JP2004330111A - Vacuum distillation unit - Google Patents

Vacuum distillation unit Download PDF

Info

Publication number
JP2004330111A
JP2004330111A JP2003130645A JP2003130645A JP2004330111A JP 2004330111 A JP2004330111 A JP 2004330111A JP 2003130645 A JP2003130645 A JP 2003130645A JP 2003130645 A JP2003130645 A JP 2003130645A JP 2004330111 A JP2004330111 A JP 2004330111A
Authority
JP
Japan
Prior art keywords
liquid
distillation
steam
distilled
steam discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003130645A
Other languages
Japanese (ja)
Inventor
Akio Maeda
章雄 前田
Osamu Nakamura
修 中村
Takeshi Okafuji
健 岡藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GOKO SHOJI KK
GOKO SHOJI Ltd
Osaka Gas Co Ltd
Original Assignee
GOKO SHOJI KK
GOKO SHOJI Ltd
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GOKO SHOJI KK, GOKO SHOJI Ltd, Osaka Gas Co Ltd filed Critical GOKO SHOJI KK
Priority to JP2003130645A priority Critical patent/JP2004330111A/en
Publication of JP2004330111A publication Critical patent/JP2004330111A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum distillation unit whereby a burden concerning maintenance can be alleviated. <P>SOLUTION: A vacuum distillation unit is provided with: a distillation furnace 1 equipped with a heat means K for heating a solution stored to be distilled; a vacuum means 4 for decompressing the inside of the distillation furnace 1 by vacuuming a steam discharge passage 3 connected to the distillation furnace 1; and a condenser 5 for liquefying steam flowing through the steam discharge passage 3. A gas-liquid separation part 30 for separating mist from steam flowing through the steam discharge passage 3 by a specific gravity difference between mist and steam is provided so that the entire body of the part 30 is located above a connection port 1w of the steam discharge passage 3 of the distillation furnace 1 and liquid liquefied from mist separated at the gas-liquid separation part 30 returns to the distillation furnace 1 by the liquid's own weight. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、貯留している被蒸留処理液を加熱する加熱手段を備えた蒸留釜と、
その蒸留釜に接続される蒸気排出路に吸引作用して、前記蒸留釜内を減圧する吸引手段と、
前記蒸気排出路を通流する蒸気を液化する凝縮器とが設けられた真空蒸留装置に関する。
【0002】
【従来の技術】
かかる真空蒸留装置は、例えば、水分を含む廃液から水分を蒸留液として蒸留分離処理して廃液の廃棄量を減量化する用途や、溶剤を含む廃液から溶剤を蒸留分離処理して再生する用途で用いられるものである。
このような真空蒸留装置は、蒸留釜に貯留されている被蒸留処理液を加熱手段により加熱すると共に、蒸留釜に接続された蒸気排出路に吸引手段を吸引作用させることにより、被蒸留処理液中に含まれる蒸留分離対象成分を蒸発させて、その蒸留分離対象成分の蒸気を蒸気排出路に通流させ、その蒸気排出路を通流する蒸留分離対象成分の蒸気を凝縮器において液化させて、蒸留分離対象成分を蒸留液として分離するようになっている(例えば、特許文献1参照。)。
【0003】
又、図7に示すように、このような真空蒸留装置においては、蒸気排出路3を通して流動する蒸気からミストを分離する気液分離部30を設ける場合があるが、この気液分離部30を設ける場合、従来は、気液分離部30を、分離したミストが液状になった液分(以下、分離液分と記載する場合がある)を排出するドレン排出口30eが蒸留釜1における蒸気排出路3の接続口1wよりも下方に位置するように設け、更に、ドレン排出口3eから流下する分離液分を受けるドレンタンク51と、そのドレンタンク51と蒸留釜1とを接続するドレン回収路52と、ドレン回収路52を開閉するドレン回収路用電磁弁53と、ドレンタンク51内の分離液分を前記ドレン回収路52を通じて蒸留釜1に圧送するドレン回収用ポンプ54とを設けて、気液分離部30にて分離された分離液分をドレン回収用ポンプ54によりドレン回収路52を通じて圧送して、蒸留釜1に戻すように構成していた。
【0004】
尚、図7中、Kは、蒸留釜1に貯留されている被蒸留処理液を加熱する加熱手段、4は、蒸気排出路3に吸引作用する吸引手段としての真空ポンプ、5は、蒸気排出路3を通流する蒸気を液化する凝縮器、6は、その凝縮器5にて凝縮された蒸留液を貯留するバッファタンクである。
【0005】
【特許文献1】
特開平6−63304号公報
【0006】
【発明が解決しようとする課題】
ところで、このような真空蒸留装置では、被蒸留処理液から蒸留分離対象成分を蒸留分離処理する蒸留分離処理運転中に、蒸留釜に貯留されている被蒸留処理液が発泡する場合がある。
しかしながら、従来では、蒸留釜内で被蒸留処理液が発泡すると、その被蒸留処理液の泡が吸引手段の吸引作用により蒸気排出路を流動して、蒸気排出路における凝縮器にて冷却される部分やそれよりも蒸気通流方向下流側等の蒸留液が流れる部分(以下、蒸留液通流部分と称する場合がある)にまで達して、被蒸留処理液の泡が蒸気排出路の蒸留液通流部分に付着することになる。そして、そのように被蒸留処理液の泡が蒸気排出路の蒸留液通流部分に付着すると、被蒸留処理液の泡が蒸留液に混ざって蒸留液の品質が低下することになるので、蒸気排出路を洗浄する必要があり、メンテナンスに係わる負担が重くなるという問題があった。
【0007】
ちなみに、被蒸留処理液の発泡を抑制するために、蒸留釜に消泡剤を供給する場合があるが、処理対象の被蒸留処理液の成分が一定でない等の理由により、発泡を適切に抑制できる消泡剤の必要量が明確ではないので、従来では、消泡剤を供給する場合は、消泡剤を過剰に供給することになり、ランニングコストが高くなるという問題があった。
【0008】
又、従来、気液分離部を設ける場合は、上述したように、気液分離部にて分離された分離液分を受けるドレンタンクを設けて、そのドレンタンク内の分離液分をドレン回収用ポンプによりドレン回収路を通じて蒸留釜に圧送して戻すように構成していたので、気液分離部にて分離した分離液分を蒸留釜に戻す分離液分回収経路が複雑なものとなるため、その分離液分回収経路が残滓等により詰まり易く、その詰まり除去作業が必要になり、メンテナンスに係わる負担が重くなるという問題があった。
【0009】
本発明は、かかる実情に鑑みてなされたものであり、その目的は、メンテナンスに係わる負担を軽減し得る真空蒸留装置を提供することにある。
【0010】
【課題を解決するための手段】
〔請求項1記載の発明〕
請求項1に記載の真空蒸留装置は、貯留している被蒸留処理液を加熱する加熱手段を備えた蒸留釜と、
その蒸留釜に接続される蒸気排出路に吸引作用して、前記蒸留釜内を減圧する吸引手段と、
前記蒸気排出路を通流する蒸気を液化する凝縮器とが設けられたものであって、
前記蒸気排出路を通して流動する蒸気からミストを蒸気との比重差により分離する気液分離部が、その全体が前記蒸留釜における前記蒸気排出路の接続口よりも上方に位置し且つ前記気液分離部にて分離されたミストが液状になった液分が自重により前記蒸留釜に戻るように設けられている点を特徴構成とする。
即ち、気液分離部により、分離対象成分の蒸気からミストが蒸気との比重差により分離され、その分離されたミストが液状になった分離液分が自重により蒸留釜に戻る。
つまり、気液分離部を、その全体が蒸留釜における蒸気排出路の接続口よりも上方に位置し且つ気液分離部にて分離された分離液分が自重により蒸留釜に戻るように設けることにより、分離液分を本来設けてある蒸気排出路を通じてポンプを用いることなく蒸留釜に戻すことが可能になり、もって、分離液分回収経路を簡略化することができて、分離液分回収経路の残滓等による詰まりを防止することができるようになった。
従って、分離液分回収経路の残滓等による詰まりを防止することができるようになったので、メンテナンスに係わる負担を軽減することができるようになった。
【0011】
〔請求項2記載の発明〕
請求項2に記載の真空蒸留装置は、請求項1において、前記蒸留釜での被蒸留処理液の突沸により飛散する被蒸留処理液の飛沫が前記気液分離部内に飛散するのを遮蔽する遮蔽手段が設けられている点を特徴構成とする。
即ち、蒸留釜で被蒸留処理液が突沸して被蒸留処理液の飛沫が飛散しても、その飛沫が気液分離部内に飛散するのが遮蔽手段により遮蔽される。
つまり、蒸留釜内で被蒸留処理液が突沸する場合があり、そのように被蒸留処理液が突沸した場合に、被蒸留処理液の飛沫が蒸気排出路における蒸留液通流部分にまで達すると、被蒸留処理液が蒸留液に混ざって蒸留液の品質が低下することになるので、蒸気排出路を洗浄する必要が生じる。
そこで、被蒸留処理液の飛沫が気液分離部内に飛散するのを遮蔽する遮蔽手段を設けることにより、被蒸留処理液が突沸しても、被蒸留処理液の飛沫が蒸気排出路における蒸留液通流部分にまで達するのを抑制することができるので、蒸気排出路の洗浄に係わるメンテナンスを軽減することができるようになる。
従って、被蒸留処理液が突沸しても、その被蒸留処理液の突沸に起因する蒸気排出路の洗浄に係わるメンテナンスを軽減することができるので、メンテナンスに係わる負担を一層軽減することができるようになった。
【0012】
〔請求項3記載の発明〕
請求項3に記載の真空蒸留装置は、請求項1又は2において、前記蒸気排出路における前記蒸留釜と前記気液分離部とを接続する蒸留釜側排出路部分が、前記被蒸留処理液の飛沫が前記気液分離部に飛散するのを遮蔽するように屈曲されて、その蒸留釜側排出路部分にて前記遮蔽手段が構成されている点を特徴構成とする。
即ち、蒸気排出路における蒸留釜と気液分離部とを接続する蒸留釜側排出路部分が、被蒸留処理液の飛沫が気液分離部に飛散するのを遮蔽するように屈曲されているので、被蒸留処理液が突沸して被蒸留処理液の飛沫が飛散しても、飛散する飛沫が蒸気排出路の蒸留釜側排出路部分の内面に当たって、気液分離部に飛散するのが遮蔽される。
つまり、飛散する被蒸留処理液の飛沫は直進性を持っているので、蒸留釜内から直進状に飛散する被蒸留処理液の飛沫の全部又は略全部が気液分離部に達するまでに蒸留釜側排出路部分の内面に当たるように、蒸気排出路の蒸留釜側排出路部分を屈曲させることにより、蒸気排出路の蒸留釜側排出路部分にて遮蔽手段を構成することが可能になる。
従って、遮蔽手段を専用の部材を用いることなく設けることが可能になるので、低廉化を図りながら、メンテナンスに係わる負担を一層軽減することできるようになった。
【0013】
〔請求項4記載の発明〕
請求項4に記載の真空蒸留装置は、請求項2又は3において、前記被蒸留処理液の飛沫が前記気液分離部の蒸気入口から前記気液分離部内に飛散するのを遮蔽するように、邪魔板が前記蒸気入口に対向する状態で配設されて、その邪魔板にて前記遮蔽手段が構成されている点を特徴構成とする。
即ち、被蒸留処理液が突沸して被蒸留処理液の飛沫が飛散しても、気液分離部内にその蒸気入口に対向する状態で配設されている邪魔板により、気液分離部内に飛散するのが遮蔽される。
つまり、遮蔽手段として、邪魔板を気液分離部内にその蒸気入口に対向する状態で配設して構成することにより、蒸気排出路を通流する蒸気を邪魔板に衝突させて、蒸気に含まれるミストの勢いを弱めてミストを効果的に分離できるようにしながら、飛散する被蒸留処理液の飛沫が気液分離部内に入り込むのを防止することが可能になる。
そして、蒸気排出路を通流する蒸気を邪魔板に衝突させて、蒸気に含まれるミストの勢いを弱めてミストを効果的に分離することができるので、所望のミスト分離能力を得ながら、気液分離部の小型化を図ることが可能になる。
従って、気液分離部の小型化を図りながら、メンテナンスに係わる負担を一層軽減することできるようになった。
