JP2004330126A - Electrode for electro-osmotic dehydrator, and production method therefor - Google Patents

Electrode for electro-osmotic dehydrator, and production method therefor Download PDF

Info

Publication number
JP2004330126A
JP2004330126A JP2003131286A JP2003131286A JP2004330126A JP 2004330126 A JP2004330126 A JP 2004330126A JP 2003131286 A JP2003131286 A JP 2003131286A JP 2003131286 A JP2003131286 A JP 2003131286A JP 2004330126 A JP2004330126 A JP 2004330126A
Authority
JP
Japan
Prior art keywords
range
electrode
fiber length
average fiber
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003131286A
Other languages
Japanese (ja)
Inventor
Mikio Inoue
幹夫 井上
Takashi Senda
崇史 千田
Takayuki Yamanaka
貴幸 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003131286A priority Critical patent/JP2004330126A/en
Publication of JP2004330126A publication Critical patent/JP2004330126A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for an electro-osmotic dehydrator small in depletion and long in service life, and to provide a production method therefor. <P>SOLUTION: The electrode is formed of carbon short fibers dispersed in random directions in a two-dimensional plane with an average fiber length in the range of 5-25 mm, and carbon short fibers with an average fiber length in the range of 0.01-1 mm both bound with carbon, having a bulk density of 1-1.4 g/cm<SP>3</SP>. The production method for the electrode comprises processes of: obtaining a composite sheet containing 75-90 wt.% of carbonizable organic matter by impregnating a mixture of the carbon short fibers with the average fiber length of 0.01-1 mm and a carbonizable organic matter; obtaining molded goods by laminating a plurality of composite sheets and molding at a pressure of 0.3-3 Mpa; and carbonizing the organic matter by baking the molded goods in an inert atmosphere at 650-1,000°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炭素繊維・炭素複合材料からなる、電気浸透式脱水機に用いる電極と、その電極の製造方法に関する。
【0002】
【従来の技術】
電気浸透式脱水機の電極には、圧搾時(脱水時)の力に耐え得る高い曲げ強度を有していることはもちろんのこと、濾布や汚泥との接触、摩耗による減耗が少なく、通電による電気化学的酸化や通電による酸性、アルカリ性の環境に対する耐食性が高く、長期の使用に耐えることが要求される。
【0003】
そのような電気浸透式脱水機用電極としては、従来、平均繊維長が2〜20mmの範囲内にある炭素短繊維の抄造シートにフェノール樹脂等の炭素化可能な有機物を含浸してなる複合シートを1,200℃以下の温度で焼成して有機物を炭素化し、二次元平面内においてランダムな方向に分散せしめられた、平均繊維長が2〜20mmの範囲内にある炭素短繊維を炭素によって相互に結着してなるようなものが知られている(たとえば、特許文献1参照)。また、かさ密度を高め、寿命を延長するために、焼成した後に有機物を再び含浸し、再び焼成することも知られている(たとえば、特許文献2参照)。しかしながら、これらは、いずれも、二次元平面内においてランダムな方向に分散せしめられた炭素短繊維の空隙に有機物を含浸し、炭素化するものであるため、1本1本の炭素短繊維の間に、炭素短繊維を含んでいない、数十μmから100μmの大きさの有機物の炭素化物の塊が含まれていて、その炭素化物の塊が使用時に壊れて脱落するので、減耗が著しいという問題がある。また、再含浸工程や再焼成工程を含む後者のものは、製造コストが高いうえに、再含浸による有機物の炭素化物は、再含浸時の空隙は小さく、大きな物理的接着力が得られないためか脱落しやすく、かさ密度の増大に見合うほどの寿命の延長は得られていない。
【0004】
【特許文献1】
特開平3−135494号公報
【0005】
【特許文献2】
特開平3−221108号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、従来の技術の上述した問題点を解決し、減耗が少なくて寿命の長い電気浸透式脱水機用電極とその製造方法を提供するにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、二次元平面内においてランダムな方向に分散せしめられた、平均繊維長が5〜25mmの範囲内にある炭素短繊維と、平均繊維長が0.01〜1mmの範囲内にある炭素短繊維とが炭素によって相互に結着されており、かつ、かさ密度が1〜1.4g/cmの範囲内にある電気浸透式脱水機用電極を提供する。ここにおいて、電極は、広角X線によって求めた炭素の(002)ピークの半値幅が5.5〜7.5゜の範囲内にあるのが好ましい。また、熱天秤による500℃における減量率が10%以下であり、かつ、700℃におけるそれが少なくとも90%であるのが好ましい。
