歯車に軸交差角を与えた状態で噛合わせて回転させることで、被加工歯車の歯面を微細に研削し、歯面の粗さを良くして騒音が低減した歯車を製造可能にするものである。ホーニング加工の概要を図5、図6、図7を参照して説明する。工具は被加工歯車2と同一の諸元を持つダイヤモンドを電着したドレスギヤ30、砥石歯車1例えば内歯車形状のホーニング砥石を使用する。まず砥石歯車1をドレスする。求める精度を持つドレスギヤ30と、砥石歯車1をある軸交差角を持たせ噛合わせて回転しドレスギヤ30の歯面を砥石歯車1に転写する。次に被加工歯車2と砥石歯車1を噛合わせて、砥石歯車1の歯面を被加工歯車2に転写する。被加工歯車2の歯面は、噛合いと軸交差角によるすべりできれいに精度よく仕上げられる。
【0003】
通常の場合、砥石歯車が駆動され被加工歯車は砥石歯車との噛合の下に、砥石歯車に伴われて回転する、いわゆる連れ回り状態で加工される。但し、連れ回り状態でのホーニングでは被研削歯車の偏心や累積ピッチ誤差を強制的に修正する機構を持たず、その結果、高精度の加工が困難である。
【0004】
これに対し、砥石歯車と被加工歯車との双方を駆動させつつ加工することにより、高い精度を得ることが可能となる。一般に同期回転式のホーニング加工機の機構は、図1、図2で示したものと同様のものである。砥石歯車1と被加工歯車2とは、その各軸が軸交差角をもつような状態で噛合わせてあり、各歯数の比に反比例して回転するように制御された各モータ3,4で回転するようにしてある。この状態で砥石歯車1と被加工歯車2が回転することにより、被加工歯車2の歯面14に相対すべり速度が生じて、歯面14の材料がホーニング除去されるようになっている。
【0005】
同期回転式のホーニング加工機では、高い精度を得ることが可能となる。但し、これには、バックラッシュが零の状態で歯同士を噛合させることが必要である。つまり砥石歯車1と被加工歯車2を加工代が均等になるように歯合わせをする必要があり、また砥石歯車と被加工歯車とを高精度で同期回転させることが不可欠である。
【0006】
砥石歯車1と被加工歯車2を加工代が均等になるように歯合わせするため、種々の提案がなされてきたが、砥石歯車及び被加工歯車を停止させバックラッシュが零の状態で噛合させ、その時の砥石歯車と被加工歯車の位相差を記憶させるティーチングを予め行ない、加工時に別の被加工歯車を取付ける際に、ティーチングと同じ位相差になるように取付ける方法が一般的である。例えば、特開2002−126947号に係る加工方法においては、被加工歯車を機械式の位置決め装置を使用して位置決めし、更に機械式の位置決め装置を使用するため被加工歯車と被加工歯車を駆動するモータ間に生ずるネジレをとる為、モータをフリーラン状態にしてネジレ分を解消して、前記ティーチングの状態に近づける方法がとられている。
【0007】
しかしながら、これらの方法では、被加工歯車と被加工歯車を駆動するモータの位置関係をティーチングと同じ位置関係にしても、被加工歯車の前加工精度のバラツキ、熱処理による歪み、治具への取付誤差、砥石歯車の円周位置による精度のバラツキ、被加工歯車及び砥石歯車とそれらを駆動するモータまでの間に介在する連結軸や中間歯車装置19,20が伝達誤差を有している等から、被加工歯車と砥石歯車の位相差は、ティーチングと同じ状態にはならないという根本的な問題があった。また、噛み合わせた状態でも前記被加工歯車の前加工精度のバラツキ、熱処理による歪み、治具への取付誤差、砥石歯車の円周位置による精度のバラツキ、被加工歯車及び砥石歯車とそれらを駆動するモータまでの間に介在する連結軸や中間歯車装置19,20が伝達誤差を有している等で、噛み合う回転位置により位相差が変動し一定しないという問題もあった。また、被加工歯車と被加工歯車を駆動するモータの位置関係をティーチングと同じ位置関係に近づける為に、機械式の位置決め装置を使用したり、モータをフリーラン状態にする必要があり、コストと時間がかかるという欠点もあった。
【0008】
また、高精度の同期回転を実現するためには、ホーニング加工機の各モータ4,5が完全に同期回転し、また砥石歯車1や被加工歯車2と各モータ4,5との間の伝達誤差がなく、かつ剛性が高ければ、実現できる筈である。
【0009】
しかしホーニング加工機は一般に、砥石歯車1や被加工歯車2と各モータ4,5との間に介在する連結軸や中間歯車装置19,20が伝達誤差を有し、かつ回転方向への弾性効果を有している。この伝達誤差と弾性効果のため、高精度の同期回転を実現させることは実際には難しいものがある。
【0010】
【発明が解決しようとする課題】
本発明は、同期回転による歯車のホーニング加工を行なう際に、従来の上記歯車のホーニング加工がもつ問題点の解消を課題としたものである。即ち本発明の目的は、シンプルな構成により、加工代が均等になるように歯合わせをし、且つ砥石歯車と被加工歯車とを高精度で同期回転させ、高精度な歯車を低コストで効率良く製造できる同期回転による歯車のホーニング加工を提供することにある。
【0011】
【課題を解決するための手段】
請求項1に記載の発明は、被加工歯車2と砥石歯車1を軸交差角をもたせて噛合わせ、被加工歯車2の歯面を加工する歯車ホーニング加工において、被加工歯車2及び砥石歯車1共に駆動し両軸の噛合い回転を同期制御で行う加工方法であって、該歯車加工方法は、被加工歯車支持軸に被加工歯車の取付けを行なうステップと、被加工歯車を前記被加工歯車支持軸にクランプするステップと、被加工歯車位置決め装置により被加工歯車と前記被加工歯車支持軸の回転位相差を測定するステップと、前記被加工歯車と前記砥石歯車を各制御モータの制御により同期させ且つ前記回転位相差を解消するように回転位相を合わせて回転させるステップと、前記被加工歯車又は前記砥石歯車の駆動トルクを前記砥石歯車による切削を受けない程度に低下させた状態で、バックラッシュ零位置付近まで前記被加工歯車と前記砥石歯車とを接近させるステップと、前記バックラッシュ零位置付近における前記被加工歯車と前記砥石歯車との回転位相差を読み取るステップと、前記被加工歯車と前記砥石歯車との各制御モータの前記回転位相差を解消するように調整して駆動回転位相を固定するステップを備えていることを特徴としている。
【0012】
請求項2に記載の発明は、請求項1に記載の発明における被加工歯車2及び砥石歯車1の駆動をモータ軸に直結とすることを特徴としている。
【0013】
請求項3に記載の発明は、請求項1に記載の発明における被加工歯車2及び砥石歯車1の回転位相測定装置を各々被加工歯車支持軸及び砥石歯車支持軸に直結とすることを特徴としている。
【0014】
したがって、請求項1に記載の発明では、最初に、被加工歯車と砥石歯車を噛み合わせる際に歯車の外周部の歯同士が干渉しないで噛み合う程度に被加工歯車及び砥石歯車の位相をラフに合わせる。次に被加工歯車と砥石歯車を噛み合わせた状態で被加工歯車と砥石歯車の位相差を測定し、その位相差を無くすように被加工歯車及び砥石歯車の位相を精密に合わせる。この方法により前記被加工歯車の前加工精度のバラツキ、熱処理による歪み、治具への取付誤差、砥石歯車の円周位置による精度のバラツキ、被加工歯車及び砥石歯車とそれらを駆動するモータまでの間に介在する連結軸や中間歯車装置19,20の有する伝達誤差等の影響を少なくし、精密に被加工歯車と砥石歯車の位相を合わせることができる。また、きわめて短時間に低コストで位相を合わせることができる。
【0015】
したがって、被加工歯車軸モーターと砥石歯車軸モーター両方またはいずれかの駆動トルクを加減し噛合い回転しながら、被加工歯車と砥石歯車の両歯面接触状態付近で、前記被加工歯車と前記砥石歯車との回転位相差を測定することにより、前記被加工歯車の機械加工精度のバラツキ、熱処理による歪み、治具への取付誤差、砥石歯車の円周位置による精度のバラツキ、被加工歯車及び砥石歯車とそれらを駆動するモータまでの間に介在する連結軸や中間歯車装置19,20の有する伝達誤差等の影響等を加味した加工代を均等にする噛合い位置を決めることが可能になり、加工時の歯合わせの簡素化・確実化が実現する。また砥石歯車を連続回転したままで、歯合わせが可能となる為、加工サイクルタイムの短縮化につながる。
