JP2004325336A - Circular dichroism measuring apparatus - Google Patents

Circular dichroism measuring apparatus Download PDF

Info

Publication number
JP2004325336A
JP2004325336A JP2003122160A JP2003122160A JP2004325336A JP 2004325336 A JP2004325336 A JP 2004325336A JP 2003122160 A JP2003122160 A JP 2003122160A JP 2003122160 A JP2003122160 A JP 2003122160A JP 2004325336 A JP2004325336 A JP 2004325336A
Authority
JP
Japan
Prior art keywords
light
sample
circular dichroism
measuring device
integrating sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003122160A
Other languages
Japanese (ja)
Inventor
Hiroshi Masago
央 真砂
Hiroshi Hayakawa
広志 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP2003122160A priority Critical patent/JP2004325336A/en
Publication of JP2004325336A publication Critical patent/JP2004325336A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circular dichroism measuring apparatus which can measure circular dichroism in a powdery sample. <P>SOLUTION: The circular dichroism measuring apparatus 10 is provided with a polarization modulation means 14 which periodically modulates the polarization state of light irradiated by a light irradiation means 12, an integrating sphere 16 arranged at the front of a sample 20, and a detection means 18 which detects light through the integrating sphere 16. By irradiating the sample 20 with modulated polarized light, receiving diffuse reflected light from the sample 20 by the integrating sphere 16, and detecting by the detection means 18, the circular dichroism of the sample 20 is measured. By arranging the integrating sphere in the front of the sample, the circular dichroism measurement using diffuse reflected light is made possible. By arranging the integrating sphere in the rear of the sample, in the circular dichroism measuring apparatus, the circular dichroism measurement using diffuse transmitted light is made possible. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、円二色性測定装置の改良に関する。
【0002】
【従来の技術】
試料が粉体である場合の円二色性(CD)の測定にはヌジョール法、KBr錠剤法等が通常用いられている。ヌジョール法は、粉体試料を溶解させない溶媒に粉体試料を懸濁させたものを用い、透過光を測定することにより円二色性の測定を行うものである。ここで、溶媒は粉体試料と略同一な屈折率を有するものを用いる。また、KBr錠剤法では、粉体試料をKBr等の透明体と混合し円板状に加工したものを用いて、試料の透過測定を行っていた。
その他の方法としては、特許文献1、2に溶液ではCDを示さないが結晶内の配置によりCDを示す試料の配置情報を固相で直接CDを測定することが記されている。
【0003】
【特許文献1】
特開2001−311684号公報
【特許文献2】
特開2002−122477号公報
【0004】
【発明が解決しようとする課題】
しかしながら、ヌジョール法においては試料の一部が溶解してしまうことがあり、粉体試料自身が有する円二色性を測定できないという問題があった。KBr錠剤法においては、試料の調整が煩雑である等の問題がある。また、特許文献1、2に記された方法は、光を十分に透過させるために十分薄い試料を用いる必要があり、特に試料が微結晶としてしか得られない場合には測定が困難であった。
また、試料に濁りがある場合、直進透過光が十分な強度でないため、検知器であるPMT(光電子増倍管)を試料にできるだけ近接して配置する必要があった。さらに円二色性では生体高分子がその測定対象として重要であり、特に紫外域では試料による光散乱も無視できない。このため、光散乱を伴う試料についても精度良く円二色性を測定できる装置が望まれていた。
【0005】
本発明は上記課題に鑑みなされたものであり、その第1の目的は粉体試料においても円二色性を測定することが可能な円二色性測定装置を提供することにある。また、第2の目的は光散乱を伴う液体試料においても十分な精度で円二色性を測定することが可能な円二色性測定装置を提供することにある。
【0006】
【課題を解決するための手段】
