JP2010182594A - Induction heating apparatus of metal plate - Google Patents

Induction heating apparatus of metal plate Download PDF

Info

Publication number
JP2010182594A
JP2010182594A JP2009026755A JP2009026755A JP2010182594A JP 2010182594 A JP2010182594 A JP 2010182594A JP 2009026755 A JP2009026755 A JP 2009026755A JP 2009026755 A JP2009026755 A JP 2009026755A JP 2010182594 A JP2010182594 A JP 2010182594A
Authority
JP
Japan
Prior art keywords
metal plate
conductor
surface side
electrode
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009026755A
Other languages
Japanese (ja)
Other versions
JP5262784B2 (en
Inventor
Yoshiaki Hirota
芳明 廣田
Hirohisa Kawamura
浩久 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009026755A priority Critical patent/JP5262784B2/en
Publication of JP2010182594A publication Critical patent/JP2010182594A/en
Application granted granted Critical
Publication of JP5262784B2 publication Critical patent/JP5262784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating apparatus capable of heating a metal plate at a stable frequency. <P>SOLUTION: In the induction heating apparatus for heating the metal plate, a specific space is maintained against a surface and a backside of the metal plate, a conductor is arranged to encircle the metal plate in its width direction, and an AC current generated at a high frequency power source is passed to an induction coil composed of a conductor on a surface side of the metal plate connected with a conductor on a backside and is transmitted through an inner side of the induction coil encircling the metal plate in the width direction. (a) The conductor on the surface side and the conductor on the backside are arranged at intervals so that perpendicular projection images of the conductor to the metal plate may not be superimposed in a length direction of the metal plate at a central part of the metal plate in the width direction, (b) a slanted part in the width direction toward both ends of the metal plate in the width direction is formed at either or both of ends of the surface side conductor and the backside conductor, and (c) electrodes which are pinched between the surface side conductor and the backside conductor and conducts both conductors are arranged so that they are located outside of both ends of the metal plate in the width direction, thereby the induction coil is formed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄やアルミなどの鉄及び非鉄金属板の誘導加熱装置、及び、誘導加熱方法に関する。特に、金属板の板幅の変更に誘導コイルが追従する機構を有する誘導加熱装置において、インピーダンスを低くしながら、インピーダンスの変動を抑制し、効率的に安定化して通電加熱できる誘導加熱装置に関する。   The present invention relates to an induction heating apparatus and induction heating method for iron and non-ferrous metal plates such as iron and aluminum. In particular, the present invention relates to an induction heating apparatus having a mechanism in which an induction coil follows a change in the plate width of a metal plate, suppressing impedance fluctuations while efficiently reducing impedance, and efficiently stabilizing and electrically heating.

金属の高周波電流による誘導加熱は、焼入れをはじめとする熱処理を行うために、広く使われている。また、誘導加熱は、鋼板、アルミ板などの鉄、非鉄の薄板にも、製造過程にて材質を制御する目的、加熱速度を上げて生産性を向上する目的、生産量を自在に調整する目的などで、従来のガス加熱や電気加熱による間接加熱に代わる加熱方式として使用されてきている。   Induction heating by high frequency current of metals is widely used for heat treatment including quenching. Induction heating is also used to control the quality of steel and non-ferrous thin plates such as steel plates and aluminum plates during the manufacturing process, increase the heating rate to improve productivity, and adjust the production volume freely. For example, it has been used as a heating method instead of indirect heating by conventional gas heating or electric heating.

金属板を誘導加熱する場合には、大きく2つの方式がある。1つは、金属板の周囲を囲んだ誘導コイルに高周波電流を流して発生させた磁束を金属板の長手方向に貫通させ、金属板の断面内に、誘導電流を発生させて誘導加熱するLF(縦断磁束加熱)方式である。   There are two main methods for induction heating a metal plate. One is an LF in which a magnetic flux generated by passing a high-frequency current through an induction coil surrounding the metal plate is penetrated in the longitudinal direction of the metal plate, and an induction current is generated and induced in the cross section of the metal plate. (Longitudinal magnetic flux heating) method.

他は、金属板を、1次コイルを巻いたインダクターという良磁性体の間に配置し、1次コイルに電流を流して発生させた磁束をインダクターに通し、インダクター間を流れる磁束を金属板が横切る様に通過させ、金属板の平面に誘導電流を発生させて誘導加熱するTF(横断加熱方式)方式である。   The other is that a metal plate is placed between a good magnetic body called an inductor wound with a primary coil, and a magnetic flux generated by passing a current through the primary coil is passed through the inductor. This is a TF (transverse heating system) system that passes through the steel plate and generates induction current in the plane of the metal plate for induction heating.

LF方式の誘導加熱は、発生する誘導電流が板断面内を循環し、温度分布の均一性が良い。しかし、電流浸透深さの関係から、板厚が薄い場合、電源の周波数を高くしなければ、誘導電流が発生しない。更に、板厚が薄い場合、非磁性材又は磁性材でも、温度が上昇してキュリー点を超えると、電流の浸透深さが深くなって加熱できないという問題がある。その理由を説明する。   In the LF type induction heating, the generated induced current circulates in the cross section of the plate, and the temperature distribution is uniform. However, due to the current penetration depth, when the plate thickness is thin, an induced current is not generated unless the frequency of the power source is increased. Furthermore, when the plate thickness is thin, even a non-magnetic material or a magnetic material has a problem that when the temperature rises and exceeds the Curie point, the current penetration depth becomes deep and heating is impossible. The reason will be explained.

図1に、従来のLF方式誘導加熱の態様を示す。被加熱材である金属板1の周囲を、高周波電源3に接続した誘導コイル2で囲み、誘導コイル2に1次電流5を流して、金属板1の内部を貫通する磁束4を発生させる。磁束4の周りには誘導電流が発生し、発生した誘導電流で、金属板1を加熱する。図2に、誘導電流が金属板1の断面内に発生する態様を示す。   FIG. 1 shows a conventional LF type induction heating mode. A metal plate 1 that is a material to be heated is surrounded by an induction coil 2 connected to a high-frequency power source 3, and a primary current 5 is passed through the induction coil 2 to generate a magnetic flux 4 that penetrates the inside of the metal plate 1. An induced current is generated around the magnetic flux 4, and the metal plate 1 is heated by the generated induced current. FIG. 2 shows a mode in which the induced current is generated in the cross section of the metal plate 1.

金属板1を貫通する磁束4により、金属板1の断面には、誘導コイル2に流れる1次電流5と逆向きの誘導電流6a、6bが流れる。誘導電流6a、6bは、金属板1の表面から、下記(1)式で示す電流浸透深さδの範囲に集中して流れる。
δ[mm]=5.03×10+5(ρ/μrf)0.5 ・・・(1)
ここで、ρは、比抵抗[Ωm]、μrは、比透磁率[−]、fは、加熱周波数[Hz]である。
Due to the magnetic flux 4 penetrating the metal plate 1, induced currents 6 a and 6 b in the opposite direction to the primary current 5 flowing in the induction coil 2 flow in the cross section of the metal plate 1. The induced currents 6 a and 6 b flow from the surface of the metal plate 1 in a concentrated manner within the range of the current penetration depth δ represented by the following formula (1).
δ [mm] = 5.03 × 10 +5 (ρ / μrf) 0.5 (1)
Here, ρ is a specific resistance [Ωm], μr is a relative permeability [−], and f is a heating frequency [Hz].

発生した誘導電流6は、図2に示すように、金属板断面の表裏で逆向きに流れるので、電流浸透深さδが深くなると、金属板の表裏の誘導電流6a、6bが互いに打ち消し合って、金属板1の内部に電流が流れなくなってしまう。   As shown in FIG. 2, the generated induced current 6 flows in opposite directions on the front and back of the cross section of the metal plate. Therefore, when the current penetration depth δ increases, the induced currents 6a and 6b on the front and back of the metal plate cancel each other. , No current flows inside the metal plate 1.

金属は、温度の上昇に伴い、ρが上昇するので、δは、温度上昇とともに深くなる。強磁性や常磁性の磁性材の場合、温度が上昇して、キュリー点に近づくにつれ、μrは減少し始め、キュリー点を超えると1になる。   Since ρ increases with increasing temperature, δ increases with increasing temperature. In the case of a ferromagnetic or paramagnetic magnetic material, μr begins to decrease as the temperature rises and approaches the Curie point, and becomes 1 when the Curie point is exceeded.

非磁性材も、μrは1である。μrが小さくなると、(1)式より、非磁性材又は磁性材の場合、キュリー点直前からキュリー点を超える温度域では、電流浸透深さδが深くなり、薄い板厚の被加熱材では、加熱ができなくなってしまう。   The non-magnetic material also has a μr of 1. When μr becomes small, from equation (1), in the case of a non-magnetic material or a magnetic material, the current penetration depth δ becomes deep in the temperature range exceeding the Curie point immediately before the Curie point. It becomes impossible to heat.

例えば、加熱周波数が10KHzの場合、常温で、電流浸透深さδは、非磁性のアルミで約1mm、SUS304で約4.4mmである。磁性材の鋼の電流浸透深さδは、約0.2mmであるが、温度が上昇し、キュリー点を超えて750℃に達すると、電流浸透深さδは、約5mmとなる。   For example, when the heating frequency is 10 KHz, the current penetration depth δ is about 1 mm for nonmagnetic aluminum and about 4.4 mm for SUS304 at room temperature. The current penetration depth δ of the magnetic steel is about 0.2 mm, but when the temperature rises and reaches 750 ° C. exceeding the Curie point, the current penetration depth δ becomes about 5 mm.

金属板の表裏に発生する電流が打ち消し合わないようにするには、板厚は、最低でも、10mm以上必要であり、更に、効率よくパワーを入れるためには、15mm程度が必要になる。   In order to prevent the currents generated on the front and back of the metal plate from canceling each other, the thickness of the plate needs to be at least 10 mm or more, and about 15 mm is necessary to efficiently apply power.

一般に、熱処理は、10数μmの箔の様な薄板から、100mmを超えるような厚板まで、様々な厚みの金属板を対象としている。   In general, the heat treatment is intended for metal plates having various thicknesses, from a thin plate such as a foil of several tens of μm to a thick plate exceeding 100 mm.

例えば、使用量が多く、代表的な素材である自動車や家電用の鋼板は、通常、冷間圧延後、板厚が3mm前後より薄いものが多く、特に、2mm以下のもの多い。これらの金属板をLF式で誘導加熱するためには、加熱周波数を、数100KHz以上に上げる必要があるが、大容量で高い周波数の電源を製作する点で限界があり、工業規模で実現することは困難である。   For example, steel sheets for automobiles and home appliances, which are used in large quantities and are typical materials, usually have a sheet thickness of less than about 3 mm after cold rolling, and particularly those with a thickness of 2 mm or less. In order to inductively heat these metal plates by the LF method, it is necessary to raise the heating frequency to several hundreds KHz or more, but there is a limit in producing a large capacity and high frequency power source, which is realized on an industrial scale. It is difficult.

一方、TF方式の誘導加熱は、磁束が金属板の平面を貫通するので、板厚や、磁性、非磁性の区別なく加熱できるという特徴や、磁気抵抗の小さいインダクターを用いることにより漏れ磁束を少なくし、金属板の表裏に対向するインダクター間に磁束を集中させることができるので、加熱効率が高いという特徴がある。   On the other hand, in TF type induction heating, the magnetic flux penetrates the plane of the metal plate, so that it can be heated without distinction between plate thickness, magnetic and non-magnetic, and the use of an inductor with low magnetic resistance reduces the leakage flux. In addition, since the magnetic flux can be concentrated between the inductors facing the front and back of the metal plate, the heating efficiency is high.

その反面、温度分布の不均一が生じ易いという問題や、金属板が、対向するインダクターの中心にない場合、金属板が磁性材であると、どちらかのインダクターに吸引されてしまい、温度偏差がより大きくなるという問題がある。   On the other hand, the problem of uneven temperature distribution is likely to occur, and if the metal plate is not at the center of the opposing inductor, if the metal plate is a magnetic material, it will be attracted by either inductor, resulting in temperature deviation. There is a problem of becoming larger.

更に、TF方式の誘導加熱の場合、金属板の板幅変更や、連続通板ラインで蛇行した場合における対応が難しいという欠点がある。   Furthermore, in the case of induction heating using the TF method, there is a drawback that it is difficult to cope with changes in the plate width of a metal plate or meandering with a continuous plate line.

これらの課題を解決するため、本発明者らは、特許文献1で、金属板の進行方向の表面及び裏面に誘導コイルをずらして配置し、キュリー点を超える温度域において、電流の浸透深さよりも薄い金属板でも、温度分布を制御しながら加熱できる方法を提案した。   In order to solve these problems, the inventors of the present invention disclosed in Patent Document 1 that the induction coils are shifted on the front and back surfaces in the traveling direction of the metal plate, and in the temperature range exceeding the Curie point, We proposed a method that can heat even thin metal plates while controlling the temperature distribution.

この方法は、図3に示すように、金属板の表裏の誘導コイルを、金属板の進行方向にずらして配置し、図5に示すように、誘導電流を金属板に発生させ、金属板の厚みが電流の浸透深さよりも薄い場合でも、誘導加熱することができる方法である。図4に、図3のA−A断面の磁束と、断面を流れる誘導電流の態様を示す。   In this method, as shown in FIG. 3, the induction coils on the front and back of the metal plate are shifted in the traveling direction of the metal plate, and an induced current is generated in the metal plate as shown in FIG. Even if the thickness is thinner than the penetration depth of the current, this is a method capable of induction heating. FIG. 4 shows the magnetic flux of the AA cross section of FIG. 3 and the induced current flowing through the cross section.

