JP2004327398A - Metal member for image display device and its manufacturing method - Google Patents

Metal member for image display device and its manufacturing method Download PDF

Info

Publication number
JP2004327398A
JP2004327398A JP2003124418A JP2003124418A JP2004327398A JP 2004327398 A JP2004327398 A JP 2004327398A JP 2003124418 A JP2003124418 A JP 2003124418A JP 2003124418 A JP2003124418 A JP 2003124418A JP 2004327398 A JP2004327398 A JP 2004327398A
Authority
JP
Japan
Prior art keywords
phosphor
image display
display device
metal member
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003124418A
Other languages
Japanese (ja)
Inventor
Hidetoshi Saito
秀俊 斎藤
Noriyuki Nakaoka
範行 中岡
Ryoji Inoue
良二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003124418A priority Critical patent/JP2004327398A/en
Publication of JP2004327398A publication Critical patent/JP2004327398A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member for an image display device having a phosphor for obtaining a high luminance and high definition image display device, and to provide a method for forming the member for an image display device with high precision and high speed, at a low cost. <P>SOLUTION: The member for an image display device has the phosphor formed on a metal substrate. The phosphor contains Y<SB>2</SB>O<SB>3</SB>as a main component, and has a fluorescence intensity of 500au or higher in at least part of the visible light region, measured by a fluorescence analyzer. A method for manufacturing the member for an image display device comprises forming the phosphor on the substrate using a vapor deposition method in an open-to-atmosphere condition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はプラズマディスプレイやフィールドエミッションディスプレイ等に使用される画像表示装置用部材とその製造方法に関する。
【従来の技術】
【0002】
最近、各種平板ディスプレイの開発が盛んに行われており、例えばプラズマディスプレイ(以下、PDPと記す)やフィールドエミッションディスプレイ(以下、FEDと記す)等、所謂ブラウン管(CRT)を用いない薄型の画像表示装置が注目を集めている。
例えば、このうちPDPの表示パネルのセル内には、表示のための蛍光体が塗布されており、加電圧によりセル内の封入ガスで発生した紫外線で該蛍光体が発色するのである。この蛍光体の塗布方法としては、各色蛍光体を分散させたフォトレジストのスラリー液をスクリーン印刷により塗工する方法として、特開平1−115027号公報(特許文献1参照)、特開平1−124928号公報(特許文献2参照)やセルの内部に該スラリー液を流し込む方法として特開平2−155142号公報(特許文献3参照)がある。
【0003】
これら特許文献1〜3は、何れも液状のフォトレジストを使用しているため、塗工前には必ず蛍光体の分散状態を確認する必要があり、蛍光体の沈殿等の分散不良が生じた場合には再分散処理をしなければならないという欠点があり、更にスクリーン印刷の場合には、形成精度に劣るという欠点も有する。これらの問題を解決するために、特開平6−273925号公報(特許文献4)に、蛍光体を含有する感光性樹脂層を加熱圧着により隔壁空間内に埋め込み、ネガフィルムを用いて写真法により露光し、現像液で未露光部分を除去し、焼成して感光性樹脂層の不要成分を除去する方法が開示されている。
【0004】
【特許文献1】
特開平1−115027号公報
【特許文献2】
特開平1−124928号公報
【特許文献3】
特開平2−155142号公報
【特許文献4】
特開平6−273925号公報
【0005】
【発明が解決しようとする課題】
上述した特許文献1乃至3の問題を解決しようとする特許文献4の技術においても、工数がかかり、蛍光体層の形成コストが高くなるという問題を抱えている。
本発明の目的は、高輝度且つ高精細の画像表示装置とするための蛍光体、及びその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者等は、蛍光体を高精度且つ高速・低コストで形成する画像表示装置用金属部材及びその製造方法を提供するにあたり、従来から用いられてきたガラス隔壁に代えて、金属部材を用いることにした。
例えば金属部材を用いて金属隔壁を形成する時の利点は以下の通りである。
(1)有害な鉛を含んだガラス廃棄物の発生を抑えることが可能。
(2)高精細化のためには、各セルが独立しているボックスセル構造が望ましいが、金属隔壁であれば、ガラスと比べて加工が容易であり、任意の形状に加工し易い。
