JP2004329746A - Actual blood flow rate measuring system of hemodialysis device - Google Patents

Actual blood flow rate measuring system of hemodialysis device Download PDF

Info

Publication number
JP2004329746A
JP2004329746A JP2003132959A JP2003132959A JP2004329746A JP 2004329746 A JP2004329746 A JP 2004329746A JP 2003132959 A JP2003132959 A JP 2003132959A JP 2003132959 A JP2003132959 A JP 2003132959A JP 2004329746 A JP2004329746 A JP 2004329746A
Authority
JP
Japan
Prior art keywords
blood flow
hemodialysis
pressure
blood
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003132959A
Other languages
Japanese (ja)
Inventor
Naoyuki Kato
尚之 加藤
Sadatoshi Osawa
貞利 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Medical Co Ltd
Original Assignee
Toray Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Medical Co Ltd filed Critical Toray Medical Co Ltd
Priority to JP2003132959A priority Critical patent/JP2004329746A/en
Publication of JP2004329746A publication Critical patent/JP2004329746A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system capable of easily, accurately and quickly measuring an actual blood flow rate in hemodialysis. <P>SOLUTION: The actual blood flow rate measuring system of a hemodialysis device is provided with a replenishing liquid injection means for injecting a replenishing liquid to the upstream side of a blood pump, a pressure detection means for detecting a pressure on the upstream side of a hemodialysis element, and an actual blood flow rate computing means for calculating the actual blood flow rate in the hemodialysis from the set blood flow rate of the blood pump and detected pressures by the pressure detection means before and after injecting the replenishing liquid into a blood flow passage by the replenishing liquid injection means. By this system, in spite of extremely simple circuit constitution, just by measuring the pressure behavior of a blood circuit before and after injecting the replenishing liquid, the actual blood flow rate is easily, accurately and quickly calculated. Thus, whether or not specifications suitable for the hemodialysis are set, the efficiency of dialysis using the hemodialysis element, and dialysis setting time are determined accurately. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、血液透析装置の実血流量測定システムに関し、とくに、実際に血液透析を行う際の実血流量を迅速にかつ精度良く求めることができるシステムに関する。
【0002】
【従来の技術】
血液透析においては、患者の動脈側から採血され、体外の血液透析装置で透析した後の浄化された血液が静脈側に戻される。血液透析装置は既に広く実用化されており、代表的なものとして、たとえば特許文献1や特許文献2等に記載されたものが知られている。血液透析装置では、血液透析を行うための血液透析要素として、透析膜を内在させた血液透析要素(ダイアライザー)が用いられ、患者の動脈側から送られてきた血液中から、血液透析要素内で血液流路側と透析液流路側との間で透析膜を介して尿成分等が除去され、また、余剰水分が除水されて、透析後の血液が患者の静脈側へと戻される。この患者の体内との間の血液の送液・循環には、通常、血液流路中の血液透析要素の上流側に設けられたチューブポンプからなる血液ポンプが用いられている。
【0003】
この体外循環用のチューブポンプからなる血液ポンプの吐出量の調整、設定は、通常、血液ポンプの一次側(吸入側)を大気開放した状態で行われ、たとえば、200mL/分程度に設定される。
【0004】