【0014】
〔請求項5記載の発明〕
請求項5に記載の真空蒸留装置は、貯留している被蒸留処理液を加熱する加熱手段を備えた蒸留釜と、
その蒸留釜に接続される蒸気排出路に吸引作用して、前記蒸留釜内を減圧する吸引手段と、
前記蒸気排出路を通流する蒸気を液化する凝縮器とが設けられたものであって、
前記蒸気排出路に外気を導入する外気導入手段と、
前記蒸留釜又は前記蒸気排出路における前記外気導入手段による外気導入箇所よりも蒸気通流方向上流側部分に泡が存在する泡存在状態を検出する泡検出手段と、
その泡検出手段が泡存在状態を検出することに基づいて、前記外気導入手段を外気導入作動させる制御手段とが設けられている点を特徴構成とする。
即ち、泡検出手段が泡存在状態を検出すると、制御手段により外気導入手段が外気導入作動されて、蒸気排出路おける泡検出手段が泡存在状態を検出した箇所よりも蒸気通流方向下流側の外気導入箇所から外気が導入されて蒸気排出路を通流するので、被蒸留処理液の泡が蒸気排出路における蒸留液通流部分にまで達するのが抑制される。
そして、被蒸留処理液の泡が蒸気排出路における蒸留液通流部分にまで達するのを抑制することができるので、蒸気排出路の洗浄に係わるメンテナンスを軽減することができる。
従って、蒸気排出路の洗浄に係わるメンテナンスを軽減することができるようになったので、メンテナンスに係わる負担を軽減することができるようになった。
【0015】
〔請求項6記載の発明〕
請求項6に記載の真空蒸留装置は、請求項5において、前記蒸気排出路における前記外気導入箇所よりも蒸気通流方向下流側部分を閉じる蒸気排出路閉じ手段が設けられ、
前記制御手段が、前記泡検出手段が泡存在状態を検出することに基づいて前記蒸気排出路閉じ手段を閉じ作動させるように構成されている点を特徴構成とする。
即ち、泡検出手段が泡存在状態を検出すると、制御手段により蒸気排出路閉じ手段が閉じ作動されて、蒸気排出路における前記外気導入箇所よりも蒸気通流方向下流側部分が閉じられるので、外気導入手段により外気導入箇所から蒸気排出路に導入された外気は、その外気導入箇所よりも凝縮器側の蒸留液通流部分に向かって流れるのが阻止されて、蒸留釜側に向かって流れる。
つまり、外気導入箇所から蒸気排出路に導入された外気を、蒸留釜側にのみ通流させることにより、被蒸留処理液の泡が蒸気排出路における蒸留液通流部分にまで達するのを一層抑制することが可能になる。
従って、蒸気排出路の洗浄に係わるメンテナンスを一層軽減することができるようになったので、メンテナンスに係わる負担を一層軽減することできるようになった。
【0016】
〔請求項7記載の発明〕
請求項6に記載の真空蒸留装置は、請求項5又は6において、前記蒸留釜に消泡剤を供給する消泡剤供給手段が設けられ、
前記制御手段が、前記泡検出手段が泡存在状態を検出することに基づいて、前記消泡剤供給手段を消泡剤を設定量供給すべく作動させるように構成されている点を特徴構成とする。
即ち、泡検出手段が泡存在状態を検出すると、制御手段により消泡剤供給手段が消泡剤を設定量供給するように作動される。
そして、蒸留釜に消泡剤が設定量供給されることにより、消泡剤が供給された以降の蒸留分離処理運転において被蒸留処理液の発泡が抑制されることになり、又、以降の蒸留分離処理運転において泡検出手段により泡存在状態が検出される毎に、消泡剤供給手段を消泡剤を設定量供給すべく作動させることを繰り返すようにすることにより、発泡を適切に抑制できるように、消泡剤を過剰になることなく適正量供給することが可能になり、従来のように消泡剤を過剰に供給する場合に比べて、ランニングコストを低減することができる。
又、蒸留釜への消泡剤の供給により、蒸留分離処理における被蒸留処理液の発泡が抑制されることになるので、泡の発生に基づいて外気導入手段が外気導入作動されて蒸留分離処理が中断されることを無くするか、又は、蒸留分離処理が中断される回数を少なくすることが可能になり、もって、蒸留分離処理効率を向上することが可能になる。
従って、蒸気排出路の洗浄に係わるメンテナンスを軽減することにより、メンテナンスに係わる負担の軽減を可能にしながら、消泡剤の供給に係わるランニングコストの低減及び蒸留分離処理効率の向上を図ることができるようになった。
【0017】
〔請求項8記載の発明〕
請求項6に記載の真空蒸留装置は、貯留している被蒸留処理液を加熱する加熱手段を備えた蒸留釜と、
その蒸留釜に接続される蒸気排出路に吸引作用して、前記蒸留釜内を減圧する吸引手段と、
前記蒸気排出路を通流する蒸気を液化する凝縮器とが設けられたものであって、
前記蒸留釜又は前記蒸気排出路に泡が存在する泡存在状態を検出する泡検出手段と、
前記蒸留釜に消泡剤を供給する消泡剤供給手段と、
前記泡検出手段が泡存在状態を検出することに基づいて、前記消泡剤供給手段を消泡剤を設定量供給するように作動させる制御手段とが設けられている点を特徴構成とする。
即ち、泡検出手段が泡存在状態を検出すると、制御手段により消泡剤供給手段が消泡剤を設定量供給するように作動される。
つまり、蒸留釜に消泡剤が設定量供給されることにより、被蒸留処理液の発泡が抑制されるので、被蒸留処理液の泡が蒸気排出路における蒸留液通流部分にまで達するのを抑制することが可能になり、又、消泡剤が設定量供給された以降に泡検出手段により泡存在状態が検出されると、泡存在状態が検出される毎に、消泡剤供給手段を消泡剤を設定量供給すべく作動させることを繰り返すようにすることにより、被蒸留処理液の泡が蒸気排出路における蒸留液通流部分にまで達するのを抑制することが可能になると共に、発泡を適切に抑制できるように、消泡剤を過剰になることなく適正量供給することが可能になる。
そして、発泡を適切に抑制できるように消泡剤を適正量供給することが可能になることにより、従来のように消泡剤を過剰に供給する場合に比べて、ランニングコストを低減することが可能になる。
従って、蒸気排出路の洗浄に係わるメンテナンスを軽減することにより、メンテナンスに係わる負担を軽減することができるようになり、しかも、消泡剤の供給に係わるランニングコストの低減を図ることができるようになった。
【0018】
【発明の実施の形態】
〔第1実施形態〕
以下、図面に基づいて、本発明の第1実施形態を説明する
図1に示すように、真空蒸留装置は、貯留している被蒸留処理液Lを加熱する加熱手段Kを備えた蒸留釜1、その蒸留釜1内における被蒸留処理液Lの貯留レベルを調整する貯留レベル調整器2、蒸留釜1に接続される蒸気排出路3に吸引作用して、蒸留釜1内を減圧する吸引手段しての真空ポンプ4、蒸気排出路3を通して流動する蒸気からミストを蒸気との比重差により分離する気液分離部30、蒸気排出路3に外気を導入する外気導入手段I、蒸留釜1に消泡剤を供給する消泡剤供給手段D、蒸気排出路3を通流する蒸気を冷却水による冷却により液化する凝縮器5、その凝縮器5にて凝縮された蒸留液を貯留するバッファタンク6、及び、真空蒸留装置の各種制御を司る制御手段としての制御部7等を備えて構成してある。
【0019】
以下、真空蒸留装置の各部について説明する。
図1及び図2に示すように、前記蒸留釜1は、有底円筒状の釜本体部1mと、その釜本体部1mの開口部を閉じる釜蓋体1cとを備えて構成し、更に、熱媒流動用加熱ジャケット1jを、釜本体部1mの外周部を囲む状態で形成し、その熱媒流動用加熱ジャケット1j内に、熱媒を螺旋状に通流させるように案内する案内体1gを設けてある。そして、その蒸留釜1を、釜本体部1mの軸心が上下方向を向く縦姿勢で配置してある。
蒸留釜1を上述のように配置した状態で、前記熱媒流動用加熱ジャケット1jにおける上端部に位置する箇所には、加熱用水蒸気供給口1iを形成し、底部に位置する箇所にはドレン排出口1eを形成してある。
【0020】
図1及び図2に示すように、前記加熱手段Kとして、蒸留釜1内への挿入状態に設置される加熱ヒータHと、上述の熱媒流動用加熱ジャケット1jとを備えて構成してある。
前記加熱ヒータHについて説明を加えると、図3ないし図5に示すように、加熱ヒータHは、先端部が閉塞された有底筒状のセラミックス製本体部15とその内部に挿入される熱媒戻り管16とを備えて、加熱用水蒸気をセラミックス製本体部15の基端側から内部に供給して熱媒戻り管16を通して外部に排出するように構成してある。ちなみに、セラミックス製本体部15は、ケイ素と炭化ケイ素との混合物を素材として、軸心が直線状で且つ径が軸心方向に略一定な直筒状に形成してある。
【0021】
セラミックス製本体部15の基端開口部を閉じるヒータ蓋体17を設け、熱媒戻り管16は、そのヒータ蓋体17を貫通する状態でヒータ蓋体17に支持し、更に、そのヒータ蓋体17には、そのヒータ蓋体17がセラミックス製本体部15に取り付けられた状態でセラミックス製本体部15内に連通する加熱用水蒸気供給部18と、熱媒戻り管16の基端に連通する加熱用水蒸気排出部19とを設けてある。
そのヒータ蓋体17は、セラミックス製本体部15の基端開口縁に備えられた鍔部に係止される複数のナット部材20と、ヒータ蓋体17に挿通状態で設けられて、複数のナット部材20に各別に螺挿される複数のボルト21を用いて、セラミックス製本体部15の基端開口部にテフロン製等のパッキング29を介在させた状態で取り付けるようになっている。
【0022】
ヒータ蓋体17をセラミックス製本体部15の基端開口部に取り付けた状態で、熱媒戻り管16がセラミックス製本体部15内の先端近くまで延びるように構成し、更に、熱媒戻り管16におけるセラミックス製本体部15内に挿入される部分の外周部には、その略全長にわたって螺旋状に羽根体22を取り付けてある。そして、セラミックス製本体部15の基端側に供給された加熱用水蒸気を螺旋状の羽根体22の案内にてセラミックス製本体部15内の先端にまで螺旋状に通流させた後、熱媒戻り管16の先端開口部に流入させるようにすることにより、セラミックス製本体部15内の略全長にわたって加熱用水蒸気を通流させるようにして、蒸留釜1内を効率良く加熱できるように構成してある。
【0023】
図1及び図2に示すように、上述のように構成した加熱ヒータHを、そのセラミックス製本体部15が蒸留釜1の釜蓋体1cを貫通する状態で釜蓋体1cに支持させ、そのように加熱ヒータHを支持させた釜蓋体1cを釜本体部1mに取り付けると、加熱ヒータHが、そのセラミックス製本体部15が同軸心状に釜内に挿入される状態で蒸留釜1に備えられることになる。
【0024】
そして、図1に示すように、ボイラ等の加熱用水蒸気供給源23から加熱用水蒸気が供給される加熱用水蒸気供給路24を、加熱ヒータHの加熱用水蒸気供給部18及び熱媒流動用加熱ジャケット1jの加熱用水蒸気供給口1iに並列接続し、並びに、加熱ヒータHの加熱用水蒸気排出部19を加熱用水蒸気戻し路25にて加熱用水蒸気供給源23に接続して、加熱用水蒸気を加熱ヒータH及び熱媒流動用加熱ジャケット1jに通流させて、蒸留釜1内を加熱するように構成してある。又、加熱用水蒸気供給路24には、加熱ヒータH及び熱媒流動用加熱ジャケット1jへの加熱用水蒸気の供給を断続する加熱蒸気用電磁弁V4を設けてある。
ちなみに、加熱用水蒸気を加熱ヒータHに通流させる流量と熱媒流動用加熱ジャケット1jに通流させる流量との比は、3対1程度である。
【0025】
図1に示すように、処理液供給路10を、前記蒸気排出路3における前記蒸留釜1側の端部に接続してあり、蒸留釜1内が前記真空ポンプ4により減圧されることによる吸引力により、前記処理液供給路10、前記蒸気排出路3を通じて、処理液貯留層11に貯留されている被蒸留処理液Lが蒸留釜1に供給されるように構成してあり、その処理液供給路10には、蒸留釜1への被蒸留処理液Lの供給を断続する処理液供給用電磁弁V2を設けてある。
前記蒸留釜1の底部には残液排出路8を接続し、その残液排出路8には、蒸留釜1から残液を強制的に排出する残液排出用ポンプ9、及び、残液排出路8を開閉する残液排出用電磁弁V1を設けてある。
【0026】
前記貯留レベル調整器2は、その底部を液相部連通路26にて蒸留釜1の底部に連通し、且つ、上部の気相部を気相部連通部27にて蒸留釜1の気相部に連通する状態で設けてあり、その貯留レベル調整器2には、貯留レベル調整器2内の被蒸留処理液Lの貯留レベルを検出する処理液貯留レベルセンサ2sを設けてある。そして、詳細は後述するが、その処理液貯留レベルセンサ2sの検出情報に基づいて制御部7により処理液供給用電磁弁V2を開閉制御して、蒸留釜1に貯留する被蒸留処理液Lの液面Lsを設定液面高さ範囲内に維持するように構成してある。
【0027】
図1に示すように、消泡剤供給手段Dは、シリコン系消泡剤等の消泡剤を貯留する消泡剤タンク40と、その消泡剤タンク40と前記蒸留釜1とを接続する消泡剤供給路41と、その消泡剤供給路41を開閉する消泡剤供給用電磁弁V5と、消泡剤供給路41を通じて消泡剤タンク40内の消泡剤を蒸留釜1に圧送する消泡剤供給用ポンプ42とを備えて構成してある。
そして、詳細は後述するが、前記制御部7により、消泡剤供給用設定時間の間、前記消泡剤供給用電磁弁V5を開弁状態にし、且つ、前記消泡剤供給用ポンプ42を設定回転速度にて作動させて、消泡剤を設定量前記蒸留釜1に供給するように構成してある。前記設定量としては、成分が異なる複数種の被蒸留処理液を想定して、それら複数種の被蒸留処理液の発泡を防止するために最低限必要と考えられる消泡剤の量よりも少ない量、例えば、その最低限必要と考えられる量の1/2、1/3程度の量に設定し、前記消泡剤供給用設定時間としては、前記消泡剤供給用ポンプ42を設定回転速度にて作動させて、前記設定量の消泡剤を供給できる時間に設定してある。
【0028】
図1に示すように、前記蒸気排出路3は、蒸留釜1の上端部に形成した接続口1wにて蒸留釜1に接続し、その蒸気排出路3の途中に、蒸留釜1側、即ち、蒸気通流方向上流側から順に、前記気液分離部30、前記凝縮器5、前記バッファタンク6を設け、蒸気排出路3における凝縮器5とバッファタンク6との間の個所、及び、バッファタンク6よりも蒸気通流方向下流側の個所の夫々に逆止弁12を設け、前記外気導入手段Iは、前記蒸気排出路3における気液分離部30と凝縮器5との間の箇所から蒸気排出路3に外気を導入するように設けてある。
【0029】