(3)金属基板にエッチング加工を行うことで、例えば隔壁の幅を小さくして開口率を高めることが可能。
(4)金属隔壁はガラス隔壁と比べて、遥かに靭性が高く、ハンドリング時に破壊の危険性が少ない。
(5)ガラスの形成コストと比べて、遥かに安価である。
【0007】
また、例えば金属部材を背面板にも金属基板を用いた時の利点は以下の通りである。
(1)ハンドリング時に背面板破損の危険性が少ない。
(2)ガラス製の背面板に比して、薄型化・軽量化が可能である。
(3)必要に応じて、背面板へのエッチング微細加工も可能。
【0008】
そして、本発明者等は、上述の金属基板上への蛍光体の形成において、輝度が高い蛍光体、及び、その蛍光体を高精度、高速、低コストが実現できる種々の蛍光体形成方法を検討し、本発明に到達した。
即ち本発明は、金属基板に蛍光体を形成してなる画像表示装置用部材であって、前記蛍光体はYを主成分とし、蛍光分析器によって測定される、可視光領域の少なくとも一部における蛍光強度が500au以上である画像表示装置用金属部材である。
【0009】
好ましくは、前記蛍光体は、発光中心として、原子分率で、Euを0.1%〜15%、Tbを0.1%〜15%、Tmを0.1%〜15%の何れか一種を含有する画像表示装置用金属部材である。
更に好ましくは、前記蛍光体は、0.1〜20μmの厚みに形成された画像表示装置用金属部材である。
また、好ましくは、前記金属基板は、Niを質量比率で38〜55%含有したFe−Ni系合金である画像表示装置用金属部材である。
また、本発明は、画像表示装置用金属部材の製造方法であって、大気圧下で金属基板に蛍光体を気相堆積法によって形成する画像表示装置用金属部材の製造方法である。
【0010】
【発明の実施の形態】
以下に詳しく本発明を説明する。
本発明の重要な特徴は、蛍光体を形成してなる画像表示装置用部材において、金属基板を素材とする点である。金属基板を用いる利点は、上述の〔課題を解決するための手段〕欄に記載する通りである。
【0011】
更に、蛍光分析器を用いて測定される、各色固有のピーク強度が高いことが、本発明の蛍光体の重要な特徴である。本発明においては、蛍光分析器によって測定される、可視光領域の少なくとも一部における蛍光強度が500au以上、とした。
カラーPDPやカラーFED等の画像表示装置用においては、カラーブラウン管(CRT)と同様、赤、緑、青の三色に対応する三種類の蛍光体が塗り分けられている。従って、種々の蛍光体材料のうち、赤、緑、青、それぞれの波長の光を発光する蛍光体が選択され、用いられる必要がある。本発明で言う、可視光領域の少なくとも一部における蛍光強度とは、赤、緑、青の3色それぞれに対応する波長における発光ピークの強度を意味する。
蛍光強度は高ければ高いほどパネルの輝度向上に効果があり、ひいては発光効率向上、省エネルギーに結び付く。
本発明の蛍光体は、3種類の蛍光体について、それぞれの波長における蛍光強度が500au以上であれば、輝度の向上が顕著となることから蛍光強度を500au以上と規定した。なお、本発明における蛍光強度は日本分光(株)製のFP−6500を用いて測定したものである。
【0012】
上述した蛍光体は、Yを主成分とするとよい。
これは、Yは希土類酸化物の添加によって蛍光を発現するとともに、熱膨張係数が約8×10−6/℃であり、前面板ガラスの熱膨張係数及びそれに近似させた金属基板の熱膨張係数の値に近いため、前面板ガラス及び金属基板に緻密に形成させた際に、パネルの組立てプロセスにおいて被る熱影響下に曝されても、蛍光体層に亀裂を生じ難い利点がある。
従って、熱膨張係数の整合性を図るため、Yを主成分(原子分率で50%以上)と規定した。より好ましいYの原子分率は80%以上である。
【0013】
本発明では、蛍光体は各画素の色に応じた発光中心として、希土類元素の添加が有効であるが、特に原子分率で、Euを0.1%〜15%(赤)、Tbを0.1%〜15%(緑)、Tmを0.1%〜15%(青)の何れか一種を含有させるのが好ましい。
本発明で言う、発光中心とは、蛍光体に紫外光が照射された際に、励起されて可視光を発生させる元素を言う。
赤色蛍光体においては、主成分のYにEuを原子分率で0.1%〜15%含有させると良い。Euについては含有量が多いほど蛍光強度が高くなる傾向があるが、熱膨張係数及びコストの観点から、過剰な添加は好ましくない。従って、Euは8%〜15%の範囲とすれば、高い蛍光強度を確実に得ることができる。
緑色蛍光体においては、主成分のYにTbを原子分率で0.1%〜15%含有させると良い。Tb添加量を0.5%〜5%の範囲とすれば、高い蛍光強度を確実に得ることができる。
青色蛍光体においては、主成分のYにTmを原子分率で0.1%〜15%含有させると良い。Tm添加量を0.5%〜5%の範囲とすれば、高い蛍光強度を確実に得ることができる。
【0014】
また本発明では、蛍光体を0.1〜20μmの厚みに形成すると良い。
この理由は、厚みが0.1μm未満では十分な発光が得られ難く、一方、膜厚が20μmを超えると、例えば隔壁の場合、セル内の放電空間が狭くなって放電効率及び発光効率を減じるためである。好ましい厚みは2〜5μmが良い。
【0015】
また本発明では、金属基板は、Niを質量比率で38〜55%含有したFe−Ni系合金であることが好ましい。
本発明の金属部材はパネルの組立て工程で熱影響を受けるため、前面板ガラスとの熱膨張差が大きい場合、熱応力によって前面板ガラスが破損する等して、画像表示装置として機能できなくなる惧れがある。それを防ぐためには、金属基板に用いられる材料は前面板ガラスと熱膨張係数を近似させることが好ましい。本発明の金属部材に用いるFe−Ni系合金は、Ni量によって熱膨張係数を調整できることから、画像表示装置用の金属基板として好適である。
【0016】
現状では、例えばプラズマディスプレイパネルの前面板ガラスには熱膨張係数が約8.3×10−6/℃のガラスが用いられているため、金属基板の材料には、Niを質量比率で38%〜55%の範囲で含むFe−Ni系合金を用いると良く、特に好ましいNi量の範囲は、質量比率で44〜50%の範囲である。
Fe−Ni系合金の組成としては、具体的な一例を示すと、42%Ni−Fe合金、48%Ni−Fe合金、50%Ni−Fe合金等が代表的であり、これらの他、42%Ni−6Cr−Fe合金や、Niの一部を10%以下のCoで置換したFe−Ni−Co系合金等を用いることもできる。
勿論、上述の一例として挙げたFe−Ni系合金に、強度向上に有効な元素を添加しても良いことは言うまでもない。
【0017】
