JP2004330204A - Method for electric resistance welded steel pipe - Google Patents

Method for electric resistance welded steel pipe Download PDF

Info

Publication number
JP2004330204A
JP2004330204A JP2003125015A JP2003125015A JP2004330204A JP 2004330204 A JP2004330204 A JP 2004330204A JP 2003125015 A JP2003125015 A JP 2003125015A JP 2003125015 A JP2003125015 A JP 2003125015A JP 2004330204 A JP2004330204 A JP 2004330204A
Authority
JP
Japan
Prior art keywords
coil
speed
steel strip
tail end
end part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003125015A
Other languages
Japanese (ja)
Other versions
JP4244690B2 (en
Inventor
Masashi Hiramitsu
雅司 平光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003125015A priority Critical patent/JP4244690B2/en
Publication of JP2004330204A publication Critical patent/JP2004330204A/en
Application granted granted Critical
Publication of JP4244690B2 publication Critical patent/JP4244690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an electric resistance welded steel pipe by which, even in the case of using a batch type producing process by uncoiling a steel strip by each coil and feeding the uncoiled steel strip sequentially, the productivity can be made higher than that of the conventional process. <P>SOLUTION: In the method for producing electric resistance welded steel pipe, the tip end part of the steel strip of the following coil starts to run at the same speed as that of the tail end part of the preceding coil with a delay of 60 to 90 sec compared to the tail end part of the steel strip of the preceding coil. After the tip end part of the steel strip of the following coil passes through a leveler, this steel strip runs at a speed higher by 30 to 40% than the tail end part speed of the steel strip in the preceding coil. Then, the tip end part of the steel strip of the following coil passes through an edge miller at a speed of 4 to 5 m/sec and accelerated so as to become faster by 30 to 40% than the tail end speed of the preceding coil until the inlet side of a forming mill from the outlet of this edge miller and further become 4 to 5 m/min from the inlet side of the forming mill to only a first step of a fin-pass roll, and on and after the second step, the speed of the tip end part of the following coil is again returned to the same speed as the tail end speed of the preceding coil. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電縫鋼管の製造方法に係わり、特に、コイル毎に鋼帯を巻き戻して順次送り込むバッチ方式の製造工程で、生産性を従来より高める技術改良に関する。