【0008】
上述した電気浸透式脱水機用電極は、二次元平面内においてランダムな方向に分散せしめられた、平均繊維長が5〜25mmの範囲内にある炭素短繊維からなるシートに、平均繊維長が0.01〜1mmの範囲内にある炭素短繊維と炭素化可能な有機物とを含む混合物を含浸して炭素化可能な有機物を75〜90重量%の範囲内で含む複合シートを得る工程と、複合シートの複数枚を積層し、0.3〜3MPaの範囲内の圧力下に成形し、成形品を得る工程と、成形品を不活性雰囲気中にて650〜1,000℃の範囲内の温度で焼成して有機物を炭素化する工程とを含む方法によって得ることができる。炭素短繊維を用いることに代えて、炭素短繊維の前駆体短繊維を用い、焼成時に前駆体短繊維を炭素化して炭素短繊維とすることもできる。
【0009】
【発明の実施の形態】
本発明に係る電気浸透式脱水機用電極(以下、単に電極という)をその製造方法とともに説明するに、本発明においては、二次元平面内においてランダムな方向に分散せしめられた、平均繊維長が5〜25mmの範囲内にある炭素短繊維からなるシートに、平均繊維長が0.01〜1mmの範囲内にある炭素短繊維と炭素化可能な有機物とを含む混合物を含浸して炭素化可能な有機物を75〜90重量%の範囲内で含む複合シートを得た後、その複合シートの複数枚を積層し、0.3〜3MPaの範囲内の圧力下に成形し、成形品を得る。そして、その成形品を不活性雰囲気中にて650〜1,000℃の範囲内の温度で焼成して有機物を炭素化し、炭素短繊維を有機物の炭素化物で結着してなる、すなわち、炭素短繊維を炭素で結着してなる電極とする。したがって、得られる電極には、平均繊維長が5〜25mmの範囲内にある比較的長い炭素短繊維と、平均繊維長が0.01〜1mmの範囲内にある比較的短い炭素短繊維とが含まれることになる。炭素短繊維を用いることに代えて、その前駆体繊維の短繊維を用い、焼成時に炭素化して炭素短繊維とすることもできる。
【0010】
炭素短繊維を構成する炭素繊維としては、ポリアクリロニトリル(PAN)系繊維、ピッチ系繊維、レーヨン系繊維、フェノール系繊維等を前駆体繊維とするものを用いることができる。なかでも、曲げ強度等の機械的特性に優れた電極が得られるという理由で、PAN系繊維を前駆体繊維とするPAN系炭素繊維を用いるのが好ましい。なお、用いる炭素繊維は、あまり細いものは、高価であるうえに少しの消耗でも電極の機械的強度が低下し、また、あまり太いものは、炭素短繊維間の空隙が大きくなって結着炭素の塊が大きくなり、やはり電極の機械的強度が低下するようになるので、平均繊維径が3〜20μmの範囲内にあるようなものを選択して用いるのが好ましい。
【0011】
平均繊維長が5〜25mmの範囲内にある比較的長い炭素短繊維は、二次元平面内においてランダムな方向に分散せしめられている。すなわち、二次元平面内においてランダムな方向を向いて横たわっているが、ランダムな方向を向いていることで炭素短繊維間に結着炭素の過多な部分ができたり大きな空隙ができたりするようなことがなくなり、炭素短繊維の剥離、脱落や、電極のクラックの発生が防止されるようになる。また、横たわっていることで電極の曲げ強度が向上する。一方、平均繊維長が0.01〜1mmの範囲内にある比較的短い炭素短繊維は、比較的長い炭素短繊維間に入り込んでその炭素短繊維間に結着炭素のみからなる塊ができるのを防止し、電極の減耗や炭素短繊維の脱落を防止するとともに、電極のかさ密度を増大させる。後述する炭素化可能な有機物は、焼成、炭素化によって収縮し、重量も減少するのに対し、炭素短繊維の重量は焼成によってもほとんど変わらないからである。
【0012】
比較的長い炭素短繊維は、上述したように平均繊維長が5〜25mmの範囲内にある。平均繊維長が5mmに満たないときは、電極として必要な曲げ強度が得られない。また、25mmを超えるようなものは、シート化が難しいために電極の均一性が低下し、寿命が大きく低下する。比較的長い炭素短繊維の好ましい平均繊維長の範囲は、9〜18mmである。一方、比較的短い炭素短繊維は、平均繊維長が0.01〜1mmの範囲内にある。平均繊維長が0.01mmに満たないときは、結着炭素とともに脱落しやすく、電極の寿命が大きく低下する。また、1mmを超えるようなものは、比較的長い炭素短繊維間に入り込みにくいために分散性が悪くなり、そのため、電極の均一性が低下し、やはり寿命が大きく低下する。比較的短い炭素短繊維の好ましい平均繊維長の範囲は、0.01〜0.2mmであり、さらに好ましい範囲は0.02〜0.05mmである。なお、炭素短繊維の平均繊維長は、重量平均による平均繊維長である。
【0013】
平均繊維長が0.01〜1mmの範囲内にある炭素短繊維は、重量比で、平均繊維長が5〜25mmの範囲内にある炭素短繊維1に対して0.05〜0.5の範囲内になるようにするのが好ましい。この比が極端に低くなると、電極の減耗や炭素短繊維の脱落を防止する作用が小さくなり、また、極端に高くなると、電極の曲げ強度が低下したり製造時におけるシートへの含浸が難しくなったりすることがある。
【0014】
また、長短2種類の炭素短繊維は、電極中に20〜35重量%の範囲内で含まれるようにするのが好ましい。炭素短繊維の含有量が極端に低くなると、電極の曲げ強度が低下するようになる。また、極端に高くなると、電極内の空隙が多くなり、電極のかさ密度が低くなったり、結着炭素の量が少なくなって電極の寿命が低下するようになる。
【0015】
焼成によって炭素化する有機物としては、フェノール樹脂、縮合多環芳香族樹脂(COPNA樹脂)、フラン樹脂、ピッチ等を用いることができる。なかでも、取り扱いが容易で炭素化収率も高いフェノール樹脂やCOPNA樹脂を用いるのが好ましい。
【0016】
炭素短繊維と炭素化可能な有機物との複合シートを得る方法は、いろいろあるが、最も好ましい方法は、比較的長い炭素短繊維を湿式または乾式で抄造し、得られた抄造シートに、比較的短い炭素短繊維と有機物との混合物を含浸する方法である。この方法は、簡便であるうえに、比較的短い炭素短繊維を均一に分散させることができ、また、焼成時における寸法や形状の安定性も高く、得られる電極の曲げ強度も高くなる。別の方法としては、比較的長い炭素短繊維と比較的短い炭素短繊維とを混合し、湿式または乾式で抄造し、得られた抄造シートに有機物を含浸する方法がある。なお、これらの方法において、炭素短繊維を用いるのに代えて、焼成時(有機物の炭素化時)の温度で炭素化され、炭素短繊維となる前駆体繊維の短繊維を用いることもできるが、平均繊維長が5〜25mmの範囲内にある比較的長いものとしては、焼成、炭素化時における複合シートの変形を抑制するために炭素短繊維を用いるのが好ましい。
【0017】
