JP2004327375A - High-frequency induction heating device - Google Patents

High-frequency induction heating device Download PDF

Info

Publication number
JP2004327375A
JP2004327375A JP2003123822A JP2003123822A JP2004327375A JP 2004327375 A JP2004327375 A JP 2004327375A JP 2003123822 A JP2003123822 A JP 2003123822A JP 2003123822 A JP2003123822 A JP 2003123822A JP 2004327375 A JP2004327375 A JP 2004327375A
Authority
JP
Japan
Prior art keywords
frequency
temperature distribution
heating
induction heating
frequency induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003123822A
Other languages
Japanese (ja)
Inventor
Hideki Tonaka
英樹 戸中
Ikuo Wakamoto
郁夫 若元
Tatsufumi Aoi
辰史 青井
Katsuaki Morita
克明 森田
Taketoshi Eguchi
剛敏 江口
Kazuya Tsurusaki
一也 鶴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eguchi Koshuha Kk
Mitsubishi Heavy Industries Ltd
Original Assignee
Eguchi Koshuha Kk
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eguchi Koshuha Kk, Mitsubishi Heavy Industries Ltd filed Critical Eguchi Koshuha Kk
Priority to JP2003123822A priority Critical patent/JP2004327375A/en
Publication of JP2004327375A publication Critical patent/JP2004327375A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency induction heating device capable of temperature control with high accuracy even if the number of division of heating coils is increased in high-frequency induction heating of a comparatively large area. <P>SOLUTION: The high-frequency induction heating device is provided with a plurality of high-frequency induction heating coils 1 consisting of magnetic substance cores and coil conductors, a plurality of high-frequency power supply device 4 fitted in correspondence with each high-frequency heating coil for feeding high-frequency power to each heating coil, a temperature distribution measuring device 14 measuring temperature distribution of a heated plate, and a temperature distribution control device 13 having a function of individually controlling output power of the high-frequency power supply device by operating in comparison temperature distribution data from the temperature distribution measuring device and a preset temperature table. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属の高周波誘導加熱技術に関するものである。
【0002】
【従来の技術】
従来より金属を加熱する必要は様々な技術場面で存在しており、例えばブレーキ分野においては、金属製のブレーキプレートを所定の温度まで昇温した後、摩擦面用の非金属製ブレーキパッドとの接合・接着が行われる。さらに、帯状金属の防錆処理としてその表面に絶縁コーティングを行う際も、対象金属を所定の温度まで昇温した後、絶縁コーティング剤の塗布が行われる。
【0003】
これらの金属と非金属との接合・接着のための金属の昇温においては、その温度ムラが接合・接着のムラに影響するが、高周波誘導加熱で加熱を行う場合、温度分布が均一でないという欠点があった。また、比較的面積の大きな円板状、帯状金属を静止した状態で加熱する用途においても、高周波誘導加熱を使用する場合、温度分布が均一でないという課題があった。このため、従来、これらの金属の加熱では、高周波誘導加熱に比べて作業効率が悪いにもかかわらず、雰囲気炉による加熱が主として採用されてきた。また、高周波誘導加熱を使用した場合でも、短時間の加熱や加熱停止中の熱伝導による均熱化を繰り返して徐々に昇温する必要があり、作業効率が悪い面もあった。
【0004】
また、このような問題に鑑みて、特開平5−299163号公報に開示された、大面積の真空蒸着用るつぼを用いた均一加熱法がある。図7に、かかる公報に開示された加熱装置の回路構成を示す。すなわち、この装置においては、次のような利点があった。
【0005】
まず、高周波加熱コイル15a,15b,15cを複数に分割して、個別に加熱コイルに付帯する可変インダクタンス16a,16b,16cを制御することで、加熱コイルの配置された被加熱金属の発熱分布を調節でき、大面積の被加熱金属の均一加熱が可能であった。
また、個別の加熱コイルに付帯する可変インダクタンスを制御することに伴い、高周波電源の運転要件としての共振周波数が変化するため、これを補正すべく、共通して設置される1個の可変インダクタンスを同時に制御することが可能であった。
さらに、1台の電源17で済むことから、経済的であり、各加熱コイル間の磁気干渉を問題とする必要がない利点があった。
【0006】
【特許文献1】
特開平5−299163号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記の公報に記載の技術を、より高精度の温度分布の制御性が必要な装置に適用する場合、次のような課題が存在する。
まず、高周波加熱における加熱コイルの力率は極めて小さいため、加熱コイルのインダクタンスをLc、その回路の可変インダクタンスの値をLiとすると、加熱コイルの加熱量は、ほぼ[Lc/(Lc+Li)]に比例する。複数個の加熱コイルのうち、一つの加熱コイルに付帯する個別の可変インダクタンスLiを制御し、その部位の加熱量を増加(あるいは減少)させる場合の制御量は、可変インダクタンスの変化範囲と加熱コイルのインダクタンスから決まる一定比率内に制限され、ゼロに近い制御は不可能である。
【0008】
また、加熱コイルの分割数を増加し、一つの加熱コイルの加熱領域を狭くして、温度分布の制御性を向上させる場合、加熱コイルのインピーダンスが小さくなり、可変インダクタンスの損失が無視できなくなる。
【0009】
さらに、加熱コイルの分割数が増加するほど、共振周波数追従のために共通して設置される1個の可変インダクタンスの必要変化範囲は大きくなり、実現不可能となる場合もある。
【0010】
したがって本発明は、比較的大面積の高周波誘導加熱において加熱コイルの分割数を増やしても高精度の温度制御を行うことができる高周波誘導加熱装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上述の目的を達成するため、本発明の高周波誘導加熱装置は、被加熱板に対向して配置される、磁性体鉄心及びコイル導体からなる複数の高周波誘導加熱コイルと、前記複数の高周波誘導加熱コイル毎に対応して設けられ各加熱コイルに高周波電力を給電する複数の高周波電源装置とを備えたことを特徴とする。
また、好適には、高周波誘導加熱装置は、前記被加熱板の温度分布を測定する温度分布測定装置と、前記温度分布測定装置からの温度分布データ及び予め設定してある温度テーブルを比較演算して、前記高周波電源装置の出力電力を個別に制御する機能を有する温度分布制御装置とをさらに備えている。
【0012】
【発明の実施の形態】
以下、この発明の実施の形態を添付図面に基づいて説明する。
図1に、本実施の形態における複数個の加熱コイルと、高周波電力を供給する高周波電源及び制御装置との接続関係を表す図を示す。
【0013】
図1において、n個の加熱コイル1に対し、それぞれ個別に小容量の高周波電源装置4が配置される。高周波電源装置4は商用電源12から供給される商用周波数(50Hz或いは60Hz)電力を順変換回路6で直流電力に、次の逆変換回路5で出力電力に適合した周波数の高周波電力に変換する。
【0014】
高周波電源装置4の高周波出力は、出力変圧器3、共振用コンデンサ2及び後述する高周波ケーブル35を介して加熱コイル1に供給される。