上記第1の目的を達成するため、本発明の円二色性測定装置は、光照射手段から照射された光の偏光状態を周期的に変調する偏光変調手段と、試料の前段に配置された積分球と、該積分球を介して光を検出する検出手段と、を備え、前記変調された偏光状態の光を前記試料へ照射し、該試料からの拡散反射光を前記積分球によって受けて前記検出手段により検出することで前記試料の円二色性を測定することを特徴とする。
【0007】
また、上記第2の目的を達成するため、本発明の円二色性測定装置は、光照射手段から照射された光の偏光状態を周期的に変調する偏光変調手段と、試料の後段に配置された積分球と、該積分球を介して光を検出する検出手段と、を備え、前記変調された偏光状態の光を前記試料へ照射し、該試料からの直線通過光および拡散通過光を前記積分球によって受けて前記検出手段により検出することで前記試料の円二色性を測定することを特徴とする。
上記の円二色性測定装置において、水平方向に進行する光を鉛直方向に進路を変更するための光路変更手段を備え、該光路変更手段によって前記試料に鉛直方向から光を照射することが好適である。
【0008】
また、上記の円二色性測定装置において、前記光路変更手段は全反射プリズムによって構成され、水平方向の光を全反射によって鉛直方向に曲げることが好適である。
さらに、上記の円二色性測定装置において、前記光路変更手段によって光の進路を鉛直方向に変えた後、前記偏光変調手段により光の偏光変調を行うことが好適である。
【0009】
これらの円二色性測定装置において、前記偏光変調手段は光弾性変調子を用いて構成されることが好適である。
上記の円二色性測定装置において、波長走査を行うため、前記光照射手段は、光源と、分光器とを備え、前記光源からの光を前記分光器により単色光とすることが好適である。
【0010】
【発明の実施の形態】
以下に本発明にかかる円二色性測定装置について図面を参照して説明する。
図1は本発明の円二色性測定装置の第1の実施形態の概略構成図である。図1に示す円二色性測定装置10は、光照射手段12(光源22、分光器24)と、光照射手段12からの光の偏光状態を周期的に変調するための偏光変調手段14(偏光子26、光弾性変調子(PEM)28)と、試料20の前段に配置された積分球16と、該積分球16を介して光を検出する検出手段18と、を備える。
【0011】
ここで、光照射手段12は、所定範囲の波長走査を行うために、光源22と分光器24とから構成され、光源22から出射された光は分光器24により単色光とされる。
また、偏光変調手段14は、偏光子26と光弾性変調子28とで構成される。分光器24から出射された単色光は、偏光子26によって直線偏光にされる。偏光子26の方位角は、PEM28の方位角に対して、所定角度(例えば45°)に傾けられており、前記直線偏光は光弾性変調子28を通ることにより、独立な方向の偏光成分に位相差を与えられ偏光状態が周期的に変調する。つまり、右円偏光から左円偏光へ、左円偏光から右円偏光へ交互に連続的に変化する光となる。この光弾性変調子28は所定周波数(例えば50kHz)の駆動電圧が加えられ、この周波数に応じて偏光状態が周期的に変調される。
【0012】
偏光変調手段14から出射された光は、積分球16を通り試料20へと照射される。そして、照射された光は試料20によって拡散反射され、この拡散反射光は積分球16によって受けられ、検出手段18にて検出される。ここで検出手段としては光電子増倍管(PMT)等を用いればよい。
このように検出された拡散反射光の検出信号から試料の円二色性が測定される。検出信号から円二色性を算出する方法は従来と同様に行えばよい。つまり、検出信号のうち、PEM28の変調周波数と同一の周波数成分を用いて円二色性を求める。また、この測定を光の波長を変えて行うことによりCDスペクトルが得られる。
【0013】
以上のように、積分球を用い試料からの拡散反射光を検出することで、試料が粉体であっても円二色性を測定することが可能となった。つまり、拡散反射光を利用することで、従来のものとは異なり、試料が紛体状のまま円二色性の測定が行えるようになった。
また、積分球を介して光を検出することにより検出器の受光面の偏光特性を緩和することができる。つまり、検出器の受光面には一般に感度ムラがあり、例えば光電子増倍管では場所により10倍以上の差がある。そのため、積分球を通して検出を行うことで、光がスクランブルされて、受光面で一様に光を受光することができるようになるからである。
【0014】
次に本発明の円二色性測定装置の第2の実施形態を説明する。ここでの円二色性測定装置は、試料からの直進透過光と拡散透過光を併せて利用するものである。図2がその実施形態の概略構成図である。図1と対応する部分には符号100を加え説明を省略する。
図2の円二色性測定装置110は、光照射手段112(光源122、分光器124)と、光照射手段112から照射された光の偏光状態を周期的に変調する偏光変調手段114(偏光子126、光弾性変調子128)と、試料120の後段に配置された積分球116と、該積分球116を介して光を検出する検出手段118と、を備える。
【0015】
図1での実施形態と同様に光源122から出た光は、分光器124を通り単色光とされ、さらに偏光子126、光弾性変調子128によって偏光状態を変調される。該偏光状態を変調された光は、試料120に照射され、試料120からの透過光を光電子増倍管等から構成された検出手段118によって検出される。試料からの透過光は直進透過光だけでなく、試料による光散乱のための拡散透過光も含まれる。この拡散透過光も併せて検知するために、積分球116が試料120の後段に近接して設置される。
【0016】
図2に示すように積分球116の試料120の設置位置の対面側には標準拡散反射板130を設けている。よって、直進透過光および拡散透過光が、積分球116により捕らえられ、検出手段118により検出される。この結果、円二色性の測定に関して重要な情報を落とすことなく測定を行うことが可能になる。
このように、試料の後段に積分球を設置する構成とすることで、通常の直線透過光だけでなく、拡散透過光も合わせて検出することができる。その結果、透過光の検出光量が大きくなるため、特に光散乱を伴う試料においても、円二色性の測定を十分に精度よく行うことが可能となる。また、図1での実施形態と同様な理由から、積分球を介して光を検出することで検出器の受光面の偏光特性も緩和することができる。
【0017】
次に本発明に係る円二色性測定装置の好適な一実施形態を説明する。
図3がその概略構成図であり、図3(a)が拡散反射によって円二色性を測定する場合の構成、図3(b)が直進透過光及び拡散透過光によって円二色性を測定する構成を示している。図1と対応した部分には符号200を加え説明を省略する。