炭素化可能な有機物は、複合シート中に75〜90重量%の範囲内で含まれるようにする。炭素化可能な有機物が75重量%よりも少ないと、空隙が多くなって電極の密度が低くなり、寿命が低下する。また、90重量%よりも多いと、炭素短繊維が少なくなって電極の曲げ強度が低下したり、成形時の加圧によって有機物が流出して成形ができなくなったりする。
【0018】
複合シートは、通常、焼成前に加熱、加圧成形し、成形品とする。成形することで厚みやかさ密度の制御がより容易になる。このとき、得られる電極が所望の厚みになるように、複数枚の複合シートを積層して加熱、加圧成形する。加熱温度は、有機物が硬化または固化する温度である。また、加圧力は、0.3〜3MPaの範囲内とする。加圧力が0.3MPaよりも低いと、電極の密度を高くすることができなくなる。また、3MPaよりも高くなると、密度が高くなりすぎて有機物が炭素化されるときの分解ガスが抜けにくくなり、得られる電極にクラックが発生するようになる。
【0019】
成形品の焼成は、窒素ガス雰囲気やアルゴンガス雰囲気等の不活性雰囲気中にて行う。これによって有機物が炭素化され、炭素短繊維が有機物の炭素化物によって相互に結着され、電極となる。焼成温度は、650〜1,000℃の範囲内とする。焼成温度が650℃よりも低いと、有機物の炭素化物の導電性が低くなって電極の電気抵抗が高くなり、また、1,000℃よりも高いと、焼成時における有機物の消耗が多くなる。より好ましい範囲は700〜850℃である。
【0020】
かくして、二次元平面内においてランダムな方向に分散せしめられた、平均繊維長が5〜25mmの範囲内にある炭素短繊維と、平均繊維長が0.01〜1mmの範囲内にある炭素短繊維とが炭素によって相互に結着されている、炭素繊維・炭素複合材料からなる、曲げ強度が20MPa以上であるような電極が得られる。この電極は、かさ密度が1〜1.4g/cmの範囲内にある。かさ密度が1g/cmよりも低いと、結着炭素の量が少ないために寿命が大きく低下する。また、1.4g/cmよりも高いかさ密度とするためには極端に高い成形圧力が必要となるが、そのように極端に高い圧力で成形された成形体を焼成すると、上述したように有機物が炭素化されるときの分解ガスが抜けにくくなり、得られる電極にはクラックが多くでき、曲げ強度が低下してくる。本発明においては、平均繊維長が0.01〜1mmという比較的短い炭素短繊維と炭素化可能な有機物とを併用することによって、かさ密度を高め、寿命を延長させている。好ましいかさ密度の範囲は、1.1〜1.3g/cmである。なお、かさ密度は、電極の重量を外径寸法から計算した体積で割ることによって求める。
【0021】
本発明の電極は、広角X線によって求めた炭素の(002)ピークの半値幅が5.5〜7.5゜の範囲内にあるのが好ましい。半値幅は、焼成温度、すなわち有機物の炭素化温度によって変わり、炭素化が進むほど小さくなるが、5.5゜を下回ると電極の消耗が大きくなる傾向がでてくる。一方、8°を超えると、導電性が低下する傾向がでてくる。そのような電極は、用いる炭素短繊維の炭化温度よりも焼成温度を低くすることによって得ることができる。炭素の(002)ピークの半値幅のより好ましい範囲は、6〜7゜である。
【0022】
本発明の電極は、また、熱天秤による500℃における減量率が10%以下であり、かつ、700℃における減量率が90%以上であるのが好ましい。減量率は、焼成温度、すなわち、有機物の炭素化温度によって変わる。有機物の炭素化が進むと500℃および700℃における減量率は低下する。500℃における減量率が10%を超えるようなものは、有機物の炭素化が不十分で、使用時の酸化によって電極の電気抵抗が増大する。700℃における減量率が90%未満のものは、有機物の炭素化が進みすぎていて、使用時の電極の消耗が増大する。
【0023】
【実施例および比較例】
実施例:
東レ株式会社製PAN系炭素繊維“トレカ”T300−3K(平均単繊維径:7μm、単繊維数:3,000本、引張強度:3,530MPa、引張弾性率:230GPa)を平均繊維長が12mmになるようにカットし、水を抄造媒体として湿式抄造し、さらにバインダとしてポリビニルアルコールを付着させて炭素短繊維シートを得た。
【0024】
次に、得られた炭素短繊維シートに、上記炭素繊維のミルド繊維(平均繊維長:0.03mm)とレゾール型フェノール樹脂の60重量%メタノール溶液との混合物を含浸し、乾燥して複合シートを得た。複合シート中における平均繊維長12mmの炭素短繊維の含有率は10.5重量%、平均繊維長0.03mmのミルド繊維の含有率は2.6重量%、フェノール樹脂の含有率は84.6重量%、ポリビニルアルコールバインダの含有率は2.3重量%であった。かかる組成は、長短2種類の炭素短繊維が電極中に22重量%含まれることになるように考慮された組成である。
【0025】
次に、上記複合シートを30枚重ね合わせ、150℃、0.5MPaで加熱、加圧成形してフェノール樹脂を硬化させ、成形板を得た。成形板の厚みは12mmであった。
【0026】
次に、上記成形板を窒素雰囲気中にて最高温度800℃で10分間焼成し、フェノール樹脂を炭素化して電極を得た。
【0027】
得られた電極のかさ密度は1.14g/cmであった。また、3点曲げ試験法による曲げ強度は56MPaであった。さらに、炭素の(002)ピークの半値幅は6.6゜であった。また、熱天秤による500℃における減量率は5%、700℃におけるそれは99%であった。さらに、寿命の指標として重量減少率を求めたところ、5%であった。なお、重量減少率は、CaClの4g/lの水溶液中に2枚の電極を対向させて浸漬し、20mA/cmの電流密度にて20分間隔で極性を切り替えながら500時間通電した後の、当初の重量に対する重量減少の割合である。
比較例:
実施例において、ミルド繊維を用いないで、複合シート中における平均繊維長12mmの炭素短繊維の含有率を16.4重量%、フェノール樹脂の含有率を81.3重量%とした。
【0028】
得られた電極のかさ密度は1.09g/cmであった。また、実施例1と同様に測定した曲げ強度は69MPaであった。さらに、炭素の(002)ピークの半値幅は6.6゜であった。また、熱天秤による500℃における減量率は4%、700℃におけるそれは99%であった。さらに、実施例と同様に測定した重量減少率は、8%であった。
【0029】
【発明の効果】
本発明の電気浸透式脱水機用電極は、二次元平面内においてランダムな方向に分散せしめられた、平均繊維長が5〜25mmの範囲内にある炭素短繊維と、平均繊維長が0.01〜1mmの範囲内にある炭素短繊維とが炭素によって相互に結着されており、かつ、かさ密度が1〜1.4g/cmの範囲内にあるものであるから、実施例と比較例との対比からも明らかなように、減耗が少なく、寿命が長い。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode made of a carbon fiber / carbon composite material and used for an electroosmotic dehydrator, and a method for manufacturing the electrode.