【0002】
【従来の技術】
電縫鋼管は、一般に、素材の鋼帯を走行させた状態で、一群の成形ロールによって円筒状に連続的に成形した後、突き合せた鋼帯の幅方向端部を溶接して製造される。図示していないが、溶鋼を連続鋳造して得た鋼鋳片を加熱炉で所定温度に加熱してから、熱間圧延で一定幅の鋼帯とする。この鋼帯は、巻き取られて、一本の重量が約40トン程度のコイルになっている。そして、このコイルをアンコイラーで一本ずつ巻き戻して、製造ラインに順次送り込むことで電縫鋼管とされる。この場合、先行するコイルの鋼帯後端(以下、単に後端)と、後行させるコイルの鋼帯先端(以下、単に先端)とを溶接で一体化させ、所謂「連続操業」を行う方法と、溶接せずに一定距離離して不連続操業(回分操業とかバッチ操業ともいう)を行う方法がある。また、先行コイルと後行コイルの鋼帯同士を溶接せずに電縫鋼管としてから、先行電縫鋼管の後端に後行電縫鋼管の先端を追突させ、両者を噛み合った状態で後の定形(絞り)工程を通過させる不連続操業もある(例えば、特許公報1参照)。
【0003】
これらの操業のうち、通常行われる不連続操業は、まず、図4に示すように、アンコイラー1で巻きもどされた鋼帯2が、レベラー18で平坦にした後、エッジ・ミラー3で端部を整え、、エッジ・ベンド・ロール5で始まり多段のフィンパス・ロール(一段のみ図示)6で終わる一群の成形ミル7に鋼帯面を水平にして一定速度で送り込まれる。これら成形ミル7で円筒状に成形された鋼帯2は、その突き合わされた幅方向端部(以下、単に突き合わせ部とかシーム部という)を高周波抵抗溶接機8等で加熱され、スクイズ・ロール9で押さえて圧着、溶接し、一応の管体10とされる。その管体10には、上記溶接で内外面にビード(図示していないが、通常の溶着部に生じたじゅず状突起物)が生じているので、該ビードを切削手段11で切削除去する。さらに、超音波探傷器12での疵検査後、熱処理としてシーム・アニラーなる焼鈍装置13で溶接部(前記シーム部)の焼鈍及び水噴射ノズル14での冷却が順次施される。その後、サイザー15のような絞り圧延機で寸法を整えてから、払い出し用の搬送ライン上で走間切断機16により所望される長さに切断されて、所望特性を有する電縫鋼管17とする。また、接合方法を上記溶接に代え、鍛接とすると、鍛接鋼管になる。
【0004】
ところで、厚み19mm、幅2200mmの鋼帯2でかかる不連続操業の工程を経て電縫鋼管17を製造する現状を、先行コイルの尾端位置と後行コイルの先端位置の時間間隔で示すと、図3に示すようになる。つまり、先行コイルの尾端がレベラー出側を抜けてから90秒後に、後行コイルがレベラー出側を通過する。その先端速度は、先行コイルの尾端速度と同じである。そして、該先端をエッジ・ミラー(記号:E/M)へ噛み込ませるために一度減速(これを、E/Mスレッディング速度という)してから、再度先行コイルの尾端速度に戻す。その後、スクイズ・ロール(記号:SQ)で溶接するのに時間を必要とするので、後行コイルの先端が成形ミルの最終圧延機であるフィンパス・ロール(記号:FP)の入側に達したら、スクイズ・ロールの出側に至るまで再度減速(FP〜SQ間スレッディング速度という)し、その後は当初の速度に戻す。
【0005】
従って、スクイズ・ロールの出側位置で比較すると、先行コイルの尾端と後行コイルの先端とは、時間にして約3分の間隔があり、バッチ方式の電縫鋼管製造工程での生産性を阻害する一因になっていた。
【0006】
【特許文献1】
特開平6−198330号公報
【0007】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、コイル毎に鋼帯を巻き戻して順次送り込むバッチ方式の製造工程を用いても、生産性を従来より高めることの可能な電縫鋼管の製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。
【0009】
すなわち、本発明は、アンコイラーで各鋼帯コイル毎に鋼帯を巻き戻し、レベラーにて歪矯正を行い、エッジ・ミラーで端部を整え、成形ミルで円筒状に成形した後、その突き合わしたシーム部を誘導コイルで加熱し、スクイズ・ロールで押さえて圧着、溶接して管体とする電縫鋼管の製造方法において、後行コイルの鋼帯先端が、先行コイルの鋼帯尾端に60〜90秒遅れて先行コイルの尾端速度と同じ速度で走行開始し、該後行コイルの鋼帯先端がレベラー通過後、先行コイルの尾端速度より30〜40%速い速度で走行し、該後行コイルの鋼帯先端速度が4〜5m/minの速度でエッジ・ミラーを通過し、該エッジ・ミラーの出側から前記成形ミルの入側までを前記先行コイルの尾端速度より30〜40%速くなるように増速し、さらに成形ミル入側よりフィンパス・ロールの一段目だけを4〜5m/minになるようにし、二段目以降を前記先行コイルの尾端速度と同じ速度に再度戻すことを特徴とする電縫鋼管の製造方法である。この場合、前記先行コイルの尾端速度を、10〜40m/minとするのが良く、さらに好ましくは、12〜20m/minとする。