ところが、実際に血液透析を行っている場合には、患者の動脈側から、比較的粘度の高い血液を、血液ポンプの一次側を通して血液ポンプに吸入し、所定の設定血流量に設定されている血液ポンプを介して吐出し、その血液を血液透析要素へと供給し、透析後の血液を静脈側に戻すようにしている。したがって、実際の血液透析中には、血液ポンプの一次側は、たとえば−200〜−300mmHg程度の陰圧状態になっていることが多い。とくに、患者からの採血用に、細い動脈側穿刺針を使う場合には、必然的に陰圧状態になる。このように血液ポンプの一次側が陰圧状態になると、実際の血液ポンプの吐出量(実血流量)は、上記設定血流量よりも少なくなっていることが多い。
【0005】
血液透析要素(ダイアライザー)の透析効率や発揮すべき性能は、通常、時間当たりの総血流量で透析効率を判断するようにしているので、上記のように血液ポンプの設定血流量と実血流量との間にずれが生じた場合、設定血流量で判断したのでは、最適な透析時間の設定や血液透析要素の最適設定を、正確に行うことができなくなる。
【0006】
【特許文献1】
特公昭56−82号公報
【特許文献2】
特公昭61−25382号公報
【0007】
【発明が解決しようとする課題】
そこで本発明の課題は、上記のような実情に鑑み、簡単な方式により、血液透析における実血流量を容易にかつ精度良くしかも迅速に測定できるようにした、血液透析装置の実血流量測定システムを提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る血液透析装置の実血流量測定システムは、患者の体内との間で血液を循環させる血液流路と透析液流路との間で血液透析を行う血液透析要素と、血液流路の血液透析要素の上流側に設けられたチューブポンプからなる血液ポンプとを有する血液透析装置において、前記血液ポンプの上流側の血液流路内に補液を注入する補液注入手段を有するとともに、前記血液透析要素の上流側または下流側の血液流路の圧力を検出する圧力検出手段を有し、かつ、前記血液ポンプの設定血流量と、前記補液注入手段による血液流路内への補液の注入前後の、前記圧力検出手段による検出圧力とから、血液透析における実血流量を算出する実血流量演算手段を有することを特徴とするシステムからなる。
【0009】
このシステムにおいては、上記実血流量演算手段は、血液ポンプの大気圧下で設定された設定血流量をQb、上記補液注入手段により血液流路内に補液が注入される前の圧力値をP0、注入された後の圧力の最大値をPmaxとするとき、実血流量Qbtを、
Qbt=(P0/Pmax)×Qb
として算出する。
【0010】
すなわち、血液流路に血液が流れている場合、前述の如く血液ポンプの一次側は陰圧になっていることが多く、そのため、血液ポンプの吐出量は大気圧下で設定された設定血流量よりも低くなっていることが多い。しかし、実際の血液よりも粘度の低い補液が注入されると、瞬間的に血液ポンプの一次側の陰圧状態が解放されて大気圧状態に近づき、血液ポンプの吐出量が増大して動脈側圧力も増加する圧力挙動を示す。したがってこの圧力挙動における、補液注入直後の最大圧力Pmaxと、補液注入前の初期圧力値P0との比が、設定血流量と実血流量との比に相当するとみなすことができ、上式によって実血流量を容易に、かつ迅速に精度良く求めることができるようにしたものである。
【0011】
上記補液注入手段による血液流路内への補液の注入は、予め定められた一定時間または/および一定量行えばよい。上記のような圧力挙動を測定できれば、上式によって即座に実血流量を算出できるから、この圧力挙動を得るに足る時間、量だけ補液を注入すれば十分である。たとえば、100mL以下の補液注入で十分である。また、上記補液としては、たとえば、通常使用されている生理食塩液を用いればよい。
【0012】
また、チューブポンプからなる血液ポンプとしては、定量性のあるものであればよく、一般的に用いられている複数のローラを備えたチューブポンプを使用できる。この血液ポンプを構成するチューブポンプは、一対のローラを有するポンプ、3つあるいはそれ以上のローラを有するポンプのいずれであってもよい。
【0013】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1は、本発明の一実施態様に係る血液透析装置の概略構成図を示しており、図2は、その装置に補液を注入した際の動脈側の圧力挙動の例を示している。
【0014】
図1において、1は、患者の動脈側2からの血液を血液透析後に静脈側3へと戻すように循環させる血液流路を示している。血液流路1中の血液は、一対のローラ4aを備えたチューブポンプからなる血液ポンプ4によって定量送液され、血液透析要素としての血液透析フィルター5(ダイアライザー)内で、血液流路1と透析液流路6との間で透析膜7を介して血液透析される。透析膜7は、実際には、たとえば多数の中空糸膜からなるが、図1では模式的に示してある。
【0015】
透析液は、たとえば図1に示したように、調製済透析液供給装置8から供給された透析液を、計量チャンバー9の一方の室9aから膜10の押圧を介して吐出し、フィルター11を介して血液透析フィルター5に供給される。血液透析済みの透析液は、循環ポンプ12によって計量チャンバー9の他方の室9bに戻されるとともに、除水ポンプ13を介して一部が除水される。
【0016】
本実施態様においては、血液流路1の血液透析フィルター5の上流側の位置でかつ、血液ポンプ4と血液透析フィルター5との間の位置には、血液流路1中の圧力を検知する圧力センサ14が設けられており、血液透析フィルター5の下流側の位置には圧力センサ15が設けられている。圧力センサ14は患者の動脈側に対応する圧力を検知し、圧力センサ15は静脈側に対応する圧力を検知し、その差圧はそのときの患者の血圧に対応している。つまり、血液透析フィルター5は、血液流路1中の圧力損失に関して、いわゆる粘度計と同じ機能を有し、そのときの血液の状態に対応した圧力損失を生じさせ、その圧力損失、つまり圧力センサ14、15の差圧は患者の血圧に対応している。
【0017】
本発明における実血流量の算出には、血液透析フィルター5の上流側に設けられている圧力センサ14によって検出された圧力検出信号、下流側に設けられている圧力センサ15によって検出された圧力検出信号のいずれを用いてもよい。本実施態様では、図2に示すように、血液透析フィルター5の上流側に設けられている圧力センサ14によって検出された圧力検出信号、つまり、動脈側の圧力検出値である動脈圧Paが、実血流量の算出に用いられている。
【0018】
圧力センサ14、15による圧力検出信号、とくに圧力センサ14による圧力検出信号は制御装置16に送られる。そして、実血流量を測定する際には、補液注入手段17によって、血液ポンプ4の上流側の血液流路内に補液が注入され、その際に生じる、図2に示すような圧力挙動(圧力センサ14によって検出される動脈圧Paの挙動)から、制御装置16により実血流量が算出される。したがって、制御装置16は、本発明における実血流量演算手段も構成している。補液注入手段17としては、チューブポンプやシリンジポンプなどの定量注入可能なポンプを用いればよい。注入補液としては、本実施態様では生理食塩液18が用いられている。