図1及び図2に示すように、前記気液分離部30は、その全体が前記蒸留釜1における前記蒸気排出路3の接続口1wよりも上方に位置し且つ気液分離部30にて分離されたミストが液状になった液分が自重により蒸留釜1に戻るように設けてある。
更に、蒸留釜1での被蒸留処理液Lの突沸により飛散する被蒸留処理液Lの飛沫が気液分離部30内に飛散するのを遮蔽する遮蔽手段Sを設けてある。
【0030】
次に、図2に基づいて、前記気液分離部30、その気液分離部30の設置形態、及び、前記遮蔽手段Sについて説明を加える。
気液分離部30は、軸心方向を上下方向に向けて配置する概ね円筒状の箱状に形成し、その底部の円形の蒸気入口30iから蒸気が流入し、上部の円形の蒸気出口30eから蒸気が流出するように蒸気排出路3の途中に設けてある。又、気液分離部30内には、フィルター31を設け、気液分離部30の側壁には、透明ガラスにて気密状に遮蔽した点検窓30mを設けてある。
【0031】
蒸気排出路3における蒸留釜1と気液分離部30とを接続する蒸留釜側排出路部分3uは、中心角が略90°の円弧状に屈曲形成し、その円弧状の蒸留釜側排出路部分3uを、平面視でその蒸留釜側排出路部分3uの軸心が蒸留釜1の径方向に沿い且つ蒸留釜側排出路部分3uの先端の開口が鉛直線方向上方を向く姿勢で、基端を蒸留釜1の接続口1wに連通接続して設けてある。
前記気液分離部30を、その軸心方向が鉛直線方向を向く姿勢にて、その蒸気入口30iを蒸留釜側排出路部分3uの先端に接続して、蒸留釜側排出路部分3uにて支持させる状態で設けてある。
従って、気液分離部30にて分離されたミストが液状になった液分を蒸留釜側排出路部分3uを伝わせて蒸留釜1に戻すことができるようになっている。
【0032】
そして、蒸留釜1での被蒸留処理液Lの突沸により飛散する被蒸留処理液Lの飛沫は、直進性を持っていることから、図2に示すように、蒸気排出路3の蒸留釜側排出路部分3uの内径(即ち、蒸留釜1の接続口1wの口径)及び屈曲形態は、蒸留釜1内から直進状に飛散する被蒸留処理液Lの飛沫の全部又は略全部が気液分離部30の蒸気入口30iに達するまでに蒸留釜側排出路部分3uの内面に当たるように設定して、蒸気排出路3の蒸留釜側排出路部分3uにて前記遮蔽手段Sを構成してある。
つまり、前記蒸留釜側排出路部分3uの内径及び屈曲形態は、前記設定液面高さ範囲の被蒸留処理液Lの液面Lsの各部から前記接続口1wを通過するように仮想直線Pを引いたときに、気液分離部30の蒸気入口30iを通過するように引ける前記被蒸留処理液Lの液面部分が無いか又はその範囲を極力狭くするように設定してある。
【0033】
尚、上述のように前記蒸留釜側排出路部分3uの口径及び屈曲形態を設定するに当たっては、蒸留釜1内で被蒸留処理液Lに突沸が生じたときに、蒸留釜1内の急激な圧力上昇を十分に緩和できるように、前記蒸留釜側排出路部分3uの内径を極力大きくする状態で設定するようにしてある。
そして、蒸留釜側排出路部分3uの内径を、突沸が生じたときの蒸留釜1内の急激な圧力上昇を十分に緩和できるように大きく設定してあることから、蒸留釜1で突沸が生じたときに、蒸気排出路3の蒸留釜側排出路部分3uに被蒸留処理液Lが溢れ出るのを抑制できることが可能になるので、前記設定液面高さ範囲を高く設定することが可能になる。
そして、前記設定液面高さ範囲を高く設定することが可能になることから、蒸留釜1に貯留される被蒸留処理液Lを加熱するための伝熱面積を広くすることができて加熱効率を向上することができるので、蒸留釜1の小型化を図ることができる。
【0034】
更に、被蒸留処理液Lの飛沫が気液分離部30の蒸気入口30iから気液分離部30内に飛散するのを遮蔽するように、蒸気入口30iの口径よりも大径の円板状の邪魔板32を邪魔板支持棒33を用いて、蒸気入口30iと間隔を開け且つ蒸気入口30iに対向する状態で、蒸気入口30iと同心状に配設して、その邪魔板32にて前記遮蔽手段Sを構成してある。
つまり、邪魔板32を設けるに当たっては、図2に示すように、前述のように仮想直線Pを引いたときに気液分離部30の蒸気入口30iを通過するように引ける前記被蒸留処理液Lの液面部分がある場合には、その液面部分から蒸気入口30iを通過するよう引いた仮想直線Pが邪魔板32に交差するように設けて、邪魔板32にて、被蒸留処理液Lの飛沫が気液分離部30の蒸気入口30iから気液分離部30内に飛散するのを確実に遮蔽することができるようにしてある。
【0035】
図1及び図2に示すように、前記蒸気排出路3の蒸留釜側排出路部分3uには、直径方向に対向する状態で、透明ガラスにて気密状に遮蔽した1対のセンサ取付孔を形成して、その一対のセンサ取付孔を利用して、発光部34eと受光部34rからなる透過型の泡検出用光センサ34を設けてある。
つまり、蒸留釜1内にて被蒸留処理液Lが発泡して、その被蒸留処理液Lの泡が蒸留釜側排出路部分3uにおける前記発光部34eと受光部34rとの間に設定される前記泡検出用光センサ34の検出域に流動してくると、受光部34rの受光量が減少することに基づいて、泡存在状態を検出するように構成して、前記泡検出用光センサ34にて、前記蒸気排出路3における前記外気導入手段Iによる外気導入箇所よりも蒸気通流方向上流側部分に泡が存在する泡存在状態を検出する泡検出手段を構成してある。
更に、前記蒸気排出路3の蒸留釜側排出路部分3uには、前記泡検出用光センサ34の検出域よりも蒸気通流方向上流側に位置させて、透明ガラスにて気密状に遮蔽した点検窓3mを設けてある。
【0036】
図1及び図2に示すように、前記外気導入手段Iは、前記蒸気排出路3における気液分離部30と凝縮器5との間の箇所から分岐させた外気導入路35と、その外気導入路35を開閉する外気導入用電磁弁V6とを備えて構成してある。
又、前記蒸気排出路3には、前記外気導入路35の接続箇所、即ち、前記外気導入手段Iによる外気導入箇所よりも蒸気通流方向下流側に位置させて、蒸気排出路閉じ手段として機能させる蒸気排出路用電磁弁V7を設けてある。
そして、詳細は後述するが、前記制御部7により、前記蒸気排出路用電磁弁V7を閉じ且つ前記外気導入用電磁弁V6を開弁することにより、外気導入路35を通じて外気を蒸気排出路3に導入する共に、導入外気を凝縮器5側に向かって流れるのを阻止して、蒸留釜1側に向かってのみ流すようにしてある。つまり、前記外気導入用電磁弁V6を開弁することにより、前記外気導入手段Iを外気導入作動させることになる。
【0037】
図1に示すように、前記バッファタンク6は、上部に気相部を形成する状態で蒸留液を貯留するように構成してあり、そのバッファタンク6の気相部に蒸気排出路3を接続してある。
又、バッファタンク6の下端には、蒸留液排出路13を接続してあり、その蒸留液排出路13には、バッファタンク6内から蒸留液を排出する蒸留液排出用ポンプ14、及び、蒸留液排出路13を開閉する蒸留液排出用電磁弁V3を設けてある。
バッファタンク6には、内部に貯留される蒸留液の貯留レベルを検出する蒸留液レベルセンサ6sを備えてある。
【0038】
次に、前記制御部7の制御動作について説明する。
制御部7は、操作盤28から運転開始指令が指令されると、処理液供給用電磁弁V2、加熱蒸気用電磁弁V4及び蒸気排出路用電磁弁V7を開弁し、且つ、残液排出用電磁弁V1、消泡剤供給用電磁弁V5及び外気導入用電磁弁V6を閉弁し、且つ、残液排出用ポンプ9及び消泡剤供給用ポンプ42を停止させた状態で、真空ポンプ4を作動させ、蒸留分離処理運転を開始する。
つまり、蒸留釜1内が減圧され、その減圧による吸引力により、処理液供給路10を通じて、貯留レベルが設定範囲内になるように蒸留釜1に被蒸留処理液Lが供給され、又、加熱ヒータH及び熱媒流動用加熱ジャケット1jに加熱用水蒸気が通流されて、蒸留釜1内の被蒸留処理液Lが加熱される。そして、蒸留釜1内が減圧されると共に、被蒸留処理液Lが加熱されることに伴って、被蒸留処理液Lから蒸留分離対象成分が蒸発して、その蒸留分離対象成分の蒸気が気液分離部30にてミストが除去されながら蒸気排出路3を通流し、その蒸気排出路3を通流する蒸留分離対象成分の蒸気が凝縮器5にて冷却水により冷却されて液化し、そのように液化した蒸留液がバッファタンク6内に貯留されて、被蒸留処理液Lから蒸留分離対象成分が蒸留分離されて回収されることになる。
気液分離部30にて分離されたミストが液状になった液分は、蒸留釜側排出路部分3uを伝って蒸留釜1に戻る。
又、蒸留釜1内で被蒸留処理液Lに突沸が生じても、飛散する被蒸留処理液Lの飛沫は、蒸留釜側排出路部分3uの内面や邪魔板32にて遮蔽されるので、蒸気排出路3における気液分離部30よりも蒸気通流方向下流側に飛散するのが防止される。
【0039】
上述の蒸留分離処理運転中は、貯留レベル調整器2の処理液貯留レベルセンサ2sの検出情報に基づいて、貯留レベル調整器2における被蒸留処理液Lの液面Lsを前記設定液面高さ範囲内に維持するように、処理液供給用電磁弁V2を開閉制御する。そして、蒸留釜1の被蒸留処理液Lの液面Lsは貯留レベル調整器2の被蒸留処理液Lの液面Lsと同一になるので、蒸留釜1の被蒸留処理液Lの液面Lsが前記設定液面高さ範囲内に維持されることになる。
つまり、被蒸留処理液Lの液面Lsが前記設定液面高さ範囲の下限よりも低くなると処理液供給用電磁弁V2が開弁される。すると、処理液供給路10を通じて蒸留釜1に被蒸留処理液Lが供給されて、蒸留釜1の液面Lsが上昇するのと同様に貯留レベル調整器2の液面Lsが上昇する。そして、貯留レベル調整器2の液面Lsが前記設定液面高さ範囲の上限に達すると、処理液供給用電磁弁V2が閉弁されて、蒸留釜1への被蒸留処理液Lの供給が停止される。
【0040】
又、バッファタンク6の蒸留液レベルセンサ6sの検出情報に基づいて、バッファタンク6における蒸留液の貯留レベルを設定範囲内に維持するように、蒸留液排出用電磁弁V3の開閉制御及び蒸留液排出用ポンプ14の発停制御を実行する。
つまり、バッファタンク6の貯留レベルが上限値を越えると、蒸留液排出用電磁弁V3が開弁され、且つ、蒸留液排出用ポンプ14が作動されて、バッファタンク6から蒸留液が排出され、その排出に伴って、バッファタンク6の貯留レベルが下限値に達すると、蒸留液排出用電磁弁V3が閉弁され、且つ、蒸留液排出用ポンプ14が停止されて、バッファタンク6からの蒸留液の排出が停止される。
【0041】
又、制御部7は、上記の蒸留分離処理運転中は、前記泡検出用光センサ34の検出情報を監視し、その泡検出用光センサ34にて泡存在状態が検出される毎に、前記蒸留分離処理運転を中断して、前記外気導入手段Iを外気導入作動させ、且つ、前記消泡剤供給手段Dを消泡剤を設定量供給すべく作動させる外気導入/消泡剤供給制御を実行する。
即ち、制御部7は、外気導入/消泡剤供給制御では、真空ポンプ4を停止させ、加熱蒸気用電磁弁V4及び蒸気排出路用電磁弁V7を閉弁した後、外気導入用電磁弁V6及び消泡剤供給用電磁弁V5を開弁し且つ消泡剤供給用ポンプ42を作動させ、その後、消泡剤供給用設定時間が経過すると、外気導入用電磁弁V6及び消泡剤供給用電磁弁V5を閉弁し且つ消泡剤供給用ポンプ42を停止させ、続いて、加熱蒸気用電磁弁V4及び蒸気排出路用電磁弁V7を開弁し、続いて、真空ポンプ4を作動させる。
【0042】
つまり、外気導入/消泡剤供給制御では、加熱ヒータH及び熱媒流動用加熱ジャケット1jへの加熱用水蒸気の供給を停止して、加熱手段Kの加熱作動を停止し、且つ、真空ポンプ4を停止して蒸留分離処理運転を中断した状態で、外気導入路35を通じて外気を蒸気排出路3に導入し、その導入外気を蒸留釜1に向かって蒸気排出路3を逆流させることにより、蒸気排出路3内に存在する被蒸留処理液Lの泡を蒸留釜1内に押し戻して、被蒸留処理液Lの泡が気液分離部30よりも蒸気通流方向下流側に流れるのを防止し、並びに、消泡剤を消泡剤供給路41を通じて蒸留釜1に設定量供給することになる。
そして、泡検出用光センサ34にて泡存在状態が検出される毎に、消泡剤を設定量ずつ蒸留釜1に供給するので、被蒸留処理液Lの発泡を適切に抑制できるように、消泡剤を過剰になることなく適正量供給することができる。
又、外気導入/消泡剤供給制御が実行されると、外気がフィルター31を逆方向に流れるので、フィルター31の詰まりも解消されることになる。
【0043】
蒸留釜1内に残留している残液を排出する残液排出指令が指令されると、残液排出用電磁弁V1を開弁させ、且つ、残液排出用ポンプ9を作動させる。従って、蒸留釜1内から残液が強制的に排出される。
ちなみに、前記残液排出指令は、操作盤28により人為的に指令するように構成してある。
あるいは、蒸留分離処理が終期に達したことに相当する処理終期を検出する処理終期検出手段を設けて、その処理終期検出手段が処理終期を検出することに基づいて、前記残液排出指令が指令されるように構成することができる。
ちなみに、前記処理終期検出手段としては、例えば、蒸留分離処理運転を実行する運転時間を設定する運転時間設定部を設けて、蒸留分離処理運転の開始後、前記運転時間設定部にて設定された運転時間が経過することに基づいて、処理終期に達したことを検出するように構成することができる。
【0044】
又、操作盤28から運転停止指令が指令されると、処理液供給用電磁弁V2及び加熱蒸気用電磁弁V4を閉弁し、それらの閉弁後、設定時間が経過すると真空ポンプ4を停止させて、蒸留分離処理運転を停止する。
【0045】
ちなみに、蒸留分離対象成分が水である場合は、例えば、蒸留釜1内を12.7kPa程度に減圧し、蒸留釜1内を70°C程度に加熱する。
【0046】
〔第2実施形態〕
以下、本発明の第2実施形態を説明するが、第1実施形態と同じ構成要素や同じ作用を有する構成要素については、重複説明を避けるために、同じ符号を付すことにより説明を省略し、主として、第1実施形態と異なる構成を説明する。
図6に示すように、第2実施形態においては、上記の第1実施形態における外気導入手段I及び蒸気排出路用電磁弁V7を省略し、その外気導入手段I及び蒸気排出路用電磁弁V7を省略したことに関連して制御部7の制御動作が異なる以外は、第1実施形態と同様に構成してあり。
【0047】
以下、制御部7の制御動作において第1実施形態と異なる部分について説明する。
制御部7は、操作盤28から運転開始指令が指令されると、処理液供給用電磁弁V2及び加熱蒸気用電磁弁V4を開弁し、且つ、残液排出用電磁弁V1及び消泡剤供給用電磁弁V5を閉弁し、且つ、残液排出用ポンプ9及び消泡剤供給用ポンプ42を停止させた状態で、真空ポンプ4を作動させ、前記蒸留分離処理運転を開始する。