また、本発明の金属部材に用いるFe−Ni系合金は、エッチング法により精細なパターンを容易に形成できることから、金属部材のうち、各画素に対応する貫通孔が設けられる金属隔壁用基板の材料として特に適している。金属背面板に用いる際も、必要に応じて、貫通孔や溝等をエッチング加工することが可能である。板状以外の形状の部材であっても、エッチング加工が可能であることは言うまでもない。
そして、金属基板の厚みは、隔壁用であれば例えば50〜500μm、背面板用であれば例えば100〜1000μm程度であり、厚みや材質は、要求される特性に応じて適宜選択すると良い。
【0018】
また、蛍光体層を形成する手法として、特殊な蛍光体形成方法を適用したことも本発明の重要な特徴である。
本発明で適用した蛍光体形成方法は、大気圧下に開放した被処理物への気相堆積法によるものであり、本発明ではこの気相堆積法による蛍光体形成方法を大気開放型CVD法と呼ぶ。
【0019】
本発明で言う大気開放型CVD法とは、金属元素を含む有機物を加熱して気化させた後、キャリアガスで誘導し、大気圧下で被処理材に吹き付けることで、部材表面に金属酸化物として堆積させる(成膜する)方法を言う。
従って、本発明の大気開放型CVD法は、従来の化学蒸着法のように真空を用いないため、装置の構造も簡単なものであり、設備費及び原料費も安価である。また、大型の被処理材にも対応でき、特に大型パネルを対象としているプラズマディスプレイパネル等の画像表示装置用部材への成膜に好適である。
【0020】
また、本発明で適用する大気開放型CVD法では、キャリアガスの流量を調整することで、酸化物層の厚み及び形態をコントロールすることも可能である。
まず、セル内の蛍光体厚みに分布が生じるスクリーン印刷法と異なり、蛍光体層の厚みを均一にすることができるのは大きな特徴と言える。
酸化物層の形態のコントロールについては、例えば、基板直上には緻密な薄膜状の蛍光体層を形成して絶縁性を確保し、その上に、蛍光体層の表面積を増やす目的で、粒状の蛍光体層や平坦でなく凹凸を有する蛍光体層を形成するといったことも可能である。こういったコントロールが可能なことも、本発明で規定する大気開放型CVD法を適用した理由の一つである。
従って、任意の膜厚で、被処理材上に様々の形態に形成することが可能であることから、高精度な蛍光体層の形成が可能となり、従来の蛍光体形成方法と比較し高速形成も可能である
以上、説明する通り、この蛍光体層を金属部材上に形成すれば、金属部材に欠かせない絶縁性を有する層の役割を兼備させることができ、工数及びコストの低減が期待でき、従来の蛍光体形成方法と比較して、安価に製造することが可能となり、高精度、高速、低コストの実現が可能となる。
【0021】
本発明で用いる金属部材は、例えば隔壁用であれば、各画素に対応する放電空間としてエッチング等の手法により多数の貫通孔を設けた基板が有効であり、背面板用であれば、平らな基板のままでも良いし、必要に応じてエッチング等の手法により、貫通孔や溝を設けた基板でも良い。
また、板状以外の形状のものにも本発明の大気開放型CVDは蛍光体層の成膜が可能であるため、パネルに組込む部材に個別に蛍光体層を形成させることも可能である。
更に言えば、背面板と隔壁とを前もって組合せた構造となっていても良い。この場合、例えば、ガラス背面板上に金属隔壁が積層された構造や、金属背面板上に隔壁や配線材その他の部材が形成された構造であっても、本発明でいう金属基板の範疇であるし、例えば、金属隔壁を用いて、その表面に予め絶縁層を形成したもののように、金属材料を芯材として用いたものであっても、本発明でいう金属基板の範疇である。
【0022】
なお、本発明の画像表示装置用金属部材には、輝度向上のために反射特性も求められる。従って、予め高い反射特性を有するアルミニウムや銀等の反射特性向上層を形成した金属基板を用い、その上に蛍光体層を形成すれば、輝度が向上できる。
また、例えば予めアルミナ層等の絶縁性を向上させる絶縁性向上層を形成した金属基板を用い、その上に蛍光体層を形成すれば、絶縁性を確実にすることができる。
このように、必要に応じて、予め種々の層を形成しておくことで、画像表示装置用金属部材として、より確実に要求される特性を得ることが可能となる。ただし、これらの層の厚みが厚過ぎると、放電空間が狭くなったり、開口率が低下したりして、パネルの輝度の低下につながるため、注意が必要である。
従って、本発明に用いられる金属基板としては、金属板単独であっても、例えば反射特性向上層や絶縁性向上層等を組合せて形成した基板を用いることも可能である。
【0023】
また、上述の反射特性向上層や絶縁性向上層等の形成にも、大気開放型CVD法が適用できる場合、同一の装置を用いて異種の層を形成することができ、連続処理も行える等、生産性の向上と、設備投資等の低減が見込まれる。
【0024】
【実施例】
以下、本発明を更に詳細に実施例を用いて説明する。
金属基板として熱膨張係数8.5×10−6/℃の48mass%Ni−Fe系合金の圧延板を用い、画像表示装置の一つであるプラズマディスプレイにおけるボックスセルの形状となるように、金属隔壁用基板(1)にエッチング法で多数の貫通孔を形成した。この金属基板上に、気相堆積法(大気開放型CVD法)により絶縁層(2)を形成した。
同じく、金属背面板用基板(3)にも48mass%Ni−Fe系合金の圧延板を用い、気相堆積法(大気開放型CVD法)により絶縁層(4)を形成した。
これら二枚の絶縁層を有する金属基板を、ガラス接合層(5)を介して接合した。
【0025】
このガラス接合層(5)を介して接合した金属基板に、気相堆積法(大気開放型CVD法)によってYの蛍光体層(6)を形成して、画像表示装置用金属部材とした。
こうして得られた画像表示装置用金属部材を、前面板ガラス(7)と接合し、各画素に対応する放電空間(8)を有するプラズマディスプレイ用のパネルとして組立てた。このときの断面構造を図1に示す。
比較のため、大気開放型CVD法に替えてスクリーン印刷法によって蛍光体を形成したものを作製した。
【0026】
蛍光体層の形成法、成分及び膜厚の組合せ、並びに評価結果を表1に示す。評価方法としては、絶縁層並びに蛍光体層の厚みは、金属部材を埋め込み、走査電子顕微鏡を用いてその断面を観察した。また、絶縁性については、プラズマディスプレイパネルに組立てて、通常の条件で駆動させた場合、絶縁破壊しなかったものを○、絶縁破壊したものを×とした。蛍光強度は、蛍光分析器(日本分光(株)製FP−6500)を用いて測定した。
【0027】
【表1】

Figure 2004327398
【0028】
表1に示す通り、本発明及び比較例とも絶縁破壊は起こらず、パネルの発色にも異常はなかった。また、本発明のNo.4〜No.6の結果から、蛍光体層で絶縁層を兼ねることが可能であった。