【0019】
補液として生理食塩液を注入した場合(図2に「生食注入」と表記)の動脈圧Paの挙動は、たとえば図2に示すようになる。血液透析中は、前述の如く、血液ポンプ4の一次側の圧力は−200〜−300mmHg程度の陰圧になっていることが多く、それに対応した、生理食塩液注入前の初期動脈圧Pa0が検出される。血液ポンプ4の一次側から一定時間生理食塩液が注入されると、血液ポンプ4により吸入、吐出される血液が生理食塩液で希釈され、図2に示すように瞬間的に血液ポンプ4一次側の陰圧状態が解放されて大気圧状態に近づき、血液ポンプ4の吐出量が上昇し動脈圧Paも増加する。増加する動脈圧Paは、生理食塩液の注入量に応じてやがて最大値Pamaxに至り、そこから再び希釈されていない血液が吸入、吐出されるので、血液ポンプ4の吐出量が低下し動脈圧Paも低下し、アンダーシュートしたのち、再び初期動脈圧Pa0に落ち着く。
【0020】
上記のような挙動においては、血液ポンプ4周りの配管等の抵抗は同じであるから、血液ポンプ4の吐出量(流速)と吐出圧(動脈圧Pa)とは実質的に比例する。したがって、血液ポンプ4の大気圧下で設定された設定血流量をQbとしたとき、上記生理食塩液が注入される前の圧力値Pa0、注入された後の圧力の最大値Pamaxから、実血流量Qbtは次式で算出することができる。
Qbt=(Pa0/Pamax)×Qb
ここで、Qbt:実血流量(mL/分)
Pa0:生理食塩液注入前の初期動脈圧(mmHg)
Pamax:生理食塩液注入後の最大動脈圧(mmHg)
Qb:血液ポンプの一次側が大気開放の状態で調整、設定された設定血流量(mL/分)
である。
【0021】
このように、上記演算により、生理食塩液注入前後の動脈圧Paの挙動を測定するという、極めて簡単な手法により、迅速に精度良く実血流量Qbtが求められることになる。
【0022】
【発明の効果】
以上説明したように、本発明に係る血液透析装置の実血流量測定システムによれば、極めて簡単な回路構成でありながら、補液注入前後の血液回路の圧力挙動を測定するだけで、実血流量を容易にかつ精度良くしかも迅速に算出することができる。これによって、血液透析要素が最適な仕様に設定されているかどうかの判断や、その血液透析要素を用いた透析の効率や透析設定時間の判断を的確に行うことができるようになる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る血液透析装置の概略構成図である。
【図2】図1の装置において補液(生理食塩液)を注入した場合の動脈圧の挙動例を示す特性図である。
【符号の説明】
1 血液流路
2 動脈側
3 静脈側
4 血液ポンプ
4a 血液ポンプのローラ
5 血液透析要素としての血液透析フィルター(ダイアライザー)
6 透析液流路
7 透析膜
8 調製済透析液供給装置
9 計量チャンバー
10 膜
11 フィルター
12 循環ポンプ
13 除水ポンプ
14、15 圧力センサ
16 実血流量測定手段を構成する制御装置
17 補液注入手段
18 補液としての生理食塩液
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an actual blood flow measuring system of a hemodialysis apparatus, and more particularly to a system capable of quickly and accurately obtaining an actual blood flow when actually performing hemodialysis.
[0002]
[Prior art]
In hemodialysis, blood is collected from the arterial side of the patient, and purified blood after dialyzing with an extracorporeal hemodialysis machine is returned to the venous side. Hemodialysis devices have already been widely put into practical use, and typical ones described in, for example, Patent Literature 1 and Patent Literature 2 are known. In a hemodialysis machine, a hemodialysis element (dialyzer) having a dialysis membrane inside is used as a hemodialysis element for performing hemodialysis. Urine components and the like are removed between the blood channel side and the dialysate channel side via the dialysis membrane, and excess water is removed, and the dialyzed blood is returned to the patient's vein side. A blood pump including a tube pump provided on the upstream side of a hemodialysis element in a blood flow path is usually used for sending and circulating blood to and from the patient's body.
[0003]
Adjustment and setting of the discharge amount of the blood pump composed of the extracorporeal circulation tube pump are usually performed in a state where the primary side (inhalation side) of the blood pump is open to the atmosphere, and is set to, for example, about 200 mL / min. .
