JP2004324938A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004324938A
JP2004324938A JP2003117394A JP2003117394A JP2004324938A JP 2004324938 A JP2004324938 A JP 2004324938A JP 2003117394 A JP2003117394 A JP 2003117394A JP 2003117394 A JP2003117394 A JP 2003117394A JP 2004324938 A JP2004324938 A JP 2004324938A
Authority
JP
Japan
Prior art keywords
pipe member
pipe
heat exchanger
connector
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003117394A
Other languages
Japanese (ja)
Inventor
Jinichi Hiyama
仁一 桧山
Masatake Niihama
正剛 新濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2003117394A priority Critical patent/JP2004324938A/en
Publication of JP2004324938A publication Critical patent/JP2004324938A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger requiring less manufacturing cost by reducing brazed portions. <P>SOLUTION: A first pipe member 32A has a tube insertion hole 34a into which a flat tube 30 is inserted and a second pipe member 32B has an integrated connector 53. Thus, no conventional need exists for brazing and fixing the connector to the pipe member via a cylindrical connection portion. Namely, no cylindrical connection portion is required which is conventionally formed as a connector with cutting work, resulting in less manufacturing cost. Still, there are a less number of components than in conventional construction, and the manufacturing cost is greatly held down by reducing brazing processes and leak checking processes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車などのエアコンに使用される凝縮器などの熱交換器用のヘッダタンクに関する。
【0002】
【従来の技術】
エアコンの熱交換器には、特許文献1に開示されるようなものがある。図15〜図17はこの種の熱交換器(この例では凝縮器)を示すものである。熱交換器1は、図15に示すように、対向する一対のヘッダタンク11、12に、複数多段に配置される扁平チューブ13の両端開口部を連通接続して構成されている。多段に配置される扁平チューブ13、13間にはコルゲート状のフィン14が介在している。
【0003】
両ヘッダタンク11、12は、パイプ15と、該パイプ15の両端開口部を閉塞する閉塞部材16と、パイプ15内の長手方向に延びる通路を区切る仕切板17と、をから構成されている。
【0004】
ヘッダタンク11、12を構成するパイプ15には、図15、16に示すようにチューブ13を差込むためのチューブ差込み孔18がプレス加工によって多数形成されており、このチューブ差込み孔18にチューブ13を差込んだ後、同チューブ13と同差込み孔18の周囲と前記フィン14とをロー付けにより固定して同差込み孔18から冷媒が漏れないようにしてある。
【0005】
パイプ15は、内部に仕切板17を挟み込むため、図17に示すように、長手方向に沿って分割された2つの半円筒状のパイプ部材19、20を組み合わせて構成される。なお、一方のパイプ部材19には他方のパイプ部材20の開口周縁部20aを、位置決めするための略L字状の受部19aが形成される。
【0006】
このように構成された熱交換器1では、ヘッダタンク12に固定されたコネクタブロック22を介して入口配管(図示せぬ)から導入される冷媒は、仕切板17の区画により一方のヘッダタンク11と他方のヘッダタンク12との間を蛇行するようにチューブ13内を流れ、最終的にヘッダタンク11に固定されたコネクタブロック23を介して図示せぬ出口配管から排出される。このとき、熱交換器1内を流れる冷媒は、チューブ13間のフィン14の隙間を通風する空気と熱交換される。例えば、放熱器または凝縮器などとして用いる場合には冷媒は冷却され、蒸発器などとして用いられる場合には冷媒は加熱される。
【0007】
【特許文献1】
特開平7−27496号公報
【0008】
【発明が解決しようとする課題】
前記従来技術のコネクタブロック22(23)の固定方法は、図17に示すように、コネクタブロック22(23)の筒状接続部24(25)をヘッダタンク12(11)の冷媒入口26(冷媒出口27)としての接続口に嵌合した状態で、コネクタブロック22(23)とヘッダタンク12(11)とを仮止めし、最終的に、これらコネクタブロック22(23)とヘッダタンク12(11)とロー付け固定するようになっている。なお、図17は2つのコネクタブロックのうち一方のコネクタブロック22を代表して示している。
【0009】