また、本発明のYを主成分とする蛍光体は、スクリーン印刷による比較例のNo.7〜No.8に比して、蛍光体自体の蛍光強度が高いことと、膜厚が薄くできるため放電空間が広がること等の要因から、輝度の向上が認められた。なお、本発明の画像表示装置用金属部材の断面観察において、蛍光体層の厚みが各セル間で均一であり、セル内においても底面と壁面とでほぼ同じであることを確認した。一方、比較材の膜厚は各セル間で均一でなく、セル内においてもスクリーン印刷時に底面となる部分の隅部に厚く形成され、セル壁面上部は薄くなっていた。
【0029】
【発明の効果】
本発明によれば、蛍光体層を形成した金属部材の製造を、高速化・低コスト化でき、高輝度且つ高精細の画像表示装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の金属部材断面の模式図である。
【符号の説明】
1.金属隔壁用基板、2.絶縁層、3.金属背面板用基板、4.絶縁層、
5.接合層、6.蛍光体層、7.前面板ガラス、8.放電空間[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a member for an image display device used for a plasma display, a field emission display, and the like, and a method for manufacturing the same.
[Prior art]
[0002]
2. Description of the Related Art Recently, various flat panel displays have been actively developed. For example, a thin image display that does not use a so-called cathode ray tube (CRT) such as a plasma display (hereinafter, referred to as PDP) and a field emission display (hereinafter, referred to as FED). The device is getting attention.
For example, a phosphor for display is applied to the inside of the cell of the display panel of the PDP, and the phosphor emits color by ultraviolet rays generated in the gas sealed in the cell by an applied voltage. As a method of applying the phosphor, a method of applying a slurry solution of a photoresist in which phosphors of respective colors are dispersed by screen printing is disclosed in JP-A-1-115027 (see Patent Document 1) and JP-A-1-124928. Japanese Patent Application Laid-Open No. 2-155142 (see Patent Document 3) discloses a method for pouring the slurry liquid into a cell.
[0003]
Since these Patent Documents 1 to 3 all use a liquid photoresist, it is necessary to always confirm the dispersion state of the phosphor before coating, and poor dispersion such as precipitation of the phosphor has occurred. In this case, there is a drawback that redispersion processing must be performed, and in the case of screen printing, there is a drawback that formation accuracy is poor. To solve these problems, Japanese Patent Application Laid-Open No. 6-273925 (Patent Document 4) discloses that a photosensitive resin layer containing a phosphor is embedded in a partition space by heating and pressure bonding, and a photographic method using a negative film. A method has been disclosed in which an unexposed portion is removed by exposure to light, a developing solution, and baking to remove unnecessary components of the photosensitive resin layer.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 1-115027 [Patent Document 2]
Japanese Patent Laid-Open No. 1-124928 [Patent Document 3]
JP-A-2-155142 [Patent Document 4]
JP-A-6-273925
[Problems to be solved by the invention]
The technique of Patent Document 4 which attempts to solve the problems of Patent Documents 1 to 3 described above also has a problem that the number of steps is increased and the cost of forming the phosphor layer is increased.