[0002]
[Prior art]
Electrodes of the electroosmotic dehydrator have not only high bending strength to withstand the force of pressing (during dehydration), but also less contact with filter cloth and sludge and less wear due to abrasion. It is required to have high corrosion resistance to acidic and alkaline environments due to electrochemical oxidation and energization by electricity and to withstand long-term use.
[0003]
As such an electrode for an electroosmotic dehydrator, conventionally, a composite sheet obtained by impregnating a sheet made of a short carbon fiber having an average fiber length in a range of 2 to 20 mm with a carbonizable organic substance such as a phenol resin. Is baked at a temperature of 1,200 ° C. or less to carbonize organic matter, and short carbon fibers having an average fiber length in the range of 2 to 20 mm dispersed in random directions in a two-dimensional plane are interlinked with carbon. Is known (for example, see Patent Document 1). It is also known that, after firing, an organic substance is impregnated again and fired again in order to increase the bulk density and extend the life (for example, see Patent Document 2). However, in each case, the organic material is impregnated into the voids of the short carbon fibers dispersed in random directions in the two-dimensional plane and carbonized. Contains a mass of organic carbonized material having a size of several tens of μm to 100 μm that does not include short carbon fibers, and the mass of the carbonized material breaks and falls off during use, causing a problem of remarkable depletion. There is. In addition, the latter including the re-impregnation step and the re-baking step is expensive in addition to the production cost, and the carbonized material of the organic substance due to the re-impregnation has a small void at the time of the re-impregnation, so that a large physical adhesive force cannot be obtained. It is easy to fall off, and the service life has not been extended to the extent that the bulk density increases.
[0004]
[Patent Document 1]
JP-A-3-135494
[Patent Document 2]
JP-A-3-221108
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an electrode for an electroosmotic dehydrator having a small life and a long life, and a method of manufacturing the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a short carbon fiber having an average fiber length in a range of 5 to 25 mm dispersed in random directions in a two-dimensional plane, and an average fiber length of 0.01 to Provided is an electrode for an electroosmotic dehydrator in which short carbon fibers within a range of 11 mm are bound to each other by carbon, and the bulk density is within a range of 1 to 1.4 g / cm 3. . Here, the electrode preferably has a half-width of the (002) peak of carbon determined by wide-angle X-rays in the range of 5.5 to 7.5 °. Further, it is preferable that the weight loss rate at 500 ° C. by a thermobalance is 10% or less and that at 700 ° C. is at least 90%.