図3(a)、(b)のいずれ場合も円二色性測定装置210は、光照射手段212(光源222、分光器224)と、光の偏光状態を周期的に変調する偏光変調手段214(偏光子226、光弾性変調子228)と、積分球216と、該積分球216を介して光を検出する検出手段218と、を備える。さらに、試料220及び積分球216の前段に光路変更手段(全反射プリズム232)が設置されている。
【0018】
そして、拡散反射によって測定を行う図3(a)の場合は、図1に示した構成と同様に照射光の進路に対して、試料220が積分球216の後段に設置される。また、透過測定を行う図3(b)の場合には、図2の構成と同様に照射光の進路に対して、積分球216の前段に試料が設置され、さらに該積分球216の後段の窓側には標準拡散板230が設置される。
【0019】
光照射手段212から出射された光は水平方向に進み、全反射プリズム232によって全反射され鉛直方向に進路を曲げられる。そして、該鉛直方向に進む光は、偏光変調手段214によって、偏光状態を周期的に変調される。図3(a)では、この鉛直方向に進む光は、積分球216を通り抜け、試料220に照射される。そして試料220からの拡散反射光を積分球220によって拾い、検出手段218にて検出される。同様に図3(b)では、鉛直方向に進む光はまず試料220に入射する。そして、該試料220を透過した直進透過光及び拡散透過光が、積分球216を介して検出手段218で検出される。
【0020】
本実施形態での特徴は、光路変更手段(全反射プリズム232)を用いたことにより、鉛直方向から試料に光を照射することが可能となることである。このため、試料を水平な状態で測定できる。つまり、従来は装置構成の制限から光を水平方向に照射するのが一般的であり、試料は垂直な状態で設置するしかなかった。
そこで、試料を垂直に設置する場合、特に粉体試料や液状の試料のとき、試料を保持するため容器に収納する必要がある。このとき測定光を透過させるために試料容器に窓板を設ける必要がある。窓板を容器にはめ込む際、そこにかかる応力によって、窓板にひずみが生じる。このひずみのため、窓板自体の光学的性質が変化してしまい、測定に悪影響を与えていた。
【0021】
そこで、本実施形態のように試料を水平に設置できれば試料容器を密閉する必要がない。つまり、窓板を設ける必要がなく、該窓板による測定誤差を無くすことが可能となる。
また、本実施形態での光路変更手段としては、全反射プリズムに限らず、光ファイバ、ミラー等を用いてもよい。
【0022】
さらに、光路変更手段と偏光変調手段との配置関係について述べる。図4は、光路変更手段と偏光変調手段との配置関係についての説明図である。図4(a)は、図3の実施形態と同じく、偏光子326とPEM328とを光路変更手段332の後段(検出器側)に置いた例である。この場合、光路変更手段332で光の進路を変えた後で光の偏光状態を変調させているため、光路変更手段332としては全反射プリズムに限らず、光ファイバ、ミラー等を用いてもよい。
【0023】
しかし、図4(b)のように、偏光子326とPEM328とを光路変更手段332の前(光源側)においた場合、光路変更手段332として用いる光学素子によって光の偏光状態に影響を与えてしまう。そのため、図4(b)のようにPEM328を光路変更手段の前段に設置すると、光路変更手段を構成する光学素子の偏光特性が測定結果に出てしまい、良い測定データが得られない。
【0024】
また、図4(c)は、偏光子326を光路変更手段332の前段(光源側)に置き、PEM328を光路変更手段332の後段(検出器側)に設置した場合を示す。図4(c)の配置では、偏光子326によって光を直線偏光にした後で、光路変更手段によって光路が変更される。この場合であれば、光の進路を変更した後で、PEM328によって光の偏光状態を周期的に変調させているので、図4(b)の場合と異なり、測定データに悪い影響を与えない。このため、図4(c)の場合には、光路変更手段としては、全反射プリズムの他に、鏡(ミラー)又は偏光保存タイプの光ファイバを用いることができる。ただし、偏光状態の変化が少ない光学素子が望ましい。
【0025】
図5に本発明の円二色性測定装置を用いて、ベースライン測定を行った測定結果のグラフを示す。装置構成としては、図3(b)と同様なものを用い、試料を設置せずに透過測定を行った。ただし、全反射プリズムの後段にPEMを設置した場合(図4(a)参照)と、全反射プリズムの前段にPEMを設置した場合(図4(b)参照)と、で測定を行った。
【0026】
図5の実線400が、全反射プリズムの後段にPEMを設置した場合の測定結果のベースラインであり、長い破線410が全反射プリズムの前段にPEMを設置した場合のベースラインである。また、短い点線は0位置(グラフのx軸)を示している。このグラフからわかるように、光路変更手段の前段にPEMを設置した場合、光路変更手段を構成する光学素子自身の偏光特性が測定データに出てしまい、ベースラインが乱れてしまう。
【0027】
しかしながら、PEMを光路変更手段の後段に設置した場合、図5から分かるようにほとんど平坦となってグラフのx軸上に載っており、ベースラインは大きく改善されている。
したがって、PEMは光路変更手段の後段に配置することが最善であることが分かる。つまり、この配置により、光路変更手段を構成する光学素子による偏光特性の劣化が避けられ、偽信号が発生しなくなることが分かった。
【0028】
【発明の効果】
本発明の円二色性測定装置によれば、試料の前段に積分球を設置することで、拡散反射光を利用した円二色性測定が可能となる。
また、本発明の円二色性測定装置によれば、試料の後段に積分球を設置することで、拡散透過光を利用した円二色性測定が可能となる。
【図面の簡単な説明】
【図1】本発明の円二色性測定装置の概略構成図(拡散反射測定型)。
【図2】本発明の円二色性測定装置の概略構成図(透過測定型)。
【図3】本発明の円二色性測定装置の一実施形態の概略構成図。
【図4】光路変更手段と偏光変調手段との配置関係の説明図。
【図5】本発明の円二色性測定装置を用いたベースライン測定の結果を示すグラフ。
【符号の説明】
10 円二色性測定装置
12 光照射手段
14 偏光変調手段
16 積分球
18 検出手段
20 試料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a circular dichroism measuring device.