【0010】
本発明によれば、コイル毎に鋼帯を巻き戻して順次送り込むバッチ方式の製造工程を用いても、後行コイルの先端速度を該製造工程の位置に応じて従来より増速するようにしたので、生産性を従来より高めることが可能になる。
【0011】
【発明の実施の形態】
以下、発明をなすに至った経緯をまじえ、本発明の実施の形態を説明する。
【0012】
本発明の対象は、鋼帯コイルを一個づつアンコイラーで巻き戻し、製造工程へ順次送る所謂「バッチ方式」の電縫鋼管の製造方法である。つまり、図4に示したように、アンコイラー1で巻き戻した鋼帯2をエッジ・ミラー3で端部を整えた後、エッジ・ベンド・ロール5で始まり多段のフィンパス・ロール6で終わる一群の成形ミル7で円筒状に成形した後、その突き合わしたシーム部を高周波抵抗溶接機8で加熱し、スクイズ・ロール9で押さえて圧接、溶接して管体10とする電縫鋼管17の製造工程を利用し、その操業方法を改善するものである。
【0013】
そのため、発明者は、前記した従来の操業方法での先行コイルの尾端位置と後行コイルの先端位置の時間間隔(図3参照)、約3分を少しでも短縮できれば生産性が向上するので、製造工程において短縮可能な位置を検討した。その結果、下記の数ケ所でそれが実現できることを見出し、本発明を完成させた。以下に、本発明に係る製造方法での先行コイルの尾端と後行コイルの先端との時間間隔を模式的に示す図1に基づき、本発明を説明する。なお、この説明例では、熱間圧延で製造した幅1930mm、厚み22mm、長さ110mの鋼帯コイルを使用した場合である。
【0014】
まず、先行コイルの尾端がレベラー出側を抜けてから90秒後に、先行コイルの尾端速度と同じ速度で後行コイルの先端の走行を開始することについては、アンコイラーに後行コイルをセットする時間に制約されるので、上記90秒はあまり短縮できない。ただし、セット作業に対する熟練度が高い作業者によれば、60秒まで短縮できるので、下限を60秒とした。なお、前記先行コイルの尾端速度については、鋼管の素材鋼種、サイズ等により異なるが、本発明では、10〜40m/minとする。10m/min未満だと現在の設備能力に対して遅すぎ、40m/min超えだと速すぎるからである。
【0015】
次に、後行コイルの先端をエッジ・ミラー(記号:E/M)へ噛み込ませるために一度減速(これを、E/Mスレッディング速度という)してから、再度先行コイルの尾端速度に戻すことについては、該E/Mスレッディング速度を4〜5m/minに減速することにした。減速の上限を5m/minとしたのは、それ以上速いと減速した効果が発揮されず、エッジ・ミラーへのコイル先端の噛み込みが円滑に行えないことがあるからである。また、減速の下限を4m/minとしたのは、その速度で十分に噛み込みが行われるからである。
【0016】
引き続いて、先端がエッジ・ミラー通過後は、従来は前記一定速度に戻していたが、成形ミルの入側まではピンチロールしかなく、走行の大きな抵抗(障害)になるものがない。そこで、その区間で増速が可能かどうかを検討した。その結果、該エッジ・ミラーの出側から前記成形ミルの入側(記号:PF)までを前記先行コイルの尾端速度より30〜40%速い速度に増速できることがわかった。30%未満だと、増速効果が小さ過ぎ、40%超えだと、速すぎて搬送能力不足となるため不都合だからである。
【0017】
そして、該成形ミル入側よりフィンパス・ロールの入側までを前記先行コイルの尾端速度と同じ速度で走行させるが、前記したように、従来は、後行コイルの先端がフィンパス・ロール(記号:FP)の入側に達したら、スクイズ・ロールの出側に至るまで再度減速(FP〜SQ間スレッディング速度という)していた。そこで、発明者は、このフィンパス・ロールの入側からスクイズ・ロールの出側までの減速について鋭意見直しを行った。その結果、多段に配置したフィンパス・ロールの一段目だけを4〜5m/minに減速し、二段目以降を前記先行コイルの尾端速度と同じ速度に再度戻すだけでも、問題が生じないことを見出し、本発明の重要ポイントとした。ここでの減速を4〜5m/minとしたのは、5m/min超えだと減速効果が発揮できず、先端部がロールに円滑に噛み込まず、4m/minあれば噛み込むからである。
【0018】
【実施例】
図4に示した電縫鋼管の製造工程を用い、従来の及び本発明に係る製造方法で多数本の電縫鋼管を製造した。製品のサイズは、外径609.6mmφ×肉厚22mmで、アンコイラーより鋼帯の走行を開始する前記先行コイルの尾端速度は、14m/minとし,後行コイルは、先行コイルの尾端がアンコイラーを離れてから90秒経過後に走行を開始させた。図2にその様子を模式的に示した。従来例及び本発明例での製造工程を走行する鋼帯あるいは管体の速度は、表1に示す通りである。
【0019】
【表1】