An object of the present invention is to provide a phosphor for forming a high-brightness and high-definition image display device, and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
In order to provide a metal member for an image display device and a method of manufacturing the same, which form a phosphor with high accuracy, at high speed, and at low cost, the present inventors use a metal member instead of a conventionally used glass partition. It was to be.
For example, advantages of forming a metal partition using a metal member are as follows.
(1) The generation of glass waste containing harmful lead can be suppressed.
(2) For higher definition, a box cell structure in which each cell is independent is desirable. However, a metal partition wall is easier to process than glass and can be easily processed into an arbitrary shape.
(3) By performing an etching process on a metal substrate, for example, it is possible to increase the aperture ratio by reducing the width of a partition wall.
(4) The metal partition walls are much higher in toughness than the glass partition walls, and are less likely to break during handling.
(5) It is much cheaper than the cost of forming glass.
[0007]
Further, for example, advantages when a metal member is used as a back plate for a metal member are as follows.
(1) The risk of breakage of the back plate during handling is small.
(2) It can be thinner and lighter than a glass back plate.
(3) If necessary, fine etching can be performed on the back plate.
[0008]
In the formation of the phosphor on the metal substrate described above, the present inventors have developed a phosphor having high luminance and various phosphor forming methods capable of realizing the phosphor with high accuracy, high speed, and low cost. After studying, the present invention has been reached.
That is, the present invention is a member for an image display device in which a phosphor is formed on a metal substrate, wherein the phosphor has Y 2 O 3 as a main component and is at least in a visible light region measured by a fluorescence analyzer. This is a metal member for an image display device in which a part of the fluorescence intensity is 500 au or more.
[0009]
Preferably, the phosphor has one of atomic percentages of Eu of 0.1% to 15%, Tb of 0.1% to 15%, and Tm of 0.1% to 15% as an emission center. Is a metal member for an image display device.
More preferably, the phosphor is a metal member for an image display device formed to a thickness of 0.1 to 20 μm.
Preferably, the metal substrate is a metal member for an image display device, which is a Fe-Ni-based alloy containing 38 to 55% by mass of Ni.
The present invention also relates to a method for manufacturing a metal member for an image display device, wherein the phosphor is formed on a metal substrate at atmospheric pressure by a vapor deposition method.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
An important feature of the present invention is that a member for an image display device formed with a phosphor is made of a metal substrate. The advantages of using a metal substrate are as described in the above section [Means for Solving the Problems].
[0011]
Furthermore, a high peak intensity specific to each color measured using a fluorescence analyzer is an important feature of the phosphor of the present invention. In the present invention, the fluorescence intensity in at least a part of the visible light region measured by a fluorescence analyzer is 500 au or more.
In an image display device such as a color PDP or a color FED, three types of phosphors corresponding to three colors of red, green, and blue are separately applied similarly to a color cathode ray tube (CRT). Therefore, a phosphor that emits light of each wavelength of red, green, and blue needs to be selected and used from various phosphor materials. In the present invention, the fluorescence intensity in at least a part of the visible light region means the intensity of the emission peak at the wavelength corresponding to each of the three colors of red, green, and blue.
The higher the fluorescence intensity is, the more effective the panel brightness is, which in turn leads to improved luminous efficiency and energy saving.
The phosphor of the present invention is defined as having a fluorescence intensity of 500 au or more because the luminance is remarkably improved when the fluorescence intensity at each wavelength is 500 au or more for the three types of phosphors. The fluorescence intensity in the present invention was measured using FP-6500 manufactured by JASCO Corporation.
[0012]
The above-described phosphor preferably contains Y 2 O 3 as a main component.
This is because Y 2 O 3 develops fluorescence by the addition of rare earth oxides, has a thermal expansion coefficient of about 8 × 10 −6 / ° C., and has a thermal expansion coefficient of the front glass plate and a thermal expansion coefficient of the metal substrate approximated thereto. Since it is close to the value of the expansion coefficient, there is an advantage that when it is densely formed on the front glass plate and the metal substrate, the phosphor layer is hardly cracked even if it is exposed to the heat affected in the panel assembling process.
Therefore, Y 2 O 3 is specified as a main component (atomic fraction of 50% or more) in order to achieve consistency in thermal expansion coefficient. The more preferable atomic fraction of Y 2 O 3 is 80% or more.
[0013]
In the present invention, it is effective to add a rare earth element to the phosphor as a luminescent center corresponding to the color of each pixel. Particularly, in terms of atomic fraction, Eu is 0.1% to 15% (red), and Tb is 0%. 0.1% to 15% (green) and Tm of 0.1% to 15% (blue).
In the present invention, the term “emission center” refers to an element that is excited to generate visible light when the phosphor is irradiated with ultraviolet light.
In the red phosphor, the Y 2 O 3 of the main component may be 0.1% to 15% of the Eu by atomic fraction. As to the content of Eu, the higher the content, the higher the fluorescence intensity tends to be. Therefore, if Eu is in the range of 8% to 15%, a high fluorescence intensity can be reliably obtained.