[0002]
[Prior art]
For measurement of circular dichroism (CD) when the sample is a powder, the Nujol method, the KBr tablet method and the like are usually used. The Nujol method uses a suspension of a powder sample in a solvent that does not dissolve the powder sample, and measures circular dichroism by measuring transmitted light. Here, a solvent having substantially the same refractive index as the powder sample is used. In the KBr tablet method, a powder sample was mixed with a transparent material such as KBr and processed into a disc shape to measure the transmission of the sample.
As other methods, Patent Documents 1 and 2 describe that CD is directly measured in a solid phase based on the arrangement information of a sample that does not show a CD in a solution but shows a CD due to the arrangement in a crystal.
[0003]
[Patent Document 1]
JP 2001-31684 A [Patent Document 2]
JP-A-2002-122577
[Problems to be solved by the invention]
However, in the Nujol method, a part of the sample may be dissolved, and there is a problem that the circular dichroism of the powder sample itself cannot be measured. The KBr tablet method has problems such as complicated preparation of a sample. Further, the methods described in Patent Documents 1 and 2 require the use of a sample that is sufficiently thin in order to sufficiently transmit light, and it is difficult to measure the sample particularly when the sample can be obtained only as microcrystals. .
Further, when the sample is cloudy, since the straight transmitted light is not sufficiently strong, it is necessary to arrange a PMT (photomultiplier tube) as a detector as close as possible to the sample. Furthermore, in the case of circular dichroism, a biopolymer is important as an object to be measured, and light scattering by a sample cannot be ignored particularly in the ultraviolet region. For this reason, there has been a demand for an apparatus that can accurately measure circular dichroism even for a sample involving light scattering.
[0005]
The present invention has been made in view of the above problems, and a first object of the present invention is to provide a circular dichroism measuring device capable of measuring circular dichroism even in a powder sample. Another object of the present invention is to provide a circular dichroism measuring device capable of measuring circular dichroism with sufficient accuracy even in a liquid sample involving light scattering.
[0006]
[Means for Solving the Problems]
In order to achieve the first object, the circular dichroism measuring device of the present invention is provided with a polarization modulating means for periodically modulating the polarization state of the light emitted from the light irradiating means, and is arranged in front of the sample. An integrating sphere, and detecting means for detecting light via the integrating sphere, irradiating the sample with the modulated light in the polarized state, and receiving diffusely reflected light from the sample by the integrating sphere. It is characterized in that the circular dichroism of the sample is measured by detecting with the detecting means.
[0007]
In order to achieve the second object, the circular dichroism measuring apparatus according to the present invention further includes a polarization modulating unit that periodically modulates a polarization state of light irradiated from the light irradiating unit, and a polarization modulating unit that is disposed downstream of the sample. Integrated sphere, and detection means for detecting light via the integrating sphere, irradiating the sample with the modulated light in the polarized state, and transmitting linearly transmitted light and diffusely transmitted light from the sample. The circular dichroism of the sample is measured by being received by the integrating sphere and detected by the detecting means.
In the above-mentioned circular dichroism measuring apparatus, it is preferable that the apparatus further includes an optical path changing unit for changing the course of light traveling in the horizontal direction in the vertical direction, and irradiates the sample with light from the vertical direction by the optical path changing unit. It is.
[0008]
In the above-mentioned circular dichroism measuring device, it is preferable that the optical path changing means is constituted by a total reflection prism, and the light in the horizontal direction is bent in the vertical direction by total reflection.
Further, in the above-mentioned circular dichroism measuring device, it is preferable that after the light path changing means changes the course of the light in the vertical direction, the polarization modulation means performs the polarization modulation of the light.