Figure 2004330204
【0020】
その結果が図2であるが、スクイズ・ロールの出側位置での先行コイルの尾端と後行コイルの後端との時間間隔は、従来法では3分であったが、本発明では約1分と短縮できた。また、これにより、同一鋼種及びサイズの電縫鋼管の生産速度(本/時間)が従来より20%向上した。
【0021】
【発明の効果】
以上述べたように、本発明により、後行コイルの先端速度を製造工程の位置に応じて増速するようにしたので、生産性を従来より高めることが可能になる。
【図面の簡単な説明】
【図1】本発明に係る電縫鋼管の製造方法における先行コイルの尾端と後行コイルの先端との時間間隔を模式的に示す図である。
【図2】実施例で得た先行コイルの尾端と後行コイルの先端との時間間隔を示す図である。
【図3】従来の電縫鋼管の製造方法における先行コイルの尾端と後行コイルの先端との時間間隔を示す図である。
【図4】一般的なバッチ方式の電縫鋼管の製造工程を示すフロー図である。
【符号の説明】
1 アンコイラー
2 鋼帯
3 エッジ・ミラー
4 ピンチローラー
5 エッジ・ベンド・ロール
6 フィンパス・ロール
7 成形ミル
8 高周波抵抗溶接機
9 スクイズ・ロール
10 管体
11 切削手段
12 超音波探傷器
13 焼鈍装置
14 水噴射ノズル
15 サイザー
16 走間切断機
17 電縫鋼管
18 レベラー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an electric resistance welded steel pipe, and more particularly to a technical improvement for improving productivity in a batch-type manufacturing process in which a steel strip is rewound for each coil and sequentially fed.
[0002]
[Prior art]
An ERW steel pipe is generally manufactured by continuously forming a steel strip of a material into a cylindrical shape by a group of forming rolls while running the steel strip, and then welding the widthwise ends of the butted steel strips. . Although not shown, a steel slab obtained by continuously casting molten steel is heated to a predetermined temperature in a heating furnace and then hot-rolled into a steel strip having a constant width. This steel strip is wound into a coil having a weight of about 40 tons. Then, the coil is rewound one by one by an uncoiler and sequentially fed into a production line to form an ERW steel pipe. In this case, a method of performing a so-called “continuous operation” by integrating the rear end of the steel strip of the preceding coil (hereinafter, simply referred to as the rear end) and the front end of the steel strip of the coil to be followed (hereinafter, simply referred to as the front end) by welding. There is a method of performing discontinuous operation (also called batch operation or batch operation) at a certain distance without welding. Also, after welding the steel strips of the leading coil and the trailing coil to each other without welding, the tip of the trailing electrical resistance welded steel pipe is caused to collide with the rear end of the preceding electrical resistance welded steel pipe, and the two are meshed with each other. There is also a discontinuous operation that passes through a fixed (drawing) process (see, for example, Patent Document 1).
[0003]
Among these operations, the discontinuous operation, which is usually performed, is as follows. First, as shown in FIG. 4, after the steel strip 2 unwound by the uncoiler 1 is flattened by the leveler 18, the end mirror 3 And the steel strip surface is fed at a constant speed to a group of forming mills 7 starting from the edge bend roll 5 and ending with a multi-stage fin pass roll (only one stage is shown) 6. The steel strip 2 formed into a cylindrical shape by these forming mills 7 is heated by a high-frequency resistance welding machine 8 or the like at the butted end in the width direction (hereinafter, simply referred to as a butted portion or a seam portion), and is squeezed and rolled. And press-bonded and welded to form a temporary pipe 10. Since a bead (not shown, but a thread-like projection formed on a normal welded portion) is formed on the inner and outer surfaces of the pipe 10 by the above welding, the bead is cut and removed by the cutting means 11. Further, after the flaw inspection by the ultrasonic flaw detector 12, as a heat treatment, annealing of the welded portion (the seam portion) and cooling by the water injection nozzle 14 are sequentially performed by the annealing device 13 as a seam aniler. Thereafter, the size is adjusted by a drawing mill such as a sizer 15 and then cut to a desired length by a running cutter 16 on a transfer line for dispensing to form an ERW steel pipe 17 having desired characteristics. . In addition, when the joining method is replaced by the above-mentioned welding and forged, a forged steel pipe is obtained.
[0004]
By the way, the current state of manufacturing the electric resistance welded steel pipe 17 through such a discontinuous operation process with the steel strip 2 having a thickness of 19 mm and a width of 2200 mm is represented by a time interval between the tail end position of the preceding coil and the tip end position of the following coil. As shown in FIG. That is, 90 seconds after the tail end of the preceding coil passes through the leveler exit side, the following coil passes through the leveler exit side. The tip speed is the same as the tail speed of the preceding coil. Then, the tip is once decelerated (this is referred to as an E / M threading speed) so as to bite into the edge mirror (symbol: E / M), and then returned to the tail end speed of the preceding coil again. After that, since it takes time to weld with a squeeze roll (symbol: SQ), when the leading end of the following coil reaches the entry side of the fin pass roll (symbol: FP), which is the final rolling mill of the forming mill, Then, the speed is reduced again until reaching the exit side of the squeeze roll (referred to as a threading speed between FP and SQ), and thereafter, the speed is returned to the initial speed.