n個の加熱コイルによって加熱される被加熱板40(図2参照)の温度分布は、温度分布測定装置14により測定され、温度分布制御装置13に信号として送出される。
【0015】
温度分布制御装置13には、温度テーブルすなわち予定された被加熱板の加熱履歴(時間−温度)や許容温度差と、温度分布測定装置14により測定された経過時間や温度分布信号とから、n個の加熱コイルの各加熱量を演算し、それぞれに対応する高周波電源装置4に出力指令値として信号送出される。さらに、過去の実績データなどによる出力履歴データベースによって高周波電源装置4の出力を制御すると好適である。
【0016】
高周波電源装置4は、入力電源電流測定用CT(変流器)9、及び入力電源電圧測定用PT(計器用変圧器)10の出力を、電力変換器11を介して入力電力信号としてフィードバックし、これと温度分布制御装置13からの出力指令値とを、比較演算回路8でつきあわせ、逆変換回路5の各素子のタイミングを制御することで、電源装置の出力電力を温度分布制御装置13からの指令値に合致させる方向に機能する。
【0017】
高周波電源装置4は、1個の加熱コイル1に対応していることにより、各加熱コイルは、出力0%〜100%の間を個別に制御出来ることから、精度の高い温度分布制御が可能となる。
【0018】
上記、高周波電源装置4のフィードバック、出力制御対象は、一つの例であり、他に無数の組合せがあり、いずれの場合にも、高周波電源装置4の実際の出力信号と、温度分布制御装置13からの出力指令値とを比較し、この偏差を小さく制御するものであれば、形態にはとらわれない。
【0019】
図2に、被加熱板に対し複数個の加熱コイルを配置した状態を模式的に示す。厚さt、直径ΦDの円板状の被加熱板40に、ギャップgを有して複数個の加熱コイル1が配置される。図2の実施の形態では合計37個の加熱コイルが配置されているが、この個数は任意である。
【0020】
また、加熱コイルが配置されていない方向は、フリースペースであるため、被加熱板のアクセス、及び温度分布測定器(図示されていない)設置スペースなどとして使用可能である。
図2において、複数個配置された各加熱コイル1には、それぞれ高周波ケーブル35が接続され、個別の高周波電源(図示されていない)から、個別に制御された高周波電力が供給される。
【0021】
なお、それぞれの電流・周波数によって、高周波ケーブル35相互間の磁気干渉が問題となる場合は、それぞれ、銅製、あるいはアルミ製の磁気シールドチューブ(図示されていない)で被覆される。
【0022】
図3〜5に本実施の形態に係る複数配置用加熱コイル1個の構造図を示す。図3〜5において、フェライトコアなどの磁性材を使用した同軸型コア32を巻込む形で、水冷式の銅管からなるコイル導体31が配置され、コイル導体31には、接続端子34、並びに水冷式の高周波ケーブル35から、高周波電流、並びに冷却水が供給される。
【0023】
加熱コイル1全体は、絶縁カバー33で保護される。被加熱金属の温度によっては、絶縁カバー33は、断熱・耐熱性の材料で構成されることも可能である。図3〜5では、コイル導体31、及び高周波ケーブル35は、水冷式の例で示したが、高周波電流の値が小さいときは、コイル導体31、及び高周波ケーブル35とも、自然空冷の高周波用撚り線(リッツ線)を使用することも可能である。
【0024】
図6に、加熱コイルによる被加熱金属の加熱のモデルを示す。
被加熱板40にギャップgを有し、対向して配置された加熱コイル1のコイル導体31に、図示のような高周波電流41が流れると、同軸型コア32〜被加熱板40を取り巻く図示のループに高周波磁束42が発生し、この磁束の変化を妨げるように、被加熱板40に誘導電流が流れ、図示する発熱分布が得られる。
【0025】
この際、コイル導体31に流れる高周波電流41によって発生する高周波磁束42は、同軸型コア32の閉じられた範囲に限定されるため、外部への磁気干渉も防止され、かつ、磁性材によるコアを利用することにより磁束発生効率が増加すると同時に、加熱コイルのインダクタンスが増加し、配線での電圧降下率が低減される。
【0026】
図6に示す1個の加熱コイルによる、被加熱板発熱分布はイメージ図であり、被加熱板の材質、ギャップ、周波数によって変化するが、加熱時間によって、非加熱領域への熱伝導により1個の加熱コイルが担当する領域が、ほぼ均一に加熱される。
【0027】
このように本発明は、フェライトコアなどの磁性材を使用した同軸状の鉄心とコイル導体とからなる複数の加熱コイルと、各加熱コイルに小容量の高周波電源を接続した構成とすることで、上記、従来装置の課題を解決するものである。
【0028】
すなわち、フェライトコアなどの磁性材を使用した同軸状の鉄心とコイル導体とからなる加熱コイルを採用することで、コイル導体に流れる電流で発生する高周波磁束は、鉄心内に収束され、必要最低限の部分のみで被加熱金属に作用するようになるため、各加熱コイル間の不要な磁気干渉が防止される。
【0029】
同時に、鉄心の使用により磁気パーミアンスが増大し、鉄心を有しない場合に比べ加熱効率が増加すると同時に、コイルのインダクタンスが増加し、配線での電圧降下率が低減される効果も現れる。
【0030】
上記、複数の加熱コイル間の不要な磁気干渉を防止することにより、加熱コイルごとに高周波電源を設けることが可能となり、個別に0%〜100%の加熱量制御ができるため、高精度な温度分布制御が可能となる。
【0031】
なお、昨今のパワーエレクトロニクスの進歩と大量生産により、例えば数kWの高周波電源は従来に比べ極めて低コストとなっており、これらを複数台使用する方が、1台の受注生産の大容量電源より、安価となる場合もあるため、電源を複数台設置することの欠点はなくなっていると判断できる。
【0032】
【発明の効果】
以上説明したように、本発明の高周波誘導加熱装置によれば、比較的大面積の高周波誘導加熱において加熱コイルの分割数を増やしても高精度の温度制御を行うことができる。
【図面の簡単な説明】
【図1】本実施の形態における複数個の加熱コイルと、高周波電力を供給する高周波電源及び制御装置との接続関係を示す図である。
【図2】被加熱板に対し複数個の加熱コイルを配置した状態を模式的に示す図である。
【図3】本実施の形態に係る複数配置用の加熱コイルの縦断面図である。
【図4】加熱コイルに関し、図3のIV−IV線に沿う断面図である。
【図5】加熱コイルに関し、図3のV方向からみた図である。
【図6】加熱コイルによる被加熱金属の加熱のモデルを示す図である。
【図7】従来の加熱装置の回路構成を示す図である。
【符号の説明】
1 加熱コイル、4 高周波電源装置、13 温度分布制御装置、14 温度分布測定装置、31 コイル導体、32 同軸型コア(磁性体鉄心)、40 被加熱板。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency induction heating technique for metal.
[0002]
[Prior art]
Conventionally, there has been a need to heat metal in various technical situations.For example, in the field of brakes, after a metal brake plate is heated to a predetermined temperature, a non-metal brake pad for a friction surface is required. Joining and bonding are performed. Further, when performing insulation coating on the surface of the band-shaped metal as rust prevention treatment, the target metal is heated to a predetermined temperature, and then an insulation coating agent is applied.
[0003]
When raising the temperature of metals for bonding and bonding between these metals and non-metals, the temperature unevenness affects the bonding and bonding unevenness, but when heating by high frequency induction heating, the temperature distribution is not uniform. There were drawbacks. In addition, even in applications where a relatively large disc-shaped or band-shaped metal is heated in a stationary state, when high-frequency induction heating is used, there is a problem that the temperature distribution is not uniform. For this reason, conventionally, in the heating of these metals, heating by an atmosphere furnace has been mainly employed, although the working efficiency is lower than that of the high frequency induction heating. In addition, even when high-frequency induction heating is used, it is necessary to repeat heating for a short time or soak by heat conduction while heating is stopped, to gradually raise the temperature, and there is a problem in that the working efficiency is poor.