[0004]
However, when hemodialysis is actually performed, relatively high-viscosity blood is sucked into the blood pump from the arterial side of the patient through the primary side of the blood pump, and is set to a predetermined set blood flow rate. The blood is discharged via a blood pump, the blood is supplied to a hemodialysis element, and the dialyzed blood is returned to the vein side. Therefore, during actual hemodialysis, the primary side of the blood pump is often in a negative pressure state of, for example, about -200 to -300 mmHg. In particular, when a thin arterial puncture needle is used for collecting blood from a patient, a negative pressure state is inevitably created. When the primary side of the blood pump is in a negative pressure state, the actual discharge amount (actual blood flow rate) of the blood pump is often smaller than the set blood flow rate.
[0005]
Since the dialysis efficiency and the performance to be exhibited of the hemodialysis element (dialyzer) are usually determined based on the total blood flow per hour, the set blood flow and the actual blood flow of the blood pump are determined as described above. If there is a difference between the dialysis time and the set blood flow, the optimum dialysis time setting and the optimal setting of the hemodialysis element cannot be performed accurately.
[0006]
[Patent Document 1]
JP-B-56-82 [Patent Document 2]
Japanese Patent Publication No. 61-25382
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide an actual blood flow measurement system for a hemodialysis apparatus, which is capable of easily, accurately and quickly measuring the actual blood flow in hemodialysis by a simple method in view of the above situation. Is to provide.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, an actual blood flow measuring system of a hemodialysis apparatus according to the present invention performs hemodialysis between a blood flow path that circulates blood to and from a patient's body and a dialysate flow path. In a hemodialysis apparatus having a hemodialysis element and a blood pump including a tube pump provided on the upstream side of the hemodialysis element in the blood flow path, a replacement fluid for injecting a replacement fluid into the blood flow path on the upstream side of the blood pump In addition to the infusion means, the apparatus further comprises pressure detection means for detecting the pressure of the blood flow path on the upstream or downstream side of the hemodialysis element, and the set blood flow rate of the blood pump and the blood flow by the rehydration fluid injection means. The system comprises an actual blood flow rate calculating means for calculating an actual blood flow rate in hemodialysis from the pressure detected by the pressure detecting means before and after infusion of the replacement fluid into the passage.