[0008]
The electrode for an electroosmotic dehydrator described above is a sheet made of carbon short fibers dispersed in random directions in a two-dimensional plane and having an average fiber length in the range of 5 to 25 mm. Obtaining a composite sheet containing a carbonizable organic substance in a range of 75 to 90% by weight by impregnating with a mixture containing carbon short fibers and a carbonizable organic substance in a range of 0.01 to 1 mm; A step of laminating a plurality of sheets and molding them under a pressure in the range of 0.3 to 3 MPa to obtain a molded article; and a step of subjecting the molded article to a temperature in the range of 650 to 1,000 ° C. in an inert atmosphere. And a step of carbonizing the organic matter by firing. Instead of using short carbon fibers, precursor short fibers of short carbon fibers may be used, and the precursor short fibers may be carbonized at the time of firing to form short carbon fibers.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The electrode for an electro-osmotic dehydrator according to the present invention (hereinafter, simply referred to as an electrode) will be described together with a method for producing the electrode. In the present invention, the average fiber length dispersed in random directions in a two-dimensional plane is described. Sheets made of short carbon fibers in the range of 5 to 25 mm can be carbonized by impregnating with a mixture containing short carbon fibers having an average fiber length in the range of 0.01 to 1 mm and a carbonizable organic substance. After obtaining a composite sheet containing an organic substance in the range of 75 to 90% by weight, a plurality of the composite sheets are laminated and molded under a pressure in the range of 0.3 to 3 MPa to obtain a molded product. Then, the molded article is fired in an inert atmosphere at a temperature in the range of 650 to 1,000 ° C. to carbonize the organic substance, and the short carbon fibers are bound with the carbonized organic substance. An electrode formed by binding short fibers with carbon. Therefore, the obtained electrode has a relatively short carbon fiber having an average fiber length in the range of 5 to 25 mm and a relatively short carbon fiber having an average fiber length in the range of 0.01 to 1 mm. Will be included. Instead of using short carbon fibers, short fibers of the precursor fiber may be used and carbonized at the time of firing to obtain short carbon fibers.
[0010]
As the carbon fibers constituting the short carbon fibers, those using polyacrylonitrile (PAN) -based fibers, pitch-based fibers, rayon-based fibers, phenol-based fibers, or the like as precursor fibers can be used. Above all, it is preferable to use a PAN-based carbon fiber having a PAN-based fiber as a precursor fiber because an electrode having excellent mechanical properties such as bending strength can be obtained. If the carbon fiber used is too thin, it is expensive and the mechanical strength of the electrode is reduced even if it is slightly consumed. It is preferable to select and use one having an average fiber diameter in the range of 3 to 20 μm because the mass of the particles becomes large and the mechanical strength of the electrode also decreases.
[0011]
The relatively long short carbon fibers having an average fiber length in the range of 5 to 25 mm are dispersed in random directions in a two-dimensional plane. In other words, although lying in a random direction in a two-dimensional plane, it is likely that an excessive portion of bound carbon is formed between short carbon fibers or large voids are formed between the carbon fibers by being oriented in a random direction. As a result, peeling and falling off of the short carbon fiber and generation of cracks in the electrode can be prevented. In addition, the lying state improves the bending strength of the electrode. On the other hand, relatively short carbon short fibers having an average fiber length in the range of 0.01 to 1 mm can penetrate between relatively long carbon short fibers to form a lump consisting of only binding carbon between the short carbon fibers. To prevent wear of the electrode and falling off of short carbon fibers, and increase the bulk density of the electrode. This is because the carbonizable organic substance described later shrinks and loses weight by firing and carbonizing, whereas the weight of the short carbon fiber hardly changes by firing.
[0012]
The relatively short carbon fibers have an average fiber length in the range of 5 to 25 mm as described above. When the average fiber length is less than 5 mm, the bending strength required for an electrode cannot be obtained. Further, if the thickness exceeds 25 mm, it is difficult to form a sheet, so that the uniformity of the electrodes is reduced and the life is greatly reduced. The preferred average fiber length range of the relatively short carbon fiber is 9 to 18 mm. On the other hand, relatively short carbon fibers have an average fiber length in the range of 0.01 to 1 mm. When the average fiber length is less than 0.01 mm, it easily falls off together with the binding carbon, and the life of the electrode is greatly reduced. In addition, when the length exceeds 1 mm, it is difficult to penetrate between relatively short carbon fibers, so that the dispersibility is deteriorated. Therefore, the uniformity of the electrode is reduced, and the life is also greatly reduced. A preferable range of the average fiber length of the relatively short carbon short fibers is 0.01 to 0.2 mm, and a more preferable range is 0.02 to 0.05 mm. The average fiber length of the short carbon fibers is an average fiber length by weight average.
[0013]
The short carbon fibers having an average fiber length in the range of 0.01 to 1 mm are in a weight ratio of 0.05 to 0.5 with respect to the short carbon fibers 1 in which the average fiber length is in the range of 5 to 25 mm. It is preferable to be within the range. When the ratio is extremely low, the effect of preventing the electrode from being worn out and the short carbon fibers from falling is reduced, and when the ratio is extremely high, the bending strength of the electrode is reduced and it becomes difficult to impregnate the sheet during production. Sometimes.