ところが、誘導コイルを、金属板の進行方向にずらして配置しただけでは、金属板の端部を流れる電流の電流密度が高く、加熱時間も長くなり、その結果、金属板の端部の温度が、板中央部に比べ高くなるという問題がある。   However, if the induction coil is simply shifted in the traveling direction of the metal plate, the current density of the current flowing through the end of the metal plate is high, and the heating time is also increased. As a result, the temperature of the end of the metal plate is increased. There is a problem that it is higher than the central part of the plate.

その解決法として、本発明者らは、特許文献2で、金属板の端部に向かう表裏の誘導コイルを、中央部側の表裏の誘導コイルのずれ量に比べ小さくして傾斜をつけることで解消することを提案した。   As a solution to this problem, the inventors of the present invention disclosed in Patent Document 2 that the front and back induction coils heading toward the end of the metal plate are made smaller and inclined than the shift amount of the front and back induction coils on the center side. Proposed to resolve.

更に、本発明者らは、特許文献2で、板幅の変更にも対応できるように、板幅が変わった時、金属板の幅に応じて、表裏の誘導コイルが金属板の進行方向にずれて加熱する方法を提案した。   Furthermore, the present inventors have disclosed in Patent Document 2 that when the plate width is changed, the induction coils on the front and back sides are arranged in the traveling direction of the metal plate according to the width of the metal plate so that the change of the plate width can be dealt with. A method of heating by shifting was proposed.

また、金属板の板幅変更に関して、本発明者らは、誘導コイルが金属板の進行方向に移動する機構を設け、金属板の板幅の変更に合わせ、金属板の端部側に向って傾斜した表裏の誘導コイルの重なり位置を制御して、板幅変更に対応できる方法も、特許文献2で提案した。   Further, regarding the plate width change of the metal plate, the present inventors provide a mechanism for moving the induction coil in the traveling direction of the metal plate, and toward the end side of the metal plate in accordance with the change of the plate width of the metal plate. Patent Document 2 also proposed a method that can control the overlapping position of the inclined front and back induction coils to cope with the change in the plate width.

特開2002−151245号公報JP 2002-151245 A 特開2007−95651号公報JP 2007-95651 A 特開2008−288200号公報JP 2008-288200 A

しかし、誘導コイルが金属板の進行方向に移動する機構を設け、金属板の板幅の変更に合わせ、金属板の端部側に向って傾斜した表裏誘導コイルの重なり位置を制御する方法(特許文献2の方法)は、金属板が蛇行せず、真っ直ぐ走行する場合には有効であるが、金属板が蛇行した場合には、金属板の両端で温度偏差が生じ易いという問題があることが解った。   However, a mechanism is provided to control the overlapping position of the front and back induction coils inclined toward the end side of the metal plate according to the change of the plate width of the metal plate by providing a mechanism for moving the induction coil in the traveling direction of the metal plate (patent) The method in Document 2 is effective when the metal plate does not meander and travels straight, but when the metal plate meanders, there is a problem that temperature deviation tends to occur at both ends of the metal plate. I understand.

そこで、本発明者らは、特許文献3にて、金属板の幅方向に傾斜を有する誘導コイルを板幅方向に移動させることにより、蛇行時でも、また、幅変更時でも、温度偏差を解消することができる誘導加熱装置を提案した。   Accordingly, the inventors of the present invention disclosed in Patent Document 3 that the temperature deviation is eliminated even when meandering or when changing the width by moving an induction coil having an inclination in the width direction of the metal plate in the plate width direction. An induction heating device that can do is proposed.

また、特許文献2の方法は、金属板の板幅の変化が小さい場合には問題はないが、金属板の幅が大きく変化する場合には、インダクタンスに影響を与える表裏の誘導コイルによって発生する磁束で囲まれる空間の体積が大きく変化し、インダクタンスも大きく変化する。   The method of Patent Document 2 has no problem when the change in the width of the metal plate is small, but when the width of the metal plate changes greatly, it is generated by the front and back induction coils that affect the inductance. The volume of the space surrounded by the magnetic flux changes greatly, and the inductance also changes greatly.

共振周波数は、インダクタンスとキャパシタンスの積の1/2乗に反比例するので、インダクタンスが大きく変化すると、共振周波数が大きくずれるので、板幅に応じて整合をとり直さなければならず、結局、特許文献2の方法は、連続した加熱を行う場合には不都合が生じることが解った。   Since the resonance frequency is inversely proportional to the 1/2 power of the product of the inductance and the capacitance, if the inductance greatly changes, the resonance frequency is greatly shifted. Therefore, matching must be performed again according to the plate width. It has been found that the method 2 is disadvantageous when continuous heating is performed.

整合をとり直すためには、電源を一時的に切る必要がある。高生産設備では、止めた部分の品質が不良となり、歩留りが低下することや、整合を切り変えるためのコンデンサやトランスのタップを切り替える装置などが必要になり、設備コストが高くなるという問題が生じる。   In order to re-match, it is necessary to temporarily turn off the power. In high-production facilities, the quality of the stopped part becomes poor, yield decreases, and a device for switching capacitors and transformer taps for switching matching is required, resulting in high facility costs. .

また、特許文献3の方法では、表裏誘導コイルを板幅方向に移動させるために、動きに追従できる水冷ケーブルを用いなければならないが、水冷ケーブルは、誘導コイルの両端側で、誘導コイルの移動量の2倍程度の長さを必要とし、また、曲げ半径を小さくすることができないので、曲げ半径に応じたループを形成しなければならない。   Further, in the method of Patent Document 3, in order to move the front and back induction coils in the plate width direction, a water-cooled cable that can follow the movement must be used, but the water-cooled cable moves the induction coil at both ends of the induction coil. Since a length of about twice the amount is required and the bending radius cannot be reduced, a loop corresponding to the bending radius must be formed.

水冷ケーブルを、曲げ半径に応じたループに形成すると、インダクタンスだけでなく、誘導コイルと水冷ケーブルを含めた抵抗も大きくなり、結果として、インピーダンスが大きくなり、誘導コイルに印加する電圧が大きくなるとともに、水冷ケーブル等で消費される電力も大きくなり、誘導加熱装置としての効率が低下するという問題もあることが解った。   If the water-cooled cable is formed in a loop according to the bending radius, not only the inductance but also the resistance including the induction coil and the water-cooled cable is increased. As a result, the impedance is increased and the voltage applied to the induction coil is increased. It has also been found that there is a problem that the power consumed by the water-cooled cable and the like is increased and the efficiency as the induction heating device is lowered.

そこで、本発明は、非磁性材や非磁性域の金属薄板を加熱する場合において、従来のLF方式やTF方式が抱える金属板の誘導加熱に係る課題を解決するため、誘導コイルを用いて、磁性金属板に限らず非磁性金属板や、さらに、金属板の非磁性域においても、温度制御性に優れるとともに、より効率よく加熱することができる誘導加熱装置を提供することを課題とする。   Therefore, the present invention uses an induction coil in order to solve the problem related to induction heating of a metal plate held by a conventional LF method or TF method when heating a non-magnetic material or a metal thin plate in a non-magnetic region, It is an object of the present invention to provide an induction heating device that is excellent in temperature controllability and can be heated more efficiently, not only in a magnetic metal plate, but also in a nonmagnetic metal plate and a nonmagnetic region of the metal plate.

また、本発明は、金属板の幅変更や蛇行などに対しても、効果的に対応することが可能で、金属板の板幅が変わっても、周波数を変更せずに、安定して、より効率よく加熱することができる誘導加熱装置を提供することを課題とする。   In addition, the present invention can effectively cope with a change in width or meandering of the metal plate, and even if the plate width of the metal plate changes, without changing the frequency, It is an object of the present invention to provide an induction heating apparatus that can heat more efficiently.

本発明の要旨は、下記の通りである。   The gist of the present invention is as follows.

(1) 金属板の表面と裏面との間に所要の間隙を保ち、金属板の幅方向に周回するように導体を配置し、金属板の表面側の導体と裏面側の導体を導電部材で接続して構成した誘導コイルに、高周波電源から発生する交流電流を通電して、金属板の幅方向に周回する誘導コイルの内側を通過する金属板を誘導加熱する装置において、
(a)金属板の表面側の導体と裏面側の導体を、該導体の金属板への垂直投影像が、金属板の幅方向の中央部で、金属板の長手方向にて重複しない間隔で配置し、
(b)表面側の導体と裏面側の導体の一方又は両方の端部に、金属板の幅方向の両端部に向かって、金属板の幅方向に対して傾斜する部分を形成し、かつ、
(c)表面側の導体と裏面側の導体の間に挟まれて両導体を導通させる電極を、金属板の幅方向の両端部の外側に位置するように配置し、
金属板の周囲に、1T(ターン)以上の誘導コイルを形成したことを特徴とする金属板の誘導加熱装置。
(1) A conductor is arranged so as to circulate in the width direction of the metal plate while maintaining a necessary gap between the surface and the back surface of the metal plate, and the conductor on the front side and the back side of the metal plate are made of conductive members. In the apparatus for inductively heating the metal plate that passes through the inside of the induction coil that circulates in the width direction of the metal plate by passing an alternating current generated from a high-frequency power source to the induction coil that is connected and configured,
(A) The conductor on the front surface side and the conductor on the back surface side of the metal plate are spaced apart so that the vertical projection image of the conductor on the metal plate does not overlap in the longitudinal direction of the metal plate at the center in the width direction of the metal plate. Place and
(B) at one or both ends of the conductor on the front surface side and the conductor on the back surface side, forming a portion inclined with respect to the width direction of the metal plate toward both ends in the width direction of the metal plate; and
(C) An electrode that is sandwiched between a conductor on the front surface side and a conductor on the back surface side to conduct both conductors is disposed so as to be located outside both ends in the width direction of the metal plate,
An induction heating apparatus for a metal plate, wherein an induction coil of 1T (turns) or more is formed around the metal plate.

(2) 前記金属板の幅方向の両端部の外側に位置するように配置した電極のうち、(c1)高周波電源側の電極が、電気的に絶縁された電極ベースを挟んで2つに分離され、(c2)分離された電極の一方が、表面側の導体と接触し、他方が、裏面側の導体と接触し、かつ、(c3)分離されたそれぞれの電極が、導電部材で高周波電源に接続されていることを特徴とする前記(1)に記載の金属板の誘導加熱装置。   (2) Of the electrodes arranged so as to be located outside both ends of the metal plate in the width direction, (c1) the electrode on the high frequency power source side is separated into two with an electrically insulated electrode base in between (C2) One of the separated electrodes is in contact with the conductor on the front side, the other is in contact with the conductor on the back side, and (c3) Each of the separated electrodes is a conductive member and is a high-frequency power source. The metal plate induction heating device according to (1), wherein the metal plate induction heating device is connected to the metal plate.

(3) 前記表面側の導体と裏面側の導体が、金属板の幅方向に移動する手段を備えることを特徴とする前記(1)又は(2)に記載の金属板の誘導加熱装置。   (3) The induction heating apparatus for a metal plate according to (1) or (2), wherein the conductor on the front surface side and the conductor on the back surface side include means for moving in the width direction of the metal plate.

(4) 前記誘導コイルが2T(ターン)の誘導コイルであって、
(i)金属板の表面側の導体と裏面側の導体の金属板への垂直投影像が、金属板の幅方向の中央部で、金属板の長手方向にて重複しない間隔のもとで、
(i-1)表面側の導体同士を、金属板の長手方向に近接して配置するとともに、前記裏面側の導体同士を、表面側の導体同士の近接間隔より大きい間隔で、金属板の長手方向に配置するか、又は、
(i-2)裏面側の導体同士を、金属板の長手方向に近接して配置するとともに、表面側の導体同士を、裏面側の導体同士の近接間隔よりも大きい間隔で、金属板の長手方向に配置して、表面側の導体と裏面側の導体のユニットを2組形成し、
(ii)上記2組のユニットのそれぞれにおいて、金属板の幅方向の両端部の外側に位置するように電極を配置し、
(C1)上記電極のうち、高周波電源と反対側の電極が、電気的に絶縁された電極ベースを挟んで2つに分離され、
(C2)分離された電極の一方が、表面側の導体と接触し、他方が、裏面側の導体と接触し、かつ、
(C3)分離されたそれぞれの電極が、導電部材で、2組の一方のユニットにおける表面側の導体と接触する上記分離された電極、及び、2組の他方のユニットにおける裏面側の導体と接触する上記分離された電極に接続されている
ことを特徴とする前記(1)〜(3)のいずれかに記載の金属板の誘導加熱装置。
(4) The induction coil is a 2T (turn) induction coil,
(I) The vertical projection image onto the metal plate of the conductor on the front surface side and the conductor on the back surface side of the metal plate is at a central portion in the width direction of the metal plate, with a distance that does not overlap in the longitudinal direction of the metal plate,
(I-1) The conductors on the front surface side are arranged close to each other in the longitudinal direction of the metal plate, and the conductors on the back surface side are arranged at intervals larger than the proximity interval between the conductors on the front surface side. Place in the direction, or
(I-2) The conductors on the back surface side are arranged close to each other in the longitudinal direction of the metal plate, and the conductors on the front surface side are arranged at intervals longer than the proximity interval between the conductors on the back surface side. Two sets of conductor-side conductors and back-side conductor units,
(Ii) In each of the above two sets of units, the electrodes are arranged so as to be outside the both ends in the width direction of the metal plate,
(C1) Among the above electrodes, the electrode opposite to the high frequency power source is separated into two with an electrically insulated electrode base in between,
(C2) One of the separated electrodes is in contact with the conductor on the front side, the other is in contact with the conductor on the back side, and
(C3) Each separated electrode is a conductive member and contacts the above-mentioned separated electrode in the two sets of one unit and the back-side conductor in the other set of two units. The induction heating apparatus for a metal plate according to any one of (1) to (3), wherein the induction heating apparatus is connected to the separated electrode.