【0048】
又、制御部7は、上記の蒸留分離処理運転中は、前記泡検出用光センサ34の検出情報を監視し、その泡検出用光センサ34にて泡存在状態が検出される毎に、前記消泡剤供給手段Dを消泡剤を設定量供給すべく作動させる消泡剤供給制御を実行する。
即ち、制御部7は、消泡剤供給制御では、真空ポンプ4の作動及び加熱蒸気用電磁弁V4の開弁状態を継続する状態で、消泡剤供給用電磁弁V5を開弁し且つ消泡剤供給用ポンプ42を作動させ、その後、消泡剤供給用設定時間が経過すると、消泡剤供給用電磁弁V5を閉弁し且つ消泡剤供給用ポンプ42を停止させる。
【0049】
つまり、消泡剤供給制御では、加熱手段Kの加熱作動及び真空ポンプ4による蒸留釜1の減圧を継続して、蒸留分離処理運転を継続する状態で、消泡剤を消泡剤供給路41を通じて蒸留釜1に設定量供給することになる。
そして、泡検出用光センサ34にて泡存在状態が検出される毎に、消泡剤を設定量ずつ蒸留釜1に供給するので、被蒸留処理液Lの発泡を適切に抑制できるように、消泡剤を過剰になることなく適正量供給することができる。
【0050】
〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の第1及び第2の各実施形態における構成から気液分離部30を省略した実施形態も可能である。
【0051】
(ロ) 上記の第1及び第2の各実施形態において、前記泡検出用光センサ34の設置位置は変更可能である。
例えば、蒸留釜1内の泡存在状態を検出するように設けても良い。
あるいは、気液分離部30内における邪魔板32よりも上方、即ち、蒸気通流方向下流側での泡存在状態を検出するように設けても良い。この場合、蒸留釜1内で被蒸留処理液Lに突沸が生じても、飛散する被蒸留処理液Lの飛沫は、蒸留釜側排出路部分3uの内面や邪魔板32にて遮蔽されて、前記センサ取付孔のガラスが汚れるのを防止することができるので、前記センサ取付孔のガラスの清掃に係わるメンテナンスを軽減することができる。
【0052】
(ハ) 前記泡検出手段の具体構成は、上記の各実施形態において例示した透過型の泡検出用光センサ34に限定されるものではなく、例えば、反射型の光センサにて構成してもよい。
【0053】
(ニ) 前記蒸気排出路3の蒸留釜側排出路部分3uを被蒸留処理液の飛沫が気液分離部30に飛散するのを遮蔽するように屈曲させて、蒸留釜側排出路部分3uにて遮蔽手段Sを構成するに当たって、その屈曲形態は上記の各実施形態において例示した形態に限定されるものではない。例えば、くの字状に屈曲させても良い。
【0054】
(ホ) 蒸留釜1は通常はステンレス等の金属製であり、酸性の被蒸留処理液を処理対象とする場合は、蒸留釜1の腐食を防止するために、蒸留釜1の内面をテフロン等の耐酸性の材料にてコーティングする。従って、蒸留釜1の内面をコーティングする場合は、そのコーティング膜により伝熱性能が低下するので、熱媒流動用加熱ジャケット1jは省略するのが好ましい。
【0055】
(ヘ) セラミックス製本体部15の形状は、上記の実施形態において例示した如き直筒状に限定されるものではなく、U字筒状やJ字筒状等、種々の形状が可能であるが、形状を簡素化する上では、直筒状が最も好ましい。
【0056】
(ト) 加熱ヒータHに通流させる加熱用熱媒としては、上記の実施形態において例示した如き水蒸気に限定されるものではなく、温水、油等種々の熱媒を用いることが可能である。
(チ) 加熱手段Kの具体構成としては、上記の実施形態において例示した如き加熱用熱媒を熱源とする加熱ヒータHに限定されるのもではない。例えば、蒸留釜1内に設けられる電気ヒータや、蒸留釜1の外部から加熱作用するように設けられる電気ヒータ等にて構成することができる。
【図面の簡単な説明】
【図1】第1実施形態に係る真空蒸留装置の全体構成を示すブロック図
【図2】第1実施形態に係る真空蒸留装置の蒸留釜及び気液分離部の縦断面図
【図3】第1実施形態に係る真空蒸留装置の加熱ヒータの縦断面図
【図4】第1実施形態に係る真空蒸留装置の加熱ヒータの平面図
【図5】第1実施形態に係る真空蒸留装置の加熱ヒータの横断平面図
【図6】第2実施形態に係る真空蒸留装置の全体構成を示すブロック図
【図7】従来の真空蒸留装置のブロック図
【符号の説明】
1 蒸留釜
1w 接続口
3 蒸気排出路
3u 蒸留釜側排出路部分
4 吸引手段
5 凝縮器
7 制御手段
30 気液分離部
30i 蒸気入口
32 邪魔板
34 泡検出手段
D 消泡剤供給手段
I 外気導入手段
K 加熱手段
S 遮蔽手段
V7 蒸気排出路閉じ手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a distillation still equipped with a heating means for heating the stored liquid to be distilled,
Suction means for performing a suction action on a steam discharge passage connected to the distillation still to reduce the pressure inside the distillation still,
The present invention relates to a vacuum distillation apparatus provided with a condenser for liquefying steam flowing through the steam discharge passage.
[0002]
[Prior art]
Such a vacuum distillation apparatus is used, for example, for the purpose of reducing the amount of waste liquid waste by distilling and separating water from a waste liquid containing water as a distillate, or for the purpose of distilling and separating a solvent from waste liquid containing a solvent to regenerate the waste liquid. What is used.
Such a vacuum distillation apparatus heats the liquid to be distilled stored in the distillation still by a heating means, and causes the suction means to suction the vapor discharge path connected to the distillation still, thereby causing the liquid to be distilled to be removed. By evaporating the distillation separation target component contained therein, the vapor of the distillation separation target component is passed through a vapor discharge path, and the vapor of the distillation separation target component flowing through the vapor discharge path is liquefied in a condenser. The components to be separated by distillation are separated as a distillate (for example, see Patent Document 1).
[0003]
As shown in FIG. 7, in such a vacuum distillation apparatus, a gas-liquid separation unit 30 for separating mist from steam flowing through the steam discharge path 3 may be provided. Conventionally, the gas-liquid separation unit 30 is provided with a drain outlet 30e for discharging a liquid portion in which the separated mist becomes liquid (hereinafter, sometimes referred to as a separated liquid portion). A drain tank 51 provided below the connection port 1w of the passage 3 for receiving the separated liquid flowing down from the drain discharge port 3e, and a drain recovery path connecting the drain tank 51 and the distillation still 1 52, a drain recovery passage solenoid valve 53 for opening and closing the drain recovery passage 52, and a drain recovery pump 54 for pumping the separated liquid in the drain tank 51 to the distillation still 1 through the drain recovery passage 52. The separated liquid component separated by the gas-liquid separation unit 30 is pumped through drain recovery passage 52 by drain recovery pump 54, it has been configured to return to the still 1.
[0004]
In FIG. 7, K is a heating means for heating the liquid to be distilled stored in the distillation still 1, 4 is a vacuum pump as a suction means for suctioning the steam discharge path 3, and 5 is a steam discharge A condenser 6 for liquefying the vapor flowing through the passage 3 is a buffer tank for storing the distillate condensed in the condenser 5.
[0005]
[Patent Document 1]
JP-A-6-63304
[0006]
[Problems to be solved by the invention]
By the way, in such a vacuum distillation apparatus, the liquid to be distilled stored in the distillation still sometimes foams during the distillation separation operation in which the component to be subjected to distillation and separation is separated from the liquid to be distilled.
However, in the related art, when the liquid to be distilled foams in the still, the bubbles of the liquid to be distilled flow through the steam discharge path by the suction action of the suction means, and are cooled by the condenser in the steam discharge path. To a portion where the distillate flows, such as a portion or a downstream side of the distillate flow direction (hereinafter, may be referred to as a distillate flow portion). It will adhere to the flowing part. When the bubbles of the liquid to be distilled adhere to the distillate flowing portion of the vapor discharge path, the bubbles of the liquid to be distilled are mixed with the distillate and the quality of the distillate is reduced. There is a problem that the discharge path needs to be cleaned, and the burden on maintenance is increased.