[0005]
Therefore, when compared at the exit side position of the squeeze roll, the tail end of the preceding coil and the front end of the following coil have an interval of about 3 minutes in time, and the productivity in the batch-type ERW pipe manufacturing process is reduced. Was a factor in inhibiting
[0006]
[Patent Document 1]
JP-A-6-198330
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides a method of manufacturing an electric resistance welded steel pipe capable of increasing productivity as compared with the conventional method even when using a batch-type manufacturing process in which a steel strip is unwound and sequentially fed for each coil. It is an object.
[0008]
[Means for Solving the Problems]
The inventor conducted intensive research to achieve the above object, and realized the results in the present invention.
[0009]
That is, in the present invention, the steel strip is rewound for each steel strip coil by an uncoiler, straightened by a leveler, trimmed with an edge mirror, formed into a cylindrical shape by a forming mill, and then butted. The seam part is heated with an induction coil, pressed with a squeeze roll, crimped, and welded to form a tubular body.In the method of manufacturing an ERW steel pipe, the tip of the steel strip of the following coil is attached to the tail end of the steel strip of the preceding coil. The running starts at the same speed as the tail end speed of the preceding coil with a delay of 60 to 90 seconds, and after the steel strip tip of the following coil passes through the leveler, runs at a speed 30 to 40% faster than the tail end speed of the preceding coil, The leading end speed of the steel strip of the succeeding coil passes through the edge mirror at a speed of 4 to 5 m / min, and the distance from the exit side of the edge mirror to the entrance side of the forming mill is 30 times lower than the tail end speed of the preceding coil. Speed up to ~ 40% faster, An electric resistance welded steel pipe characterized in that only the first stage of the fin pass roll is set at 4 to 5 m / min from the entry side of the forming mill, and the second stage and subsequent stages are returned to the same speed as the tail end speed of the preceding coil. Is a manufacturing method. In this case, the tail end speed of the preceding coil is preferably 10 to 40 m / min, and more preferably 12 to 20 m / min.
[0010]
According to the present invention, even if a batch-type manufacturing process in which a steel strip is unwound and sequentially fed for each coil is used, the tip speed of the succeeding coil is increased according to the position of the manufacturing process. Therefore, it is possible to increase productivity more than before.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described, taking into account the circumstances that led to the invention.
[0012]
An object of the present invention is a method of manufacturing a so-called "batch type" ERW steel pipe in which a steel strip coil is rewound one by one by an uncoiler and sequentially sent to a manufacturing process. That is, as shown in FIG. 4, after the steel strip 2 unwound by the uncoiler 1 is trimmed with the edge mirror 3, a group of steel strips starting with the edge bend roll 5 and ending with the multi-stage fin pass roll 6 is formed. After being formed into a cylindrical shape by the forming mill 7, the butted seam portion is heated by a high-frequency resistance welding machine 8, pressed by a squeeze roll 9, pressed and welded to produce an ERW steel pipe 17 to be a pipe body 10. The process is used to improve the operation method.
[0013]
Therefore, if the time interval (see FIG. 3) between the tail end position of the leading coil and the leading end position of the following coil in the conventional operation method described above can be shortened by about 3 minutes, the productivity is improved. The possible positions in the manufacturing process were studied. As a result, they have found that it can be realized in the following several places, and have completed the present invention. Hereinafter, the present invention will be described with reference to FIG. 1, which schematically shows a time interval between the tail end of the preceding coil and the front end of the following coil in the manufacturing method according to the present invention. In this example, a steel strip coil having a width of 1930 mm, a thickness of 22 mm, and a length of 110 m manufactured by hot rolling is used.
[0014]
First, 90 seconds after the tail end of the preceding coil passes through the leveler exit side, the running of the leading end of the following coil at the same speed as the tail end speed of the preceding coil is started by setting the following coil in the uncoiler. The 90 seconds cannot be reduced so much because the time is limited. However, according to a worker having a high level of skill in the setting operation, the time can be reduced to 60 seconds. Therefore, the lower limit is set to 60 seconds. Note that the tail end speed of the preceding coil varies depending on the type and size of the material steel of the steel pipe, but is set to 10 to 40 m / min in the present invention. If it is less than 10 m / min, it is too slow with respect to the current facility capacity, and if it exceeds 40 m / min, it is too fast.