(5) 前記表面側の導体及び裏面側の導体において、電極と接触する部分の硬度が、電極の硬度よりも高いことを特徴とする前記(1)〜(4)のいずれかに記載の金属板の誘導加熱装置。   (5) The metal according to any one of (1) to (4), wherein a hardness of a portion in contact with the electrode is higher than a hardness of the electrode in the conductor on the front surface side and the conductor on the back surface side. Induction heating device for plates.

本発明でいう「金属板の長手方向」は、金属板の通過方向(搬送ラインと同一方向)のことである。また、本発明でいう「金属板の幅方向」は、金属板の板幅方向(金属板の通過方向に鉛直方向)のことである。   The “longitudinal direction of the metal plate” as used in the present invention is the direction in which the metal plate passes (the same direction as the transport line). Moreover, the “width direction of the metal plate” as used in the present invention is the plate width direction of the metal plate (perpendicular to the passing direction of the metal plate).

本発明によれば、板厚の厚い金属板や、磁性域の薄板の加熱が可能となるだけでなく、従来の誘導加熱方式では不可能であった、比抵抗が小さく非磁性のアルミや銅などの非鉄金属板を加熱することができ、また、磁性材のキュリー点以上の非磁性域においても、従来技術より効率的に、加熱を行うことができる。   According to the present invention, not only can a thick metal plate and a magnetic thin plate be heated, but also a non-magnetic aluminum or copper having a small specific resistance, which is impossible with the conventional induction heating method. It is possible to heat a non-ferrous metal plate such as the above, and it is possible to perform heating more efficiently than in the prior art even in a non-magnetic region above the Curie point of a magnetic material.

本発明によれば、金属板の板幅、蛇行に応じて誘導コイルが移動することができるので、温度制御を、より精密に行うことができる。しかも、誘導コイルが移動する場合でも、インダクタンス及びインピーダンスの変化を小さく抑えることができるので、加熱のための共振周波数の変化を小さくすることができ、安定した加熱を行うことが可能である。   According to the present invention, since the induction coil can be moved according to the plate width and meandering of the metal plate, temperature control can be performed more precisely. Moreover, even when the induction coil moves, changes in inductance and impedance can be kept small, so that changes in the resonance frequency for heating can be reduced, and stable heating can be performed.

本発明によれば、発信周波数が変わらないので、整合用のコンデンサや、トランスを余分に備える必要がなく、コンデンサ容量の切替えのための装置も必要としないので、設備費を抑制することができる。更に、金属板の板幅に応じたインピーダンスの変化が小さいので、加熱効率の変化も小さく、安定して効率の良い加熱を行うことが可能である。   According to the present invention, since the transmission frequency does not change, it is not necessary to provide an additional matching capacitor or transformer, and no device for switching the capacitor capacity is required, so that the equipment cost can be suppressed. . Furthermore, since the change in impedance according to the plate width of the metal plate is small, the change in heating efficiency is also small, and stable and efficient heating can be performed.

また、本発明によれば、誘導加熱装置の前工程から持ち込まれる温度偏差や、後工程での温度特性を考慮し、所望の温度分布を形成して、金属板を加熱することができるので、要求される冶金特性に合わせて、加熱速度や、温度分布を調整し、高品質の製品を安定して製造することができるとともに、操業変動による品質への影響を解消することが可能となる。   In addition, according to the present invention, it is possible to heat the metal plate by forming a desired temperature distribution in consideration of the temperature deviation brought in from the previous process of the induction heating device and the temperature characteristics in the subsequent process. In accordance with the required metallurgical characteristics, the heating rate and temperature distribution can be adjusted to stably produce a high-quality product, and the influence on quality due to operational fluctuations can be eliminated.

更に、本発明によれば、ガス加熱の炉で問題となる熱慣性の影響がないので、金属板の板厚、板幅、及び/又は、種類の変更により、加熱温度を変更しなければならないときでも、加熱速度を自在に制御して、通板速度を変更する必要がない。   Furthermore, according to the present invention, since there is no influence of thermal inertia, which is a problem in a gas heating furnace, the heating temperature must be changed by changing the thickness, width, and / or type of the metal plate. Even at times, it is not necessary to freely control the heating rate and change the plate passing speed.

ガス加熱の炉では、通常、炉温変更時に、炉が安定するまでの間、繋ぎ材が必要となるが、本発明によれば、繋ぎ材が不要になるばかりではなく、通板速度を落とすことなく生産を続けることができるので、生産性の低下を回避できるとともに、操業計画の自由度が大幅に向上する。   In a gas-heated furnace, a connecting material is usually required until the furnace stabilizes when the furnace temperature is changed. According to the present invention, the connecting material is not necessary, and the plate passing speed is reduced. Since production can be continued without any problems, it is possible to avoid a decrease in productivity and greatly improve the degree of freedom in operation planning.

本発明によれば、金属板の板厚及び/又は板幅の変更に対応できるだけでなく、金属板の蛇行などの変動要因にも柔軟に対応して、所望の温度分布を得ることができるばかりではなく、金属板の板幅に応じて、誘導コイルを複数持たずに済むことから、設備費を抑制することができる。   According to the present invention, not only can the plate thickness and / or plate width of the metal plate be changed, but also a desired temperature distribution can be obtained by flexibly responding to fluctuation factors such as meandering of the metal plate. Instead, it is not necessary to have a plurality of induction coils according to the width of the metal plate, so that the equipment cost can be reduced.

従来のLF式誘導加熱の態様を示す図である。It is a figure which shows the aspect of the conventional LF type induction heating. 従来のLF式誘導加熱により、金属薄板の断面に流れる誘導電流の態様を示す図である。It is a figure which shows the aspect of the induced current which flows into the cross section of a metal thin plate by the conventional LF type induction heating. 表裏誘導コイルをずらして配置して行う誘導加熱の一態様を示す図である。It is a figure which shows the one aspect | mode of the induction heating performed by shifting and arrange | positioning the front and back induction coils. 図3のA−A断面における電流の発生態様を示す図である。It is a figure which shows the generation | occurrence | production aspect of the electric current in the AA cross section of FIG. 図3に示す誘導加熱により、金属板に発生する誘導電流の態様を示す図である。It is a figure which shows the aspect of the induced electric current which generate | occur | produces in a metal plate by the induction heating shown in FIG. 表裏の導体を中央でずらし、金属板の端部側近傍で、表裏の導体を傾斜させ、電極と摺り合せながら通電して誘導加熱する方式を示す図である。It is a figure which shows the system which shifts the conductor of a front and back in the center, inclines the conductor of a front and back in the vicinity of the edge part side of a metal plate, energizes and inductively heats while sliding with an electrode. 電源と誘導コイルに接触する電極の態様を示す図である。(a)は、図6のA−A断面の電源側の電極を示し、(b)は、図6のB−B断面の電源と反対側の電極を示す。It is a figure which shows the aspect of the electrode which contacts a power supply and an induction coil. (A) shows the electrode of the power supply side of the AA cross section of FIG. 6, (b) shows the electrode on the opposite side to the power supply of the BB cross section of FIG. 図6に示すコイル配置で、金属板に発生する誘導電流の態様を示す図である。It is a figure which shows the aspect of the induced electric current which generate | occur | produces in a metal plate by the coil arrangement | positioning shown in FIG. 金属板端面と誘導コイルの位置関係を示す図である。It is a figure which shows the positional relationship of a metal plate end surface and an induction coil. 金属板端面が誘導コイルと位置Aで交差することにより発生する誘導電流の分布を示す図である。It is a figure which shows distribution of the induced current which generate | occur | produces when a metal plate end surface cross | intersects an induction coil in the position A. 金属板端面が誘導コイルと位置Bで交差することにより発生する誘導電流の分布を示す図である。It is a figure which shows distribution of the induced current which generate | occur | produces when a metal plate end surface cross | intersects an induction coil in the position B. 金属板端面が誘導コイルと位置Cで交差することにより発生する誘導電流の分布を示す図である。It is a figure which shows distribution of the induced current which generate | occur | produces when a metal plate end surface cross | intersects an induction coil in the position C. FIG. 水冷ケーブルを用いて誘導コイルを移動させる、従来の方法を説明する図である。It is a figure explaining the conventional method of moving an induction coil using a water cooling cable. 金属板の板幅が変化するときの、表裏の導体と電極の関係を示す図である。It is a figure which shows the relationship between the conductor of a front and back, and an electrode when the board width of a metal plate changes. 金属板の板幅が変化するときの、表裏の導体と電極の関係を示す図である。It is a figure which shows the relationship between the conductor of a front and back, and an electrode when the board width of a metal plate changes. 電極と表裏の導体を密着させる機構を示す図である。It is a figure which shows the mechanism which adheres an electrode and the conductor of front and back. 電極の構造例を示す図である。(a)は、電極の構造例の正面を示す図である。(b)は、電極の構造例の側面を示す図である。It is a figure which shows the structural example of an electrode. (A) is a figure which shows the front of the structural example of an electrode. (B) is a figure which shows the side of the structural example of an electrode. 1Tの誘導コイルを、2セット並列に配置して構成した2Tの誘導コイルの態様を示す図である。It is a figure which shows the aspect of the 2T induction coil which has arrange | positioned and comprised 2 sets of 1T induction coils in parallel. 1Tの誘導コイルを、2セット並列に配置して構成した別の2Tの誘導コイルの態様を示す図である。It is a figure which shows the aspect of another 2T induction coil comprised by arrange | positioning 2 sets of 1T induction coils in parallel. 誘導コイルの1組に、もう1組、並列に配置した誘導コイル(4ユニット)の態様を示す図である。It is a figure which shows the aspect of another induction coil (4 units) arrange | positioned in parallel with one set of induction coils. 本発明の電極構造を示す図である。(a)は、電源側の電極構造を示す。(b)は、隣り合う誘導コイルのユニット間に導電部材を配置する場合の電極構造を示す。(c)は、1Tの誘導コイルを形成する表裏の導体間を導通させる場合の電極構造を示す。(d)は、別の電源側の電極構造を示す。It is a figure which shows the electrode structure of this invention. (A) shows the electrode structure on the power supply side. (B) shows an electrode structure in the case where a conductive member is disposed between adjacent induction coil units. (C) shows the electrode structure in the case of conducting between the front and back conductors forming the 1T induction coil. (D) shows another electrode structure on the power source side. 実施例で用いた表裏の導体の態様を示す図である。It is a figure which shows the aspect of the conductor of the front and back used in the Example.

以下、本発明を実施するための形態を、図面に基づいて説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図6は、本発明の誘導加熱装置の1例を示す。図7に、電源と電極の位置関係を示す。図7(A)は、図6のA−A断面の電源側の電極を示し、図7(B)は、図6のB−B断面の電源側と反対側の電極を示す。図8は、図6に示すコイル配置で、金属板1に発生する誘導電流の態様を示す。   FIG. 6 shows an example of the induction heating apparatus of the present invention. FIG. 7 shows the positional relationship between the power source and the electrode. 7A shows the electrode on the power source side of the AA cross section of FIG. 6, and FIG. 7B shows the electrode on the opposite side of the power source side of the BB cross section of FIG. FIG. 8 shows an aspect of the induced current generated in the metal plate 1 in the coil arrangement shown in FIG.

以下の説明において、「誘導コイル」は、電気良導体で構成されるパイプ、線材、板などで、被加熱材を1周以上周回するコイルの総称である。電気良導体が被加熱材を囲む形状は、矩形でも円形でもよく、特に規定されるものではない。コイルを形成する電気良導体の材質は、銅やアルミ等の電気伝導が良好な材質が好ましい。   In the following description, the “induction coil” is a general term for coils that circulate a material to be heated one or more times with pipes, wires, plates, and the like made of a good electric conductor. The shape of the good electric conductor surrounding the material to be heated may be rectangular or circular, and is not particularly defined. The material of the electrical good conductor forming the coil is preferably a material having good electrical conduction such as copper or aluminum.

図6に示すように、本発明の誘導加熱装置(以下「本発明装置」ということがある。)は、金属板1の表面との間に間隙を保ち、金属板1の幅方向(図の左右方向)に周回するように、金属板1の表面側の導体2aと裏面側の導体2bを、導電部材7a、7bで接続して形成した誘導コイルを有し、高周波電源3から発生する交流電流を誘導コイルに通電して、周回する誘導コイルの内側を通過する金属板1を誘導加熱するものである。   As shown in FIG. 6, the induction heating device of the present invention (hereinafter sometimes referred to as “the device of the present invention”) maintains a gap between the surface of the metal plate 1 and the width direction of the metal plate 1 (in the drawing). AC current generated from the high-frequency power source 3 having an induction coil formed by connecting the conductor 2a on the front surface side and the conductor 2b on the back surface side of the metal plate 1 with conductive members 7a and 7b so as to circulate in the left-right direction) An electric current is passed through the induction coil to induction-heat the metal plate 1 that passes inside the circulating induction coil.