[0014]
Also, it is preferable that the two types of short and long carbon fibers be contained in the electrode in the range of 20 to 35% by weight. When the content of the short carbon fiber is extremely low, the bending strength of the electrode is reduced. On the other hand, when the height is extremely high, the number of voids in the electrode increases, the bulk density of the electrode decreases, and the amount of binding carbon decreases, thereby shortening the life of the electrode.
[0015]
As the organic substance that is carbonized by firing, a phenol resin, a condensed polycyclic aromatic resin (COPNA resin), a furan resin, a pitch, or the like can be used. Among them, it is preferable to use a phenol resin or a COPNA resin which is easy to handle and has a high carbonization yield.
[0016]
There are various methods for obtaining a composite sheet of short carbon fibers and a carbonizable organic substance, but the most preferable method is to form a relatively long short carbon fiber by a wet or dry method, and to apply a relatively small amount to the obtained sheet. This is a method of impregnating a mixture of short carbon short fibers and an organic substance. This method is simple, can disperse relatively short carbon fibers uniformly, has high dimensional and shape stability during firing, and has high bending strength of the resulting electrode. As another method, there is a method in which a relatively long carbon short fiber and a relatively short carbon short fiber are mixed, paper is formed by a wet or dry method, and the obtained paper sheet is impregnated with an organic substance. In these methods, instead of using short carbon fibers, it is also possible to use short fibers of precursor fibers which are carbonized at the time of firing (at the time of carbonization of an organic substance) and become short carbon fibers. As a relatively long fiber having an average fiber length in the range of 5 to 25 mm, it is preferable to use short carbon fibers in order to suppress deformation of the composite sheet during firing and carbonization.
[0017]
The carbonizable organic matter is contained in the composite sheet in the range of 75 to 90% by weight. If the amount of the organic substance that can be carbonized is less than 75% by weight, the number of voids increases, the density of the electrode decreases, and the life decreases. On the other hand, if the content is more than 90% by weight, the short carbon fibers are reduced and the bending strength of the electrode is reduced, or the organic substance flows out due to the pressurization at the time of molding and molding cannot be performed.
[0018]
The composite sheet is usually heated and pressed before firing to form a molded product. Molding makes it easier to control the thickness and bulk density. At this time, a plurality of composite sheets are laminated and heated and pressed so that the obtained electrode has a desired thickness. The heating temperature is a temperature at which the organic material hardens or solidifies. The pressing force is in the range of 0.3 to 3 MPa. If the pressure is lower than 0.3 MPa, the density of the electrode cannot be increased. On the other hand, when the pressure is higher than 3 MPa, the density becomes too high, so that a decomposition gas when organic matter is carbonized becomes difficult to escape, and cracks occur in the obtained electrode.
[0019]
The firing of the molded article is performed in an inert atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere. As a result, the organic substance is carbonized, and the short carbon fibers are bound to each other by the carbonized organic substance to form an electrode. The firing temperature is in the range of 650 to 1,000 ° C. When the firing temperature is lower than 650 ° C., the conductivity of the organic carbonized material is lowered and the electric resistance of the electrode is increased. When the firing temperature is higher than 1,000 ° C., the consumption of the organic material during firing is increased. A more preferred range is 700 to 850 ° C.
[0020]
Thus, the short carbon fibers having an average fiber length in the range of 5 to 25 mm and the short carbon fibers having the average fiber length in the range of 0.01 to 1 mm dispersed in random directions in the two-dimensional plane. And an electrode having a bending strength of 20 MPa or more, which is made of a carbon fiber / carbon composite material and is bonded to each other by carbon. This electrode has a bulk density in the range of 1 to 1.4 g / cm 3 . When the bulk density is lower than 1 g / cm 3 , the life is greatly reduced because the amount of the binding carbon is small. Further, in order to obtain a bulk density higher than 1.4 g / cm 3 , an extremely high molding pressure is required. However, when a molded body molded at such an extremely high pressure is fired, as described above, Decomposition gas when organic matter is carbonized becomes difficult to escape, and the resulting electrode has many cracks and lowers bending strength. In the present invention, the bulk density is increased and the life is extended by using a relatively short carbon fiber having an average fiber length of 0.01 to 1 mm in combination with an organic substance capable of being carbonized. A preferable range of the bulk density is 1.1 to 1.3 g / cm 3 . The bulk density is determined by dividing the weight of the electrode by the volume calculated from the outer diameter.
[0021]
In the electrode of the present invention, it is preferable that the half width of the (002) peak of carbon determined by wide-angle X-ray is in the range of 5.5 to 7.5 °. The half width varies depending on the firing temperature, that is, the carbonization temperature of the organic substance, and becomes smaller as the carbonization proceeds. However, when it is less than 5.5 °, the electrode tends to be consumed more. On the other hand, if it exceeds 8 °, the conductivity tends to decrease. Such an electrode can be obtained by setting the firing temperature lower than the carbonizing temperature of the short carbon fiber used. A more preferable range of the half width of the (002) peak of carbon is 6 to 7 °.