[0015]
Next, the tip of the succeeding coil is once decelerated so as to bite into the edge mirror (symbol: E / M) (this is referred to as E / M threading speed), and then again to the tail end speed of the preceding coil. For returning, the E / M threading speed was reduced to 4 to 5 m / min. The reason why the upper limit of the deceleration is set to 5 m / min is that if the speed is higher than this, the effect of the deceleration is not exhibited, and the tip of the coil may not be smoothly engaged with the edge mirror. Further, the lower limit of the deceleration is set to 4 m / min, because the biting is sufficiently performed at that speed.
[0016]
Subsequently, after the tip has passed through the edge mirror, the speed is conventionally returned to the above-mentioned constant speed. However, there is only a pinch roll up to the entry side of the forming mill, and there is nothing that causes a large resistance (obstacle) in running. Therefore, we examined whether the speed increase was possible in that section. As a result, it was found that the speed from the exit side of the edge mirror to the entry side (symbol: PF) of the forming mill can be increased to a speed that is 30 to 40% higher than the tail end speed of the preceding coil. If it is less than 30%, the speed-up effect is too small, and if it is more than 40%, it is too fast and the transport capacity is insufficient, which is inconvenient.
[0017]
Then, the head is driven at the same speed as the tail end speed of the preceding coil from the entry side of the forming mill to the entry side of the fin pass roll. : FP), the speed was reduced again (referred to as the threading speed between FP and SQ) until the squeeze roll reached the exit side. Therefore, the inventor has intensively reviewed the deceleration from the entrance of the fin pass roll to the exit of the squeeze roll. As a result, no problem occurs even if only the first stage of the fin-pass rolls arranged in multiple stages is reduced to 4 to 5 m / min and the second stage and subsequent stages are returned to the same speed as the tail end speed of the preceding coil. Was found as an important point of the present invention. The reason why the deceleration is set to 4 to 5 m / min is that if the speed exceeds 5 m / min, the deceleration effect cannot be exerted, and the leading end does not bite into the roll smoothly, and if the speed is 4 m / min, it bites.
[0018]
【Example】
Using the manufacturing process of the ERW steel pipe shown in FIG. 4, a number of ERW steel pipes were manufactured by the conventional method and the manufacturing method according to the present invention. The product has an outer diameter of 609.6 mmφ x a wall thickness of 22 mm, the leading end speed of the preceding coil at which the steel strip starts traveling from the uncoiler is 14 m / min, and the trailing coil has a trailing end of the leading coil. Running was started 90 seconds after leaving the uncoiler. FIG. 2 schematically shows this state. Table 1 shows the speeds of the steel strip or the pipe running in the manufacturing process in the conventional example and the present invention example.
[0019]
[Table 1]
Figure 2004330204
[0020]
The result is shown in FIG. 2. The time interval between the tail end of the preceding coil and the rear end of the following coil at the exit position of the squeeze roll was 3 minutes in the conventional method, but was about 3 minutes in the present invention. It was reduced to one minute. This also increased the production speed (book / hour) of ERW steel pipes of the same steel type and size by 20% compared to the conventional case.
[0021]
【The invention's effect】
As described above, according to the present invention, the tip speed of the following coil is increased in accordance with the position of the manufacturing process, so that the productivity can be increased as compared with the related art.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a time interval between a tail end of a preceding coil and a tip of a following coil in the method for manufacturing an electric resistance welded steel pipe according to the present invention.
FIG. 2 is a diagram showing a time interval between a tail end of a leading coil and a tip end of a following coil obtained in the embodiment.
FIG. 3 is a diagram showing a time interval between a tail end of a preceding coil and a front end of a following coil in a conventional method of manufacturing an electric resistance welded steel pipe.
FIG. 4 is a flowchart showing a manufacturing process of a general batch-type ERW steel pipe.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Uncoiler 2 Steel strip 3 Edge mirror 4 Pinch roller 5 Edge bend roll 6 Fin pass roll 7 Forming mill 8 High frequency resistance welding machine 9 Squeeze roll 10 Tube 11 Cutting means 12 Ultrasonic flaw detector 13 Annealing device 14 Water Injection nozzle 15 Sizer 16 Cutting machine during running 17 ERW steel pipe 18 Leveler