その際、本発明装置においては、(i)金属板1の表面側の導体2aと裏面側の導体2bを、それぞれ、金属板1へ垂直投影した際の垂直投影像において、金属板1の幅方向の中央部では、表面側の導体2aと裏面側の導体2bが、金属板1の長手方向(図の上下方向)において、互いに重ならないように、間隔をあけて配置されているとともに、(ii)金属板1の幅方向の両端部に向かっては、表面側の導体2aと裏面側の導体2bの少なくともいずれかが、金属板1の幅方向に対して傾斜する部分を備え、かつ、金属板1の幅方向両端部の外側に、表面側の導体2aと裏面側の導体2bとの間に、両導体を導通させるように、電極8、8’が挟まれて配置されて、金属板1の周囲に、1T(ターン)以上(図6では、1T)の回路が構成されている。   At that time, in the device of the present invention, (i) the width of the metal plate 1 in the vertical projection image when the conductor 2a on the front surface side and the conductor 2b on the back surface side of the metal plate 1 are vertically projected onto the metal plate 1, respectively. In the central part of the direction, the conductor 2a on the front surface side and the conductor 2b on the back surface side are arranged at an interval so as not to overlap each other in the longitudinal direction of the metal plate 1 (vertical direction in the figure) ii) toward both ends of the metal plate 1 in the width direction, at least one of the conductor 2a on the front surface side and the conductor 2b on the back surface side includes a portion inclined with respect to the width direction of the metal plate 1, and The electrodes 8 and 8 'are arranged outside the both ends in the width direction of the metal plate 1 so that both conductors are conducted between the conductor 2a on the front surface side and the conductor 2b on the back surface side. A circuit of 1T (turn) or more (1T in FIG. 6) is formed around the plate 1 It has been.

本発明装置においては、表面側の導体2aと裏面側の導体2bが、モーターの駆動等により移動する手段を有することが好ましい。導電部材7a,7bは、水冷ケーブルを用いてもよいが、水冷した銅板を絶縁板を間に挟んで密着させたものや、水冷の同軸ケーブルなどで構成すると、リアクタンスを小さくすることができ、効率等の点で望ましい。   In the device of the present invention, it is preferable that the conductor 2a on the front surface side and the conductor 2b on the back surface side have means for moving by driving the motor or the like. As the conductive members 7a and 7b, water-cooled cables may be used. However, when the water-cooled copper plate is in close contact with an insulating plate interposed therebetween, or a water-cooled coaxial cable is used, the reactance can be reduced. It is desirable in terms of efficiency.

次に、本発明装置に係る作用効果を説明する。本発明装置では、まず、図3に示すように、誘導コイルの内側を通過する金属板1の表面側と裏面側の誘導コイルを構成する導体2a及び2b(以下「表裏の導体2a2b」ということがある)を、それぞれ、金属板1へ垂直投影した際に、表面側と裏面側の垂直投影像が、金属板1の長手方向において互いにずれるように、表裏の導体2a2bを配置する。   Next, the function and effect of the device of the present invention will be described. In the device of the present invention, first, as shown in FIG. 3, conductors 2a and 2b (hereinafter referred to as "front and back conductors 2a2b") that constitute the induction coils on the front side and the back side of the metal plate 1 that pass through the inside of the induction coil. When the vertical projection is performed on the metal plate 1, the front and back conductors 2 a 2 b are arranged so that the vertical projection images on the front side and the back side are shifted from each other in the longitudinal direction of the metal plate 1.

すると、図4(図3のA−A断面)に示すように(簡単にするため、導体2aの場合のみを示す)、金属板1には、斜めに磁束4が貫通し、その磁束により、誘導電流6aが発生する。したがって、斜めに電流パスが広がることで生じた誘導電流6aの浸透深さδが板厚tより厚くても、誘導電流は流れることになる。   Then, as shown in FIG. 4 (AA cross section in FIG. 3) (for simplicity, only the case of the conductor 2a is shown), the magnetic flux 4 penetrates the metal plate 1 diagonally, and the magnetic flux An induced current 6a is generated. Therefore, the induced current flows even if the penetration depth δ of the induced current 6a generated by the oblique expansion of the current path is larger than the plate thickness t.

誘導コイルを構成する表裏の導体2a2bは、金属板の進行方向において、ずれて配置されているので、表裏の導体2a2bで発生した誘導電流6a、6bは、干渉することなく、金属板1全体で、図5に示すような環状電流を形成する。その結果、金属板1が非磁性材でも、加熱することが可能になる。   Since the front and back conductors 2a2b constituting the induction coil are shifted in the traveling direction of the metal plate, the induction currents 6a and 6b generated in the front and back conductors 2a2b do not interfere with each other in the entire metal plate 1. The annular current as shown in FIG. 5 is formed. As a result, even if the metal plate 1 is a nonmagnetic material, it can be heated.

ところが、金属板1の端部を流れる電流は、表裏の導体2a2bを連結する接続導体7’、又は、表裏の導体2a2bと電源を結ぶ導電部材7を流れる一次電流との間のリアクタンスを小さくしようとして、金属板1の端部に寄せられてしまい、電流路が狭くなってしまう。   However, the current flowing through the end of the metal plate 1 should reduce the reactance between the connecting conductor 7 'connecting the front and back conductors 2a2b or the primary current flowing through the conductive member 7 connecting the front and back conductors 2a2b and the power source. As a result, the current path is narrowed toward the end of the metal plate 1 and the current path becomes narrow.

このことと、導電部材7及び接続導体7’を流れる一次電流により発生する磁束が、距離が最も短い金属板端部を集中的に貫通してしまうこと、及び、金属板端部は、中央部に比べ、加熱時間が距離d3(図5、参照)の分だけ多く加熱されてしまうこと等で、金属板1の端部は過加熱になり易い。なお、接続導体7、7’は、通常、水冷銅板又は水冷ケーブルを用いることが多い。   This means that the magnetic flux generated by the primary current flowing through the conductive member 7 and the connecting conductor 7 ′ intensively penetrates the end portion of the metal plate having the shortest distance, and the end portion of the metal plate is the central portion. Compared to the above, the end of the metal plate 1 is likely to be overheated because the heating time is increased by the distance d3 (see FIG. 5). The connection conductors 7 and 7 'are usually made of a water-cooled copper plate or a water-cooled cable.

そのため、本発明装置では、図6に示すように、金属板端部へ向かう表裏の導体2a2bの少なくとも1つが、金属板1の端部に向かうに従い傾斜して横切るような形状とする。図6では、表裏の導体2a2bの金属板1の両端部で、導体が傾斜する態様を示している。このような導体の形状にすると、金属板1には、図8に示すような環状電流が発生する。   Therefore, in the device of the present invention, as shown in FIG. 6, at least one of the front and back conductors 2 a 2 b toward the metal plate end is inclined and crossed toward the end of the metal plate 1. In FIG. 6, the aspect in which a conductor inclines in the both ends of the metal plate 1 of the conductor 2a2b of front and back is shown. With such a conductor shape, an annular current as shown in FIG.

その結果、先に説明した図5の場合に比べ、金属板端部で電流路が狭くなり難いので、電流密度が高くなり難く、また、表裏の導体が、金属板の端部近傍で交差するため、金属板の端部を流れる誘導電流による加熱時間を短くできるので、図3に示すように、表裏の導体を平行にずらしただけの場合よりも、金属板端部の過加熱を避けることができる。   As a result, compared to the case of FIG. 5 described above, the current path is less likely to be narrow at the end of the metal plate, so the current density is less likely to increase, and the conductors on the front and back intersect near the end of the metal plate. Therefore, since the heating time by the induced current flowing through the end portion of the metal plate can be shortened, as shown in FIG. 3, avoid overheating of the end portion of the metal plate rather than just shifting the conductors on the front and back sides in parallel. Can do.

この過加熱を制御するためには、傾斜部から水平部にかけての導体部分を、金属板端部とどこで交差させるかが重要になる。図9(A)は、金属板端面と誘導コイル(表裏の導体2a2b)との位置関係を示す図である。   In order to control this overheating, it is important where the conductor portion from the inclined portion to the horizontal portion intersects the end portion of the metal plate. FIG. 9A is a diagram showing the positional relationship between the end face of the metal plate and the induction coil (front and back conductors 2a2b).

図9(B)に示すように、金属板端面が、導体2bの傾斜の途中(位置A)を横切る場合は、金属板端部を流れる誘導電流は電流密度が高く、金属板端部を流れる時間が長くなるので、金属板端部の温度は、金属板中央部に比べ高温になり易い。   As shown in FIG. 9B, when the end face of the metal plate crosses the middle of the conductor 2b (position A), the induced current flowing through the end of the metal plate has a high current density and flows through the end of the metal plate. Since the time becomes longer, the temperature at the end of the metal plate tends to be higher than that at the center of the metal plate.

逆に、図9(D)に示すように、金属板端面が、誘導コイルの水平部分(位置C)で交差する場合は、金属板端部近傍においては、表裏の導体2a2bが重なっているため、従来のLF加熱と同じになり、非磁性材の薄板の場合には、この部分に、誘導電流は発生せず、図9(D)に示すように、金属板の中央側に回ってしまい、金属板端部の温度は低下する。   Conversely, as shown in FIG. 9D, when the metal plate end faces intersect at the horizontal portion (position C) of the induction coil, the conductors 2a2b on the front and back overlap in the vicinity of the metal plate end. This is the same as conventional LF heating, and in the case of a non-magnetic thin plate, no induced current is generated in this portion, and as shown in FIG. 9 (D), it turns to the center side of the metal plate. The temperature at the end of the metal plate decreases.

図9(C)の場合は、図9(B)の場合の温度分布と、図9(D)の場合の温度分布の中間の温度分布になる。このように、傾斜部から水平部に変わる導体が、金属板端面と交差する位置を制御することにより、金属板の温度分布を制御することができる。   In the case of FIG. 9C, the temperature distribution is intermediate between the temperature distribution of FIG. 9B and the temperature distribution of FIG. 9D. Thus, the temperature distribution of the metal plate can be controlled by controlling the position where the conductor that changes from the inclined portion to the horizontal portion intersects the end surface of the metal plate.

したがって、本発明の誘導コイルにおいては、金属板端部の位置に合わせて、表裏の導体の位置を、金属板の幅方向に動かすことができるようにすることが好ましい。表裏の導体を動かすためには、表裏の導体を支持台に固定し、モーター、エアシリンダ、油圧シリンダ等の駆動装置で動かせばよい。誘導コイルの前又は後ろに、金属板の位置を検出するセンサーを配置し、センサーからの位置情報により、表裏の導体を動かせばよい。   Therefore, in the induction coil of the present invention, it is preferable that the positions of the front and back conductors can be moved in the width direction of the metal plate in accordance with the position of the end portion of the metal plate. In order to move the front and back conductors, the front and back conductors may be fixed to a support base and moved by a driving device such as a motor, an air cylinder, or a hydraulic cylinder. A sensor for detecting the position of the metal plate may be arranged in front of or behind the induction coil, and the conductors on the front and back sides may be moved according to the position information from the sensor.

金属板の板幅を変更する場合には、生産全体を制御するプロセス制御コンピューターからの情報により、同様に、誘導コイルを動かせばよい。また、誘導コイル駆動装置に、溶接部の通過位置をプロセス制御しているコンピューターから、金属板の板幅変更情報を、受け、板幅変更された金属板が、誘導コイル装置を通過する直前に、表裏の導体を、金属板の幅方向に動かすとともに、電力も調整する制御手段を組み込んでおけば、過不足がない加熱が可能になる。   When changing the plate width of the metal plate, the induction coil may be moved in the same manner based on information from a process control computer that controls the entire production. In addition, the induction coil driving device receives the plate width change information of the metal plate from the computer that controls the passing position of the welded portion, and immediately before the metal plate whose plate width has been changed passes through the induction coil device. If the front and back conductors are moved in the width direction of the metal plate and a control means for adjusting the electric power is incorporated, heating without excess or deficiency becomes possible.

表裏の導体の移動量は、蛇行の場合には、数十ミリ程度であるが、板幅の変更は、例えば、鋼板の場合、600mm前後から1800mm前後までと、3倍程度大きく変化するので、表裏の導体と、表裏の導体を接続する導電部材を、板幅の変更幅に合せて移動させる必要がある。通常、表裏の導体と、表裏の導体を接続する導電部材の移動のために、水冷ケーブルを用いる。   The amount of movement of the conductors on the front and back sides is about several tens of millimeters in the case of meandering, but for example, in the case of a steel plate, the change in plate width changes greatly from about 600 mm to about 1800 mm, about three times. It is necessary to move the front and back conductors and the conductive member connecting the front and back conductors in accordance with the change width of the plate width. Usually, a water-cooled cable is used for moving the front and back conductors and the conductive member connecting the front and back conductors.