In the green phosphor, it is preferable that the main component Y 2 O 3 contains Tb in an atomic fraction of 0.1% to 15%. When the amount of Tb added is in the range of 0.5% to 5%, a high fluorescence intensity can be reliably obtained.
In the blue phosphor, the Tm in Y 2 O 3 of the main component may be 0.1% to 15% by atomic fraction. When the amount of Tm added is in the range of 0.5% to 5%, a high fluorescence intensity can be reliably obtained.
[0014]
In the present invention, the phosphor is preferably formed to have a thickness of 0.1 to 20 μm.
The reason is that if the thickness is less than 0.1 μm, it is difficult to obtain sufficient light emission, while if the thickness exceeds 20 μm, for example, in the case of a partition, the discharge space in the cell is narrowed and the discharge efficiency and the luminous efficiency are reduced. That's why. A preferable thickness is 2 to 5 μm.
[0015]
In the present invention, the metal substrate is preferably an Fe—Ni-based alloy containing 38 to 55% by mass of Ni.
Since the metal member of the present invention is thermally affected in the process of assembling the panel, if the thermal expansion difference with the front glass is large, the front glass may be damaged by thermal stress, and may not function as an image display device. is there. In order to prevent this, it is preferable that the material used for the metal substrate has a thermal expansion coefficient similar to that of the front glass plate. The Fe—Ni-based alloy used for the metal member of the present invention is suitable as a metal substrate for an image display device because the coefficient of thermal expansion can be adjusted by the amount of Ni.
[0016]
At present, for example, a glass having a thermal expansion coefficient of about 8.3 × 10 −6 / ° C. is used for a front glass plate of a plasma display panel. It is preferable to use an Fe-Ni-based alloy containing 55% of the range, and a particularly preferable range of the amount of Ni is 44 to 50% by mass.
As a specific example of the composition of the Fe—Ni-based alloy, 42% Ni—Fe alloy, 48% Ni—Fe alloy, 50% Ni—Fe alloy, and the like are typical. % Ni-6Cr-Fe alloy, an Fe-Ni-Co alloy in which a part of Ni is substituted with 10% or less of Co, or the like can also be used.
Of course, it goes without saying that an element effective for improving the strength may be added to the Fe-Ni-based alloy mentioned above as an example.
[0017]
Further, since the Fe-Ni-based alloy used for the metal member of the present invention can easily form a fine pattern by an etching method, the material of the metal partition wall substrate in which the through hole corresponding to each pixel is provided among the metal members. Especially suitable as. Also when used for a metal back plate, it is possible to etch through holes and grooves as necessary. It goes without saying that etching processing is possible even for a member having a shape other than a plate shape.
The thickness of the metal substrate is, for example, about 50 to 500 μm for partition walls, and is, for example, about 100 to 1,000 μm for backplates. The thickness and material may be appropriately selected according to required characteristics.
[0018]
An important feature of the present invention is that a special phosphor forming method is applied as a technique for forming the phosphor layer.
The phosphor forming method applied in the present invention is based on a vapor phase deposition method on an object to be processed which is opened under the atmospheric pressure. Call.
[0019]
The open-to-atmosphere CVD method referred to in the present invention means that an organic substance containing a metal element is heated and vaporized, then guided by a carrier gas, and sprayed on a material to be processed under atmospheric pressure, so that a metal oxide is formed on the surface of the member. Means a method of depositing (forming a film).
Therefore, the open-air CVD method of the present invention does not use a vacuum unlike the conventional chemical vapor deposition method, so that the structure of the apparatus is simple, and the equipment cost and material cost are low. In addition, it can be applied to a large workpiece, and is particularly suitable for forming a film on a member for an image display device such as a plasma display panel for a large panel.
[0020]
In the open-air CVD method applied in the present invention, the thickness and the form of the oxide layer can be controlled by adjusting the flow rate of the carrier gas.
First, unlike the screen printing method in which the thickness of the phosphor in the cell has a distribution, it can be said to be a great feature that the thickness of the phosphor layer can be made uniform.
Regarding the control of the form of the oxide layer, for example, a dense thin-film phosphor layer is formed directly above the substrate to secure insulation properties, and on top of that, a granular phosphor layer is formed in order to increase the surface area of the phosphor layer. It is also possible to form a phosphor layer or a phosphor layer having unevenness instead of being flat. The fact that such control is possible is also one of the reasons for applying the open-to-air CVD method defined in the present invention.
Therefore, since it is possible to form the phosphor layer with various thicknesses on the material to be processed at an arbitrary thickness, it is possible to form the phosphor layer with high accuracy, and to form the phosphor layer at a higher speed than the conventional phosphor forming method. As described above, if this phosphor layer is formed on a metal member as described, it can serve as a layer having an insulating property indispensable to the metal member, and reduction in man-hour and cost is expected. As a result, compared to the conventional phosphor forming method, it can be manufactured at a low cost, and high precision, high speed, and low cost can be realized.
[0021]
The metal member used in the present invention is, for example, a substrate provided with a large number of through-holes by a method such as etching as a discharge space corresponding to each pixel if it is for a partition, and a flat plate for a back plate. The substrate may be used as it is, or may be a substrate provided with through holes or grooves by a technique such as etching as necessary.