[0004]
In view of such a problem, there is a uniform heating method using a large-area crucible for vacuum evaporation disclosed in Japanese Patent Application Laid-Open No. 5-299163. FIG. 7 shows a circuit configuration of the heating device disclosed in this publication. That is, this device has the following advantages.
[0005]
First, by dividing the high-frequency heating coils 15a, 15b, and 15c into a plurality of parts and individually controlling the variable inductances 16a, 16b, and 16c attached to the heating coils, the heat generation distribution of the metal to be heated in which the heating coils are arranged is determined. It could be adjusted, and uniform heating of the large area metal to be heated was possible.
In addition, since the resonance frequency as an operation requirement of the high-frequency power supply changes with the control of the variable inductance attached to the individual heating coils, one common variable inductance is installed to correct this. It was possible to control at the same time.
Furthermore, there is an advantage that it is economical because only one power supply 17 is required, and there is no need to consider magnetic interference between the heating coils.
[0006]
[Patent Document 1]
JP-A-5-299163
[Problems to be solved by the invention]
However, when the technology described in the above-mentioned publication is applied to a device that requires more precise control of the temperature distribution, there are the following problems.
First, since the power factor of the heating coil in the high-frequency heating is extremely small, assuming that the inductance of the heating coil is Lc and the value of the variable inductance of the circuit is Li, the heating amount of the heating coil is approximately [Lc / (Lc + Li)] 2 Is proportional to Of the plurality of heating coils, individual variable inductances Li attached to one heating coil are controlled, and the amount of control when increasing (or decreasing) the amount of heating at that portion is determined by the variable inductance change range and the heating coil. Is limited to a certain ratio determined by the inductance of the control, and control close to zero is impossible.
[0008]
Further, when the number of divisions of the heating coil is increased and the heating area of one heating coil is narrowed to improve the controllability of the temperature distribution, the impedance of the heating coil becomes small and the loss of the variable inductance cannot be ignored.
[0009]
Furthermore, as the number of divisions of the heating coil increases, the required change range of one variable inductance commonly installed for tracking the resonance frequency increases, which may become impossible.
[0010]
Accordingly, an object of the present invention is to provide a high-frequency induction heating apparatus that can perform high-precision temperature control even when the number of divisions of a heating coil is increased in a relatively large-area high-frequency induction heating.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a high-frequency induction heating apparatus according to the present invention includes a plurality of high-frequency induction heating coils, each of which is arranged to face a plate to be heated and includes a magnetic iron core and a coil conductor, and A plurality of high-frequency power supply devices are provided for each coil and supply high-frequency power to each heating coil.
Preferably, the high-frequency induction heating device compares the temperature distribution measurement device for measuring the temperature distribution of the plate to be heated with the temperature distribution data from the temperature distribution measurement device and a preset temperature table. And a temperature distribution control device having a function of individually controlling the output power of the high-frequency power supply device.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram illustrating a connection relationship between a plurality of heating coils, a high-frequency power supply that supplies high-frequency power, and a control device according to the present embodiment.
[0013]
In FIG. 1, a small-capacity high-frequency power supply device 4 is individually arranged for each of n heating coils 1. The high frequency power supply 4 converts the commercial frequency (50 Hz or 60 Hz) power supplied from the commercial power supply 12 into DC power by the forward conversion circuit 6 and high frequency power of a frequency suitable for the output power by the next inverse conversion circuit 5.