【0016】
また、請求項2と3に記載の発明では、被加工歯車及び砥石歯車の駆動をモータ軸に直結、または被加工歯車及び砥石歯車の回転位相測定装置を各々被加工歯車支持軸及び砥石歯車支持軸に直結することにより被加工歯車及び砥石歯車とそれらを駆動するモータまでの間に介在する連結軸や中間歯車装置19,20の有する伝達誤差等の影響を排除できるので、精密かつ正確に被加工歯車と砥石歯車の位相を合わせることができ、また砥石歯車と被加工歯車とを高精度で同期回転させることができる。また、極めてシンプルな機械構造になり、更なる機械精度の向上、低コスト化に繋がる。
【0017】
【実施の形態】
以下、本発明の実施の形態として一実施例を添付図面を参照しつつ説明する。図9、図10、図11は、各々本発明の一実施形態に掛かる歯車ホーニング加工機の正面図、側面図、平面図である。
【0018】
図示の歯車ホーニング加工機は、機台60に支持されたテーブル61上で、保持装置により被加工歯車2を保持するようになっている。保持装置は、テーブル上で相互に接近離反するように摺動可能であり各々被加工歯車支持軸を有するヘッドストック40,心押し台45を備えている。機台60にはさらに、砥石歯車保持装置70が装着されている。
【0019】
テーブル61に支持されたヘッドストック40は、該ヘッドストック本体により回転可能に支持された図8の被加工歯車支持軸42と、該被加工歯車支持軸42を回転させる駆動モータを内蔵している。テーブル61に支持された心押し台45は、該心押し台本体により回転可能に支持された被加工歯車支持軸32とを備えている。
【0020】
図8に示すように、被加工歯車支持軸32は、心押し台本体45に装着された図外の駆動装置により軸方向に摺動進退動するクランプ軸33を軸内部に備えている。したがって、クランプ軸33を後退させた状態で被加工歯車支持軸32及び42により被加工歯車を支持し、その後クランプ軸33を前進させることにより、被加工歯車支持軸上で被加工歯車を回転方向にクランプすることができる。
【0021】
砥石歯車保持装置70は、図6に示すように、ヘッドストック40と心押し台45との間に位置し砥石歯車1を支持するリング状の砥石歯車取付けヘッド(砥石歯車支持軸)72を備えている。図1に示す例では、ヘッド駆動モータ3の出力軸を介し、中間歯車19が噛合し、これらの中間歯車は、ヘッド72の外周に設けられた歯に噛合してヘッド72を駆動する。砥石歯車保持装置70には、機台上の切り込み駆動部75が結合されている。切り込み駆動部75は、水平駆動モータ76の駆動により被加工歯車支持軸32,42に垂直な水平軸線に沿って移動可能であり、その移動によりヘッド72及び砥石歯車1を被加工歯車支持軸上の被加工歯車に接近離反させ、研削の際には切り込みを行なわせる。
【0022】
ヘッドストック40には、被加工歯車位置決め(位相検出)装置80が取り付けられている。被加工歯車位置決め装置は、被加工歯車と砥石歯車を噛み合わせる際に歯車の外周部の歯同士が干渉しないで噛み合う程度に被加工歯車及び砥石歯車の位相をラフに合わせるために被加工歯車の回転方向の位相検出を行なうものであり、例えば以下のような構成とすることができる。被加工歯車位置決め装置80には、近接スイッチ等の非接触センサーを使用することができ、図8に示すように、ヘッドストック40に取付け支持されたブラケットに固定させている。被加工歯車を回転させ被加工歯車の外周部の歯又は溝を検出することにより、被加工歯車の回転方向の位相検出を行なう。
【0023】
次に、一例として、ホーニング加工機のより詳細な構成を、装置の操作手順と共に説明する。
【0024】
砥石歯車1と被加工歯車2の位相は、砥石歯車軸又は砥石歯車駆動モータ軸のエンコーダと被加工歯車軸または被加工歯車駆動モータ軸のエンコーダ及び被加工歯車位置決め装置80により検知される。砥石歯車1をヘッド72に新たに取り付けたときは、ティーチングを行なう。その方法は、砥石歯車を定位置停止させ、被加工歯車をクランプし被加工歯車位置決め装置80により定位置停止させる。その位相を各々記憶する。次に手動モードで被加工歯車支持軸上の被加工歯車と噛合させ、ノーバックラッシュ位置付近での噛合位置を適宜選び、そのときの位相と定位置停止時の位相を比較計算し砥石歯車1と被加工歯車2の位相の原点を設定する。
【0025】
この準備ができた後、加工にはいる。まず、被加工歯車支持軸に被加工歯車を取付けし、被加工歯車を前記被加工歯車支持軸にクランプする。その方法は、心押し台45とヘッドストック40を接近させ、被加工歯車支持軸32,42により被加工歯車を保持する。次に、被加工歯車支持軸32のクランプ軸33を前進させクランプする。
【0026】
この後、ヘッド駆動モータ3を作動させて砥石歯車1を設定された速度で回転させる。砥石歯車は、以後において停止指令が出るまで回転を続ける。
【0027】
被加工歯車を回転させ、被加工歯車位置決め装置により被加工歯車の外周部の歯又は溝を検出することにより、被加工歯車の回転方向の位相検出を行ない、ティーチング時との位相差を測定する。
【0028】
次に、被加工歯車を制御モータの制御により前記回転位相差を解消するように回転位相を合わせて回転させ、同期速度で回転させる。次に、切り込み駆動部75を作動させ砥石歯車1を被加工歯車側へ前進させる。砥石歯車1と被加工歯車の両歯先端が僅かに噛み合う位置まで砥石歯車1を更に前進させる。砥石歯車1と被加工歯車の両歯先端が互いに十分に噛み合う位置に到達した後、被加工歯車駆動モータの出力トルクを切削不能な程度まで下げる。さらに、切り込み駆動部75により砥石歯車1及び被加工歯車間のバックラッシュが零になる位置付近まで、砥石歯車1を前進させる。この時、被加工歯車支持軸32はトルク制限しているので、被加工歯車は、砥石歯車1に対し連れ廻りしている状態となっている。
【0029】
この連れまわり状態で、被加工歯車と砥石歯車の両歯面接触状態での、前記被加工歯車と前記砥石歯車との回転位相差は、前記被加工歯車の機械加工精度のバラツキ、熱処理による歪み、治具への取付誤差、砥石歯車の円周位置による精度のバラツキ、被加工歯車及び砥石歯車とそれらを駆動するモータまでの間に介在する連結軸や中間歯車装置19,20の有する伝達誤差等の影響等で常に変動している。この回転位相差を測定し、その変動を把握して、例えば、その変動値の中央値を制御上の回転位相差に設定することにより、加工代を均等にする噛合い位置を決めることが可能になる。以下、ホーニング加工を開始することになる。尚、バックラッシュが零でない状態すなわち片歯面接触状態での位相測定でも、両歯面接触状態までの回転位相差を補正すればその方法でも良い。
【0030】
図3と図4は、請求項2の実施例を示す。各々砥石歯車1と被加工歯車2を駆動するモータがモーター3、モータ4である。砥石歯車1とモータ3が同軸上にあり、従来の構造にあった砥石歯車1とモータ3の間に介在する連結軸や中間歯車装置がなく、当然伝達誤差と弾性効果の影響もない。被加工歯車2とモータ4も同様である。伝達誤差と弾性効果等の影響を排除できるので、精密かつ正確に被加工歯車と砥石歯車の位相を合わせることができ、また砥石歯車と被加工歯車とを高精度で同期回転させることができる。また、極めてシンプルな機械構造になり、更なる機械精度の向上、低コスト化に繋がる。
【0031】
図12と図13は、請求項3の実施例を示す。各々砥石歯車1と被加工歯車2の回転位相を測定するのが回転位相測定装置6、7である。砥石歯車1と回転位相測定装置6が同軸上にあり、連結軸や中間歯車装置の影響がなく、当然伝達誤差と弾性効果の影響もない。被加工歯車2と回転位相測定装置7も同様である。伝達誤差と弾性効果等の影響を排除できるので、精密かつ正確に被加工歯車と砥石歯車の位相を合わせることができ、また砥石歯車と被加工歯車とを高精度で同期回転させることができる。
【0032】