[0009]
In these circular dichroism measuring devices, it is preferable that the polarization modulator is configured using a photoelastic modulator.
In the above-mentioned circular dichroism measuring device, in order to perform wavelength scanning, it is preferable that the light irradiation unit includes a light source and a spectroscope, and the light from the light source is converted into monochromatic light by the spectroscope. .
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a circular dichroism measuring device according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a first embodiment of a circular dichroism measuring device of the present invention. The circular dichroism measuring device 10 shown in FIG. 1 includes a light irradiating unit 12 (light source 22 and a spectroscope 24) and a polarization modulating unit 14 (for periodically modulating the polarization state of light from the light irradiating unit 12). It comprises a polarizer 26, a photoelastic modulator (PEM) 28), an integrating sphere 16 arranged in front of the sample 20, and a detecting means 18 for detecting light via the integrating sphere 16.
[0011]
Here, the light irradiation unit 12 includes a light source 22 and a spectroscope 24 in order to perform wavelength scanning in a predetermined range, and the light emitted from the light source 22 is converted into monochromatic light by the spectroscope 24.
The polarization modulator 14 includes a polarizer 26 and a photoelastic modulator 28. The monochromatic light emitted from the spectroscope 24 is linearly polarized by the polarizer 26. The azimuth angle of the polarizer 26 is inclined at a predetermined angle (for example, 45 °) with respect to the azimuth angle of the PEM 28, and the linearly polarized light passes through the photoelastic modulator 28 to be converted into a polarization component in an independent direction. Given a phase difference, the polarization state is periodically modulated. That is, the light alternately and continuously changes from right circularly polarized light to left circularly polarized light and from left circularly polarized light to right circularly polarized light. A drive voltage of a predetermined frequency (for example, 50 kHz) is applied to the photoelastic modulator 28, and the polarization state is periodically modulated according to the frequency.
[0012]
The light emitted from the polarization modulator 14 passes through the integrating sphere 16 and irradiates the sample 20. The irradiated light is diffusely reflected by the sample 20, and the diffusely reflected light is received by the integrating sphere 16 and detected by the detecting means 18. Here, a photomultiplier tube (PMT) or the like may be used as the detecting means.
The circular dichroism of the sample is measured from the detection signal of the diffuse reflection light detected in this way. The method of calculating the circular dichroism from the detection signal may be performed in the same manner as in the related art. That is, the circular dichroism is obtained using the same frequency component as the modulation frequency of the PEM 28 in the detection signal. By performing this measurement while changing the wavelength of light, a CD spectrum can be obtained.
[0013]
As described above, by detecting the diffuse reflection light from the sample using the integrating sphere, it was possible to measure the circular dichroism even if the sample was a powder. That is, by using the diffuse reflection light, unlike the conventional one, the measurement of circular dichroism can be performed while the sample is in a powder state.
Further, by detecting light through the integrating sphere, the polarization characteristics of the light receiving surface of the detector can be reduced. That is, the light receiving surface of the detector generally has sensitivity unevenness. For example, a photomultiplier tube has a difference of 10 times or more depending on the location. Therefore, by performing the detection through the integrating sphere, the light is scrambled, and the light can be uniformly received on the light receiving surface.
[0014]
Next, a second embodiment of the circular dichroism measuring device of the present invention will be described. Here, the circular dichroism measuring apparatus utilizes both the straight transmitted light and the diffuse transmitted light from the sample. FIG. 2 is a schematic configuration diagram of the embodiment. The parts corresponding to those in FIG.
The circular dichroism measuring device 110 shown in FIG. 2 includes a light irradiating unit 112 (a light source 122 and a spectroscope 124) and a polarization modulating unit 114 (a polarization unit) that periodically modulates the polarization state of the light irradiated from the light irradiating unit 112. Element 126, a photoelastic modulator 128), an integrating sphere 116 disposed downstream of the sample 120, and a detecting means 118 for detecting light via the integrating sphere 116.
[0015]
As in the embodiment shown in FIG. 1, the light emitted from the light source 122 passes through the spectroscope 124 to become monochromatic light, and the polarization state is further modulated by the polarizer 126 and the photoelastic modulator 128. The light whose polarization state has been modulated is irradiated onto the sample 120, and the transmitted light from the sample 120 is detected by the detection means 118 including a photomultiplier tube or the like. The transmitted light from the sample includes not only straight transmitted light but also diffuse transmitted light for light scattering by the sample. In order to detect the diffused transmitted light at the same time, an integrating sphere 116 is installed in the vicinity of the subsequent stage of the sample 120.
[0016]
As shown in FIG. 2, a standard diffuse reflection plate 130 is provided on the integrating sphere 116 on the opposite side of the installation position of the sample 120. Therefore, the straight transmitted light and the diffuse transmitted light are captured by the integrating sphere 116 and detected by the detecting means 118. As a result, the measurement can be performed without losing important information regarding the measurement of circular dichroism.