[0007]
Incidentally, in order to suppress foaming of the liquid to be distilled, a defoaming agent may be supplied to the still, but the foaming is appropriately suppressed due to the fact that the components of the liquid to be distilled are not constant. Since the required amount of the antifoaming agent is not clear, conventionally, when the antifoaming agent is supplied, there is a problem that the defoaming agent is excessively supplied and the running cost is increased.
[0008]
Conventionally, when a gas-liquid separation unit is provided, as described above, a drain tank for receiving the separated liquid separated by the gas-liquid separation unit is provided, and the separated liquid in the drain tank is collected for drain collection. Since the pump was configured to be pumped back to the distillation still through the drain recovery passage by the pump, the separation liquid separation recovery route for returning the separated liquid separated in the gas-liquid separation unit to the distillation still becomes complicated, There is a problem that the separated liquid collection path is easily clogged with the residue and the like, and the clogging removal operation is required, and the burden on maintenance is increased.
[0009]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a vacuum distillation apparatus capable of reducing a burden on maintenance.
[0010]
[Means for Solving the Problems]
[Invention of claim 1]
The vacuum distillation apparatus according to claim 1, a distillation still provided with a heating means for heating the stored liquid to be distilled,
Suction means for performing a suction action on a steam discharge passage connected to the distillation still to reduce the pressure inside the distillation still,
A condenser for liquefying the steam flowing through the steam discharge path,
A gas-liquid separation unit that separates mist from the steam flowing through the steam discharge passage by a specific gravity difference from the steam is entirely located above a connection port of the steam discharge passage in the distillation still and the gas-liquid separation unit It is characterized in that the mist separated in the section is provided in such a manner that a liquid component in a liquid state returns to the distillation still by its own weight.
That is, the mist is separated from the vapor of the component to be separated by the specific gravity difference from the vapor by the gas-liquid separation section, and the separated liquid in which the separated mist becomes liquid returns to the distillation still by its own weight.
That is, the gas-liquid separation unit is provided so that the entirety thereof is located above the connection port of the vapor discharge passage in the distillation still and the separated liquid separated by the gas-liquid separation unit returns to the distillation still by its own weight. As a result, the separated liquid component can be returned to the distillation still through the originally provided vapor discharge path without using a pump, thereby simplifying the separated liquid component recovery path, Can be prevented from being clogged with the residue of the waste.
Therefore, it is possible to prevent clogging of the separated liquid collection path with residues and the like, so that it is possible to reduce the burden of maintenance.
[0011]
[Invention of claim 2]
According to a second aspect of the present invention, there is provided the vacuum distillation apparatus according to the first aspect, which shields the droplets of the to-be-distilled liquid to be scattered due to bumping of the to-be-distilled liquid in the distillation still from being scattered into the gas-liquid separation section. A feature is that a means is provided.
That is, even if the liquid to be distilled is bumped in the distillation still and the droplets of the liquid to be distilled are scattered, the scattered droplets in the gas-liquid separation section are shielded by the shielding means.
That is, the to-be-distilled liquid may be bumped in the still, and when the to-be-distilled liquid is bumped in such a manner, the droplets of the to-be-distilled liquid reach the distillate flowing portion in the vapor discharge path. In addition, since the liquid to be distilled is mixed with the distillate and the quality of the distillate is degraded, it is necessary to clean the steam discharge passage.
Therefore, by providing a shielding means for blocking the droplets of the liquid to be distilled from splashing into the gas-liquid separation section, even if the liquid to be distilled is bumped, the droplets of the liquid to be distilled are discharged in the vapor discharge path. Since it is possible to suppress reaching to the flow-through portion, maintenance related to cleaning of the steam discharge path can be reduced.
Therefore, even if the to-be-distilled liquid is bumped, the maintenance related to the cleaning of the vapor discharge path due to the bumping of the to-be-distilled liquid can be reduced, so that the burden on the maintenance can be further reduced. Became.
[0012]
[Invention of claim 3]
The vacuum distillation apparatus according to claim 3 is the vacuum distillation apparatus according to claim 1 or 2, wherein a distillation-pot-side discharge path portion connecting the distillation pot and the gas-liquid separation unit in the vapor discharge path includes It is characterized in that it is bent so as to shield the splash from splashing to the gas-liquid separation part, and the shielding means is formed at a portion of the distillation tank side discharge passage.
That is, since the portion of the steam discharge passage that connects the distillation still and the gas-liquid separation portion to the distillation still is bent so as to shield the liquid to be distilled from scattering to the gas-liquid separation portion. Even if the to-be-distilled liquid is bumped and the to-be-distilled liquid is scattered, the scattered droplets hit the inner surface of the distillation-pot-side discharge path portion of the vapor discharge path and are prevented from being scattered to the gas-liquid separation section. You.
In other words, since the scattered droplets of the liquid to be distilled have straightness, all or almost all of the droplets of the liquid to be distilled scattered straight from inside the distillation tank reach the gas-liquid separation section. The shielding means can be configured at the distillation pot side discharge passage portion of the steam discharge passage by bending the distillation pot side discharge passage portion of the steam discharge passage so as to hit the inner surface of the side discharge passage portion.
Therefore, since the shielding means can be provided without using a dedicated member, the burden on maintenance can be further reduced while reducing the cost.
[0013]
[Invention of claim 4]
The vacuum distillation apparatus according to claim 4 is the vacuum distillation apparatus according to claim 2 or 3, so as to shield the droplets of the liquid to be distilled from scattering from the vapor inlet of the gas-liquid separation unit into the gas-liquid separation unit. It is characterized in that a baffle is disposed facing the steam inlet, and the baffle constitutes the shielding means.
That is, even if the liquid to be distilled is bumped and splashes of the liquid to be distilled are scattered, the liquid to be distilled is scattered into the gas-liquid separation part by the baffle plate provided in the gas-liquid separation part so as to face the vapor inlet. Is shielded from doing so.
That is, as the shielding means, the baffle plate is disposed in the gas-liquid separation part in a state facing the steam inlet, so that the steam flowing through the steam discharge path collides with the baffle plate and is included in the steam. It is possible to prevent the mist of the liquid to be distilled from entering the gas-liquid separation section while weakening the force of the mist and effectively separating the mist.
Then, the steam flowing through the steam discharge passage collides with the baffle plate to reduce the force of the mist contained in the steam and effectively separate the mist. The size of the liquid separation unit can be reduced.
Therefore, the burden on maintenance can be further reduced while reducing the size of the gas-liquid separator.
[0014]
[Invention according to claim 5]
The vacuum distillation apparatus according to claim 5, wherein the distillation still provided with a heating means for heating the stored liquid to be distilled,
Suction means for performing a suction action on a steam discharge passage connected to the distillation still to reduce the pressure inside the distillation still,
A condenser for liquefying the steam flowing through the steam discharge path,
Outside air introduction means for introducing outside air into the steam discharge path,
Foam detection means for detecting a bubble presence state in which bubbles are present in the steam flow direction upstream portion from the outside air introduction point by the outside air introduction means in the distillation still or the steam discharge path,
And a control unit for causing the outside air introduction unit to perform the outside air introduction based on the detection of the bubble presence state by the bubble detection unit.
That is, when the bubble detection means detects the bubble presence state, the outside air introduction means is operated by the control means to introduce outside air, and the bubble detection means in the steam discharge path is located on the downstream side in the steam flow direction from the point where the bubble presence state is detected. Since outside air is introduced from the outside air introduction point and flows through the vapor discharge path, it is possible to suppress bubbles of the liquid to be distilled from reaching the distillate flow section in the vapor discharge path.
In addition, since the bubbles of the liquid to be distilled can be prevented from reaching the distillate flowing portion in the vapor discharge path, maintenance related to cleaning of the vapor discharge path can be reduced.
Therefore, the maintenance related to cleaning of the steam discharge passage can be reduced, so that the burden related to the maintenance can be reduced.
[0015]
[Invention of claim 6]
The vacuum distillation apparatus according to claim 6 is the vacuum distillation apparatus according to claim 5, further comprising a steam discharge path closing unit that closes a portion of the steam discharge path downstream of the outside air introduction point in a steam flow direction,
It is characterized in that the control means is configured to close and operate the steam discharge passage closing means based on the detection of the bubble presence state by the foam detection means.
That is, when the bubble detection means detects the presence of bubbles, the control means closes the steam discharge passage closing means and closes the portion of the steam discharge passage downstream of the outside air introduction point in the steam flow direction. The outside air introduced into the steam discharge path from the outside air introduction point by the introduction means is prevented from flowing toward the distillate flow portion on the condenser side from the outside air introduction point, and flows toward the distillation still.
In other words, by allowing the outside air introduced from the outside air introduction point to the steam discharge path to flow only to the distillation pot side, the bubbles of the liquid to be distilled are further suppressed from reaching the distillate flow section in the steam discharge path. It becomes possible to do.
Therefore, the maintenance related to the cleaning of the steam discharge path can be further reduced, so that the load related to the maintenance can be further reduced.
[0016]
[Invention of claim 7]
The vacuum distillation apparatus according to claim 6 is the vacuum distillation apparatus according to claim 5 or 6, further comprising an antifoaming agent supply unit that supplies an antifoaming agent to the distillation still,
A characteristic configuration in which the control means is configured to operate the antifoaming agent supply means to supply a set amount of the antifoaming agent based on the foam detection means detecting a foam presence state. I do.
That is, when the foam detecting means detects the presence of the foam, the control means operates the antifoaming agent supplying means to supply the defoaming agent in the set amount.
By supplying the set amount of the defoaming agent to the still, the foaming of the liquid to be distilled is suppressed in the distillation separation operation after the defoaming agent is supplied, and the subsequent distillation Foaming can be appropriately suppressed by repeatedly operating the defoaming agent supply means to supply the defoaming agent in the set amount each time the foam detecting state is detected by the foam detecting means in the separation processing operation. As described above, it is possible to supply an appropriate amount of the antifoaming agent without becoming excessive, and it is possible to reduce the running cost as compared with the conventional case where the antifoaming agent is excessively supplied.
Also, by supplying the defoaming agent to the still, the foaming of the liquid to be distilled in the distillation separation process is suppressed, so that the outside air introduction means is operated to introduce the outside air based on the generation of bubbles, and the distillation separation process is performed. Can be eliminated, or the number of times the distillation separation process is interrupted can be reduced, thereby improving the efficiency of the distillation separation process.
Therefore, by reducing the maintenance related to the cleaning of the steam discharge passage, the burden related to the maintenance can be reduced, and the running cost related to the supply of the defoaming agent can be reduced and the efficiency of the distillation separation process can be improved. It became so.
[0017]
[Invention of claim 8]
The vacuum distillation apparatus according to claim 6, wherein the distillation still provided with a heating means for heating the stored solution to be distilled,
Suction means for performing a suction action on a steam discharge passage connected to the distillation still to reduce the pressure inside the distillation still,
A condenser for liquefying the steam flowing through the steam discharge path,
Foam detection means for detecting the presence of foam in the distillation still or the steam discharge path,
Defoaming agent supply means for supplying an antifoaming agent to the distillation still,
Control means for operating the defoaming agent supply means so as to supply a set amount of the antifoaming agent based on detection of the foam presence state by the foam detection means is provided.
That is, when the foam detecting means detects the presence of the foam, the control means operates the antifoaming agent supplying means to supply the defoaming agent in the set amount.
In other words, since the foaming of the liquid to be distilled is suppressed by supplying the set amount of the antifoaming agent to the still, the bubbles of the liquid to be distilled reach the distillate flowing portion in the vapor discharge path. It is also possible to suppress the defoaming agent supply means every time the foam detecting state is detected by the foam detecting means after the set amount of the antifoaming agent is supplied. By repeating the operation to supply the defoaming agent to the set amount, it is possible to suppress the bubbles of the liquid to be distilled from reaching the distillate flowing portion in the vapor discharge path, An appropriate amount of the antifoaming agent can be supplied without becoming excessive so that foaming can be appropriately suppressed.
And, since it becomes possible to supply an appropriate amount of an antifoaming agent so that foaming can be appropriately suppressed, it is possible to reduce the running cost as compared with the conventional case where an antifoaming agent is excessively supplied. Will be possible.
Therefore, by reducing the maintenance related to the cleaning of the steam discharge passage, the burden related to the maintenance can be reduced, and the running cost related to the supply of the antifoaming agent can be reduced. became.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the vacuum distillation apparatus adjusts the storage level of the liquid to be distilled L in the distillation still 1 provided with a heating means K for heating the liquid to be distilled L stored therein. Vacuum pump 4 serving as a suction means for reducing the pressure inside distillation still 1 by suction acting on storage level adjuster 2 and steam discharge passage 3 connected to distillation still 1, and mist from steam flowing through steam discharge passage 3 Gas-liquid separation unit 30 that separates the air by the specific gravity difference from steam, outside air introduction means I for introducing outside air to the steam discharge path 3, defoaming agent supply means D for supplying the defoaming agent to the distillation still 1, and steam discharge path 3. A condenser 5 for liquefying the steam flowing therethrough by cooling with cooling water, a buffer tank 6 for storing the distillate condensed in the condenser 5, and control as a control means for controlling various kinds of vacuum distillation apparatuses It comprises a part 7 and the like.