Claims (2)

アンコイラーで各鋼帯コイル毎に鋼帯を巻き戻し、レベラーにて歪矯正を行い、エッジ・ミラーで端部を整え、成形ミルで円筒状に成形した後、その突き合わしたシーム部を誘導コイルで加熱し、スクイズ・ロールで押さえて圧着、溶接して管体とする電縫鋼管の製造方法において、
後行コイルの鋼帯先端が、先行コイルの鋼帯尾端に60〜90秒遅れて先行コイルの尾端速度と同じ速度で走行開始し、該後行コイルの鋼帯先端がレベラー通過後、先行コイルの尾端速度より30〜40%速い速度で走行し、該後行コイルの鋼帯先端速度が4〜5m/minの速度でエッジ・ミラーを通過し、該エッジ・ミラーの出側から前記成形ミルの入側までを前記先行コイルの尾端速度より30〜40%速くなるように増速し、さらに成形ミル入側よりフィンパス・ロールの一段目だけを4〜5m/minになるようにし、二段目以降を前記先行コイルの尾端速度と同じ速度に再度戻すことを特徴とする電縫鋼管の製造方法。
After rewinding the steel strip for each steel strip coil with an uncoiler, correcting the distortion with a leveler, trimming the end with an edge mirror, shaping it into a cylindrical shape with a forming mill, and then abutting the seam part with an induction coil In the method of manufacturing ERW steel pipes, which are heated with squeeze rolls, pressed with
The leading end of the steel strip of the succeeding coil starts running at the same speed as the tail end speed of the leading coil with a delay of 60 to 90 seconds behind the leading end of the steel strip of the leading coil, and after the leading end of the steel strip of the following coil passes through the leveler, It travels at a speed that is 30 to 40% faster than the tail end speed of the preceding coil, and the steel strip tip speed of the following coil passes through the edge mirror at a speed of 4 to 5 m / min, and from the exit side of the edge mirror. The speed up to the entry side of the forming mill is increased so as to be 30 to 40% faster than the tail end speed of the preceding coil, and only the first stage of the fin pass roll from the entry side of the forming mill becomes 4 to 5 m / min. And returning the second and subsequent stages to the same speed as the tail end speed of the preceding coil again.
前記先行コイルの尾端速度を、10〜40m/minとすること特徴とする請求項1記載の電縫鋼管の製造方法。The method for manufacturing an electric resistance welded steel pipe according to claim 1, wherein the tail end speed of the preceding coil is set to 10 to 40 m / min.
JP2003125015A 2003-04-30 2003-04-30 ERW steel pipe manufacturing method Expired - Fee Related JP4244690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125015A JP4244690B2 (en) 2003-04-30 2003-04-30 ERW steel pipe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125015A JP4244690B2 (en) 2003-04-30 2003-04-30 ERW steel pipe manufacturing method