[0022]
The electrode of the present invention preferably has a weight loss rate at 500 ° C. of 10% or less by a thermobalance and a weight loss rate at 700 ° C. of 90% or more. The weight loss rate depends on the firing temperature, that is, the carbonization temperature of the organic substance. As the carbonization of organic matter proceeds, the weight loss rates at 500 ° C. and 700 ° C. decrease. When the weight loss rate at 500 ° C. exceeds 10%, the carbonization of the organic substance is insufficient, and the electrical resistance of the electrode increases due to oxidation during use. When the weight loss rate at 700 ° C. is less than 90%, the carbonization of the organic matter is excessively advanced, and the consumption of the electrode during use increases.
[0023]
[Examples and Comparative Examples]
Example:
PAN-based carbon fiber “Treca” T300-3K manufactured by Toray Industries, Inc. (average single fiber diameter: 7 μm, number of single fibers: 3,000, tensile strength: 3,530 MPa, tensile modulus: 230 GPa), average fiber length: 12 mm , And wet-laid using water as a papermaking medium, and polyvinyl alcohol was further adhered as a binder to obtain a short carbon fiber sheet.
[0024]
Next, the obtained short carbon fiber sheet is impregnated with a mixture of the above-mentioned milled fiber (average fiber length: 0.03 mm) of the carbon fiber and a 60% by weight methanol solution of a resol-type phenol resin, dried, and dried. Got. The content of short carbon fibers having an average fiber length of 12 mm in the composite sheet is 10.5% by weight, the content of milled fibers having an average fiber length of 0.03 mm is 2.6% by weight, and the content of phenol resin is 84.6. % By weight, and the content of the polyvinyl alcohol binder was 2.3% by weight. This composition is a composition in which two types of short and long carbon short fibers are considered to be contained at 22% by weight in the electrode.
[0025]
Next, 30 composite sheets were stacked, heated and press-molded at 150 ° C. and 0.5 MPa to cure the phenol resin to obtain a molded plate. The thickness of the formed plate was 12 mm.
[0026]
Next, the formed plate was fired in a nitrogen atmosphere at a maximum temperature of 800 ° C. for 10 minutes to carbonize the phenol resin to obtain an electrode.
[0027]
The bulk density of the obtained electrode was 1.14 g / cm 3 . The bending strength according to the three-point bending test method was 56 MPa. Further, the half width of the (002) peak of carbon was 6.6 °. The weight loss rate at 500 ° C. by a thermobalance was 5%, and that at 700 ° C. was 99%. Further, when the weight loss rate was determined as an index of the life, it was 5%. The weight reduction rate was determined by immersing the two electrodes in a 4 g / l aqueous solution of CaCl 2 with the electrodes facing each other, and conducting electricity for 500 hours while switching the polarity at a current density of 20 mA / cm 2 at intervals of 20 minutes. Is the ratio of weight loss to the initial weight.
Comparative example:
In Examples, the content of the short carbon fiber having an average fiber length of 12 mm in the composite sheet was 16.4% by weight, and the content of the phenol resin was 81.3% by weight without using the milled fiber.
[0028]
The bulk density of the obtained electrode was 1.09 g / cm 3 . The bending strength measured in the same manner as in Example 1 was 69 MPa. Further, the half width of the (002) peak of carbon was 6.6 °. The weight loss rate at 500 ° C. by a thermobalance was 4%, and that at 700 ° C. was 99%. Further, the weight reduction rate measured in the same manner as in the example was 8%.
[0029]
【The invention's effect】
The electroosmotic dehydrator electrode of the present invention is a carbon short fiber having an average fiber length in the range of 5 to 25 mm dispersed in random directions in a two-dimensional plane, and an average fiber length of 0.01. And short carbon fibers in the range of 1 to 1 mm are mutually bound by carbon and the bulk density is in the range of 1 to 1.4 g / cm 3. As is clear from the comparison with the above, the wear is small and the life is long.