[0019]
Hereinafter, each part of the vacuum distillation apparatus will be described.
As shown in FIGS. 1 and 2, the distillation still 1 comprises a bottomed cylindrical pot body 1 m and a pot lid 1 c for closing an opening of the pot main body 1 m. A heat medium flowing heating jacket 1j is formed so as to surround the outer periphery of the pot main body 1m, and a guide 1g for guiding the heating medium in a spiral manner through the heating medium flowing heating jacket 1j. Is provided. The distillation still 1 is arranged in a vertical position in which the axis of the still main body 1m is oriented vertically.
In the state where the distillation still 1 is arranged as described above, a heating steam supply port 1i is formed at a position located at the upper end of the heating jacket 1j for flowing the heat medium, and a drain discharge port is formed at a position located at the bottom. An outlet 1e is formed.
[0020]
As shown in FIGS. 1 and 2, as the heating means K, a heating heater H installed in a state of being inserted into the distillation still 1 and the above-described heating jacket 1j for flowing the heat medium are configured. .
The heater H is described below. As shown in FIGS. 3 to 5, the heater H is a bottomed cylindrical ceramic body 15 having a closed end, and a heating medium inserted therein. A return pipe 16 is provided so that steam for heating is supplied to the inside from the base end side of the ceramic body 15 and discharged outside through the heat medium return pipe 16. The ceramic body 15 is made of a mixture of silicon and silicon carbide, and is formed in a straight cylindrical shape having a straight axis and a substantially constant diameter in the axial direction.
[0021]
A heater lid 17 for closing the base end opening of the ceramic body 15 is provided, and the heat medium return pipe 16 is supported by the heater lid 17 so as to penetrate the heater lid 17. 17, a heating steam supply unit 18 communicating with the inside of the ceramic body 15 when the heater lid 17 is attached to the ceramic body 15, and a heating steam supply unit 18 communicating with the base end of the heat medium return pipe 16. And a steam discharge section 19 for use.
The heater lid 17 is provided with a plurality of nut members 20 engaged with a flange provided at a base opening edge of the ceramic body 15 and a plurality of nuts provided in a state inserted through the heater lid 17. A plurality of bolts 21 are separately screwed into the member 20 and attached to the base opening of the ceramic body 15 with a packing 29 made of Teflon or the like interposed therebetween.
[0022]
With the heater lid 17 attached to the base end opening of the ceramic body 15, the heat medium return pipe 16 is configured to extend to near the distal end in the ceramic body 15. A helical blade 22 is attached to the outer peripheral portion of the portion inserted into the ceramic body 15 in a spiral shape over substantially the entire length thereof. Then, the heating steam supplied to the base end side of the ceramic body 15 is spirally passed through the spiral blade body 22 to the tip inside the ceramic body 15, and then the heating medium By allowing the steam to flow into the distal end opening of the return pipe 16, the steam for heating is allowed to flow over substantially the entire length of the ceramic body 15, so that the inside of the distillation still 1 can be efficiently heated. It is.
[0023]
As shown in FIGS. 1 and 2, the heater H configured as described above is supported by the pot lid 1 c in a state where the ceramic body 15 penetrates the pot lid 1 c of the distillation pot 1. When the pot lid 1c supporting the heater H is attached to the pot main body 1m as described above, the heater H is attached to the distillation pot 1 in a state where the ceramic body 15 is coaxially inserted into the pot. Will be prepared.
[0024]
As shown in FIG. 1, a heating steam supply passage 24 to which heating steam is supplied from a heating steam supply source 23 such as a boiler is connected to a heating steam supply section 18 of the heater H and a heating medium for heating medium flowing. A heating steam supply port 1i of the jacket 1j is connected in parallel, and a heating steam discharge unit 19 of the heater H is connected to a heating steam supply source 23 through a heating steam return path 25 to supply heating steam. It is configured to flow through the heater H and the heating jacket 1j for flowing the heating medium to heat the inside of the distillation still 1. The heating steam supply passage 24 is provided with a heating steam solenoid valve V4 for interrupting the supply of heating steam to the heating heater H and the heating medium flowing heating jacket 1j.
Incidentally, the ratio of the flow rate at which the heating steam flows through the heater H to the flow rate at which the heating steam flows through the heating medium flowing heating jacket 1j is about 3: 1.
[0025]
As shown in FIG. 1, a processing liquid supply passage 10 is connected to an end of the steam discharge passage 3 on the side of the distillation still 1, and the inside of the distillation still 1 is suctioned by being depressurized by the vacuum pump 4. The processing liquid L stored in the processing liquid storage layer 11 is supplied to the distillation still 1 through the processing liquid supply path 10 and the vapor discharge path 3 by force. The supply path 10 is provided with a treatment liquid supply solenoid valve V2 for interrupting the supply of the liquid to be distilled L to the still 1.
The bottom of the still 1 is connected to a bottom discharge 8, and the bottom 8 has a bottom discharge pump 9 for forcibly discharging the bottom from the bottom 1, and a bottom discharge pump 9. An electromagnetic valve for discharging residual liquid V1 for opening and closing the passage 8 is provided.
[0026]
The storage level adjuster 2 communicates a bottom portion thereof with a bottom portion of the distillation still 1 through a liquid phase communication passage 26 and a gas phase portion of the upper portion through a gas phase communication portion 27. The storage level adjuster 2 is provided with a processing liquid storage level sensor 2 s for detecting the storage level of the liquid to be distilled L in the storage level adjuster 2. As will be described later in detail, the control unit 7 controls the opening / closing of the processing liquid supply electromagnetic valve V2 based on the detection information of the processing liquid storage level sensor 2s, thereby controlling the processing liquid L to be stored in the distillation still 1. The liquid level Ls is configured to be maintained within a set liquid level height range.
[0027]
As shown in FIG. 1, an antifoaming agent supply means D connects an antifoaming agent tank 40 for storing an antifoaming agent such as a silicon-based antifoaming agent, and the antifoaming agent tank 40 to the distillation still 1. An antifoaming agent supply passage 41, an antifoaming agent supply electromagnetic valve V5 for opening and closing the antifoaming agent supply passage 41, and the defoaming agent in the antifoaming agent tank 40 through the antifoaming agent supply passage 41 to the distillation still 1. A defoamer supply pump 42 for feeding under pressure is provided.
Then, as will be described in detail later, the control unit 7 opens the defoaming agent supply solenoid valve V5 during the set time for defoaming agent supply, and switches the defoaming agent supply pump 42 on. It is configured to operate at a set rotation speed to supply a set amount of the defoamer to the distillation still 1. As the set amount, assuming a plurality of types of liquid to be distilled having different components, the amount is smaller than the amount of the antifoaming agent considered to be the minimum necessary to prevent foaming of the plurality of types of liquid to be distilled. The antifoaming agent supply pump 42 is set to an amount, for example, about 1/2 or 1/3 of the minimum necessary amount. And the time is set so that the set amount of the antifoaming agent can be supplied.
[0028]
As shown in FIG. 1, the steam discharge passage 3 is connected to the distillation still 1 at a connection port 1w formed at the upper end portion of the distillation still 1. The gas-liquid separation unit 30, the condenser 5, and the buffer tank 6 are provided in this order from the upstream side in the steam flow direction, a portion between the condenser 5 and the buffer tank 6 in the steam discharge path 3, and a buffer. A check valve 12 is provided at each of the locations downstream of the tank 6 in the steam flow direction, and the outside air introduction means I is provided at a position between the gas-liquid separation unit 30 and the condenser 5 in the steam discharge path 3. It is provided so that outside air is introduced into the steam discharge path 3.
[0029]
As shown in FIGS. 1 and 2, the gas-liquid separation unit 30 is entirely located above the connection port 1 w of the steam discharge path 3 in the distillation still 1 and separated by the gas-liquid separation unit 30. The mist is provided so that a liquid portion of the mist is returned to the distillation still 1 by its own weight.
Further, a shielding means S is provided to shield the droplets of the liquid to be distilled L that are scattered due to bumping of the liquid to be distilled L in the distillation still 1 from scattering into the gas-liquid separation section 30.
[0030]
Next, based on FIG. 2, the gas-liquid separation unit 30, the installation form of the gas-liquid separation unit 30, and the shielding means S will be described.
The gas-liquid separation unit 30 is formed in a substantially cylindrical box shape whose axial direction is oriented vertically, and steam flows in from a circular steam inlet 30i at the bottom and from a circular steam outlet 30e at the top. It is provided in the middle of the steam discharge path 3 so that the steam flows out. A filter 31 is provided in the gas-liquid separation unit 30, and an inspection window 30 m is provided on a side wall of the gas-liquid separation unit 30, which is air-tightly shielded with transparent glass.
[0031]
The distillation pot side discharge path portion 3u connecting the distillation still 1 and the gas-liquid separation unit 30 in the steam discharge path 3 is formed to be bent into an arc having a central angle of approximately 90 °, and the arc-shaped distillation pot side discharge path. The portion 3u is positioned such that, in plan view, the axis of the distillation pot side discharge path section 3u is along the radial direction of the distillation pot 1 and the opening at the tip of the distillation pot side discharge path section 3u faces upward in the vertical direction. The end is provided so as to communicate with the connection port 1 w of the distillation still 1.
The vapor inlet 30i of the gas-liquid separation unit 30 is connected to the distal end of the distillation pot side discharge passage portion 3u with the axial direction thereof pointing in the vertical direction. It is provided in a state where it is supported.
Therefore, the liquid component in which the mist separated in the gas-liquid separation unit 30 has become liquid can be returned to the distillation still 1 by passing through the distillation-stand-side discharge path portion 3u.
[0032]
The droplets of the liquid to be distilled L which are scattered due to bumping of the liquid to be distilled L in the distillation still 1 have straightness, and as shown in FIG. The inner diameter of the discharge path portion 3u (that is, the diameter of the connection port 1w of the still 1) and the bent form are such that all or almost all of the droplets of the liquid to be distilled L scattered straight from inside the still 1 are subjected to gas-liquid separation. The shielding means S is configured so as to hit the inner surface of the distillation pot side discharge passage portion 3u before reaching the steam inlet 30i of the section 30 and the distillation pot side discharge passage portion 3u of the steam discharge passage 3.
In other words, the inner diameter and the bent form of the distillation pot side discharge path portion 3u are defined by the imaginary straight line P so as to pass through the connection port 1w from each part of the liquid level Ls of the liquid to be distilled L in the set liquid level height range. There is no liquid surface portion of the to-be-distilled liquid L that can be pulled so as to pass through the vapor inlet 30i of the gas-liquid separation section 30 when pulled, or the range is set as narrow as possible.
[0033]
In setting the diameter and the bending shape of the distillation pot side discharge passage portion 3u as described above, when bumping occurs in the liquid L to be distilled in the distillation pot 1, an abrupt change in the distillation pot 1 occurs. In order to sufficiently reduce the increase in pressure, the inner diameter of the distillation channel side discharge passage portion 3u is set to be as large as possible.
Since the inner diameter of the distillation pot side discharge passage portion 3u is set to be large enough to sufficiently reduce a sudden pressure increase in the distillation pot 1 when bumping occurs, bumping occurs in the distillation pot 1. In this case, it is possible to prevent the liquid to be distilled L from overflowing into the distillation pot side discharge passage portion 3u of the steam discharge passage 3, so that the set liquid level height range can be set high. Become.
Since the set liquid level height range can be set high, the heat transfer area for heating the to-be-distilled liquid L stored in the distillation still 1 can be increased, and the heating efficiency can be increased. Therefore, the size of the distillation still 1 can be reduced.
[0034]
Further, a disc-shaped disk having a diameter larger than the diameter of the steam inlet 30i is provided so as to shield the droplets of the liquid to be distilled L from scattering from the vapor inlet 30i of the gas-liquid separator 30 into the gas-liquid separator 30. The baffle plate 32 is disposed concentrically with the steam inlet 30i at a distance from the steam inlet 30i and opposed to the steam inlet 30i by using a baffle plate support rod 33, and the baffle plate 32 shields the baffle plate 32. Means S are constituted.
In other words, in providing the baffle plate 32, as shown in FIG. 2, when the virtual straight line P is drawn as described above, the liquid to be distilled L which can be drawn so as to pass through the vapor inlet 30i of the gas-liquid separator 30. Is provided so as to intersect the baffle plate 32 with a virtual straight line P drawn from the liquid surface portion so as to pass through the vapor inlet 30i. Is prevented from being scattered from the vapor inlet 30i of the gas-liquid separation unit 30 into the gas-liquid separation unit 30.