水冷ケーブルは、導体の中又は外を冷却水が流れ、導体を冷却しながら、比較的大きな電流を流すことができるが、曲げ半径が大きいので、図10に示すように、表裏の導体2a2b間の距離よりも大きい半径で、ループを形成する必要がある。   The water-cooled cable allows a relatively large current to flow while cooling water flows in or out of the conductor and cools the conductor. However, since the bending radius is large, as shown in FIG. 10, between the conductors 2a2b on the front and back sides It is necessary to form a loop with a radius larger than the distance.

形成したループにより、大きなインダクタンスが生じるとともに、移動のために、長い水冷ケーブルを使用しなければならず、抵抗も大きくなる。その結果、全体のインピーダンスは、誘導コイルの移動量にもよるが、固定した誘導コイル単独の場合に比べ、倍以上に増加し、加熱効率が大幅に低下する。   The loop formed creates a large inductance, and a long water-cooled cable must be used for movement, and the resistance increases. As a result, although the overall impedance depends on the amount of movement of the induction coil, it increases more than twice as compared with the case of a fixed induction coil alone, and the heating efficiency is greatly reduced.

特に、周波数が高い場合には、インピーダンスが大きくなり、加熱効率に与える影響が大きい。また、インピーダンスが大きくなると、電源の電圧を高くしなければならず、高耐圧の電源が必要になる。そのため、設備費が高騰するという問題、又は、電源電圧の許す範囲で、小電力の加熱しかできなくなってしまうという問題が生じる。   In particular, when the frequency is high, the impedance increases, and the influence on the heating efficiency is large. Further, when the impedance increases, the voltage of the power source must be increased, and a high voltage power source is required. For this reason, there arises a problem that the equipment cost is increased, or that only a small amount of electric power can be heated within the range allowed by the power supply voltage.

そこで、本発明では、図6に示すように、移動する表面側の導体2aと、移動する裏面側の導体2bとの間に、電極8、8’を設け、この電極に、表裏の導体2a2bを摺り合せて通電する。   Therefore, in the present invention, as shown in FIG. 6, electrodes 8 and 8 ′ are provided between the moving front-side conductor 2 a and the moving back-side conductor 2 b, and the front and back conductors 2 a 2 b are provided on this electrode. Are energized.

図7に、電源と誘導コイルを接続する電極の態様を示す。図7(a)に示す電源と電極の位置関係においては、電源からの導電部材7a、7bが、電気的に絶縁する絶縁体9を間に挟んで、電極8、8’に接続されている。導電部材7a、7bは、通常、水冷した銅板を用い、インダクタンスを小さくするため、絶縁体9を間に挟んで密着して、電極8、8’まで延長し、摺動する表面側の導体2a、及び、摺動する裏面側の導体2bと接触させて通電する。   FIG. 7 shows an aspect of electrodes for connecting the power source and the induction coil. In the positional relationship between the power source and the electrode shown in FIG. 7A, the conductive members 7a and 7b from the power source are connected to the electrodes 8 and 8 ′ with an insulator 9 that is electrically insulated therebetween. . For the conductive members 7a and 7b, a water-cooled copper plate is usually used, and in order to reduce the inductance, the insulator 9 is in close contact with each other to extend to the electrodes 8 and 8 'and slide on the surface-side conductor 2a. And it is made to contact with the conductor 2b of the back surface side which slides, and it supplies with electricity.

図7(b)に示すように、他方の端部においても、同様に、電極8’と、誘導コイル2a、2bを接触させて通電する。但し、図7(b)に示す他方の端部は、誘導コイル2aと誘導コイル2bを導通させる必要がある。したがって、図7(b)には、絶縁体10を設けない電極を示したが、図13(a)に示すように、摺動電極を電気的絶縁体を挟んで上下に分割し、分割した摺動電極同士を、水冷銅パイプ等の導電性部材で短絡するような構造でもよい。   As shown in FIG. 7 (b), the electrode 8 'and the induction coils 2a and 2b are similarly brought into contact with each other at the other end to energize. However, the other end shown in FIG. 7B needs to make the induction coil 2a and the induction coil 2b conductive. Therefore, FIG. 7B shows an electrode without the insulator 10, but as shown in FIG. 13A, the sliding electrode is divided into upper and lower parts with an electrical insulator in between. A structure in which the sliding electrodes are short-circuited with a conductive member such as a water-cooled copper pipe may be used.

なお、電極は、通常、銅又は銅の合金、金属含浸カーボン等の、抵抗値が小さく、強度のあるものを用いればよい。酸化等が懸念される場合には、電極に、耐酸化性のある材料の溶射や、メッキ等の表面処理を施してもよい。電極に流れる電流が大きい場合、電極を水冷構造とすれば、安定した通電が可能である。   In addition, what is necessary is just to use what has a small resistance value, such as copper, an alloy of copper, metal impregnation carbon, and an intensity | strength normally. When oxidation or the like is concerned, the electrode may be subjected to surface treatment such as thermal spraying of an oxidation resistant material or plating. When the current flowing through the electrode is large, stable energization is possible if the electrode has a water cooling structure.

本発明のように、摺動する表裏の導体間に、水冷ケーブルに替えて固定した電極を用いると、インダクタンス及びインピーダンスの変化を小さくすることができる。図11(A)、及び、図11(B)に、金属板の板幅が変化する時の表裏の導体と電極の関係を示す。   As in the present invention, when an electrode fixed in place of the water-cooled cable is used between the sliding front and back conductors, changes in inductance and impedance can be reduced. FIG. 11A and FIG. 11B show the relationship between the front and back conductors and electrodes when the plate width of the metal plate changes.

電極8、8’は、表面側の導体2a、裏面側の導体2b等の移動機構や、誘導コイル本体を取り付けた支持台等を取り付けるための構造体の梁12等に、ボルトなどで固定して、位置が変わらないようにする。表裏の導体2a2bは、図示していないが、エアシリンダ等の移動機構につながれた支持台に固定され、シリンダの移動により、金属板の板幅方向に動き、被加熱材の加熱温度分布を制御する。   The electrodes 8 and 8 'are fixed with bolts or the like to a moving mechanism such as the conductor 2a on the front surface side and the conductor 2b on the back surface side or a beam 12 of a structure for attaching a support base to which the induction coil body is attached. And keep the position unchanged. Although not shown, the conductors 2a2b on the front and back sides are fixed to a support base connected to a moving mechanism such as an air cylinder, and move in the plate width direction of the metal plate by the movement of the cylinder to control the heating temperature distribution of the material to be heated. To do.

表裏の導体が動いても、誘導コイルの導体の長さがほぼ同一で、表裏の導体が、金属板の板幅方向に平行にずれ、各々の導体で発生する磁束が影響する範囲がほとんど同じであり、金属板中央部の範囲が増減するだけなので、表裏の導体と電極で囲まれた空間(図中のハッチング部)においては、インダクタンスは大きく変化しない。   Even if the conductors on the front and back sides move, the conductor lengths of the induction coil are almost the same, the conductors on the front and back sides are shifted in parallel to the plate width direction of the metal plate, and the range affected by the magnetic flux generated by each conductor is almost the same. Since the range of the central portion of the metal plate only increases or decreases, the inductance does not change greatly in the space (hatched portion in the figure) surrounded by the conductors and electrodes on the front and back sides.

誘導加熱における共振周波数は、インダクタンスの0.5乗に反比例するが、上述のように、インダクタンスの変化が小さいので、インダクタンスの変化による共振周波数への影響はほとんど生じず、周波数を変えることなく、安定した加熱が可能となる。   The resonance frequency in induction heating is inversely proportional to the 0.5th power of the inductance, but as described above, since the change in inductance is small, there is almost no influence on the resonance frequency due to the change in inductance, without changing the frequency, Stable heating is possible.

ここで、電極を用いずに、図10に示すような水冷ケーブルを使うと、水冷ケーブルの曲げ半径が大きいため、大きなループを作らなければならず、そのため、誘導コイルの外側に、板幅変化の数倍の長さの余分な電流路を作らなければならない。その結果、ケーブルの抵抗が増加して銅損が増え、加熱効率が低下する。   Here, when a water-cooled cable as shown in FIG. 10 is used without using an electrode, the bending radius of the water-cooled cable is large, so that a large loop must be formed. An extra current path that is several times longer must be made. As a result, the resistance of the cable increases, the copper loss increases, and the heating efficiency decreases.

本発明によれば、余分な長さの電流路を設ける必要がなく、表裏の導体と電極で形成される回路の抵抗はほぼ一定になるので、インピーダンスの増加を避けることができる。誘導コイルに流さなければならない電流が一定であると、インピーダンスの増加に伴い、電源電圧を高圧化することが避けられないが、本発明では、電源の高電圧化の問題を避けることができる。   According to the present invention, it is not necessary to provide a current path having an extra length, and the resistance of the circuit formed by the front and back conductors and electrodes is substantially constant, so that an increase in impedance can be avoided. If the current that must be passed through the induction coil is constant, it is inevitable to increase the power supply voltage as the impedance increases. However, in the present invention, the problem of increasing the power supply voltage can be avoided.

本発明の場合、電極と、表裏の導体とを接触させて通電し、金属板の周囲に、1T(ターン)以上の誘導コイルを形成するこことができればよく、電極構造や、電極と表裏の導体とを接続する構造に限定はないが、電極と、表裏の導体とを安定して密着できるような構造を採用することが、特に好ましい。   In the case of the present invention, the electrode and the conductors on the front and back sides are brought into contact with each other and energized, and an induction coil of 1T (turns) or more can be formed around the metal plate. The structure for connecting the conductor is not limited, but it is particularly preferable to employ a structure that can stably adhere the electrode and the front and back conductors.

そのため、表裏の導体の鉛直方向の外側に圧力を加える機構を設けることが好ましい。図12に、上記機構の一例を示す。図12に示す機構においては、表裏の導体2a2bの上下方向の外側にロール13を設け、ロール13自体を、エアシリンダ、油圧シリンダ、電動シリンダ等の圧下機構で圧下する。   Therefore, it is preferable to provide a mechanism for applying pressure to the outside of the front and back conductors in the vertical direction. FIG. 12 shows an example of the mechanism. In the mechanism shown in FIG. 12, a roll 13 is provided on the outer side in the vertical direction of the conductors 2a2b on the front and back sides, and the roll 13 itself is reduced by a reduction mechanism such as an air cylinder, a hydraulic cylinder, or an electric cylinder.

ロール13の圧下により、電極8’は、表裏の導体2a2bとの間に、安定的に密着して挟まれる。ロール13としては、できるだけ均等に圧下力が加えられるように、ゴムロールなどを用いればよく、ロールの軸等は、誘導を受けない樹脂やセラミックなどの非導電性材料を使うのが望ましい。   The electrode 8 'is sandwiched between the front and back conductors 2a2b stably and tightly by the roll 13 being pressed. As the roll 13, a rubber roll or the like may be used so that the rolling force is applied as evenly as possible, and it is desirable to use a non-conductive material such as resin or ceramic that does not receive induction for the shaft of the roll.

このとき、表裏の導体2a2bが、銅管などの、柔らかくて薄い肉厚の管でできていると、誘導コイルが損傷を受けるので、表裏の導体2a2bを、樹脂などでモールドし、更に、ベーク板などの樹脂やセラミック等の非磁性、絶縁性のあて板14を、誘導コイルの支持台(図示なし)に設け、誘導コイルに、局部的な力が加わらないようにするのが望ましい。   At this time, if the conductor 2a2b on the front and back sides is made of a soft and thin tube such as a copper tube, the induction coil is damaged. Therefore, the conductor 2a2b on the front and back sides is molded with resin or the like, and further baked. It is desirable to provide a non-magnetic insulating insulating plate 14 such as a resin such as a plate or ceramic on a support base (not shown) of the induction coil so that a local force is not applied to the induction coil.

表裏の導体を圧下する機構は、ロールでなくても、例えば、ラック・ピニオン機構でもよく、特に規定するものではない。   The mechanism for rolling down the conductors on the front and back sides may not be a roll but may be a rack and pinion mechanism, for example, and is not particularly defined.

一方、電極側にも、表裏の導体と均一に接触させるために、図13に示すように、電極押上げ構造を備えることが好ましい。図13(a)に、電極押上げ構造を備える構造例の正面を示し、図13(b)に、その側面を示す。図13に示す構造においては、エンジニアリングプラスチックなどの電極ベース18に、ゴム、フェルト、バネなどの柔構造体17を介して電極15が設けられている。   On the other hand, it is preferable to provide an electrode push-up structure on the electrode side as shown in FIG. 13 in order to uniformly contact the conductors on the front and back sides. FIG. 13A shows the front of a structural example provided with an electrode push-up structure, and FIG. In the structure shown in FIG. 13, an electrode 15 is provided on an electrode base 18 such as engineering plastic via a flexible structure 17 such as rubber, felt, or spring.

電極15は、導体2aが接触しない場合は、実線で示すアの位置まで、上に出ているが、導体2aが押し当てられて圧下が加わると、柔構造体17が縮んで、点線で示すイの位置まで下がる。   When the conductor 2a is not in contact, the electrode 15 protrudes up to the position indicated by a solid line, but when the conductor 2a is pressed against the conductor 2a, the flexible structure 17 contracts and is indicated by a dotted line. Go down to position a.