【発明の効果】本発明においては、加工代を均等にする噛合い位置を検出することが簡単に可能となり、加工時の歯合わせの簡素化・確実化ができる。また砥石歯車を連続回転したままで、歯合わせが可能となる為、加工サイクルタイムの短縮化ができる。
【0033】
また、被加工歯車と砥石歯車の駆動をモータ軸に直結とすることにより、被加工歯車と砥石歯車からモーター間の伝達誤差と弾性効果が極めて小さくなり、歯合わせの高精度化と加工精度の向上が図られる。また、機械の構造が簡単で、低コストの加工機を提供できる。
【0034】
また、砥石歯車と被加工歯車の回転位相測定装置を同軸上とすることにより、伝達誤差と弾性効果の影響が極めて小さくなり歯合わせの高精度化と加工精度の向上が図られる。
【図面の簡単な説明】
【図1】従来の歯車ホーニング加工機の機構例を示す概略斜視図である。
【図2】一般の歯車ホーニング加工機の他の機構例を示す概略斜視図である。
【図3】本発明に係る歯車ホーニング加工機の機構を示す実施例の概略斜視図である
【図4】本発明に係る歯車ホーニング加工機の機構を示す他の実施例の概略斜視図である。
【図5】砥石歯車と被加工歯車との噛合状態を示す正面図である。
【図6】図5のA−A線での断面図である。
【図7】加工時の歯車の一歯面上のすべり状態を表した概略斜視図である。
【図8】図9に示す歯車ホーニング加工機の被加工歯車支持状態を示す正面図である。
【図9】本発明に係る歯車ホーニング加工機の一実施例の正面図である。
【図10】図9に示す歯車ホーニング加工機の側面図である。
【図11】図9に示す歯車ホーニング加工機の平面図である。
【図12】本発明に係る歯車ホーニング加工機の機構を示す別の実施例の概略斜視図である。
【図13】本発明に係る歯車ホーニング加工機の機構を示す更に別の実施例の概略斜視図である。
【符号の説明】
1 砥石歯車
2 被加工歯車
3 モータ
4 モータ
6 回転位相測定装置
7 回転位相測定装置
14 歯面
15 隙間A
16 隙間B
19 中間歯車
20 中間歯車
30 ドレスギヤ
32 被加工歯車支持軸
33 クランプ軸
40 ヘッドストック
42 被加工歯車支持軸
45 心押し台
50 軸交差角によるすべり
51 噛合いによるすべり
52 合成すべり
60 機台
61 テーブル
70 砥石歯車保持装置
80 被加工歯車位置決め(位相検出)装置
r 軸交差角
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gear honing process that finishes a tooth surface after quenching a gear to be processed in a manufacturing process of a gear used for an engine or a transmission of an automobile, for example, to improve the accuracy of the gear and reduce noise at the time of meshing. The aim is to reduce costs.
[0002]
[Prior art]
The honing of the gear is a processing method in which the quenched and hardened gear is ground to efficiently improve the roughness of the tooth surface. Generally, a gear-shaped grinding wheel is used, and the quenched and hardened work gear is meshed and rotated while giving an axis crossing angle, so that the tooth surface of the work gear is finely ground and the tooth surface of the gear surface is finely ground. It is possible to manufacture a gear with improved roughness and reduced noise. An outline of the honing process will be described with reference to FIGS. 5, 6, and 7. FIG. As the tool, a dress gear 30 in which diamond having the same specifications as the gear 2 to be processed is electrodeposited, and a grinding wheel 1 such as a honing wheel having an internal gear shape are used. First, the grinding wheel 1 is dressed. The dress gear 30 having the required accuracy and the grinding wheel 1 are engaged with each other at a certain axis crossing angle and rotated to transfer the tooth surface of the dress gear 30 to the grinding wheel 1. Next, the work gear 2 and the grindstone gear 1 are engaged with each other, and the tooth surface of the grindstone gear 1 is transferred to the work gear 2. The tooth surface of the gear 2 to be machined is finely and precisely finished by slippage due to the meshing and the axis crossing angle.
[0003]
In a normal case, the grindstone gear is driven, and the work gear is machined in a so-called corotating state, which rotates with the grindstone gear while meshing with the grindstone gear. However, the honing in the co-rotating state does not have a mechanism for forcibly correcting the eccentricity and the accumulated pitch error of the gear to be ground, and as a result, high-precision machining is difficult.
[0004]