[0009]
In this system, the actual blood flow rate calculating means sets the set blood flow rate under the atmospheric pressure of the blood pump to Qb, and sets the pressure value before the replacement fluid is injected into the blood flow path by the replacement fluid injection means to P0. When the maximum value of the pressure after injection is Pmax, the actual blood flow Qbt is
Qbt = (P0 / Pmax) × Qb
Is calculated as
[0010]
That is, when blood is flowing in the blood flow path, the primary side of the blood pump is often at a negative pressure as described above, and therefore, the discharge amount of the blood pump is set at the set blood flow rate set at the atmospheric pressure. Often lower. However, when a replacement fluid having a viscosity lower than that of the actual blood is injected, the negative pressure state on the primary side of the blood pump is instantaneously released and approaches the atmospheric pressure state, and the discharge amount of the blood pump increases and the arterial side is increased. It shows a pressure behavior in which the pressure also increases. Therefore, in this pressure behavior, the ratio between the maximum pressure Pmax immediately after the replacement fluid injection and the initial pressure value P0 before the replacement fluid injection can be regarded as corresponding to the ratio between the set blood flow rate and the actual blood flow rate. The blood flow can be easily, quickly and accurately obtained.
[0011]
The injection of the replacement fluid into the blood flow channel by the replacement fluid injection means may be performed for a predetermined period of time and / or for a predetermined amount. If the above-mentioned pressure behavior can be measured, the actual blood flow can be immediately calculated by the above equation. Therefore, it is sufficient to inject the replacement fluid for a sufficient amount of time to obtain this pressure behavior. For example, infusion of a replacement fluid of 100 mL or less is sufficient. As the replacement fluid, for example, a normal saline solution may be used.
[0012]
The blood pump composed of a tube pump may be any blood pump having a quantitative property, and a generally used tube pump having a plurality of rollers can be used. The tube pump constituting this blood pump may be any of a pump having a pair of rollers, a pump having three or more rollers.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a hemodialysis apparatus according to one embodiment of the present invention, and FIG. 2 shows an example of an arterial pressure behavior when a replacement fluid is injected into the apparatus.
[0014]
In FIG. 1, reference numeral 1 denotes a blood flow path for circulating blood from the arterial side 2 of the patient so as to return to the venous side 3 after hemodialysis. The blood in the blood flow path 1 is quantitatively fed by a blood pump 4 composed of a tube pump having a pair of rollers 4a, and is dialyzed with the blood flow path 1 in a hemodialysis filter 5 (dialyzer) as a hemodialysis element. Hemodialysis is performed between the liquid channel 6 and the dialysis membrane 7. The dialysis membrane 7 actually consists of, for example, a large number of hollow fiber membranes, but is schematically shown in FIG.
[0015]
The dialysate, for example, as shown in FIG. 1, discharges the dialysate supplied from the prepared dialysate supply device 8 from one chamber 9a of the measuring chamber 9 through the pressing of the membrane 10, and removes the filter 11. The blood is supplied to the hemodialysis filter 5. The dialysate after hemodialysis is returned to the other chamber 9b of the measuring chamber 9 by the circulation pump 12, and a part of the dialysate is removed through the water removal pump 13.