こうすることにより、誘導コイルと電極は、均一に接触し、安定通電が可能になる。電極15は、水冷銅パイプ16を備えるものが望ましい。この電極を、炉殻や誘導コイルを支える構造体の梁12などに、取付け板19を介して、ボルト20及びナット21で固定すればよい。   By doing so, the induction coil and the electrode are in uniform contact and stable energization is possible. The electrode 15 is preferably provided with a water-cooled copper pipe 16. What is necessary is just to fix this electrode to the beam 12 etc. of the structure which supports a furnace shell or an induction coil with the volt | bolt 20 and the nut 21 via the attachment plate 19. FIG.

また、電極と表裏の導体との接触部は、使用している間に摩耗していくが、表裏の導体は製作が大変なこと、取り付け取り外しに手間がかかること、表裏の導体が銅パイプなどの薄い肉厚の素材で製造されている場合には、冷却水が漏れて設備トラブルを起こし易いことなどから、表裏の導体は、できるだけ摩耗させないようにし、電極を摩耗させる方がよい。   In addition, the contact part between the electrode and the front and back conductors wears out during use, but the front and back conductors are difficult to manufacture, installation and removal takes time, and the front and back conductors are copper pipes, etc. In the case of manufacturing with a thin material, it is preferable that the conductors on the front and back sides are not worn as much as possible and the electrodes are worn because the cooling water is likely to leak and cause equipment troubles.

そのため、誘導コイルと電極の摩耗に大きな影響を与える硬度に差をつけるのが好ましい。即ち、電極の表面(接触面)の硬度に比べて、表裏の導体の表面(接触面)の硬度を高くすることが好ましい。具体的には、表裏の導体の表面に、溶射や蒸着などで、導電性の高硬度セラミックスの皮膜を形成することが好ましい。導電性セラミックスとしては、WC、TiC、TiN、Moなど高硬度、高融点の材料が好ましい。   For this reason, it is preferable to make a difference in hardness that greatly affects the wear of the induction coil and the electrode. That is, it is preferable to increase the hardness of the surface (contact surface) of the front and back conductors compared to the hardness of the electrode surface (contact surface). Specifically, it is preferable to form a conductive high-hardness ceramic film on the front and back conductor surfaces by thermal spraying or vapor deposition. As the conductive ceramic, a material having high hardness and high melting point such as WC, TiC, TiN, and Mo is preferable.

表裏の導体は、通常、1枚の板状導体で製作するが、1枚の板状導体である必要はなく、複数本の導体を並べたものでもよいし、棒状の導体を並べたものでもよい。表裏の導体は、金属板の幅方向に正確に平行である必要はなく、表裏の導体全体を、金属板に対し斜めに配置してもよい。   The front and back conductors are usually manufactured with a single plate-like conductor, but need not be a single plate-like conductor, and a plurality of conductors may be arranged, or rod-shaped conductors may be arranged. Good. The front and back conductors do not need to be exactly parallel to the width direction of the metal plate, and the entire front and back conductors may be arranged obliquely with respect to the metal plate.

また、誘導コイルの回路は、1T(ターン)である必要はなく、例えば、図14に示すように、2T(ターン)でもよい。   Further, the induction coil circuit need not be 1T (turn), and may be 2T (turn) as shown in FIG. 14, for example.

図14(A)に、図6に示す誘導コイルを、2セット並列に配置して構成した、2T(ターン)の誘導コイルの態様を示す。   FIG. 14A shows an aspect of a 2T (turn) induction coil in which two sets of the induction coil shown in FIG. 6 are arranged in parallel.

図14(A)に示す誘導コイルにおいては、裏面側の導体2bと導体22bの垂直投影像が、金属板の長手方向において近接する間隔で配置され、表面側の導体2aと導体22aの垂直投影像が、金属板の長手方向において、裏面側の導体2b、22b間の近接間隔よりも大きい間隔で配置されている。   In the induction coil shown in FIG. 14A, the vertical projection images of the conductor 2b and the conductor 22b on the back surface side are arranged at close intervals in the longitudinal direction of the metal plate, and the vertical projection of the conductor 2a and the conductor 22a on the front surface side. The images are arranged at intervals larger than the proximity interval between the conductors 2b and 22b on the back surface side in the longitudinal direction of the metal plate.

2セットの誘導コイルを、逆に、表面側の導体2aと導体22aの垂直投影像が、金属板の長手方向において近接するように、裏面側の導体2bと導体22bの垂直投影像が、金属板の長手方向において、表面側の導体2a、22aの近接間隔よりも大きい間隔となるように配置してもよい。   On the contrary, the vertical projection images of the conductor 2b and the conductor 22b on the back surface are made of metal so that the vertical projection images of the conductor 2a and the conductor 22a on the front surface are close to each other in the longitudinal direction of the metal plate. You may arrange | position so that it may become a space | interval larger than the adjacent space | interval of the conductors 2a and 22a of the surface side in the longitudinal direction of a board.

金属板1の長手方向において、表面側の導体2aと裏面側の導体2bのユニットと、表面側の導体22aと裏面側の導体22bのユニットを形成する。2組のユニットそれぞれにおいて、金属板1の幅方向両端部の外側に、電極25、25’、電極26、26’を配置する。   In the longitudinal direction of the metal plate 1, a unit of a conductor 2a on the front side and a conductor 2b on the back side, and a unit of a conductor 22a on the front side and a conductor 22b on the back side are formed. In each of the two sets of units, the electrodes 25 and 25 ′ and the electrodes 26 and 26 ′ are disposed outside the both ends in the width direction of the metal plate 1.

これらの電極のうち、高周波電源3と反対側に配置された電極25’、26’は、電気的に絶縁された電極ベースを挟んで2つに分離され、分離された電極の一方は、表面側の導体2a、22aと接触し、他方は、裏面側の導体2b、22bと接触する。   Among these electrodes, the electrodes 25 ′ and 26 ′ arranged on the opposite side of the high frequency power source 3 are separated into two with an electrically insulated electrode base interposed therebetween, and one of the separated electrodes is a surface. The other side is in contact with the conductors 2a and 22a on the side, and the other side is in contact with the conductors 2b and 22b on the back side.

分離したそれぞれの電極には、導電部材7c、7c’が接続されている。導電部材7c、7c’は、一方のユニットの表面側の導体と接触している電極と、他方のユニットの裏面側の導体と接触している電極を接続する。   Conductive members 7c and 7c 'are connected to the separated electrodes. The conductive members 7c and 7c 'connect the electrode in contact with the conductor on the front surface side of one unit and the electrode in contact with the conductor on the back surface side of the other unit.

図16に、電極構造を示す。例えば、図16(b)に示すように、上側の導体2a、22aと接触する電極材15a、15cに接続された銅板7c、7c’が、交差して、裏面側の導体2b、22bと接触する電極材15d、15bに接続されている。   FIG. 16 shows an electrode structure. For example, as shown in FIG. 16 (b), the copper plates 7c and 7c ′ connected to the electrode materials 15a and 15c that are in contact with the upper conductors 2a and 22a intersect to make contact with the conductors 2b and 22b on the back surface side. Are connected to the electrode materials 15d and 15b.

電源3と接続する電極26は、例えば、図16(a)に示すように、電源3に接続した導体7a、7bを、絶縁材28を挟んで密着させて電極近傍まで延長し、表面側の導体22aと接触する電極材15aと、裏面側の導体24bと接触する電極材15bに、それぞれ接続して構成されている。   For example, as shown in FIG. 16A, the electrode 26 connected to the power source 3 extends to the vicinity of the electrode by bringing the conductors 7a and 7b connected to the power source 3 into close contact with the insulating material 28 interposed therebetween. The electrode material 15a that contacts the conductor 22a and the electrode material 15b that contacts the conductor 24b on the back surface side are connected to each other.

摺動する表裏の導体間を最短距離で短絡する電極25は、図16(c)に示すように、上側の電極材15aと下側の電極材15bとを、導体7で接続する構造とすればよい。   As shown in FIG. 16C, the electrode 25 that short-circuits between the sliding front and back conductors has a structure in which the upper electrode material 15a and the lower electrode material 15b are connected by the conductor 7. That's fine.

これらの電極においては、表裏の電極材間が、固定された導体により最短距離で接続されていて、水冷ケーブルのように、無駄なループを形成する必要がないので、インダクタンスの増加を防ぐことができる。   In these electrodes, the electrode materials on the front and back are connected by a fixed conductor at the shortest distance, and it is not necessary to form a useless loop as in a water-cooled cable, so that an increase in inductance can be prevented. it can.

このコイル導体の配置方法によれば、隣り合う誘導コイルに、同相の電流を流して、磁束密度を高めることができるので、加熱効率が向上し、また、各々の誘導コイルを、独立して動かすことができるので、図6に示す1Tの誘導コイルに比べ、温度分布を、精緻に制御することができる。   According to this arrangement method of the coil conductor, since the current of the same phase can be passed through the adjacent induction coils to increase the magnetic flux density, the heating efficiency is improved, and each induction coil is moved independently. Therefore, the temperature distribution can be precisely controlled as compared with the 1T induction coil shown in FIG.

この場合、電源3からでた電流は、導電部材7a→電極26の上側→表面側の導体22a→電極26’上側→導電部材7c→電極25’下側→裏面側の導体2b→電極25下側→電極25の上側→表面側の導体2a→電極25’上側→導電部材7c’→電極26’下側→裏面側の導体22b→電極26下側→導電部材7b→電源3と流れて、2Tの誘導コイルを形成する。   In this case, the current from the power source 3 is as follows: the conductive member 7a → the upper side of the electrode 26 → the conductor 22a on the front side → the electrode 26 ′ upper side → the conductive member 7c → the lower side of the electrode 25 ′ → the back side conductor 2b → the lower side of the electrode 25. Side → upper side of electrode 25 → surface side conductor 2a → upper side of electrode 25 ′ → conductive member 7c ′ → lower side of electrode 26 ′ → back side conductor 22b → lower side of electrode 26 → conductive member 7b → power supply 3 A 2T induction coil is formed.

図14(B)に、2Tの誘導コイルを構成する別の接続例を示す。電源3からでた電流は、導電部材7a→電極26の上側→表面側の導体22a→電極26’の上側→電極26’の下側→裏面側の導体22b→電極26の下側→導電部材7c→電極25の上側→表面側の導体2a→電極25’の上側→電極25’の下側→裏面側の導体2b→電極25の下側→導電部材7b→電源3と流れて、2Tの誘導コイルを形成する。   FIG. 14B shows another connection example constituting a 2T induction coil. The current from the power source 3 is: the conductive member 7a → the upper side of the electrode 26 → the conductor 22a on the front side → the upper side of the electrode 26 ′ → the lower side of the electrode 26 ′ → the conductor 22b on the back side → the lower side of the electrode 26 → the conductive member 7c → upper side of electrode 25 → surface conductor 2a → upper side of electrode 25 ′ → lower side of electrode 25 ′ → backside conductor 2b → lower side of electrode 25 → conductive member 7b → power supply 3 An induction coil is formed.

この場合、電極25と電極26の接続は、図16(d)に示す構造とし、電極25’と電極26’の接続は、図16(c)に示す構造とすればよい。   In this case, the connection between the electrode 25 and the electrode 26 may be the structure shown in FIG. 16D, and the connection between the electrode 25 'and the electrode 26' may be the structure shown in FIG.

図15に、図14(A)に示す誘導コイルの組みに、もう一組、並列に配置した誘導コイル(4ユニット)の態様を示す。   FIG. 15 shows a mode of induction coils (4 units) arranged in parallel with another set of induction coils shown in FIG.

図15に示す誘導コイルにおいて、下側の組の誘導コイルには、電源3からでた電流が、導電部材7a→電極27の上側→表面側の導体24a→電極27’上側→導電部材7c→電極26’下側→裏面側の導体23b→電極26下側→電極26の上側→表面側の導体23a→電極26’上側→導電部材7c’→電極27’下側→裏面側の導体24b→電極27下側→導電部材7b’→電源3と流れて、2Tの誘導コイルを形成する。   In the induction coil shown in FIG. 15, the current from the power source 3 is applied to the lower set of induction coils from the conductive member 7 a → the upper side of the electrode 27 → the conductor 24 a on the surface side → the upper side of the electrode 27 ′ → the conductive member 7 c → Electrode 26 'lower side → back side conductor 23b → electrode 26 lower side → electrode 26 upper side → surface side conductor 23a → electrode 26' upper side → conductive member 7c '→ electrode 27' lower side → back side conductor 24b → Flowing from the lower side of the electrode 27 → the conductive member 7b ′ → the power source 3, a 2T induction coil is formed.

同様に、もう一方の上側の組の誘導コイルには、電源3からでた電流が、導電部材7a’→電極25上側→表面側の導体22a→電極25’上側→導電部材7d→電極8’下側→裏面側の導体2b→電極8下側→電極8上側→表面側の導体2a→電極8’上側→導電部材7d’→電極25’下側→裏面側の導体22b→電極25下側→導電部材7b’→電源3と流れて、2Tの誘導コイルを形成する。この2Tの誘導コイルは、先の2Tの誘導コイルと並列に接続されている。   Similarly, the current from the power source 3 is applied to the other upper set of induction coils from the conductive member 7a ′ → the upper side of the electrode 25 → the conductor 22a on the front side → the upper side of the electrode 25 ′ → the conductive member 7d → the electrode 8 ′. Lower side → back side conductor 2b → electrode 8 lower side → electrode 8 upper side → surface side conductor 2a → electrode 8 'upper side → conductive member 7d' → lower side of electrode 25 '→ back side conductor 22b → lower side of electrode 25 The flow then flows through the conductive member 7b ′ → the power source 3 to form a 2T induction coil. The 2T induction coil is connected in parallel with the previous 2T induction coil.