On the other hand, high precision can be obtained by processing while driving both the grinding wheel gear and the work gear. In general, the mechanism of a synchronous rotation type honing machine is the same as that shown in FIGS. The grinding wheel 1 and the work gear 2 are engaged with each other so that their respective axes have an axis crossing angle, and each of the motors 3, 4 controlled to rotate in inverse proportion to the ratio of the number of teeth. It is made to rotate with. When the grindstone gear 1 and the work gear 2 rotate in this state, a relative sliding speed is generated on the tooth surface 14 of the work gear 2 so that the material of the tooth surface 14 is removed by honing.
[0005]
With a synchronous rotary honing machine, high accuracy can be obtained. However, this requires that the teeth mesh with each other with zero backlash. In other words, it is necessary to align the grinding wheel 1 and the gear 2 so that the machining allowance is equal, and it is essential to rotate the grinding gear 1 and the gear 2 synchronously with high precision.
[0006]
Various proposals have been made to align the grinding wheel 1 and the gear 2 to be processed so that the machining allowance is uniform. However, the grinding wheel and the gear to be processed are stopped and meshed with zero backlash. In general, a teaching method for storing a phase difference between the grinding wheel gear and the gear to be processed at that time is performed in advance, and when another gear to be processed is attached during processing, the gear is mounted so as to have the same phase difference as the teaching. For example, in the machining method according to Japanese Patent Application Laid-Open No. 2002-126947, a gear to be machined is positioned using a mechanical positioning device, and the gear to be machined and the gear to be machined are driven to use a mechanical positioning device. In order to remove the twist generated between the motors, a method is adopted in which the motor is brought into a free-run state to eliminate the twist and approach the teaching state.
[0007]
However, in these methods, even if the positional relationship between the gear to be machined and the motor driving the gear to be machined is the same as that for teaching, the unevenness of the pre-machining accuracy of the gear to be machined, distortion due to heat treatment, and attachment to the jig. Errors, variations in accuracy due to the circumferential position of the grinding wheel, and the connection shafts and intermediate gear devices 19 and 20 interposed between the work gear and the grinding wheel and the motor that drives them have transmission errors. However, there is a fundamental problem that the phase difference between the gear to be processed and the grinding wheel is not in the same state as in teaching. Further, even in the meshed state, variations in the pre-processing accuracy of the processed gear, distortion due to heat treatment, mounting errors on the jig, variations in accuracy due to the circumferential position of the grinding gear, the processed gear and the grinding wheel, and driving thereof There is also a problem that the phase difference fluctuates depending on the rotational position at which the coupling shaft and the intermediate gear devices 19 and 20 have transmission errors due to the transmission error and the like, and thus are not constant. In addition, in order to make the positional relationship between the gear to be machined and the motor driving the gear to be machined close to the same positional relationship as the teaching, it is necessary to use a mechanical positioning device or to make the motor in a free-run state, which is costly. There was also a disadvantage that it took time.