Claims (5)

二次元平面内においてランダムな方向に分散せしめられた、平均繊維長が5〜25mmの範囲内にある炭素短繊維と、平均繊維長が0.01〜1mmの範囲内にある炭素短繊維とが炭素によって相互に結着されており、かつ、かさ密度が1〜1.4g/cmの範囲内にある電気浸透式脱水機用電極。Short carbon fibers having an average fiber length in the range of 5 to 25 mm, and carbon short fibers having an average fiber length in the range of 0.01 to 1 mm, dispersed in random directions in a two-dimensional plane. They are bound to each other by a carbon, and the bulk density is in the range of 1~1.4g / cm 3 electroosmotic type dehydrator electrode. 広角X線によって求めた炭素の(002)ピークの半値幅が5.5〜7.5゜の範囲内にある、請求項1に記載の電気浸透式脱水機用電極。The electrode for an electroosmotic dehydrator according to claim 1, wherein the half width of the (002) peak of carbon determined by wide-angle X-ray is in the range of 5.5 to 7.5 °. 熱天秤による500℃における減量率が10%以下であり、かつ、700℃におけるそれが少なくとも90%である、請求項1または2に記載の電気浸透式脱水機用電極。The electrode for an electroosmotic dehydrator according to claim 1 or 2, wherein a weight loss rate at 500 ° C by a thermobalance is 10% or less and that at 700 ° C is at least 90%. 二次元平面内においてランダムな方向に分散せしめられた、平均繊維長が5〜25mmの範囲内にある炭素短繊維からなるシートに、平均繊維長が0.01〜1mmの範囲内にある炭素短繊維と炭素化可能な有機物とを含む混合物を含浸して炭素化可能な有機物を75〜90重量%の範囲内で含む複合シートを得る工程と、複合シートの複数枚を積層し、0.3〜3MPaの範囲内の圧力下に成形し、成形品を得る工程と、成形品を不活性雰囲気中にて650〜1,000℃の範囲内の温度で焼成して有機物を炭素化する工程とを含む、請求項1〜3のいずれかに記載の電気浸透式脱水機用電極の製造方法。In a sheet made of short carbon fibers having an average fiber length in a range of 5 to 25 mm dispersed in random directions in a two-dimensional plane, a carbon short fiber having an average fiber length in a range of 0.01 to 1 mm is provided. A step of impregnating a mixture containing fibers and a carbonizable organic substance to obtain a composite sheet containing the carbonizable organic substance in a range of 75 to 90% by weight; Molding under a pressure in the range of 33 MPa to obtain a molded article; and firing the molded article in an inert atmosphere at a temperature in the range of 650 to 1,000 ° C. to carbonize organic substances. The method for producing an electrode for an electroosmotic dehydrator according to claim 1, comprising: 二次元平面内においてランダムな方向に分散せしめられた、平均繊維長が5〜25mmの範囲内にある炭素短繊維からなるシートに、平均繊維長が0.01〜1mmの範囲内にある、炭素短繊維の前駆体短繊維と、炭素化可能な有機物とを含む混合物を含浸して炭素化可能な有機物を75〜90重量%の範囲内で含む複合シートを得る工程と、複合シートの複数枚を積層し、0.3〜3MPaの範囲内の圧力下に成形し、成形品を得る工程と、成形品を不活性雰囲気中にて650〜1,000℃の範囲内の温度で焼成して前駆体短繊維と有機物とを炭素化する工程とを含む、請求項1〜3のいずれかに記載の電気浸透式脱水機用電極の製造方法。In a sheet composed of short carbon fibers having an average fiber length in a range of 5 to 25 mm dispersed in random directions in a two-dimensional plane, a carbon having an average fiber length in a range of 0.01 to 1 mm A step of impregnating a mixture containing a short fiber precursor short fiber and a carbonizable organic substance to obtain a composite sheet containing the carbonizable organic substance in the range of 75 to 90% by weight, and a plurality of composite sheets Are laminated and molded under a pressure in the range of 0.3 to 3 MPa to obtain a molded product, and the molded product is fired at a temperature in the range of 650 to 1,000 ° C. in an inert atmosphere. The method for producing an electrode for an electroosmotic dehydrator according to any one of claims 1 to 3, further comprising a step of carbonizing the precursor short fiber and an organic substance.
JP2003131286A 2003-05-09 2003-05-09 Electrode for electro-osmotic dehydrator, and production method therefor Withdrawn JP2004330126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131286A JP2004330126A (en) 2003-05-09 2003-05-09 Electrode for electro-osmotic dehydrator, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131286A JP2004330126A (en) 2003-05-09 2003-05-09 Electrode for electro-osmotic dehydrator, and production method therefor

Publications (1)

Publication Number Publication Date
JP2004330126A true JP2004330126A (en) 2004-11-25

Family

ID=33506505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131286A Withdrawn JP2004330126A (en) 2003-05-09 2003-05-09 Electrode for electro-osmotic dehydrator, and production method therefor

Country Status (1)

Country Link
JP (1) JP2004330126A (en)

Similar Documents

Publication Publication Date Title
EP1942536B1 (en) Porous carbon electrode substrate
JP3521619B2 (en) Carbon fiber paper and porous carbon plate
JPS63254669A (en) Electrode substrate for fuel cell
KR101392227B1 (en) Carbon fiber web comprising polymer nanofiber
EP3902039A1 (en) Graphitized carbon substrate and gas diffusion layer employing same
JPH09157052A (en) Porous carbon sheet and its production
JP2004288489A (en) Porous carbon base material for electrode and manufacturing method of the same
JP4187683B2 (en) Porous carbon electrode substrate for fuel cells
JP2004214072A (en) Carbon fiber sheet and its manufacturing method
JP3602933B2 (en) Activated carbon substrate
JP3652061B2 (en) Electric double layer capacitor
JP3332980B2 (en) Manufacturing method of polarizable electrode material
JP2008214120A (en) Method of manufacturing carbon fiber sheet
JP2007176750A (en) Porous carbon fiber sheet and method of manufacturing the same
JPH09278558A (en) Carbonaceous porous body and its production
JP2004330126A (en) Electrode for electro-osmotic dehydrator, and production method therefor
JP2003286085A (en) Porous carbon plate and manufacturing method thereof
JPH0258369B2 (en)
JPH0559867B2 (en)
JPH11185771A (en) Manufacture of paper and porous carbon plate for fuel cell
JPH06671B2 (en) Highly graphitized porous carbon fiber sheet and method for producing the same
JP2006004858A (en) Porous electrode base material and its manufacturing method
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
JPH05194056A (en) Production of porous carbon plate having high compression resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090309