[0014]
The high-frequency output of the high-frequency power supply 4 is supplied to the heating coil 1 via the output transformer 3, the resonance capacitor 2, and a high-frequency cable 35 described later.
The temperature distribution of the heated plate 40 (see FIG. 2) heated by the n heating coils is measured by the temperature distribution measuring device 14 and sent to the temperature distribution control device 13 as a signal.
[0015]
The temperature distribution control device 13 obtains n from the temperature table, that is, the scheduled heating history (time-temperature) of the heated plate and the allowable temperature difference, and the elapsed time and the temperature distribution signal measured by the temperature distribution measurement device 14. Each heating amount of each heating coil is calculated, and a signal is sent to the corresponding high-frequency power supply device 4 as an output command value. Further, it is preferable that the output of the high-frequency power supply device 4 is controlled by an output history database based on past performance data or the like.
[0016]
The high-frequency power supply 4 feeds back the output of the input power supply current measurement CT (current transformer) 9 and the input power supply voltage measurement PT (instrument transformer) 10 as an input power signal via the power converter 11. This is compared with the output command value from the temperature distribution control device 13 by the comparison operation circuit 8 and the timing of each element of the inverse conversion circuit 5 is controlled, so that the output power of the power supply device can be reduced. It works in the direction to match the command value from.
[0017]
Since the high-frequency power supply device 4 corresponds to one heating coil 1, each heating coil can individually control the output between 0% and 100%, so that it is possible to control the temperature distribution with high accuracy. Become.
[0018]
The above-mentioned feedback and output control targets of the high-frequency power supply device 4 are one example, and there are countless other combinations. In each case, the actual output signal of the high-frequency power supply device 4 and the temperature distribution control device 13 It is not limited to any form as long as it is compared with the output command value from the controller and the deviation is controlled to be small.
[0019]
FIG. 2 schematically shows a state in which a plurality of heating coils are arranged on a plate to be heated. A plurality of heating coils 1 are arranged on a disk-shaped heated plate 40 having a thickness t and a diameter ΦD with a gap g. In the embodiment of FIG. 2, a total of 37 heating coils are arranged, but the number is arbitrary.
[0020]
Further, since the direction in which the heating coil is not disposed is a free space, it can be used as an access to a plate to be heated, a space for installing a temperature distribution measuring device (not shown), and the like.
In FIG. 2, a high-frequency cable 35 is connected to each of the plurality of heating coils 1 arranged, and individually controlled high-frequency power is supplied from individual high-frequency power supplies (not shown).
[0021]
If magnetic interference between the high-frequency cables 35 becomes a problem due to the respective currents and frequencies, the high-frequency cables 35 are respectively covered with magnetic shield tubes (not shown) made of copper or aluminum.
[0022]
3 to 5 show structural diagrams of one heating coil for multiple arrangements according to the present embodiment. 3 to 5, a coil conductor 31 made of a water-cooled copper tube is arranged so as to wind around a coaxial core 32 using a magnetic material such as a ferrite core. A high-frequency current and cooling water are supplied from a water-cooled high-frequency cable 35.
[0023]
The entire heating coil 1 is protected by the insulating cover 33. Depending on the temperature of the metal to be heated, the insulating cover 33 can be made of a heat-insulating and heat-resistant material. In FIGS. 3 to 5, the coil conductor 31 and the high-frequency cable 35 are shown as water-cooled examples. However, when the value of the high-frequency current is small, both the coil conductor 31 and the high-frequency cable 35 are naturally air-cooled high-frequency twists. It is also possible to use a wire (Litz wire).