Publications (2)

Publication Number Publication Date
JP2004330204A true JP2004330204A (en) 2004-11-25
JP4244690B2 JP4244690B2 (en) 2009-03-25

Family

ID=33502404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125015A Expired - Fee Related JP4244690B2 (en) 2003-04-30 2003-04-30 ERW steel pipe manufacturing method

Country Status (1)

Country Link
JP (1) JP4244690B2 (en)

Also Published As

Publication number Publication date
JP4244690B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
US2959849A (en) Method and apparatus for making pipe
JP2004330204A (en) Method for electric resistance welded steel pipe
JP4698132B2 (en) Hot rolling equipment
JP2000190020A (en) Manufacture of plate and bar and manufacture of welded groove tube
JP4250849B2 (en) ERW steel pipe manufacturing method and equipment row
JP5515423B2 (en) Large coil manufacturing equipment for ERW steel pipes
JP4661370B2 (en) ERW steel pipe manufacturing method
JP7126076B2 (en) Cold-rolled steel strip manufacturing facility and cold-rolled steel strip manufacturing method
JP3649138B2 (en) Operation method of continuous steel pipe manufacturing equipment
JP4172084B2 (en) Manufacturing method of hot-rolled steel sheet by sheet thickness press
JP4065251B2 (en) Hot finish rolling method that prevents drawing wrinkles
JP5087759B2 (en) Manufacturing method of hot rolled stainless steel strip for continuous annealing pickling line
US11241726B2 (en) Hot-rolled steel sheet and method for manufacturing same
JP3691909B2 (en) Forged steel pipe manufacturing equipment
JP4218115B2 (en) Method and apparatus for producing hot-rolled steel sheet by sheet thickness press
JP2001079605A (en) Method for cutting strip having different width
JP2005169455A (en) Manufacturing apparatus for electric resistance welded tube
JP4552244B2 (en) Steel pipe manufacturing method
JPH06170411A (en) Continuous hot rolling equipment for billet
JP3458059B2 (en) Multi-strand continuous rolling method and apparatus
JPS59101204A (en) Hot continuous rolling method
JPH11221602A (en) Equipment train for continuously hot rolling slab
JPH07214146A (en) Production of spiral welded pipe and its device
JP2004122162A (en) Equipment train for continuously casting / manufacturing hot-rolled steel strip and method for manufacturing hot-rolled steel strip
JPS60127027A (en) Manufacturing equipment of coiled steel tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Effective date: 20060925

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120116

LAPS Cancellation because of no payment of annual fees