[0016]
In this embodiment, a pressure for detecting the pressure in the blood flow path 1 is provided at a position upstream of the hemodialysis filter 5 in the blood flow path 1 and at a position between the blood pump 4 and the hemodialysis filter 5. A sensor 14 is provided, and a pressure sensor 15 is provided at a position downstream of the hemodialysis filter 5. The pressure sensor 14 detects the pressure corresponding to the artery side of the patient, the pressure sensor 15 detects the pressure corresponding to the vein side, and the differential pressure corresponds to the patient's blood pressure at that time. That is, the hemodialysis filter 5 has the same function as that of a so-called viscometer with respect to the pressure loss in the blood flow path 1 and generates a pressure loss corresponding to the state of blood at that time, and the pressure loss, that is, the pressure sensor The pressure differences 14 and 15 correspond to the patient's blood pressure.
[0017]
In calculating the actual blood flow rate in the present invention, the pressure detection signal detected by the pressure sensor 14 provided on the upstream side of the hemodialysis filter 5 and the pressure detection signal detected by the pressure sensor 15 provided on the downstream side are used. Any of the signals may be used. In the present embodiment, as shown in FIG. 2, the pressure detection signal detected by the pressure sensor 14 provided on the upstream side of the hemodialysis filter 5, that is, the arterial pressure Pa, which is the detected pressure value on the artery side, It is used to calculate the actual blood flow.
[0018]
A pressure detection signal from the pressure sensors 14 and 15, particularly a pressure detection signal from the pressure sensor 14, is sent to the control device 16. Then, when measuring the actual blood flow rate, the replacement fluid is injected into the blood flow path on the upstream side of the blood pump 4 by the replacement fluid injection means 17, and the pressure behavior (pressure) as shown in FIG. The actual blood flow is calculated by the controller 16 from the behavior of the arterial pressure Pa detected by the sensor 14). Therefore, the control device 16 also constitutes the actual blood flow rate calculation means in the present invention. As the replacement fluid injecting means 17, a pump capable of injecting a fixed amount such as a tube pump or a syringe pump may be used. In this embodiment, a physiological saline solution 18 is used as the infusion replacement fluid.
[0019]
FIG. 2 shows the behavior of the arterial pressure Pa when a physiological saline solution is injected as a replacement fluid (indicated as “saline injection” in FIG. 2). During hemodialysis, as described above, the pressure on the primary side of the blood pump 4 is often a negative pressure of about -200 to -300 mmHg, and the corresponding initial arterial pressure Pa0 before injecting the physiological saline solution is reduced. Is detected. When a physiological saline solution is infused from the primary side of the blood pump 4 for a certain period of time, the blood sucked and discharged by the blood pump 4 is diluted with the physiological saline solution, and as shown in FIG. Is released to approach the atmospheric pressure state, the discharge amount of the blood pump 4 increases, and the arterial pressure Pa also increases. The increasing arterial pressure Pa eventually reaches a maximum value Pamax according to the amount of physiological saline injected, and undiluted blood is inhaled and discharged again therefrom. Pa also decreases, and after undershooting, calms down to the initial arterial pressure Pa0 again.
[0020]
In the above behavior, the resistance of the piping and the like around the blood pump 4 is the same, so that the discharge amount (flow velocity) of the blood pump 4 and the discharge pressure (arterial pressure Pa) are substantially proportional. Therefore, assuming that the set blood flow rate set under the atmospheric pressure of the blood pump 4 is Qb, the actual blood is obtained from the pressure value Pa0 before the physiological saline solution is injected and the maximum value Pamax of the pressure after the physiological saline solution is injected. The flow rate Qbt can be calculated by the following equation.
Qbt = (Pa0 / Pamax) × Qb
Here, Qbt: actual blood flow rate (mL / min)
Pa0: Initial arterial pressure (mmHg) before physiological saline injection
Pamax: maximum arterial pressure after physiological saline infusion (mmHg)
Qb: Set blood flow adjusted and set with primary side of blood pump open to atmosphere (mL / min)
It is.
[0021]
As described above, the actual blood flow rate Qbt can be quickly and accurately obtained by an extremely simple method of measuring the behavior of the arterial pressure Pa before and after the injection of the physiological saline by the above calculation.