[0024]
FIG. 6 shows a model of heating of the metal to be heated by the heating coil.
When a high-frequency current 41 as shown flows through the coil conductor 31 of the heating coil 1 which has a gap g in the heated plate 40 and is opposed to the heated coil 1, the coaxial core 32 to the heated plate 40 are surrounded by the illustrated high-frequency current 41. A high-frequency magnetic flux 42 is generated in the loop, and an induced current flows through the plate 40 to be heated so as to prevent the change of the magnetic flux, so that the illustrated heat generation distribution is obtained.
[0025]
At this time, since the high-frequency magnetic flux 42 generated by the high-frequency current 41 flowing through the coil conductor 31 is limited to the closed range of the coaxial core 32, magnetic interference to the outside is also prevented, and the core made of a magnetic material is removed. Utilization increases the magnetic flux generation efficiency, increases the inductance of the heating coil, and reduces the voltage drop rate in the wiring.
[0026]
The heating distribution of the heated plate by one heating coil shown in FIG. 6 is an image diagram, which changes according to the material, the gap, and the frequency of the heated plate. The area served by the heating coil is heated substantially uniformly.
[0027]
As described above, the present invention has a configuration in which a plurality of heating coils including a coaxial iron core and a coil conductor using a magnetic material such as a ferrite core and a small-capacity high-frequency power supply are connected to each heating coil. The present invention solves the problems of the conventional device.
[0028]
In other words, by using a heating coil consisting of a coaxial iron core using a magnetic material such as a ferrite core and a coil conductor, the high-frequency magnetic flux generated by the current flowing in the coil conductor is converged in the iron core, Since only the portion acts on the metal to be heated, unnecessary magnetic interference between the heating coils is prevented.
[0029]
At the same time, the use of the iron core increases the magnetic permeance, increasing the heating efficiency as compared with the case without the iron core, and at the same time, increasing the inductance of the coil and reducing the voltage drop rate in the wiring.
[0030]
By preventing unnecessary magnetic interference among the plurality of heating coils, a high-frequency power supply can be provided for each heating coil, and the heating amount can be individually controlled from 0% to 100%. Distribution control becomes possible.
[0031]
Due to recent advances in power electronics and mass production, high-frequency power supplies of several kW, for example, have become extremely low-cost compared to conventional ones. It can be determined that the disadvantage of installing a plurality of power supplies is eliminated because the cost may be low.
[0032]
【The invention's effect】
As described above, according to the high-frequency induction heating apparatus of the present invention, high-precision temperature control can be performed even when the number of divided heating coils is increased in high-frequency induction heating of a relatively large area.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a connection relationship between a plurality of heating coils, a high-frequency power supply that supplies high-frequency power, and a control device according to the present embodiment.
FIG. 2 is a diagram schematically showing a state in which a plurality of heating coils are arranged on a plate to be heated.
FIG. 3 is a longitudinal sectional view of a heating coil for multiple arrangements according to the present embodiment.
FIG. 4 is a cross-sectional view of the heating coil taken along line IV-IV in FIG. 3;
FIG. 5 is a view of a heating coil as viewed from a direction V in FIG. 3;
FIG. 6 is a diagram showing a model of heating of a metal to be heated by a heating coil.
FIG. 7 is a diagram showing a circuit configuration of a conventional heating device.
[Explanation of symbols]
Reference Signs List 1 heating coil, 4 high-frequency power supply device, 13 temperature distribution control device, 14 temperature distribution measurement device, 31 coil conductor, 32 coaxial core (magnetic iron core), 40 heated plate.