In this manner, by providing the integrating sphere at the subsequent stage of the sample, it is possible to detect not only normal linearly transmitted light but also diffusely transmitted light. As a result, the detected light amount of transmitted light increases, so that it is possible to measure circular dichroism with sufficient accuracy, especially for a sample involving light scattering. Further, for the same reason as in the embodiment in FIG. 1, by detecting light through the integrating sphere, the polarization characteristics of the light receiving surface of the detector can be reduced.
[0017]
Next, a preferred embodiment of the circular dichroism measuring device according to the present invention will be described.
FIG. 3 is a schematic configuration diagram, FIG. 3 (a) is a configuration for measuring circular dichroism by diffuse reflection, and FIG. 3 (b) is measurement of circular dichroism by straight transmitted light and diffuse transmitted light. FIG. The parts corresponding to those in FIG.
3A and 3B, the circular dichroism measuring device 210 includes a light irradiation unit 212 (a light source 222 and a spectroscope 224) and a polarization modulation unit 214 that periodically modulates the polarization state of light. (Polarizer 226, photoelastic modulator 228), integrating sphere 216, and detecting means 218 for detecting light via integrating sphere 216. Further, an optical path changing means (total reflection prism 232) is provided in front of the sample 220 and the integrating sphere 216.
[0018]
In the case of FIG. 3A in which measurement is performed by diffuse reflection, the sample 220 is placed downstream of the integrating sphere 216 with respect to the path of irradiation light, similarly to the configuration shown in FIG. Also, in the case of FIG. 3B where transmission measurement is performed, a sample is placed in front of the integrating sphere 216 with respect to the path of the irradiation light, and the sample is further provided in the subsequent stage of the integrating sphere 216 as in the configuration of FIG. A standard diffusion plate 230 is provided on the window side.
[0019]
The light emitted from the light irradiation means 212 travels in the horizontal direction, is totally reflected by the total reflection prism 232, and is bent in the vertical direction. The polarization state of the light traveling in the vertical direction is periodically modulated by the polarization modulator 214. In FIG. 3A, the light traveling in the vertical direction passes through the integrating sphere 216 and irradiates the sample 220. Then, the diffuse reflected light from the sample 220 is picked up by the integrating sphere 220 and detected by the detecting means 218. Similarly, in FIG. 3B, light traveling in the vertical direction first enters the sample 220. Then, the linearly transmitted light and the diffused transmitted light that have passed through the sample 220 are detected by the detection means 218 via the integrating sphere 216.
[0020]
The feature of the present embodiment is that light can be irradiated to the sample from the vertical direction by using the optical path changing means (total reflection prism 232). Therefore, the sample can be measured in a horizontal state. That is, conventionally, light was generally irradiated in the horizontal direction due to the limitation of the device configuration, and the sample had to be installed in a vertical state.
Therefore, when the sample is installed vertically, especially in the case of a powder sample or a liquid sample, it is necessary to store the sample in a container for holding the sample. At this time, it is necessary to provide a window plate in the sample container in order to transmit the measurement light. When the window plate is fitted into the container, the window plate is distorted by the stress applied thereto. Due to this distortion, the optical properties of the window plate itself changed, which had an adverse effect on the measurement.
[0021]
Therefore, if the sample can be set horizontally as in the present embodiment, there is no need to seal the sample container. That is, there is no need to provide a window plate, and it is possible to eliminate measurement errors due to the window plate.
Further, the optical path changing means in the present embodiment is not limited to the total reflection prism, but may be an optical fiber, a mirror, or the like.
[0022]
Further, the arrangement relationship between the optical path changing means and the polarization modulation means will be described. FIG. 4 is an explanatory diagram of an arrangement relationship between the optical path changing unit and the polarization modulation unit. FIG. 4A shows an example in which the polarizer 326 and the PEM 328 are placed after the optical path changing unit 332 (on the detector side), similarly to the embodiment of FIG. In this case, since the polarization state of the light is modulated after the light path is changed by the light path changing means 332, the light path changing means 332 is not limited to the total reflection prism but may be an optical fiber, a mirror, or the like. .
[0023]
However, as shown in FIG. 4B, when the polarizer 326 and the PEM 328 are placed in front of the optical path changing unit 332 (on the light source side), the polarization state of light is affected by the optical element used as the optical path changing unit 332. I will. For this reason, if the PEM 328 is installed in front of the optical path changing unit as shown in FIG. 4B, the polarization characteristics of the optical elements constituting the optical path changing unit appear in the measurement results, and good measurement data cannot be obtained.
[0024]
FIG. 4C shows a case where the polarizer 326 is placed before the light path changing means 332 (on the light source side) and the PEM 328 is placed after the light path changing means 332 (on the detector side). In the arrangement of FIG. 4C, after the light is linearly polarized by the polarizer 326, the light path is changed by the light path changing means. In this case, since the polarization state of the light is periodically modulated by the PEM 328 after changing the light path, unlike the case of FIG. 4B, the measurement data is not adversely affected. Therefore, in the case of FIG. 4C, a mirror (mirror) or a polarization-maintaining optical fiber can be used as the optical path changing means in addition to the total reflection prism. However, an optical element with little change in the polarization state is desirable.