[0022]
【The invention's effect】
As described above, according to the actual blood flow measuring system of the hemodialysis apparatus according to the present invention, the actual blood flow can be measured only by measuring the pressure behavior of the blood circuit before and after infusion of replacement fluid, while having an extremely simple circuit configuration. Can be calculated easily, accurately, and quickly. As a result, it is possible to accurately determine whether or not the hemodialysis element is set to the optimum specification, and to accurately determine the dialysis efficiency and the dialysis set time using the hemodialysis element.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a hemodialysis apparatus according to one embodiment of the present invention.
FIG. 2 is a characteristic diagram showing an example of an arterial pressure behavior when a replacement fluid (physiological saline solution) is injected into the apparatus of FIG.
[Explanation of symbols]
Reference Signs List 1 blood flow path 2 artery side 3 vein side 4 blood pump 4a blood pump roller 5 hemodialysis filter (dialyzer) as hemodialysis element
Reference Signs List 6 Dialysate flow path 7 Dialysis membrane 8 Prepared dialysate supply device 9 Metering chamber 10 Membrane 11 Filter 12 Circulation pump 13 Dewatering pump 14, 15 Pressure sensor 16 Control device constituting actual blood flow measurement means 17 Replenisher injection means 18 Physiological saline as replacement fluid

Claims (4)

患者の体内との間で血液を循環させる血液流路と透析液流路との間で血液透析を行う血液透析要素と、血液流路の血液透析要素の上流側に設けられたチューブポンプからなる血液ポンプとを有する血液透析装置において、前記血液ポンプの上流側の血液流路内に補液を注入する補液注入手段を有するとともに、前記血液透析要素の上流側または下流側の血液流路の圧力を検出する圧力検出手段を有し、かつ、前記血液ポンプの設定血流量と、前記補液注入手段による血液流路内への補液の注入前後の、前記圧力検出手段による検出圧力とから、血液透析における実血流量を算出する実血流量演算手段を有することを特徴とする、血液透析装置の実血流量測定システム。It comprises a hemodialysis element for performing hemodialysis between a blood flow path for circulating blood to and from a patient's body and a dialysate flow path, and a tube pump provided upstream of the hemodialysis element in the blood flow path. In a hemodialysis apparatus having a blood pump, there is provided replacement fluid injecting means for injecting replacement fluid into a blood channel on the upstream side of the blood pump, and the pressure of the blood channel on the upstream side or the downstream side of the hemodialysis element is increased. It has a pressure detecting means for detecting, and, based on a set blood flow rate of the blood pump, and before and after injection of replacement fluid into a blood flow path by the replacement fluid injection means, a detection pressure by the pressure detection means, An actual blood flow measuring system for a hemodialysis apparatus, comprising an actual blood flow calculating means for calculating an actual blood flow. 前記実血流量演算手段は、前記血液ポンプの大気圧下で設定された設定血流量をQb、前記補液注入手段により血液流路内に補液が注入される前の圧力値をP0、注入された後の圧力の最大値をPmaxとするとき、実血流量Qbtを、
Qbt=(P0/Pmax)×Qb
として算出する、請求項1の血液透析装置の実血流量測定システム。
The actual blood flow rate calculating means is configured such that the set blood flow rate set under the atmospheric pressure of the blood pump is Qb, and the pressure value before the replacement fluid is injected into the blood flow path by the replacement fluid injection means is P0. When the maximum value of the subsequent pressure is Pmax, the actual blood flow Qbt is
Qbt = (P0 / Pmax) × Qb
The actual blood flow measurement system for a hemodialysis apparatus according to claim 1, wherein:
前記補液注入手段により血液流路内に補液が予め定められた一定時間または/および一定量注入される、請求項1または2の血液透析装置の実血流量測定システム。The actual blood flow measuring system for a hemodialysis apparatus according to claim 1 or 2, wherein the replacement fluid injection means injects replacement fluid into the blood flow path for a predetermined time and / or a predetermined amount. 前記補液が生理食塩液からなる、請求項1〜3のいずれかに記載の血液透析装置の実血流量測定システム。The actual blood flow measurement system for a hemodialysis apparatus according to any one of claims 1 to 3, wherein the replacement fluid comprises a physiological saline solution.