[0035]
As shown in FIGS. 1 and 2, a pair of sensor mounting holes which are hermetically shielded by transparent glass in a state where they are diametrically opposed to each other are formed in a portion 3 u of the steam discharge path 3 on the distillation pot side. A transmission-type bubble detection optical sensor 34 including a light-emitting portion 34e and a light-receiving portion 34r is provided using the pair of sensor mounting holes.
That is, the liquid to be distilled L foams in the still 1 and the bubbles of the liquid to be distilled L are set between the light emitting section 34e and the light receiving section 34r in the still path 3u. When flowing into the detection area of the bubble detecting optical sensor 34, the light receiving unit 34r decreases the amount of received light to detect a bubble presence state. Thus, a bubble detecting means for detecting a bubble existing state in which bubbles are present in a portion of the steam discharge path 3 upstream of the outside air introduction means by the outside air introduction means I in the steam flow direction.
Further, the distillation path on the distillation pot side 3u of the steam discharge path 3 is located upstream of the detection area of the bubble detection optical sensor 34 in the direction of flow of the vapor, and is airtightly shielded by transparent glass. An inspection window 3m is provided.
[0036]
As shown in FIGS. 1 and 2, the outside air introduction means I includes an outside air introduction path 35 branched from a location between the gas-liquid separation unit 30 and the condenser 5 in the steam discharge path 3, and the outside air introduction path. An external air introduction solenoid valve V6 for opening and closing the passage 35 is provided.
Further, the steam discharge passage 3 is located downstream of the connection point of the outside air introduction passage 35, that is, the outside air introduction point by the outside air introduction means I, and functions as a steam discharge passage closing means. A steam discharge passage solenoid valve V7 is provided.
As will be described later in detail, the control section 7 closes the steam discharge passage solenoid valve V7 and opens the outside air introduction solenoid valve V6, thereby allowing outside air to pass through the outside air introduction passage 35 to the steam discharge passage 3. While preventing the introduced outside air from flowing toward the condenser 5 and flowing only toward the distillation still 1. That is, by opening the outside air introduction solenoid valve V6, the outside air introduction means I is operated to introduce outside air.
[0037]
As shown in FIG. 1, the buffer tank 6 is configured to store a distillate in a state where a vapor phase is formed in the upper part, and the vapor discharge path 3 is connected to the vapor phase of the buffer tank 6. I have.
A distillate discharge path 13 is connected to the lower end of the buffer tank 6. The distillate discharge path 13 has a distillate discharge pump 14 for discharging distillate from the buffer tank 6, and a distillate discharge pump 13. A distillate discharge solenoid valve V3 for opening and closing the liquid discharge passage 13 is provided.
The buffer tank 6 is provided with a distillate level sensor 6s for detecting the storage level of the distillate stored inside.
[0038]
Next, the control operation of the control unit 7 will be described.
When an operation start command is issued from the operation panel 28, the control unit 7 opens the treatment liquid supply solenoid valve V2, the heating steam solenoid valve V4, and the steam discharge passage solenoid valve V7, and discharges residual liquid. Vacuum valve V1, the defoaming agent supply electromagnetic valve V5, and the outside air introduction electromagnetic valve V6 are closed, and the residual liquid discharge pump 9 and the defoamer supply pump 42 are stopped. 4 is operated to start the distillation separation processing operation.
That is, the inside of the distillation still 1 is decompressed, and the to-be-distilled processing liquid L is supplied to the distillation still 1 through the processing liquid supply path 10 by the suction force by the reduced pressure so that the storage level is within the set range. The steam for heating is passed through the heater H and the heating jacket 1j for flowing the heat medium, and the liquid L to be distilled in the distillation still 1 is heated. Then, the pressure in the distillation still 1 is reduced and the liquid L to be distilled is heated, so that the component to be distilled and separated is evaporated from the liquid to be distilled L, and the vapor of the component to be distilled and separated is vaporized. The mist is removed by the liquid separation unit 30 and flows through the steam discharge passage 3. The vapor of the component to be distilled and separated flowing through the steam discharge passage 3 is cooled by the cooling water in the condenser 5 and liquefied. The liquefied distillate is stored in the buffer tank 6, and the component to be subjected to distillation separation is distilled and recovered from the liquid to be distilled L.
The liquid component in which the mist separated in the gas-liquid separation unit 30 has become liquid returns to the distillation still 1 via the distillation-side discharge passage portion 3u.
Further, even if bumping occurs in the liquid to be distilled L in the still 1, the splash of the liquid to be distilled L that is scattered is shielded by the inner surface of the distillation path 3u and the baffle plate 32. It is prevented from being scattered downstream of the gas-liquid separation section 30 in the steam discharge path 3 in the steam flow direction.
[0039]
During the above-mentioned distillation separation processing operation, the liquid level Ls of the liquid to be distilled L in the storage level adjuster 2 is adjusted to the set liquid level height based on the detection information of the processing liquid storage level sensor 2s of the storage level adjuster 2. The opening and closing of the processing liquid supply solenoid valve V2 is controlled so as to maintain the range. Since the liquid level Ls of the liquid L to be distilled in the still 1 is the same as the liquid level Ls of the liquid L to be distilled in the storage level adjuster 2, the liquid level Ls of the liquid L to be distilled in the still 1 is set. Is maintained within the set liquid level range.
That is, when the liquid level Ls of the liquid L to be distilled becomes lower than the lower limit of the set liquid level height range, the processing liquid supply electromagnetic valve V2 is opened. Then, the liquid L to be distilled is supplied to the distillation still 1 through the processing liquid supply path 10, and the liquid level Ls of the storage level adjuster 2 rises in the same manner as the liquid level Ls of the distillation still 1 rises. When the liquid level Ls of the storage level adjuster 2 reaches the upper limit of the set liquid level height range, the processing liquid supply solenoid valve V2 is closed, and the supply of the liquid L to be distilled to the distillation still 1 is performed. Is stopped.
[0040]
Further, based on the detection information of the distillate level sensor 6s of the buffer tank 6, the opening and closing control of the distillate discharge solenoid valve V3 and the distillate are controlled so that the storage level of the distillate in the buffer tank 6 is maintained within a set range. The start / stop control of the discharge pump 14 is executed.
That is, when the storage level of the buffer tank 6 exceeds the upper limit, the distillate discharge solenoid valve V3 is opened, and the distillate discharge pump 14 is operated to discharge the distillate from the buffer tank 6, When the storage level of the buffer tank 6 reaches the lower limit value with the discharge, the distillate discharge solenoid valve V3 is closed, and the distillate discharge pump 14 is stopped, and the distillation from the buffer tank 6 is stopped. The discharge of the liquid is stopped.
[0041]
During the distillation separation operation, the control unit 7 monitors the detection information of the foam detection optical sensor 34, and every time the foam detection optical sensor 34 detects The external air introduction / defoaming agent supply control in which the distillation separation operation is interrupted, the external air introducing means I is operated to introduce the external air, and the defoaming agent supply means D is operated to supply the defoaming agent in a set amount. Execute.
That is, in the outside air introduction / defoaming agent supply control, the control unit 7 stops the vacuum pump 4, closes the heating steam solenoid valve V4 and the steam discharge passage solenoid valve V7, and then controls the outside air introduction solenoid valve V6. Then, the defoaming agent supply electromagnetic valve V5 is opened and the defoaming agent supply pump 42 is operated. After that, when the defoaming agent supply set time has elapsed, the outside air introduction electromagnetic valve V6 and the defoaming agent supply The solenoid valve V5 is closed and the defoaming agent supply pump 42 is stopped, then the heating steam solenoid valve V4 and the steam discharge passage solenoid valve V7 are opened, and then the vacuum pump 4 is operated. .
[0042]
That is, in the outside air introduction / defoaming agent supply control, the supply of the heating steam to the heating heater H and the heating medium flowing heating jacket 1j is stopped, the heating operation of the heating means K is stopped, and the vacuum pump 4 is stopped. Is stopped and the distillation separation operation is interrupted, outside air is introduced into the steam discharge path 3 through the outside air introduction path 35, and the introduced outside air is caused to flow back through the steam discharge path 3 toward the distillation still 1, whereby steam is removed. The bubbles of the liquid to be distilled L present in the discharge path 3 are pushed back into the still 1 to prevent the bubbles of the liquid to be distilled L from flowing downstream of the gas-liquid separator 30 in the vapor flow direction. In addition, the defoamer is supplied to the distillation still 1 through the defoamer supply path 41 in a set amount.
Each time the bubble detection state is detected by the bubble detection optical sensor 34, the defoaming agent is supplied to the distillation still 1 by a set amount, so that the foaming of the liquid to be distilled L can be appropriately suppressed. An appropriate amount of antifoaming agent can be supplied without becoming excessive.
Further, when the outside air introduction / antifoaming agent supply control is executed, the outside air flows through the filter 31 in the reverse direction, so that the clogging of the filter 31 is also eliminated.
[0043]
When a residual liquid discharge command for discharging the residual liquid remaining in the distillation still 1 is issued, the residual liquid discharge electromagnetic valve V1 is opened and the residual liquid discharge pump 9 is operated. Therefore, the residual liquid is forcibly discharged from the still 1.
Incidentally, the residual liquid discharge command is configured to be artificially instructed by the operation panel 28.
Alternatively, a process end detecting means for detecting a process end corresponding to the end of the distillation separation process is provided, and based on the process end detecting means detecting the process end, the residual liquid discharge command is instructed. It can be configured to be.
By the way, as the processing end detecting means, for example, an operation time setting unit for setting an operation time for performing the distillation separation processing operation is provided, and after the distillation separation processing operation is started, the operation time setting unit is set. It can be configured to detect that the processing end has been reached based on the elapse of the operation time.
[0044]
When an operation stop command is issued from the operation panel 28, the processing liquid supply solenoid valve V2 and the heating steam solenoid valve V4 are closed, and the vacuum pump 4 is stopped when a set time elapses after closing these valves. Then, the distillation separation processing operation is stopped.
[0045]
Incidentally, when the component to be subjected to distillation separation is water, for example, the pressure inside the still 1 is reduced to about 12.7 kPa, and the inside of the still 1 is heated to about 70 ° C.
[0046]
[Second embodiment]
Hereinafter, a second embodiment of the present invention will be described. However, the same components and components having the same operations as those of the first embodiment are denoted by the same reference numerals to avoid redundant description, and description thereof will be omitted. Mainly, a configuration different from the first embodiment will be described.
As shown in FIG. 6, in the second embodiment, the outside air introduction means I and the solenoid valve V7 for the steam discharge passage in the first embodiment are omitted, and the outside air introduction means I and the solenoid valve V7 for the steam discharge passage are omitted. The configuration is the same as that of the first embodiment except that the control operation of the control unit 7 is different in connection with the omission of.
[0047]
Hereinafter, portions of the control operation of the control unit 7 different from those of the first embodiment will be described.
When an operation start command is issued from the operation panel 28, the control unit 7 opens the treatment liquid supply solenoid valve V2 and the heating steam solenoid valve V4, and also performs the residual liquid discharge solenoid valve V1 and the defoaming agent. With the supply electromagnetic valve V5 closed and the residual liquid discharge pump 9 and the defoamer supply pump 42 stopped, the vacuum pump 4 is operated to start the distillation separation processing operation.
[0048]
During the distillation separation operation, the control unit 7 monitors the detection information of the foam detection optical sensor 34, and every time the foam detection optical sensor 34 detects The defoaming agent supply control for operating the defoaming agent supply means D to supply the set amount of the defoaming agent is executed.
That is, in the defoaming agent supply control, the control unit 7 opens and deactivates the defoaming agent supply electromagnetic valve V5 in a state where the operation of the vacuum pump 4 and the open state of the heating steam electromagnetic valve V4 are continued. The foam supply pump 42 is operated, and after that, when the set time for defoamer supply has elapsed, the defoamer supply electromagnetic valve V5 is closed and the defoamer supply pump 42 is stopped.
[0049]
That is, in the defoaming agent supply control, the defoaming agent is supplied to the defoaming agent supply passage 41 while the heating operation of the heating means K and the depressurization of the distillation still 1 by the vacuum pump 4 are continued, and the distillation separation processing operation is continued. And the set amount is supplied to the distillation still 1 through the heater.
Each time the bubble detection state is detected by the bubble detection optical sensor 34, the defoaming agent is supplied to the distillation still 1 by a set amount, so that the foaming of the liquid to be distilled L can be appropriately suppressed. An appropriate amount of antifoaming agent can be supplied without becoming excessive.
[0050]
[Another embodiment]
Next, another embodiment will be described.
(A) An embodiment in which the gas-liquid separation unit 30 is omitted from the configuration in each of the first and second embodiments is also possible.
[0051]
(B) In each of the first and second embodiments, the installation position of the bubble detection optical sensor 34 can be changed.
For example, it may be provided so as to detect the state of the presence of bubbles in the still 1.