このように、複数の誘導コイルを用いても、表裏の導体(2a、2b)、(22a、22b)、(23a、23b)、(24a、24b)は、金属板1の板幅方向に、各々自在に移動可能であるが、電極8、8’、25、25’、26、26’、27、27’、及び、導電部材7a、7a’、7b、7b’、7c、7c’、7d、7d’は、固定することができる。   Thus, even if a plurality of induction coils are used, the conductors (2a, 2b), (22a, 22b), (23a, 23b), (24a, 24b) on the front and back sides are in the plate width direction of the metal plate 1, Although each can move freely, electrodes 8, 8 ', 25, 25', 26, 26 ', 27, 27' and conductive members 7a, 7a ', 7b, 7b', 7c, 7c ', 7d 7d 'can be fixed.

特に、導電部材7aと7a’、7bと7b’、7cと7c’、7dと7d’は、インダクタンスが生じないように、絶縁体を間に挟んで密着して電極まで敷設して固定する。   In particular, the conductive members 7a and 7a ', 7b and 7b', 7c and 7c ', and 7d and 7d' are laid and fixed to the electrodes in close contact with an insulator therebetween so that no inductance is generated.

以上、説明したように、本発明の誘導加熱装置は、加熱される金属板の板幅によらず、また、磁性・非磁性を問わず、効果的に加熱することが可能なものである。また、本発明の誘導加熱装置は、表裏の導体が、板幅、蛇行に合わせて、移動可能であるので、温度制御を自在に行うことができるものである。   As described above, the induction heating device of the present invention can be effectively heated regardless of the width of the metal plate to be heated, regardless of whether it is magnetic or non-magnetic. In addition, the induction heating device of the present invention can freely control the temperature because the conductors on the front and back sides can move according to the plate width and meandering.

また、本発明の誘導加熱装置においては、電極間の導体の長さ・形状の変化が小さいので、表裏の導体を含めた導体のインダクタンス、及び、インピーダンスの変化を最小に抑えることができ、周波数を変えることもなく、安定して高効率の加熱が可能になる。   Further, in the induction heating device of the present invention, since the change in the length and shape of the conductor between the electrodes is small, the change in inductance and impedance of the conductor including the conductors on the front and back sides can be minimized, and the frequency Without changing the temperature, stable and highly efficient heating becomes possible.

また、本発明の誘導加熱装置においては、誘導コイルのインピーダンスを低く抑えることができるので、比較的大きな電力容量の加熱であっても、高電圧に対応した特別な電源を用いることなく、安価な通常の電源を使用することが可能になるとともに、高電圧対策が不要になるため、設備コストが低く抑えられ、また、安全面でも安心な設備とすることが可能になる。   Further, in the induction heating device of the present invention, since the impedance of the induction coil can be kept low, it is inexpensive without using a special power source corresponding to a high voltage even when heating with a relatively large power capacity. It is possible to use a normal power supply and eliminate the need for high voltage countermeasures, so that the equipment cost can be kept low and the equipment can be made safe from the viewpoint of safety.

本発明の誘導加熱装置は、金属板の種類、寸法を選ばず、1台で、広範囲にわたる対応が可能なものである。加熱温度分布ついても、従来の誘導加熱装置で問題となっていた板端部の過加熱を防止する制御が可能であり、また、温度分布を、狙った温度分布に、精密に制御することが可能である。   The induction heating apparatus of the present invention can be used in a wide range with a single unit regardless of the type and size of the metal plate. The heating temperature distribution can also be controlled to prevent overheating of the plate edge, which has been a problem with conventional induction heating devices, and the temperature distribution can be precisely controlled to the target temperature distribution. Is possible.

また、金属板の板幅が変更になっても、溶接部の通過位置をプロセス制御しているコンピューターからの指令により、金属板の板幅変更部分が、誘導加熱装置内を通過する時、誘導コイルを、金属板の幅方向に、瞬時に動かすとともに、電力を制御して、過不足のない加熱が可能になるとともに、無駄な電力の投入を防止することができる。   Even if the plate width of the metal plate is changed, when the plate width change portion of the metal plate passes through the induction heating device according to a command from the computer that controls the passing position of the welded portion, induction is performed. The coil can be moved instantaneously in the width direction of the metal plate and the electric power can be controlled to allow heating without excess or deficiency and to prevent useless electric power from being input.

(実施例1)
本発明の効果を確認するため、図6に示す1ユニットの誘導加熱装置と、図15に示す4ユニットの誘導加熱装置の場合において、板幅800mmと1800mmの2枚のSUS304板(非磁性鋼板)用いて、インダクタンスの変化を計測した。
Example 1
In order to confirm the effect of the present invention, in the case of the 1 unit induction heating device shown in FIG. 6 and the 4 unit induction heating device shown in FIG. ) To measure the change in inductance.

使用した表裏の導体は、それぞれ、外径10mm、厚み1mmの銅管を15°(図15中「α」参照)に曲げたものを10本、5mm間隔で並べて145mm幅としたものを1セット(図17、参照)にして1ユニットとし、図6及び図15に示す配置で、金属板の幅方向の長さをL=3mとして、SUS304板の表裏に配置した。   The front and back conductors used were each one set of 10 copper pipes with an outer diameter of 10 mm and a thickness of 1 mm bent to 15 ° (see “α” in FIG. 15) and arranged at 5 mm intervals to a width of 145 mm. (Refer to FIG. 17) One unit was used, and the length in the width direction of the metal plate was set to L = 3 m in the arrangement shown in FIG. 6 and FIG.

それぞれのユニットにおける表裏の導体間のズレ量Sは250mmで、表面側の導体の下面とSUS板上面とのギャップ、及び、裏面側の導体の上面とSUS板下面とのギャップは、ともに150mmとした。誘導コイルは、図6に示す配置では、1T(ターン)を構成した。図15に示す配置では、2T(ターン)の誘導コイルを2組(4ユニット)、金属板の長手方向に並べ、それを並列に接続して構成した。   The deviation S between the front and back conductors in each unit is 250 mm, and the gap between the lower surface of the conductor on the front surface side and the upper surface of the SUS plate and the gap between the upper surface of the conductor on the back surface side and the lower surface of the SUS plate are both 150 mm. did. In the arrangement shown in FIG. 6, the induction coil constituted 1T (turn). In the arrangement shown in FIG. 15, two sets (4 units) of 2T (turn) induction coils are arranged in the longitudinal direction of the metal plate and connected in parallel.

実施例1は、図6に示す配置で、図13に示すような接触長w(=150mm)のカーボン製の電極を、Le(=2.1m)離して固定配置した場合である。実施例2は、図15に示す配置で、各ユニットにおいて、図13に示すようなカーボン製の電極をLe(=2.1m)離して固定配置した場合ある。   Example 1 is a case where carbon electrodes having a contact length w (= 150 mm) as shown in FIG. 13 are fixedly arranged with Le (= 2.1 m) apart as shown in FIG. Example 2 is a case in which the carbon electrodes as shown in FIG. 13 are fixedly arranged with Le (= 2.1 m) apart in each unit in the arrangement shown in FIG.

圧下は、図12に示す配置で、表裏の導体それぞれを構成する銅管10本と電極8’との間に、あて板14であるベーク板を挟み、φ100mmのゴムロールに、エアシリンダで100kgの荷重を加えられるようにした。   In the arrangement shown in FIG. 12, the bake plate as the contact plate 14 is sandwiched between 10 copper tubes constituting the front and back conductors and the electrode 8 'in the arrangement shown in FIG. Added load.

比較例1は、図6に示す配置で、表裏の導体の間にある電極を取り去り、表裏の導体を断面積14mm2のケーブルで短絡した誘導コイル(板幅800mmの時、誘導コイル幅L=1200mmで、板幅1800mmの時、誘導コイル幅L=2200mm)を用いた場合である。 Comparative Example 1 is an arrangement shown in FIG. 6 in which an electrode between the front and back conductors is removed, and the front and back conductors are short-circuited with a cable having a cross-sectional area of 14 mm 2 (when the plate width is 800 mm, the induction coil width L = This is a case of using an induction coil width L = 2200 mm when the plate width is 1200 mm and the plate width is 1800 mm.

比較例2は、図15に示す配置で、表裏の導体の間にある電極を取り去り、表裏の導体を断面積14mm2のケーブルで短絡した誘導コイル(板幅800mmの時、誘導コイル幅L=1200mmで、板幅1800mmの時、誘導コイル幅L=2200mm)を用いた場合である。 Comparative Example 2 is an arrangement shown in FIG. 15, in which an electrode between front and back conductors is removed, and the front and back conductors are short-circuited with a cable having a cross-sectional area of 14 mm 2 (when the plate width is 800 mm, the induction coil width L = This is a case of using an induction coil width L = 2200 mm when the plate width is 1200 mm and the plate width is 1800 mm.

比較例3は、実施例2で、電極の替わりに、市販の水冷ケーブル(断面積125mm2を、誘導コイル1ユニット当たり2本)を使用し、表裏の導体の間を、片側3.5m、合計、誘導コイル1セット当たり7mのケーブルで接続し、途中に、半径500mmのループを設けた場合である。 Comparative Example 3 is the same as Example 2 except that instead of the electrodes, a commercially available water-cooled cable (cross-sectional area of 125 mm 2 , two per induction coil unit) was used, and between the front and back conductors, 3.5 m on one side, This is a case where a total of 7 m per induction coil is connected by a cable and a loop having a radius of 500 mm is provided in the middle.

実施例1、実施例2、比較例1、比較例2、及び、比較例3において、板幅800mmと板幅1800mmのSUS304板を、誘導コイル内に入れたときのインダクタンスを比較した。なお、3.5mのケーブル長は、片側板幅変化分0.5m+蛇行の余裕代±0.1m(合計0.2m)+直線部0.3mの上下分の合計が2m、ループ部が約1.5mである。インダクタンスは、インピーダンスメーターで、周波数を変え、静止状態で測定した。   In Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3, the inductances when SUS304 plates having a plate width of 800 mm and a plate width of 1800 mm were placed in the induction coil were compared. Note that the cable length of 3.5 m is 0.5 m on one side plate width + margin of meander ± 0.1 m (total 0.2 m) + the total of the upper and lower parts of the straight line 0.3 m is 2 m, and the loop part is about 1.5 m. Inductance was measured with an impedance meter while changing the frequency and at rest.

結果を表1に示す。板幅に合わせた誘導コイル幅とした比較例1及び比較例2では、板幅が、800mmから1800mmに変化したことにより、インダクタンスが70%前後増加した。これは、同じ周波数を発振するには、コンデンサ容量を70%小さくしなければならないことを意味し、結局、共振状態を維持することができない状態となる。   The results are shown in Table 1. In Comparative Example 1 and Comparative Example 2 in which the induction coil width was adjusted to the plate width, the inductance increased by about 70% because the plate width was changed from 800 mm to 1800 mm. This means that the capacitor capacity must be reduced by 70% in order to oscillate at the same frequency, and eventually the resonance state cannot be maintained.

一方、実施例1及び実施例2では、インダクタンスの変化は、3%前後しかなく、電源の共振状態を維持することが可能な範囲内であることが解った。   On the other hand, in Example 1 and Example 2, it was found that the change in inductance was only about 3%, and was within a range in which the resonance state of the power supply could be maintained.

比較例3では、金属板の板幅が変わっても、ケーブルと表裏の導体で囲む空間の体積が殆ど変化しないため、インダクタンスの変化は小さいが、絶対値が、本発明の約4倍あり、同じ電流を流す場合には、4倍以上の電圧を加えなければならない。そのため、大電力を投入する場合には、電源電圧を高くしなければならず、高価な高電圧電源が必要となるし、また、他に、絶縁対策等の課題が発生する。   In Comparative Example 3, even when the plate width of the metal plate changes, the volume of the space surrounded by the cable and the conductors on the front and back sides hardly changes, so the change in inductance is small, but the absolute value is about four times that of the present invention, When the same current is applied, a voltage more than four times must be applied. Therefore, when a large amount of power is input, the power supply voltage must be increased, an expensive high voltage power supply is required, and other problems such as measures against insulation occur.

一方、本発明の場合は、インダクタンスの値が、比較例1と同レベルで低く、金属板の板幅変更に伴うインダクタンスの変化も小さいので、電源電圧を上げずに、また、周波数を変えることなく、安定して加熱を続けることができる。   On the other hand, in the case of the present invention, the inductance value is low at the same level as in Comparative Example 1, and the change in inductance due to the change in the plate width of the metal plate is small, so the frequency is changed without increasing the power supply voltage. And can continue heating stably.

実際に、図15に示す配置において、板幅1000mm、板厚0.6mmのSUS304板を入れた状態で、表裏の導体を、エアシリンダで、板幅方向に±500mm動かしながら通電した場合でも、電源は落ちることなく、共振周波数9.8kHz±0.2kHzで、安定して通電を続けることができることが確認できた。   Actually, in the arrangement shown in FIG. 15, even when the SUS304 plate with a plate width of 1000 mm and a plate thickness of 0.6 mm is inserted, the front and back conductors are energized while moving ± 500 mm in the plate width direction with an air cylinder. It was confirmed that energization could be continued stably at a resonance frequency of 9.8 kHz ± 0.2 kHz without powering down.