[0025]
FIG. 5 shows a graph of a measurement result obtained by performing a baseline measurement using the circular dichroism measuring apparatus of the present invention. As a device configuration, a device similar to that shown in FIG. 3B was used, and transmission measurement was performed without setting a sample. However, the measurement was performed when the PEM was installed after the total reflection prism (see FIG. 4A) and when the PEM was installed before the total reflection prism (see FIG. 4B).
[0026]
The solid line 400 in FIG. 5 is the baseline of the measurement result when the PEM is installed after the total reflection prism, and the long broken line 410 is the baseline when the PEM is installed before the total reflection prism. The short dotted line indicates the 0 position (x-axis of the graph). As can be seen from this graph, when a PEM is installed at a stage prior to the optical path changing unit, the polarization characteristics of the optical element itself constituting the optical path changing unit appear in the measurement data, and the baseline is disturbed.
[0027]
However, when the PEM is installed after the optical path changing unit, as shown in FIG. 5, the PEM is almost flat and is on the x-axis of the graph, and the baseline is greatly improved.
Therefore, it is understood that it is best to arrange the PEM after the optical path changing unit. That is, it has been found that this arrangement avoids the deterioration of the polarization characteristics due to the optical elements constituting the optical path changing means, and prevents the generation of false signals.
[0028]
【The invention's effect】
According to the circular dichroism measuring device of the present invention, the circular dichroism measurement using the diffuse reflection light becomes possible by installing the integrating sphere before the sample.
Further, according to the circular dichroism measuring device of the present invention, the circular dichroism measurement using diffuse transmitted light can be performed by installing the integrating sphere at the subsequent stage of the sample.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram (diffuse reflection measurement type) of a circular dichroism measuring device of the present invention.
FIG. 2 is a schematic configuration diagram (transmission measurement type) of the circular dichroism measuring device of the present invention.
FIG. 3 is a schematic configuration diagram of an embodiment of a circular dichroism measuring device of the present invention.
FIG. 4 is an explanatory diagram of an arrangement relationship between an optical path changing unit and a polarization modulating unit.
FIG. 5 is a graph showing the results of a baseline measurement using the circular dichroism measuring device of the present invention.
[Explanation of symbols]
Reference Signs List 10 circular dichroism measuring device 12 light irradiating means 14 polarization modulating means 16 integrating sphere 18 detecting means 20 sample

Claims (7)

光照射手段から照射された光の偏光状態を周期的に変調する偏光変調手段と、
試料の前段に配置された積分球と、
該積分球を介して光を検出する検出手段と、を備え、
前記変調された偏光状態の光を前記試料へ照射し、該試料からの拡散反射光を前記積分球によって受けて前記検出手段により検出することで前記試料の円二色性を測定することを特徴とする円二色性測定装置。
Polarization modulation means for periodically modulating the polarization state of light emitted from the light irradiation means,
An integrating sphere arranged in front of the sample,
Detecting means for detecting light via the integrating sphere,
Irradiating the sample with the modulated light in the polarized state, receiving the diffuse reflection light from the sample by the integrating sphere, and detecting the circular dichroism of the sample by the detection unit. Dichroism measuring device.
光照射手段から照射された光の偏光状態を周期的に変調する偏光変調手段と、
試料の後段に配置された積分球と、
該積分球を介して光を検出する検出手段と、を備え、
前記変調された偏光状態の光を前記試料へ照射し、該試料からの直線通過光および拡散通過光を前記積分球によって受けて前記検出手段により検出することで前記試料の円二色性を測定することを特徴とする円二色性測定装置。
Polarization modulation means for periodically modulating the polarization state of light emitted from the light irradiation means,
An integrating sphere arranged after the sample,
Detecting means for detecting light via the integrating sphere,
Irradiating the sample with the modulated light in the polarized state, receiving the linearly transmitted light and the diffusely transmitted light from the sample by the integrating sphere, and detecting the circular dichroism of the sample by the detection means; And a circular dichroism measuring device.
請求項1または2に記載の円二色性測定装置において、
水平方向に進行する光を鉛直方向に進路を変更するための光路変更手段を備え、該光路変更手段によって前記試料に鉛直方向から光を照射することを特徴とする円二色性測定装置。
The circular dichroism measuring device according to claim 1 or 2,
An apparatus for measuring circular dichroism, comprising: an optical path changing means for changing the course of light traveling in a horizontal direction in a vertical direction, and irradiating the sample with light in the vertical direction by the optical path changing means.
請求項3の円二色性測定装置において、
前記光路変更手段は全反射プリズムによって構成され、水平方向の光を全反射によって鉛直方向に曲げることを特徴とする円二色性測定装置。
The circular dichroism measuring device according to claim 3,
The circular dichroism measuring device, wherein the optical path changing means is constituted by a total reflection prism, and bends light in a horizontal direction in a vertical direction by total reflection.