[0008]
Further, in order to realize high-precision synchronous rotation, the motors 4 and 5 of the honing machine rotate completely synchronously, and the transmission between the grinding wheel 1 and the gear 2 to be processed and each motor 4 and 5 is performed. If there is no error and the rigidity is high, it can be realized.
[0009]
However, the honing machine generally has a transmission shaft and intermediate gear devices 19 and 20 interposed between the grindstone gear 1 or the work gear 2 and each of the motors 4 and 5, and has a transmission error and an elastic effect in the rotating direction. have. Due to the transmission error and the elastic effect, it is actually difficult to realize high-precision synchronous rotation.
[0010]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems associated with the conventional honing of gears when honing a gear by synchronous rotation. In other words, the object of the present invention is to provide a simple configuration to perform tooth matching so that the machining allowance is equal, and to synchronously rotate the grinding wheel gear and the gear to be processed with high precision, thereby making it possible to efficiently produce high precision gear at low cost. An object of the present invention is to provide a honing process of a gear by synchronous rotation that can be manufactured well.
[0011]
[Means for Solving the Problems]
According to the first aspect of the present invention, in the gear honing processing in which the work gear 2 and the grindstone gear 1 are engaged with each other at an axis crossing angle and the tooth surface of the work gear 2 is processed, the work gear 2 and the grindstone gear 1 are formed. A gear machining method comprising: a step of attaching a work gear to a work gear support shaft; and a step of attaching the work gear to the work gear. Clamping the support shaft, measuring the rotational phase difference between the work gear and the work gear support shaft by the work gear positioning device, and synchronizing the work gear and the grinding wheel gear by controlling each control motor. Rotating the workpiece gear or the grinding wheel gear so that the rotation torque is adjusted so as to eliminate the rotation phase difference. In this state, bringing the work gear and the grinding wheel gear close to each other near the backlash zero position, and reading a rotational phase difference between the work gear and the grinding wheel gear near the backlash zero position. And a step of adjusting the control phase of each of the control motors of the work gear and the grinding wheel so as to eliminate the rotational phase difference, thereby fixing the drive rotational phase.
[0012]
The invention described in claim 2 is characterized in that the drive of the work gear 2 and the grindstone gear 1 in the invention described in claim 1 is directly connected to the motor shaft.
[0013]
The invention according to claim 3 is characterized in that the rotation phase measuring device of the work gear 2 and the grinding wheel 1 according to the invention of claim 1 is directly connected to the work gear support shaft and the grinding wheel support shaft, respectively. I have.
[0014]
Therefore, according to the first aspect of the present invention, first, when the work gear and the grindstone gear mesh with each other, the phases of the work gear and the grindstone gear are roughened to such an extent that the teeth on the outer peripheral portion of the gear mesh without interfering with each other. Match. Next, the phase difference between the processed gear and the grinding wheel gear is measured while the processed gear and the grinding wheel gear are engaged with each other, and the phases of the processed gear and the grinding wheel gear are precisely adjusted so as to eliminate the phase difference. By this method, variation in pre-processing accuracy of the gear to be processed, distortion due to heat treatment, mounting error to a jig, variation in accuracy due to the circumferential position of the grinding wheel gear, the workpiece gear, the grinding wheel and the motor for driving them. The influence of the transmission error and the like of the connecting shaft and the intermediate gear devices 19 and 20 interposed therebetween can be reduced, and the phases of the gear to be processed and the grinding wheel can be precisely matched. Further, the phases can be adjusted in a very short time at low cost.
[0015]
Therefore, while adjusting and driving the drive torque of both or both of the work gear shaft motor and the grinding wheel gear motor, in the vicinity of the state of contact between both the tooth surfaces of the work gear and the grinding wheel gear, the work gear and the grinding wheel are rotated. By measuring the rotational phase difference with the gear, the variation in machining accuracy of the processed gear, the distortion due to heat treatment, the mounting error to the jig, the variation in accuracy due to the circumferential position of the grinding wheel gear, the processed gear and the grinding wheel It is possible to determine a meshing position for equalizing the machining allowance in consideration of the influence of the transmission error and the like of the connecting shaft and the intermediate gear devices 19 and 20 interposed between the gear and the motor that drives them, Simplification and reliability of tooth matching during processing are realized. In addition, since the teeth can be aligned while the grinding wheel is continuously rotated, the machining cycle time is reduced.
[0016]
According to the second and third aspects of the present invention, the driving of the gear to be processed and the grinding wheel is directly connected to the motor shaft, or the rotational phase measuring device for the gear to be processed and the grinding wheel is mounted on the shaft for supporting the gear to be processed and the grinding wheel, respectively. The direct connection to the shaft eliminates the effects of transmission errors and the like of the connection shaft and intermediate gear devices 19 and 20 interposed between the processed gear and the grinding wheel gear and the motor that drives them, so that the gear can be precisely and accurately mounted. The phase of the processing gear and the grinding gear can be matched, and the grinding gear and the gear to be processed can be synchronously rotated with high precision. Further, the mechanical structure becomes extremely simple, which leads to further improvement in machine accuracy and cost reduction.
[0017]
Embodiment
An embodiment of the present invention will be described below with reference to the accompanying drawings. FIGS. 9, 10, and 11 are a front view, a side view, and a plan view, respectively, of a gear honing machine according to an embodiment of the present invention.
[0018]
In the illustrated gear honing machine, the work gear 2 is held by a holding device on a table 61 supported by a machine base 60. The holding device includes a headstock 40 and a tailstock 45 that are slidable on the table so as to approach and move away from each other and each have a shaft to be processed. The machine base 60 is further provided with a grindstone gear holding device 70.