前述したように、本発明によれば、板厚の厚い金属板、磁性域の薄板、比抵抗が小さく非磁性のアルミや銅などの非鉄金属板を加熱することができ、また、磁性材のキュリー点以上の非磁性域においても、効率的に加熱を行うことができる。また、本発明によれば、金属板の板厚及び/又は板幅の変更、及び、金属板の蛇行に対応して、誘導コイルを移動させて、温度制御を、より精密に行うことができる。よって、本発明は、金属産業において利用可能性が高いものである。   As described above, according to the present invention, a thick metal plate, a thin magnetic region plate, a non-ferrous metal plate such as non-magnetic aluminum or copper having a small specific resistance can be heated, and the magnetic material Heating can be performed efficiently even in a nonmagnetic region above the Curie point. In addition, according to the present invention, the temperature control can be performed more precisely by moving the induction coil in response to the change in the thickness and / or width of the metal plate and the meandering of the metal plate. . Thus, the present invention has high applicability in the metal industry.

1 金属板
2 誘導コイル
2a 表面側の導体
2b 裏面側の導体
3 高周波電源
4 磁束
5 一次電流
6 誘導電流
6a 誘導電流
6b 誘導電流
7 導電部材
7a、7a’ 導電部材
7b、7b’ 導電部材
7c、7c’ 導電部材
7d、7d’ 導電部材
8、8’ 電極
9 絶縁体
10 絶縁体
11 水冷ケーブル
12 構造体の梁
13 ロール
14 あて板
15 電極材
15a、15b 電極材
15c、15d 電極材
16 水冷銅パイプ
17 柔構造体
18 電極ベース
19 取付け板
20 ボルト
21 ナット
22a、23a、24a 表面側の導体
22b、23b、24b 裏面側の導体
25、25’ 電極
26、26’ 電極
27、27’ 電極
28 絶縁材
DESCRIPTION OF SYMBOLS 1 Metal plate 2 Inductive coil 2a Front side conductor 2b Back side conductor 3 High frequency power supply 4 Magnetic flux 5 Primary current 6 Inductive current 6a Inductive current 6b Inductive current 7 Conductive member 7a, 7a 'Conductive member 7b, 7b' Conductive member 7c, 7c 'Conductive member 7d, 7d' Conductive member 8, 8 'Electrode 9 Insulator 10 Insulator 11 Water-cooled cable 12 Beam of structure 13 Roll 14 Address plate 15 Electrode material 15a, 15b Electrode material 15c, 15d Electrode material 16 Water-cooled copper Pipe 17 Flexible structure 18 Electrode base 19 Mounting plate 20 Bolt 21 Nut 22a, 23a, 24a Front side conductor 22b, 23b, 24b Back side conductor 25, 25 'Electrode 26, 26' Electrode 27, 27 'Electrode 28 Insulation Material

Claims (5)

金属板の表面と裏面との間に所要の間隙を保ち、金属板の幅方向に周回するように導体を配置し、金属板の表面側の導体と裏面側の導体を導電部材で接続して構成した誘導コイルに、高周波電源から発生する交流電流を通電して、金属板の幅方向に周回する誘導コイルの内側を通過する金属板を誘導加熱する装置において、
(a)金属板の表面側の導体と裏面側の導体を、該導体の金属板への垂直投影像が、金属板の幅方向の中央部で、金属板の長手方向にて重複しない間隔で配置し、
(b)表面側の導体と裏面側の導体の一方又は両方の端部に、金属板の幅方向の両端部に向かって、金属板の幅方向に対して傾斜する部分を形成し、かつ、
(c)表面側の導体と裏面側の導体の間に挟まれて両導体を導通させる電極を、金属板の幅方向の両端部の外側に位置するように配置し、
金属板の周囲に、1T(ターン)以上の誘導コイルを形成したことを特徴とする金属板の誘導加熱装置。
Maintain the required gap between the front and back surfaces of the metal plate, place the conductor around the width of the metal plate, connect the conductor on the front side and the back side of the metal plate with a conductive member In the apparatus for inductively heating the metal plate that passes through the inside of the induction coil that circulates in the width direction of the metal plate by passing an alternating current generated from a high-frequency power source to the configured induction coil,
(A) The conductor on the front surface side and the conductor on the back surface side of the metal plate are spaced apart so that the vertical projection image of the conductor on the metal plate does not overlap in the longitudinal direction of the metal plate at the center in the width direction of the metal plate. Place and
(B) at one or both ends of the conductor on the front surface side and the conductor on the back surface side, forming a portion inclined with respect to the width direction of the metal plate toward both ends in the width direction of the metal plate; and
(C) An electrode that is sandwiched between a conductor on the front surface side and a conductor on the back surface side to conduct both conductors is disposed so as to be located outside both ends in the width direction of the metal plate,
An induction heating apparatus for a metal plate, wherein an induction coil of 1T (turns) or more is formed around the metal plate.
前記金属板の幅方向の両端部の外側に位置するように配置した電極のうち、(c1)高周波電源側の電極が、電気的に絶縁された電極ベースを挟んで2つに分離され、(c2)分離された電極の一方が、表面側の導体と接触し、他方が、裏面側の導体と接触し、かつ、(c3)分離されたそれぞれの電極が、導電部材で高周波電源に接続されていることを特徴とする請求項1に記載の金属板の誘導加熱装置。   Of the electrodes arranged so as to be located outside both ends in the width direction of the metal plate, (c1) the electrode on the high frequency power source side is separated into two with an electrically insulated electrode base in between, c2) One of the separated electrodes is in contact with the conductor on the front side, the other is in contact with the conductor on the back side, and (c3) each separated electrode is connected to a high-frequency power source with a conductive member The induction heating apparatus for a metal plate according to claim 1, wherein the induction heating apparatus is a metal plate. 前記表面側の導体と裏面側の導体が、金属板の幅方向に移動する手段を備えることを特徴とする請求項1又は2に記載の金属板の誘導加熱装置。   The induction heating apparatus for a metal plate according to claim 1 or 2, wherein the conductor on the front surface side and the conductor on the back surface side include means for moving in the width direction of the metal plate. 前記誘導コイルが2T(ターン)の誘導コイルであって、
(i)金属板の表面側の導体と裏面側の導体の金属板への垂直投影像が、金属板の幅方向の中央部で、金属板の長手方向にて重複しない間隔のもとで、
(i-1)表面側の導体同士を、金属板の長手方向に近接して配置するとともに、前記裏面側の導体同士を、表面側の導体同士の近接間隔より大きい間隔で、金属板の長手方向に配置するか、又は、
(i-2)裏面側の導体同士を、金属板の長手方向に近接して配置するとともに、表面側の導体同士を、裏面側の導体同士の近接間隔よりも大きい間隔で、金属板の長手方向に配置して、表面側の導体と裏面側の導体のユニットを2組形成し、
(ii)上記2組のユニットのそれぞれにおいて、金属板の幅方向の両端部の外側に位置するように電極を配置し、
(C1)上記電極のうち、高周波電源と反対側の電極が、電気的に絶縁された電極ベースを挟んで2つに分離され、
(C2)分離された電極の一方が、表面側の導体と接触し、他方が、裏面側の導体と接触し、かつ、
(C3)分離されたそれぞれの電極が、導電部材で、2組の一方のユニットにおける表面側の導体と接触する上記分離された電極、及び、2組の他方のユニットにおける裏面側の導体と接触する上記分離された電極に接続されている
ことを特徴とする請求項1〜3のいずれか1項に記載の金属板の誘導加熱装置。
The induction coil is a 2T (turn) induction coil,
(I) The vertical projection image onto the metal plate of the conductor on the front surface side and the conductor on the back surface side of the metal plate is at a central portion in the width direction of the metal plate, with a distance that does not overlap in the longitudinal direction of the metal plate,
(I-1) The conductors on the front surface side are arranged close to each other in the longitudinal direction of the metal plate, and the conductors on the back surface side are arranged at intervals larger than the proximity interval between the conductors on the front surface side. Place in the direction, or
(I-2) The conductors on the back surface side are arranged close to each other in the longitudinal direction of the metal plate, and the conductors on the front surface side are arranged at intervals longer than the proximity interval between the conductors on the back surface side. Two sets of conductor-side conductors and back-side conductor units,
(Ii) In each of the above two sets of units, the electrodes are arranged so as to be outside the both ends in the width direction of the metal plate,
(C1) Among the above electrodes, the electrode opposite to the high frequency power source is separated into two with an electrically insulated electrode base in between,
(C2) One of the separated electrodes is in contact with the conductor on the front side, the other is in contact with the conductor on the back side, and
(C3) Each separated electrode is a conductive member and contacts the above-mentioned separated electrode in the two sets of one unit and the back-side conductor in the other set of two units. The induction heating apparatus for a metal plate according to claim 1, wherein the induction heating apparatus is connected to the separated electrode.
前記表面側の導体及び裏面側の導体において、電極と接触する部分の硬度が、電極の硬度よりも高いことを特徴とする請求項1〜4のいずれか1項に記載の金属板の誘導加熱装置。   The induction heating of the metal plate according to any one of claims 1 to 4, wherein a hardness of a portion in contact with the electrode is higher than a hardness of the electrode in the conductor on the front surface side and the conductor on the back surface side. apparatus.
JP2009026755A 2009-02-06 2009-02-06 Metal plate induction heating device Active JP5262784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009026755A JP5262784B2 (en) 2009-02-06 2009-02-06 Metal plate induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009026755A JP5262784B2 (en) 2009-02-06 2009-02-06 Metal plate induction heating device

Publications (2)

Publication Number Publication Date
JP2010182594A true JP2010182594A (en) 2010-08-19
JP5262784B2 JP5262784B2 (en) 2013-08-14

Family

ID=42764011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009026755A Active JP5262784B2 (en) 2009-02-06 2009-02-06 Metal plate induction heating device

Country Status (1)

Country Link
JP (1) JP5262784B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063006A (en) * 2011-02-15 2013-04-04 Tokuden Co Ltd High-frequency generating device
JP2015141750A (en) * 2014-01-27 2015-08-03 東芝三菱電機産業システム株式会社 Service life diagnosis device of induction heating apparatus
KR20160102088A (en) * 2014-12-22 2016-08-26 쥬가이로 고교 가부시키가이샤 Induction heating device
JP2020136080A (en) * 2019-02-20 2020-08-31 島田理化工業株式会社 Induction heating method using tunnel type heating coil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332395U (en) * 1989-08-04 1991-03-28
JP2001167840A (en) * 1999-12-08 2001-06-22 High Frequency Heattreat Co Ltd Wire connection fitting
JP2007165184A (en) * 2005-12-15 2007-06-28 Globetech Inc Rotary joint
JP2007256332A (en) * 2006-03-20 2007-10-04 Ricoh Co Ltd Fixing device and image forming apparatus
JP2008288200A (en) * 2007-04-16 2008-11-27 Nippon Steel Corp Induction heating device for metal plate and induction heating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0332395U (en) * 1989-08-04 1991-03-28
JP2001167840A (en) * 1999-12-08 2001-06-22 High Frequency Heattreat Co Ltd Wire connection fitting
JP2007165184A (en) * 2005-12-15 2007-06-28 Globetech Inc Rotary joint
JP2007256332A (en) * 2006-03-20 2007-10-04 Ricoh Co Ltd Fixing device and image forming apparatus
JP2008288200A (en) * 2007-04-16 2008-11-27 Nippon Steel Corp Induction heating device for metal plate and induction heating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013063006A (en) * 2011-02-15 2013-04-04 Tokuden Co Ltd High-frequency generating device
JP2015141750A (en) * 2014-01-27 2015-08-03 東芝三菱電機産業システム株式会社 Service life diagnosis device of induction heating apparatus
KR20160102088A (en) * 2014-12-22 2016-08-26 쥬가이로 고교 가부시키가이샤 Induction heating device
KR101712550B1 (en) 2014-12-22 2017-03-13 쥬가이로 고교 가부시키가이샤 Induction heating device
JP2020136080A (en) * 2019-02-20 2020-08-31 島田理化工業株式会社 Induction heating method using tunnel type heating coil

Also Published As

Publication number Publication date
JP5262784B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP4912912B2 (en) Induction heating device
JP5114671B2 (en) Induction heating apparatus and induction heating method for metal plate
EP1854335B1 (en) Induction heating device for a metal plate
JP4786365B2 (en) Induction heating apparatus and induction heating method for metal plate
JP6323564B2 (en) Induction heating device for metal strip
JP5042909B2 (en) Induction heating apparatus and induction heating method for metal plate
JP4153895B2 (en) Induction heating apparatus and induction heating method for metal strip
JP5262784B2 (en) Metal plate induction heating device
JP4926608B2 (en) Induction heating apparatus and induction heating method for metal plate
JP6331900B2 (en) Induction heating device for metal strip
JP5053169B2 (en) Induction heating apparatus and induction heating method
JP4987678B2 (en) Induction heating apparatus and induction heating method
JP4890278B2 (en) Metal plate induction heating device
JP5015345B2 (en) Induction heating apparatus and induction heating method for metal plate
JP2004127854A (en) Moving heating method and moving heating device
KR20190097814A (en) Secondary battery pouch electrode lead sealing device
JP5053170B2 (en) Induction heating device
JP4035122B2 (en) Steel strip heating method with excellent temperature uniformity in the width direction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R151 Written notification of patent or utility model registration

Ref document number: 5262784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350