In addition, since the phosphor layer can be formed in a shape other than the plate shape by the open-to-atmosphere type CVD of the present invention, the phosphor layers can be individually formed on members incorporated in the panel.
Furthermore, the structure may be such that the back plate and the partition are combined in advance. In this case, for example, a structure in which metal partition walls are laminated on a glass back plate, or a structure in which partition walls, wiring members, and other members are formed on a metal back plate, are within the scope of the metal substrate according to the present invention. Also, for example, a metal substrate used as a core material such as a metal partition wall having an insulating layer formed on the surface thereof in advance is within the category of the metal substrate according to the present invention.
[0022]
Note that the metal member for an image display device of the present invention is also required to have a reflection characteristic for improving luminance. Therefore, the luminance can be improved by using a metal substrate on which a reflection characteristic improving layer made of aluminum, silver, or the like having high reflection characteristics is formed in advance and forming a phosphor layer thereon.
Further, for example, by using a metal substrate on which an insulating property improving layer such as an alumina layer for improving the insulating property is formed in advance and forming a phosphor layer thereon, the insulating property can be ensured.
As described above, by forming various layers in advance as necessary, it is possible to more reliably obtain the required characteristics as a metal member for an image display device. However, care must be taken because if the thickness of these layers is too large, the discharge space becomes narrow or the aperture ratio decreases, leading to a decrease in the brightness of the panel.
Therefore, as the metal substrate used in the present invention, it is possible to use a metal plate alone or a substrate formed by combining, for example, a reflection property improving layer and an insulating property improving layer.
[0023]
In addition, in the case where the open-air CVD method can be applied to the formation of the above-described reflection characteristic improving layer and the insulating property improving layer, different layers can be formed using the same apparatus, and continuous processing can be performed. It is expected that productivity will be improved and capital investment will be reduced.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
A rolled plate of a 48 mass% Ni—Fe alloy having a thermal expansion coefficient of 8.5 × 10 −6 / ° C. was used as the metal substrate, and the metal was formed so as to have a box cell shape in a plasma display as one of image display devices. A large number of through holes were formed in the partition wall substrate (1) by an etching method. An insulating layer (2) was formed on the metal substrate by a vapor deposition method (open-air CVD method).
Similarly, an insulating layer (4) was formed by a vapor deposition method (open-air CVD method) using a rolled plate of a 48 mass% Ni-Fe alloy also as the metal back plate substrate (3).
The metal substrate having these two insulating layers was bonded via a glass bonding layer (5).
[0025]
A phosphor layer (6) of Y 2 O 3 is formed on the metal substrate bonded via the glass bonding layer (5) by a vapor deposition method (open-air CVD method) to form a metal member for an image display device. And
The metal member for an image display device thus obtained was joined to a front glass plate (7) and assembled as a panel for a plasma display having a discharge space (8) corresponding to each pixel. FIG. 1 shows a cross-sectional structure at this time.
For comparison, a phosphor was formed by screen printing instead of the open-air CVD method.
[0026]
Table 1 shows the method of forming the phosphor layer, combinations of components and film thicknesses, and evaluation results. As an evaluation method, the thickness of the insulating layer and the phosphor layer was determined by embedding a metal member and observing the cross section of the metal member using a scanning electron microscope. Regarding the insulating properties, when assembled on a plasma display panel and driven under normal conditions, those that did not undergo dielectric breakdown were rated as ○, and those that did. The fluorescence intensity was measured using a fluorescence analyzer (FP-6500 manufactured by JASCO Corporation).
[0027]
[Table 1]
Figure 2004327398
[0028]
As shown in Table 1, neither the present invention nor the comparative example caused dielectric breakdown, and there was no abnormality in color development of the panel. Also, in the case of No. 1 4-No. From the result of No. 6, it was possible to use the phosphor layer also as the insulating layer.
Further, the phosphor of the present invention containing Y 2 O 3 as a main component is the same as that of Comparative Example No. 1 by screen printing. 7-No. Compared with No. 8, the luminance was improved due to the fact that the fluorescent intensity of the phosphor itself was high and the discharge space was widened because the film thickness could be reduced. In the observation of the cross section of the metal member for an image display device of the present invention, it was confirmed that the thickness of the phosphor layer was uniform between the cells, and that the bottom surface and the wall surface were substantially the same in the cells. On the other hand, the film thickness of the comparative material was not uniform among the cells, and was formed thick in the corners of the bottom portions during screen printing in the cells, and the upper portion of the cell wall was thin.
[0029]
【The invention's effect】
According to the present invention, it is possible to provide a high-brightness and high-definition image display device capable of increasing the speed and cost of manufacturing a metal member having a phosphor layer formed thereon.
[Brief description of the drawings]
FIG. 1 is a schematic view of a cross section of a metal member of the present invention.