[0019]
The head stock 40 supported by the table 61 incorporates a work gear support shaft 42 of FIG. 8 rotatably supported by the head stock body and a drive motor for rotating the work gear support shaft 42. . The tailstock 45 supported by the table 61 includes a work gear support shaft 32 rotatably supported by the tailstock body.
[0020]
As shown in FIG. 8, the work gear support shaft 32 includes a clamp shaft 33 that slides in and out in the axial direction by a driving device (not shown) mounted on the tailstock main body 45. Therefore, the work gear is supported by the work gear support shafts 32 and 42 in a state where the clamp shaft 33 is retracted, and then the work shaft is moved forward on the work gear support shaft by moving the clamp shaft 33 forward. Can be clamped.
[0021]
As shown in FIG. 6, the grindstone gear holding device 70 includes a ring-shaped grindstone gear mounting head (grindstone gear support shaft) 72 that is located between the head stock 40 and the tailstock 45 and supports the grindstone gear 1. ing. In the example shown in FIG. 1, the intermediate gear 19 meshes via the output shaft of the head drive motor 3, and these intermediate gears mesh with teeth provided on the outer periphery of the head 72 to drive the head 72. The cutting drive unit 75 on the machine base is connected to the grinding wheel gear holding device 70. The cutting drive unit 75 is movable along a horizontal axis perpendicular to the gears 32 and 42 driven by the horizontal drive motor 76, and moves the head 72 and the grinding wheel 1 on the gear support shaft. To be separated from the gear to be processed, and to make a cut when grinding.
[0022]
A gear to be processed (phase detection) device 80 is attached to the head stock 40. The work gear positioning device is used to roughly adjust the phases of the work gear and the grindstone gear so that the teeth on the outer peripheral portion of the gear do not interfere with each other when the work gear and the grindstone gear mesh with each other. It detects the phase in the rotation direction, and can have the following configuration, for example. A non-contact sensor, such as a proximity switch, can be used for the processed gear positioning device 80, and is fixed to a bracket mounted on and supported by the head stock 40, as shown in FIG. By detecting the teeth or grooves on the outer peripheral portion of the processed gear by rotating the processed gear, phase detection in the rotation direction of the processed gear is performed.
[0023]
Next, as an example, a more detailed configuration of the honing machine will be described together with the operation procedure of the apparatus.
[0024]
The phases of the grinding wheel gear 1 and the work gear 2 are detected by the encoder of the grinding wheel gear shaft or the grinding wheel drive motor shaft, the encoder of the work gear shaft or the work gear drive motor shaft, and the work gear positioning device 80. When the grinding wheel 1 is newly attached to the head 72, teaching is performed. In this method, the grindstone gear is stopped at a fixed position, the work gear is clamped, and the work gear positioning device 80 stops the fixed position. The respective phases are stored. Next, in the manual mode, the gear is meshed with the gear to be machined on the gear to be machined, and the meshing position near the no backlash position is appropriately selected. And the origin of the phase of the gear 2 to be machined.
[0025]
After this preparation is ready, we are ready to process. First, a work gear is attached to the work gear support shaft, and the work gear is clamped to the work gear support shaft. In this method, the tailstock 45 and the head stock 40 are brought close to each other, and the processed gear is held by the processed gear support shafts 32 and 42. Next, the clamp shaft 33 of the work gear support shaft 32 is advanced and clamped.
[0026]
Thereafter, the head drive motor 3 is operated to rotate the grinding wheel 1 at a set speed. The grinding wheel continues to rotate until a stop command is issued thereafter.
[0027]
By rotating the work gear and detecting the teeth or grooves on the outer periphery of the work gear with the work gear positioning device, the phase of the work gear in the rotation direction is detected, and the phase difference from the teaching time is measured. .
[0028]
Next, the gear to be processed is rotated under the control of the control motor so as to adjust the rotational phase so as to eliminate the rotational phase difference, and is rotated at a synchronous speed. Next, the cutting drive unit 75 is operated to advance the grinding wheel gear 1 toward the work gear. The grinding wheel 1 is further advanced to a position where the tips of the teeth of the grinding wheel 1 and the gear to be processed slightly mesh. After reaching the position where the tooth tips of the grinding wheel 1 and the gear to be machined sufficiently mesh with each other, the output torque of the motor for driving the gear to be machined is reduced to an uncuttable level. Further, the cutting drive unit 75 advances the grinding wheel gear 1 to a position near the position where the backlash between the grinding wheel gear 1 and the gear to be processed becomes zero. At this time, since the torque of the work gear support shaft 32 is limited, the work gear rotates with the grindstone gear 1.
[0029]
In this co-rotating state, the rotational phase difference between the processed gear and the grinding wheel gear in a state in which both the tooth surface of the processed gear and the grinding wheel gear are in contact with each other, the variation in the machining accuracy of the processed gear and the distortion due to heat treatment. , Errors in attachment to the jig, variations in accuracy due to the circumferential position of the grinding wheel, transmission errors of the connecting shafts and intermediate gear devices 19, 20 interposed between the processed gear, the grinding wheel, and the motor that drives them. Fluctuates constantly due to the influence of By measuring this rotational phase difference and grasping the fluctuation, for example, by setting the median value of the fluctuation value to the rotational phase difference for control, it is possible to determine the meshing position that equalizes the machining allowance become. Hereinafter, honing processing will be started. It should be noted that even if the backlash is not zero, that is, the phase is measured in a single-tooth contact state, the method may be used as long as the rotational phase difference up to the double-tooth contact state is corrected.