請求項3または4のいずれかに記載の円二色性測定装置において、
前記光路変更手段によって光の進路を鉛直方向に変えた後、前記偏光変調手段により光の偏光変調を行うことを特徴とする円二色性測定装置。
The circular dichroism measuring device according to claim 3 or 4,
A circular dichroism measuring device, wherein after the light path changing means changes the course of light in the vertical direction, the polarization modulation means performs light polarization modulation.
請求項1〜5のいずれかに記載の円二色性測定装置において、
前記偏光変調手段は光弾性変調子を用いて構成されることを特徴とする円二色性測定装置。
The circular dichroism measuring device according to any one of claims 1 to 5,
The circular dichroism measuring device, wherein the polarization modulator is configured using a photoelastic modulator.
請求項1〜6のいずれかに記載の円二色性測定装置において、
波長走査を行うため、前記光照射手段は、光源と、分光器とを備え、前記光源からの光を前記分光器により単色光とすることを特徴とする円二色性測定装置。
The circular dichroism measuring device according to any one of claims 1 to 6,
In order to perform wavelength scanning, the light irradiating means includes a light source and a spectroscope, and the light from the light source is converted into monochromatic light by the spectroscope.
JP2003122160A 2003-04-25 2003-04-25 Circular dichroism measuring apparatus Pending JP2004325336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122160A JP2004325336A (en) 2003-04-25 2003-04-25 Circular dichroism measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122160A JP2004325336A (en) 2003-04-25 2003-04-25 Circular dichroism measuring apparatus

Publications (1)

Publication Number Publication Date
JP2004325336A true JP2004325336A (en) 2004-11-18

Family

ID=33500482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122160A Pending JP2004325336A (en) 2003-04-25 2003-04-25 Circular dichroism measuring apparatus

Country Status (1)

Country Link
JP (1) JP2004325336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472000A (en) * 2013-09-25 2013-12-25 北京无线电计量测试研究所 Method and device for detecting ratio of components of buffer gas-containing atomic gas
JP2014215152A (en) * 2013-04-25 2014-11-17 日本分光株式会社 Integrating spher and reflection light measurement method
JP2015042972A (en) * 2013-07-29 2015-03-05 ウルトラテック インク Systems and methods for measuring high-intensity light beams

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014215152A (en) * 2013-04-25 2014-11-17 日本分光株式会社 Integrating spher and reflection light measurement method
JP2015042972A (en) * 2013-07-29 2015-03-05 ウルトラテック インク Systems and methods for measuring high-intensity light beams
CN104501946A (en) * 2013-07-29 2015-04-08 超科技公司 Systems And Methods For Measuring High-intensity Light Beams
CN103472000A (en) * 2013-09-25 2013-12-25 北京无线电计量测试研究所 Method and device for detecting ratio of components of buffer gas-containing atomic gas
CN103472000B (en) * 2013-09-25 2015-11-18 北京无线电计量测试研究所 Containing detection method and the device of component ratio each in the atomic gas of cushion gas

Similar Documents

Publication Publication Date Title
JP6825241B2 (en) Magnetic field measuring device, manufacturing method of magnetic field measuring device
US8513608B2 (en) Coating film inspection apparatus and inspection method
JP4921090B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
TWI384213B (en) Method and device for measuring optical anisotropy parameter
JP2006528780A (en) Polarization modulation interrogation of a grating-coupled waveguide sensor.
JP4104924B2 (en) Optical measuring method and apparatus
US20050128481A1 (en) System and method for measuring birefringence in an optical material
JPH11173946A (en) Optical characteristic measuring apparatus
JP2006226995A (en) Optical anisotropic parameter measuring method and measuring device
JP2002267418A (en) Film thickness measuring instrument
CN107219191B (en) Oblique incidence light reflection difference device based on Fourier transform
JP2004325336A (en) Circular dichroism measuring apparatus
JP3940376B2 (en) Spectrometer for gel sample
CN114371151B (en) Transmittance testing method
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
JP4094975B2 (en) Concentration measuring device
KR100945387B1 (en) Apparatus for inspecting homogeneity of the coefficient of the optically induced linear birefringence in thin film
JP2001074649A (en) Method for measuring angle of optical rotation, and method for inspecting urine
KR20010074256A (en) High-Speed and Fine Accuracy Inspection System by the Integration of the Phase Analysis of Laser and Visual Image Signal Processing
CN113376162B (en) Display chip detection device and method
JP2009085887A (en) Measuring device and method
KR102517637B1 (en) Polarization analysis apparatus and method for lens quality inspection, and polarization analysis system using the same
KR100663540B1 (en) Device and method for automatically calibrating an lcd panel
US7965395B2 (en) Optical axis orientation measuring device, optical axis orientation measuring method, spherical surface wave device manufacturing device, and spherical surface wave device manufacturing method
JPH05158084A (en) Measuring instrument for linear and nonlinear optical sensing rate