JP2003132959A 2003-05-12 2003-05-12 Actual blood flow rate measuring system of hemodialysis device Pending JP2004329746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003132959A JP2004329746A (en) 2003-05-12 2003-05-12 Actual blood flow rate measuring system of hemodialysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132959A JP2004329746A (en) 2003-05-12 2003-05-12 Actual blood flow rate measuring system of hemodialysis device

Publications (1)

Publication Number Publication Date
JP2004329746A true JP2004329746A (en) 2004-11-25

Family

ID=33507637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132959A Pending JP2004329746A (en) 2003-05-12 2003-05-12 Actual blood flow rate measuring system of hemodialysis device

Country Status (1)

Country Link
JP (1) JP2004329746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304836A (en) * 2005-04-26 2006-11-09 Toray Medical Co Ltd System for measuring blood removal pressure, and method
JP2008023269A (en) * 2006-07-25 2008-02-07 Nipro Corp Method to detect trouble causing blood removal failure and hemodialyzer
JP2010234107A (en) * 2004-05-11 2010-10-21 Fresenius Medical Care Deutschland Gmbh Method and apparatus for monitoring supply of substitution fluid during extracorporeal blood circulation treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234107A (en) * 2004-05-11 2010-10-21 Fresenius Medical Care Deutschland Gmbh Method and apparatus for monitoring supply of substitution fluid during extracorporeal blood circulation treatment
JP2010234109A (en) * 2004-05-11 2010-10-21 Fresenius Medical Care Deutschland Gmbh Method and apparatus for deciding fistula recirculation by supply of substitution fluid during extracorporeal blood circulation treatment
JP2006304836A (en) * 2005-04-26 2006-11-09 Toray Medical Co Ltd System for measuring blood removal pressure, and method
JP4589798B2 (en) * 2005-04-26 2010-12-01 東レ・メディカル株式会社 Blood pressure reduction measurement system
JP2008023269A (en) * 2006-07-25 2008-02-07 Nipro Corp Method to detect trouble causing blood removal failure and hemodialyzer

Similar Documents

Publication Publication Date Title
US6280632B1 (en) Device and method for preparation of substitution solution
US9616164B2 (en) Device and method for detecting the recirculation during an extracorporeal blood treatment
JP5574966B2 (en) Method and apparatus for monitoring the supply of replacement fluid during extracorporeal blood processing
US7780620B2 (en) System and method for determining the hematocrit and/or blood volume
JP5586476B2 (en) Method for determining the ratio of intra-fistula recirculation and / or cardiopulmonary recirculation to total recirculation of fistula recirculation and cardiopulmonary recirculation
JP4299989B2 (en) Device for monitoring the flow rate of infusion
JP6362267B2 (en) Device and method for detecting operating state of extracorporeal blood treatment
KR101580701B1 (en) Method and device for determining the transmembrane pressure in an extracorporeal blood treatment
JP5125013B2 (en) Method for detecting occurrence of trouble causing poor blood removal and hemodialysis apparatus
JP5833574B2 (en) Apparatus and method for monitoring vascular access for extracorporeal blood treatment
US20100237011A1 (en) Blood treatment systems and related methods
US9119922B2 (en) Apparatus and method for identifying a tubing system for an extracorporeal blood treatment device
JP2005261558A (en) Removal blood pressure measuring system for hemodialyzer
JP4348101B2 (en) Method and apparatus for monitoring replacement fluid delivery during extracorporeal blood processing
JP2004329746A (en) Actual blood flow rate measuring system of hemodialysis device
JP2022502151A (en) How to monitor pressure inside extracorporeal blood treatment equipment and extracorporeal blood treatment equipment
JP2004329747A (en) Shunt recycling rate calculation system of hemodialysis device
US11806458B2 (en) Blood treatment device with automatic reduction of a substitution-solution flow rate
US20240102880A1 (en) Leakage detection method and system, in particular for use in a blood treatment device
AU2016341659A1 (en) Device, system, and method for the pressure-based detection of a clot
JP2022185796A (en) Blood purification device
JP2006034883A (en) System and method for actual bloodstream measurement