[0030]
3 and 4 show a second embodiment of the present invention. Motors for driving the grindstone gear 1 and the work gear 2 are a motor 3 and a motor 4, respectively. Since the grinding wheel 1 and the motor 3 are coaxial, there is no connecting shaft or intermediate gear device interposed between the grinding wheel 1 and the motor 3 in the conventional structure, and there is naturally no transmission error and no influence of the elastic effect. The same applies to the gear 2 to be processed and the motor 4. Since the effects of the transmission error and the elastic effect can be eliminated, the phases of the gear to be machined and the grinding wheel can be precisely and accurately matched, and the grinding wheel and the gear to be machined can be synchronously rotated with high precision. Further, the mechanical structure becomes extremely simple, which leads to further improvement in machine accuracy and cost reduction.
[0031]
12 and 13 show a third embodiment of the present invention. The rotation phase measuring devices 6 and 7 measure the rotation phases of the grinding wheel 1 and the work gear 2 respectively. Since the grinding wheel 1 and the rotational phase measuring device 6 are coaxial, there is no influence of the connecting shaft or the intermediate gear device, and naturally there is no influence of the transmission error and the elastic effect. The same applies to the gear 2 to be processed and the rotational phase measuring device 7. Since the effects of the transmission error and the elastic effect can be eliminated, the phases of the gear to be machined and the grinding wheel can be precisely and accurately matched, and the grinding wheel and the gear to be machined can be synchronously rotated with high precision.
[0032]
According to the present invention, it is possible to easily detect the meshing position for equalizing the machining allowance, thereby simplifying and ensuring the meshing at the time of machining. In addition, since the teeth can be aligned while the grinding wheel is continuously rotated, the machining cycle time can be reduced.
[0033]
In addition, by directly driving the gear to be machined and the grinding wheel gear to the motor shaft, the transmission error and the elastic effect between the motor to be machined and the grinding wheel gear become extremely small, so that the precision of tooth matching and the precision of machining are improved. Improvement is achieved. Further, a low-cost processing machine having a simple machine structure can be provided.
[0034]
Further, by making the rotational phase measuring device of the grinding wheel and the gear to be processed coaxial, the influence of the transmission error and the elasticity effect becomes extremely small, so that the accuracy of tooth matching and the processing accuracy are improved.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing an example of a mechanism of a conventional gear honing machine.
FIG. 2 is a schematic perspective view showing another example of a mechanism of a general gear honing machine.
3 is a schematic perspective view of an embodiment showing a mechanism of the gear honing machine according to the present invention. FIG. 4 is a schematic perspective view of another embodiment showing a mechanism of the gear honing machine according to the present invention. .
FIG. 5 is a front view showing a meshing state between a grinding wheel gear and a gear to be processed.
FIG. 6 is a sectional view taken along line AA of FIG. 5;
FIG. 7 is a schematic perspective view showing a slip state on one tooth surface of the gear during processing.
8 is a front view showing a state in which a gear to be processed is supported by the gear honing machine shown in FIG. 9;
FIG. 9 is a front view of one embodiment of a gear honing machine according to the present invention.
FIG. 10 is a side view of the gear honing machine shown in FIG. 9;
FIG. 11 is a plan view of the gear honing machine shown in FIG. 9;
FIG. 12 is a schematic perspective view of another embodiment showing the mechanism of the gear honing machine according to the present invention.
FIG. 13 is a schematic perspective view of still another embodiment showing a mechanism of a gear honing machine according to the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 wheel gear 2 work gear 3 motor 4 motor 6 rotational phase measuring device 7 rotational phase measuring device 14 tooth surface 15 gap A
16 Clearance B
19 Intermediate Gear 20 Intermediate Gear 30 Dress Gear 32 Work Gear Support Shaft 33 Clamp Shaft 40 Head Stock 42 Work Gear Support Shaft 45 Tailstock 50 Slip by Shaft Cross Angle 51 Slip by Meshing 52 Synthetic Slip 60 Machine Base 61 Table 70 Grinding wheel holding device 80 Work gear positioning (phase detection) device r Axis crossing angle

Claims (3)

被加工歯車2と砥石歯車1を軸交差角をもたせて噛合わせ、被加工歯車2の歯面を加工する歯車ホーニング加工において、被加工歯車2及び砥石歯車1共に駆動し両軸の噛合い回転を同期制御で行う加工方法であって、該歯車加工方法は、被加工歯車支持軸に被加工歯車の取付けを行なうステップと、被加工歯車を前記被加工歯車支持軸にクランプするステップと、被加工歯車位置決め装置により被加工歯車と前記被加工歯車支持軸の回転位相差を測定するステップと、前記被加工歯車と前記砥石歯車を各制御モータの制御により同期させ且つ前記回転位相差を解消するように回転位相を合わせて回転させるステップと、前記被加工歯車又は前記砥石歯車の駆動トルクを前記砥石歯車による切削を受けない程度に低下させた状態で、バックラッシュ零位置付近まで前記被加工歯車と前記砥石歯車とを接近させるステップと、前記バックラッシュ零位置付近における前記被加工歯車と前記砥石歯車との回転位相差を読み取るステップと、前記被加工歯車と前記砥石歯車との前記回転位相差を解消するように調整して駆動回転位相を固定するステップを備えていることを特徴とする加工方法及び加工機械。In gear honing processing in which the work gear 2 and the grindstone gear 1 are engaged with each other at an axis crossing angle and the tooth surface of the work gear 2 is machined, both the work gear 2 and the grindstone gear 1 are driven to engage and rotate the two shafts. Is performed by synchronous control, wherein the gear processing method includes the steps of: attaching a work gear to a work gear support shaft; clamping the work gear to the work gear support shaft; Measuring the rotational phase difference between the work gear and the work gear support shaft by a work gear positioning device; and synchronizing the work gear and the grinding wheel gear by controlling each control motor and eliminating the rotational phase difference. And rotating the gear to be processed or the grinding gear in a state in which the driving torque of the grinding gear is reduced to such a degree that the gear is not cut by the grinding gear. Bringing the work gear and the grindstone gear close to each other near a shroud zero position; reading a rotational phase difference between the work gear and the grindstone gear near the backlash zero position; and A processing method and a processing machine, comprising a step of adjusting so as to eliminate the rotational phase difference with the grinding wheel gear and fixing a drive rotational phase. 被加工歯車2及び砥石歯車1の駆動をモータ軸に直結とすることを特徴とする請求項1に記載の加工方法及び加工機。The processing method and the processing machine according to claim 1, wherein the drive of the work gear 2 and the grinding wheel 1 is directly connected to a motor shaft. 被加工歯車2及び砥石歯車1の回転位相測定装置を各々被加工歯車支持軸及び砥石歯車支持軸に直結とすることを特徴とする請求項1に記載の加工方法及び加工機。The processing method and the processing machine according to claim 1, wherein the rotation phase measuring devices of the processed gear 2 and the grinding wheel 1 are directly connected to the processing gear supporting shaft and the grinding wheel supporting shaft, respectively.