[Explanation of symbols]
1. 1. substrate for metal partition, 2. insulating layer; 3. substrate for metal back plate; Insulating layer,
5. 5. bonding layer; 6. phosphor layer, 7. front glass, Discharge space

Claims (5)

金属基板に蛍光体を形成してなる画像表示装置用部材であって、前記蛍光体はYを主成分とし、蛍光分析器によって測定される、可視光領域の少なくとも一部における蛍光強度が500au以上であることを特徴とする画像表示装置用金属部材。What is claimed is: 1. A member for an image display device comprising a metal substrate on which a phosphor is formed, said phosphor comprising Y 2 O 3 as a main component and a fluorescence intensity in at least a part of a visible light region measured by a fluorescence analyzer. Is not less than 500 au. 前記蛍光体は、発光中心として、原子分率で、Euを0.1%〜15%、Tbを0.1%〜15%、Tmを0.1%〜15%の何れか一種を含有することを特徴とする請求項1に記載の画像表示装置用金属部材。The phosphor contains any one of atomic percentages of 0.1% to 15% of Eu, 0.1% to 15% of Tb, and 0.1% to 15% of Tm as an emission center. The metal member for an image display device according to claim 1, wherein: 前記蛍光体は、0.1〜20μmの厚みに形成されたことを特徴とする請求項1または2に記載の画像表示装置用金属部材。The metal member for an image display device according to claim 1, wherein the phosphor is formed to have a thickness of 0.1 to 20 μm. 前記金属基板は、Niを質量比率で38〜55%含有したFe−Ni系合金であることを特徴とする請求項1乃至3の何れかに記載の画像表示装置用金属部材。4. The metal member for an image display device according to claim 1, wherein the metal substrate is a Fe—Ni-based alloy containing 38 to 55% by mass of Ni. 5. 請求項1乃至4の何れかに記載の画像表示装置用金属部材の製造方法であって、大気圧下で金属基板に蛍光体を気相堆積法によって形成することを特徴とする画像表示装置用金属部材の製造方法。The method for manufacturing a metal member for an image display device according to any one of claims 1 to 4, wherein a phosphor is formed on a metal substrate under atmospheric pressure by a vapor deposition method. A method for manufacturing a metal member.
JP2003124418A 2003-04-28 2003-04-28 Metal member for image display device and its manufacturing method Pending JP2004327398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124418A JP2004327398A (en) 2003-04-28 2003-04-28 Metal member for image display device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124418A JP2004327398A (en) 2003-04-28 2003-04-28 Metal member for image display device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004327398A true JP2004327398A (en) 2004-11-18

Family

ID=33502013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124418A Pending JP2004327398A (en) 2003-04-28 2003-04-28 Metal member for image display device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004327398A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294401A (en) * 2005-04-11 2006-10-26 Matsushita Electric Ind Co Ltd Plasma display panel
WO2010099665A1 (en) * 2009-03-06 2010-09-10 海洋王照明科技股份有限公司 Oxide luminescent materials activated by trivalent thulium and their preparations

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294401A (en) * 2005-04-11 2006-10-26 Matsushita Electric Ind Co Ltd Plasma display panel
WO2010099665A1 (en) * 2009-03-06 2010-09-10 海洋王照明科技股份有限公司 Oxide luminescent materials activated by trivalent thulium and their preparations
EP2404977A1 (en) * 2009-03-06 2012-01-11 Ocean's King Lighting Science&Technology Co., Ltd. Oxide luminescent materials activated by trivalent thulium and their preparations
CN102341478A (en) * 2009-03-06 2012-02-01 海洋王照明科技股份有限公司 Oxide luminescent materials activated by trivalent thulium and their preparations
EP2404977A4 (en) * 2009-03-06 2012-08-22 Oceans King Lighting Science Oxide luminescent materials activated by trivalent thulium and their preparations
JP2012519738A (en) * 2009-03-06 2012-08-30 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Oxide light emitting material activated by trivalent thulium and method for producing the same

Similar Documents

Publication Publication Date Title
EP1030339B1 (en) Phosphor material, phosphor material powder, plasma display panel, and processes for producing these
KR100888671B1 (en) Fluorescent powder, display panel, and flat display
JP2007310247A (en) Multiple primary color display
WO2005117055A1 (en) Cathode panel processing method, cold-cathode field electron emission display, and its manufacturing method
JP3623406B2 (en) Gas discharge panel and manufacturing method thereof
JP2006202528A (en) Image display device
WO2002037522A1 (en) Fluorescent material layer with metal back, method of forming the fluorescent material layer, and image display device
JP5318445B2 (en) Flat panel display
JP2004327398A (en) Metal member for image display device and its manufacturing method
JP2000096046A (en) Fluorescent screen for field emission display and field emission display
JP2005209662A (en) Color filter composition, color display device, and manufacturing method
JP3457288B2 (en) Plasma display panel and method of manufacturing the same
JP5363584B2 (en) Fluorescent lamp and image display device
JP2001226670A (en) Fluorescent material for display apparatus and luminescent element produced by using the material
JP2007323922A (en) Plasma display panel
JPH10125262A (en) Field emission display device
JP4678156B2 (en) Cathode panel conditioning method, cold cathode field emission display device conditioning method, and cold cathode field emission display device manufacturing method
KR100517962B1 (en) Method for manufacturing field emission display
JP2005142003A (en) Display panel and display device
JPH09306422A (en) Luminous device
JP2005044705A (en) Cold cathode field electron emission display device
KR100863581B1 (en) Structure formation method for enhancing of contrast
JP2005239774A (en) Green light-emitting phosphor for display device and field emission display device using the same
KR100353954B1 (en) Plasma Display Panel and Method of Fabricating the same
JP2003249170A (en) Display panel and its manufacturing method