Alternatively, it may be provided so as to detect the presence of bubbles above the baffle plate 32 in the gas-liquid separation unit 30, that is, on the downstream side in the vapor flow direction. In this case, even if bumping occurs in the liquid to be distilled L in the still 1, the scattered droplets of the liquid to be distilled L are shielded by the inner surface of the distillation path 3u and the baffle plate 32. Since the glass in the sensor mounting hole can be prevented from being stained, maintenance related to cleaning the glass in the sensor mounting hole can be reduced.
[0052]
(C) The specific configuration of the bubble detection means is not limited to the transmission type bubble detection optical sensor 34 exemplified in each of the above embodiments. For example, the configuration may be a reflection type optical sensor. Good.
[0053]
(D) The distillation pot side discharge path portion 3u of the vapor discharge path 3 is bent so as to shield the droplets of the liquid to be distilled from scattering to the gas-liquid separation unit 30, and the steam discharge path portion 3u In configuring the shielding means S, the bent form is not limited to the form exemplified in each of the above embodiments. For example, it may be bent in a V shape.
[0054]
(E) The still 1 is usually made of a metal such as stainless steel. When an acidic solution to be distilled is to be treated, the inner surface of the still 1 is made of Teflon or the like in order to prevent corrosion of the still 1. Coating with acid resistant material. Therefore, when coating the inner surface of the still 1, the heat transfer performance is reduced by the coating film, so that the heating medium flowing heating jacket 1 j is preferably omitted.
[0055]
(F) The shape of the ceramic main body 15 is not limited to a straight cylindrical shape as exemplified in the above embodiment, and various shapes such as a U-shaped cylindrical shape and a J-shaped cylindrical shape are possible. In order to simplify the shape, a straight cylindrical shape is most preferable.
[0056]
(G) The heating heat medium flowing through the heater H is not limited to steam as exemplified in the above embodiment, and various heat media such as hot water and oil can be used.
(H) The specific configuration of the heating means K is not limited to the heater H using the heating heat medium as a heat source as exemplified in the above embodiment. For example, it can be constituted by an electric heater provided in the still 1 or an electric heater provided so as to perform a heating action from the outside of the still 1.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an overall configuration of a vacuum distillation apparatus according to a first embodiment.
FIG. 2 is a vertical sectional view of a distillation still and a gas-liquid separation unit of the vacuum distillation apparatus according to the first embodiment.
FIG. 3 is a longitudinal sectional view of a heater of the vacuum distillation apparatus according to the first embodiment.
FIG. 4 is a plan view of a heater of the vacuum distillation apparatus according to the first embodiment.
FIG. 5 is a cross-sectional plan view of a heater of the vacuum distillation apparatus according to the first embodiment.
FIG. 6 is a block diagram showing an overall configuration of a vacuum distillation apparatus according to a second embodiment.
FIG. 7 is a block diagram of a conventional vacuum distillation apparatus.
[Explanation of symbols]
1 distillation still
1w connection port
3 Steam discharge path
3u distillation pot side discharge channel
4 Suction means
5 Condenser
7 control means
30 Gas-liquid separation unit
30i steam inlet
32 Baffle
34 Foam detection means
D Antifoaming agent supply means
I Outside air introduction means
K heating means
S Shielding means
V7 Steam discharge path closing means

Claims (8)

貯留している被蒸留処理液を加熱する加熱手段を備えた蒸留釜と、
その蒸留釜に接続される蒸気排出路に吸引作用して、前記蒸留釜内を減圧する吸引手段と、
前記蒸気排出路を通流する蒸気を液化する凝縮器とが設けられた真空蒸留装置であって、
前記蒸気排出路を通して流動する蒸気からミストを蒸気との比重差により分離する気液分離部が、その全体が前記蒸留釜における前記蒸気排出路の接続口よりも上方に位置し且つ前記気液分離部にて分離されたミストが液状になった液分が自重により前記蒸留釜に戻るように設けられている真空蒸留装置。
A distillation still equipped with a heating means for heating the stored liquid to be distilled,
Suction means for performing a suction action on a steam discharge passage connected to the distillation still to reduce the pressure inside the distillation still,
A condenser for liquefying the steam flowing through the steam discharge path, and
A gas-liquid separation unit that separates mist from the steam flowing through the steam discharge passage by a specific gravity difference from the steam is located entirely above a connection port of the steam discharge passage in the distillation still and the gas-liquid separation A vacuum distillation apparatus provided such that a liquid component in which the mist separated in the section becomes liquid returns to the distillation still by its own weight.
前記蒸留釜での被蒸留処理液の突沸により飛散する被蒸留処理液の飛沫が前記気液分離部内に飛散するのを遮蔽する遮蔽手段が設けられている請求項1記載の真空蒸留装置。The vacuum distillation apparatus according to claim 1, further comprising a shielding unit that shields a droplet of the liquid to be distilled scattered due to bumping of the liquid to be distilled in the distillation still from scattering into the gas-liquid separation unit. 前記蒸気排出路における前記蒸留釜と前記気液分離部とを接続する蒸留釜側排出路部分が、前記被蒸留処理液の飛沫が前記気液分離部に飛散するのを遮蔽するように屈曲されて、その蒸留釜側排出路部分にて前記遮蔽手段が構成されている請求項2記載の真空蒸留装置。A distillation-pot-side discharge path portion connecting the distillation still and the gas-liquid separation unit in the vapor discharge path is bent so as to shield the droplets of the liquid to be distilled from scattering into the gas-liquid separation unit. 3. The vacuum distillation apparatus according to claim 2, wherein said shielding means is formed at a portion of the distillation path on the distillation pot side. 前記被蒸留処理液の飛沫が前記気液分離部の蒸気入口から前記気液分離部内に飛散するのを遮蔽するように、邪魔板が前記蒸気入口に対向する状態で配設されて、その邪魔板にて前記遮蔽手段が構成されている請求項2又は3記載の真空蒸留装置。A baffle plate is arranged in a state facing the vapor inlet so as to shield the droplets of the liquid to be distilled from scattering from the vapor inlet of the gas-liquid separator into the gas-liquid separator. 4. The vacuum distillation apparatus according to claim 2, wherein said shielding means is constituted by a plate. 貯留している被蒸留処理液を加熱する加熱手段を備えた蒸留釜と、
その蒸留釜に接続される蒸気排出路に吸引作用して、前記蒸留釜内を減圧する吸引手段と、
前記蒸気排出路を通流する蒸気を液化する凝縮器とが設けられた真空蒸留装置であって、
前記蒸気排出路に外気を導入する外気導入手段と、
前記蒸留釜又は前記蒸気排出路における前記外気導入手段による外気導入箇所よりも蒸気通流方向上流側部分に泡が存在する泡存在状態を検出する泡検出手段と、
その泡検出手段が泡存在状態を検出することに基づいて、前記外気導入手段を外気導入作動させる制御手段とが設けられている真空蒸留装置。
A distillation still equipped with a heating means for heating the stored liquid to be distilled,
Suction means for performing a suction action on a steam discharge passage connected to the distillation still to reduce the pressure inside the distillation still,
A condenser for liquefying the steam flowing through the steam discharge path, and
Outside air introduction means for introducing outside air into the steam discharge path,
Foam detection means for detecting a bubble presence state in which bubbles are present in the steam flow direction upstream portion from the outside air introduction point by the outside air introduction means in the distillation still or the steam discharge path,
A vacuum distillation apparatus provided with control means for causing the outside air introduction means to perform an outside air introduction operation based on the detection of the presence state of the foam by the foam detection means.
前記蒸気排出路における前記外気導入箇所よりも蒸気通流方向下流側部分を閉じる蒸気排出路閉じ手段が設けられ、
前記制御手段が、前記泡検出手段が泡存在状態を検出することに基づいて前記蒸気排出路閉じ手段を閉じ作動させるように構成されている請求項5記載の真空蒸留装置。
Steam discharge path closing means for closing a downstream portion of the steam discharge path in the steam flow direction from the outside air introduction point is provided,
6. The vacuum distillation apparatus according to claim 5, wherein the control unit is configured to close and operate the steam discharge passage closing unit based on the detection of the bubble presence state by the foam detection unit.
前記蒸留釜に消泡剤を供給する消泡剤供給手段が設けられ、
前記制御手段が、前記泡検出手段が泡存在状態を検出することに基づいて、前記消泡剤供給手段を消泡剤を設定量供給すべく作動させるように構成されている請求項5又は6記載の真空蒸留装置。
Defoaming agent supply means for supplying an antifoaming agent to the still is provided,
7. The control means is configured to operate the antifoaming agent supply means to supply a set amount of the antifoaming agent based on the detection of the foam presence state by the foam detecting means. 8. The vacuum distillation apparatus according to claim 1.
貯留している被蒸留処理液を加熱する加熱手段を備えた蒸留釜と、
その蒸留釜に接続される蒸気排出路に吸引作用して、前記蒸留釜内を減圧する吸引手段と、
前記蒸気排出路を通流する蒸気を液化する凝縮器とが設けられた真空蒸留装置であって、
前記蒸留釜又は前記蒸気排出路に泡が存在する泡存在状態を検出する泡検出手段と、
前記蒸留釜に消泡剤を供給する消泡剤供給手段と、
前記泡検出手段が泡存在状態を検出することに基づいて、前記消泡剤供給手段を消泡剤を設定量供給するように作動させる制御手段とが設けられている真空蒸留装置。
A distillation still equipped with a heating means for heating the stored liquid to be distilled,
Suction means for performing a suction action on a steam discharge passage connected to the distillation still to reduce the pressure inside the distillation still,
A condenser for liquefying the steam flowing through the steam discharge path, and
Foam detection means for detecting the presence of foam in the distillation still or the steam discharge path,
Defoaming agent supply means for supplying an antifoaming agent to the distillation still,
A vacuum distillation apparatus provided with control means for operating the antifoaming agent supply means to supply a set amount of the antifoaming agent based on detection of the foam presence state by the foam detecting means.
JP2003130645A 2003-05-08 2003-05-08 Vacuum distillation unit Pending JP2004330111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130645A JP2004330111A (en) 2003-05-08 2003-05-08 Vacuum distillation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130645A JP2004330111A (en) 2003-05-08 2003-05-08 Vacuum distillation unit

Publications (1)

Publication Number Publication Date
JP2004330111A true JP2004330111A (en) 2004-11-25

Family

ID=33506098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130645A Pending JP2004330111A (en) 2003-05-08 2003-05-08 Vacuum distillation unit

Country Status (1)

Country Link
JP (1) JP2004330111A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295007A (en) * 2005-04-13 2006-10-26 Osaka Univ Manufacturing method, manufacturing apparatus and manufacturing system for semiconductor processing liquid
KR101475386B1 (en) * 2012-10-15 2014-12-23 주식회사 삼양제넥스 Method for producing highly pure anhydrosugar alcohols with improved flowability of distillation residue
CN113441200A (en) * 2021-07-02 2021-09-28 中检集团南方测试股份有限公司 Integrated intelligent distillation instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295007A (en) * 2005-04-13 2006-10-26 Osaka Univ Manufacturing method, manufacturing apparatus and manufacturing system for semiconductor processing liquid
KR101475386B1 (en) * 2012-10-15 2014-12-23 주식회사 삼양제넥스 Method for producing highly pure anhydrosugar alcohols with improved flowability of distillation residue
CN113441200A (en) * 2021-07-02 2021-09-28 中检集团南方测试股份有限公司 Integrated intelligent distillation instrument

Similar Documents

Publication Publication Date Title
US7014756B2 (en) Method and apparatus for separating immiscible phases with different densities
US5865992A (en) Oil, water and gas separator
JP2005507771A (en) Usepoint water purification method and apparatus therefor
US7931782B2 (en) Method for recovering a liquid medium and system for recover a liquid medium
CA2464907A1 (en) Method and apparatus for separating immiscible phases with different densities
US5940578A (en) Water evaporation apparatus
JP2007120972A (en) Supercritical system
JP2002320964A (en) Separation device
US8268167B2 (en) Separation apparatus and method
EP1815900B1 (en) Separation apparatus and method
KR101470837B1 (en) Centrifugal filter with water separation structure and purifier system using the same
CA2221916C (en) Recycle heat exchange flash treater and process
US6294005B1 (en) Vacuum gas releasing system
JP2004330111A (en) Vacuum distillation unit
JP6485772B2 (en) Gas purification device and method of operating the gas purification device
JP2006118342A (en) Oil/water separating device
JP2004148181A (en) Oil-water separation method and oil-water separator
US4589955A (en) Fluid recovery system
KR20210020522A (en) Fume phase-variation system in a temperature-adjusting device for high temperature
KR20010013956A (en) Water evaporation apparatus
KR100760018B1 (en) Gas removal method and gas removal device of cooling and heating water
JP4215584B2 (en) Oil / water separator
JP4397021B2 (en) Evaporating apparatus and evaporating method for effervescent solution
US6706173B1 (en) Filtration system
JPH0824510A (en) Defoaming method and device therefor