JP2003133411A 2003-05-12 2003-05-12 Gear wheel honing method and working machine Pending JP2004330397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133411A JP2004330397A (en) 2003-05-12 2003-05-12 Gear wheel honing method and working machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133411A JP2004330397A (en) 2003-05-12 2003-05-12 Gear wheel honing method and working machine

Publications (1)

Publication Number Publication Date
JP2004330397A true JP2004330397A (en) 2004-11-25

Family

ID=33507958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133411A Pending JP2004330397A (en) 2003-05-12 2003-05-12 Gear wheel honing method and working machine

Country Status (1)

Country Link
JP (1) JP2004330397A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088191A (en) * 2003-09-12 2005-04-07 Reishauer Ag Method and device for aligning work having pre-cut teeth on gear finishing machine
WO2008099714A1 (en) * 2007-02-06 2008-08-21 Mitsubishi Heavy Industries, Ltd. Gearing apparatus, and gear working machine
WO2011043225A1 (en) * 2009-10-05 2011-04-14 本田技研工業株式会社 Device and method for measuring tooth surface run-out, device and method for moulding grinding tool, and method for aligning teeth in a gear wheel grinding device
CN114769995A (en) * 2022-04-18 2022-07-22 荣成锻压机床有限公司 Forging press eccentric wheel double-workpiece synchronous positioning tool

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088191A (en) * 2003-09-12 2005-04-07 Reishauer Ag Method and device for aligning work having pre-cut teeth on gear finishing machine
WO2008099714A1 (en) * 2007-02-06 2008-08-21 Mitsubishi Heavy Industries, Ltd. Gearing apparatus, and gear working machine
JP2008188717A (en) * 2007-02-06 2008-08-21 Mitsubishi Heavy Ind Ltd Gear alignment device and gear machining machine
KR101093473B1 (en) 2007-02-06 2011-12-13 미츠비시 쥬고교 가부시키가이샤 Gearing apparatus, and gear working machine
US8137160B2 (en) 2007-02-06 2012-03-20 Mitsubishi Heavy Industries, Ltd. Gear matching device and gear machining apparatus
CN101547765B (en) * 2007-02-06 2012-05-09 三菱重工业株式会社 Gearing apparatus, and gear working machine
WO2011043225A1 (en) * 2009-10-05 2011-04-14 本田技研工業株式会社 Device and method for measuring tooth surface run-out, device and method for moulding grinding tool, and method for aligning teeth in a gear wheel grinding device
CN102574230A (en) * 2009-10-05 2012-07-11 本田技研工业株式会社 Device and method for measuring tooth surface run-out, device and method for moulding grinding tool, and method for aligning teeth in a gear wheel grinding device
JP5367085B2 (en) * 2009-10-05 2013-12-11 本田技研工業株式会社 Tooth surface run-out measuring device, tooth surface run-out measuring method, grinding tool forming device, grinding tool forming method, and gear grinding method
US8678880B2 (en) 2009-10-05 2014-03-25 Honda Motor Co., Ltd. Apparatus and method for measuring tooth surface deviation, apparatus and method for forming grinding tool, and gear meshing method for gear grinding apparatus
CN114769995A (en) * 2022-04-18 2022-07-22 荣成锻压机床有限公司 Forging press eccentric wheel double-workpiece synchronous positioning tool
CN114769995B (en) * 2022-04-18 2024-02-06 荣成锻压机床有限公司 Synchronous positioning tool for double workpieces of eccentric wheel of forging press

Similar Documents

Publication Publication Date Title
JP4475817B2 (en) Method and apparatus for machining a toothed workpiece such as a gear before machining
JP6523723B2 (en) Grinding method of bevel gear by single tooth index grinding method
CN101811206A (en) Model becomes processed clip to be held in the method for the equipment and the workpiece that manufacturing has gear of the workpiece on the lathe
JP3730409B2 (en) Eyeglass lens processing equipment
JPH1058230A (en) Method and device for precision machining of flat gear
JP2003225803A (en) Turning device for crankshaft and its turning method
JPH05277913A (en) Process for grinding journal of crankshaft, and grinder therefor
JP2004330397A (en) Gear wheel honing method and working machine
JP3917844B2 (en) Cutting gears on both sides
JP4517091B2 (en) Gear finishing by synchronous drive
JP4635143B2 (en) Gear finishing by synchronous drive
CN103862333A (en) Taper-shank slotting cutter grinding device
JP4635142B2 (en) Gear finishing device and gear meshing method
JP4151105B2 (en) Hypoid gear lapping method and apparatus
WO1996026804A1 (en) Gear finishing device with a helical correction
JP3810640B2 (en) Method and apparatus for clamping workpiece in grinding machine
JP2600425B2 (en) Method and apparatus for lapping nut thread groove
JPH02139117A (en) Gap eliminator for numerically controlled gear grinding machine
JP3241453B2 (en) Grinding method
JP3412507B2 (en) Gear honing machine
JPH0957624A (en) Dressing method for honing of internal hard gear
JPH09168924A (en) Nut thread groove lapping method
JP3812869B2 (en) Cylindrical grinding method and apparatus
JP2004174634A (en) Method and device for grinding non-circular rotating body
JP3836098B2 (en) Crank pin grinding method and grinding apparatus