Claims (2)

被加熱板に対向して配置される、磁性体鉄心及びコイル導体からなる複数の高周波誘導加熱コイルと、
前記複数の高周波誘導加熱コイル毎に対応して設けられ各加熱コイルに高周波電力を給電する複数の高周波電源装置と
を備えたことを特徴とする高周波誘導加熱装置。
A plurality of high-frequency induction heating coils comprising a magnetic iron core and a coil conductor, which are arranged to face the plate to be heated,
A high-frequency induction heating device comprising: a plurality of high-frequency power supply devices provided for each of the plurality of high-frequency induction heating coils and supplying high-frequency power to each heating coil.
前記被加熱板の温度分布を測定する温度分布測定装置と、
前記温度分布測定装置からの温度分布データと、予め設定してある温度テーブルとを比較演算して、前記高周波電源装置の出力電力を個別に制御する機能を有する温度分布制御装置と
を備えたことを特徴とする請求項1に記載された高周波誘導加熱装置。
A temperature distribution measuring device that measures the temperature distribution of the heated plate,
A temperature distribution control device having a function of comparing and calculating temperature distribution data from the temperature distribution measurement device with a preset temperature table to individually control output power of the high-frequency power supply device. The high-frequency induction heating device according to claim 1, wherein:
JP2003123822A 2003-04-28 2003-04-28 High-frequency induction heating device Withdrawn JP2004327375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123822A JP2004327375A (en) 2003-04-28 2003-04-28 High-frequency induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123822A JP2004327375A (en) 2003-04-28 2003-04-28 High-frequency induction heating device

Publications (1)

Publication Number Publication Date
JP2004327375A true JP2004327375A (en) 2004-11-18

Family

ID=33501604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123822A Withdrawn JP2004327375A (en) 2003-04-28 2003-04-28 High-frequency induction heating device

Country Status (1)

Country Link
JP (1) JP2004327375A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005203A (en) * 2005-06-27 2007-01-11 Denki Kogyo Co Ltd Closure processor
CN103174940A (en) * 2013-02-16 2013-06-26 濮阳中石集团有限公司 Oil pipeline electromagnetic heater and application method thereof
CN103338540A (en) * 2013-07-19 2013-10-02 崔旭亮 Heating pipeline and medium heating system thereof
US10050497B2 (en) 2015-07-14 2018-08-14 Kabushiki Kaisha Toshiba Method of assembling rotary electric machine
US10056796B2 (en) 2016-03-08 2018-08-21 Kabushiki Kaisha Toshiba Induction heating device, joining method, joined component and rotary electric machine including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005203A (en) * 2005-06-27 2007-01-11 Denki Kogyo Co Ltd Closure processor
CN103174940A (en) * 2013-02-16 2013-06-26 濮阳中石集团有限公司 Oil pipeline electromagnetic heater and application method thereof
CN103338540A (en) * 2013-07-19 2013-10-02 崔旭亮 Heating pipeline and medium heating system thereof
US10050497B2 (en) 2015-07-14 2018-08-14 Kabushiki Kaisha Toshiba Method of assembling rotary electric machine
US10056796B2 (en) 2016-03-08 2018-08-21 Kabushiki Kaisha Toshiba Induction heating device, joining method, joined component and rotary electric machine including the same

Similar Documents

Publication Publication Date Title
US6498325B1 (en) Modular induction heated cooking hob having reduced radiation and a method of making the same
EP2237641B1 (en) Electromagnetic induction heating device
JP3305501B2 (en) Temperature control method
WO2012066623A1 (en) Induction heating cooker and method of controlling same
US6781100B2 (en) Method for inductive and resistive heating of an object
US10986701B2 (en) Movable core induction heating apparatus
JP2004327375A (en) High-frequency induction heating device
JP2006500748A (en) Magnetic heating device
JP2008266727A (en) Induction heating facility
WO2014088423A1 (en) Apparatus and method for induction heating of magnetic materials
JP2002313547A (en) Induction heating device for plate
CN111818683A (en) Heating device of power device
JP2010182594A (en) Induction heating apparatus of metal plate
US20070285198A1 (en) Joule heating apparatus for curing powder coated generator rotor coils
KR101510524B1 (en) Apparatus for controlling temperature of plating solution
JP3510167B2 (en) High frequency heating method
CN103155120B (en) Induction heating equipment
CN104185326A (en) Electric induction heater for heating metal part
Palacz et al. Experimental analysis of the air-and water-based cooling solution for the three-phase line choke
KR101054002B1 (en) Vacuum container heating device of superconducting tokamak device
JP2005206906A (en) Method for induction-heating steel sheet
JPH08302431A (en) Electric heating device
JP2004276282A (en) Injection molding machine and temperature control method therefor
JP2593051Y2 (en) Induction heating device
JP2002194429A (en) Heating device of metal coiled in ring or cylindrical form

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704