ここで、コネクタブロック22(23)の筒状接続部24(25)は、切削加工などで形成する必要があるため、熱交換器の製造コストが高くつく傾向にある。しかも、熱交換器1の製造に際しては、コネクタブロック22(23)の筒状接続部24(25)と、ヘッダタンク12(22)の接続口26(27)との間に漏れ通路が発生しないように厳密な寸法精度が要求されるとともに、製造後には漏れ検査が必要となるため、どうしても製造コストが嵩んでしまう。
【0010】
本発明は、このような従来技術をもとに為されたものであって、製造コストを抑えることができる熱交換器の提供を目的とする。
【0011】
【課題を解決するための手段】
請求項1記載の発明は、少なくとも一対のヘッダタンクに複数多段にチューブを連通接続した熱交換器において、長手方向に沿って分割された2つのパイプ部材を組み合わせてなるパイプと、該パイプの両端開口部を閉塞する閉塞部材と、を一体的にロー付けすることで前記ヘッダタンクを製造する熱交換器であって、
前記第1のパイプ部材はチューブを差込むチューブ差込み孔を備え、前記第2のパイプ部材は配管接続用のコネクタが一体形成されていることを特徴とするものである。
【0012】
請求項2記載の発明によれば、請求項1記載の熱交換器において、前記第2のパイプ部材の前記第1のパイプ部材とのロー付け部位は、前記コネクタより突出形成されていることを特徴とするものである。
【0013】
請求項3記載の発明は、請求項1記載の熱交換器において、前記第2のパイプ部材の前記第1のパイプ部材とのロー付け部位は、前記コネクタとの間に断熱層を備えることを特徴とするものである。
【0014】
請求項4記載の発明は、請求項1記載の熱交換器において、いずれか一方のパイプ部材には、他方のパイプ部材の突き当て部の内周面が接合される接合部を設けてあり、
前記一方のパイプ部材の接合部に向けて、前記他方のパイプ部材の突き当て部をカシメることでパイプ部材同士を仮固定し、次いで、ロー付けすることを特徴とするものである。
【0015】
請求項5記載の発明は、請求項4記載の熱交換器において、前記接合部の少なくとも基端部は、前記カシメ方向に沿って前記他方のパイプ部材の突き当て部よりも肉厚に形成されていることを特徴とするものである。
【0016】
請求項6記載の発明は、請求項4または請求項5記載の熱交換器において、前記一方のパイプ部材の接合部の基端部に溝を設け、前記他方のパイプ部材の突き当て部を前記溝内にカシメたことを特徴とするものである。
【0017】
請求項7記載の発明は、請求項1〜6の何れか1項記載の熱交換器において、
前記第2のパイプ部材は、一般部材と、前記コネクタが一体形成されているコネクタ一体部材と、にパイプ部材の長手方向に分割形成されていることを特徴とするものである。
【0018】
【発明の効果】
請求項1記載の発明によれば、長手方向に沿って分割された2つのパイプ部材を組み合わせてなるパイプと、該パイプの両端開口部を閉塞する閉塞部材と、を一体的にロー付けすることでヘッダタンクを製造するものであって、第1のパイプ部材はチューブを差込むチューブ差込み孔を備える一方で、第2のパイプ部材は配管接続用のコネクタが一体形成されているため、従来のコネクタのように切削加工などで形成される筒状接続部が必要なくなり、製造コストを削減できる。また、従来構造に比べ部品点数の削減に加え、ロー付け工程の削減、漏れ検査の削減より、大幅に製造コストを抑えることができる。
【0019】
請求項2記載の発明によれば、請求項1記載の発明の効果に加え、第2のパイプ部材の第1のパイプ部材とのロー付け部位は、コネクタより突出形成されているため、第1パイプ部材と第2パイプ部材とのロー付けの際には、第2パイプ部材のロー付け部位の熱がコネクタに奪われ難い構造となり、第1パイプ部材と第2パイプ部材のロー付け具合が安定する。
【0020】
請求項3記載の発明によれば、請求項1記載の発明の効果に加え、第2のパイプ部材の第1のパイプ部材とのロー付け部位は、コネクタとの間に断熱層を備えるため、請求項2と同様の効果が得られる。つまり、第1パイプ部材と第2パイプ部材とのロー付けの際には、第2パイプ部材のロー付け部位の熱がコネクタに奪われ難い構造となり、第1パイプ部材と第2パイプ部材のロー付け具合が安定する。
【0021】
請求項4記載の発明によれば、請求項1記載の発明の効果に加え、第2パイプ部材の突き当て部のカシメにより第1パイプ部材および第2パイプ部材が相互に仮固定されるため、ロー付け時には、第1パイプ部材および第2パイプ部材の仮保持用の治具が不要となり、無駄な熱容量を浪費することが無くなる。
【0022】
請求項5記載の発明によれば、請求項4記載の発明の効果に加え、接合部の少なくとも基端部は、カシメ方向に沿って他方のパイプ部材の突き当て部よりも肉厚に形成されていることを特徴とするため、第2パイプ部材の接合部がカシメ力により倒れてしまうようなことが無い。
【0023】
請求項6記載の発明は、請求項4または請求項5記載の熱交換器において、一方のパイプ部材の接合部の基端部に溝を設け、他方のパイプ部材の突き当て部を溝内にカシメたことを特徴とするものである。接合部の溝内に突き当て部が係止されるため、第1パイプ部材と第2パイプ部材の仮固定がより確実となる。
【0024】
請求項7記載の発明は、請求項1〜6記載の発明の効果に加え、コネクタが配置される位置でコネクタが一体形成される部位と、コネクタが一体形成されないそれ以外の部位と、に第2のパイプ部材が長手方向で分割されているため、各部材を長手方向に沿って押出成型できる。結果、押出成型された各部材の原形ロッドを所定長さに切り落とすのみで、最小体積の第2のパイプ部材を用意でき、さらに製造コストを抑えることができる。
【0025】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。なお熱交換器の全体構造は従来と同様であるため、その構成および作用効果の説明を省略する。
【0026】
第1実施形態:図1は本発明の熱交換器のヘッダタンクの斜視図、図2は同ヘッダタンクの分解斜視図、図3は同ヘッダタンクの縦断面図、図4は同ヘッダタンクの縦断面図であり、分図aは分解状態を示す図であり分図bはチューブを差し込んだ組立状態を示す図、図5は断面円形のヘッダタンクとの外径寸法差(チューブの長手方向)を示す図であって分図aは本実施形態のヘッダタンクの横断面図あり分図bは断面円形のヘッダタンクの横断面図、図6は断面円形のヘッダタンクとの外径寸法差(チューブの幅方向Y)を示す図であって分図aは本実施形態のヘッダタンクの横断面図あり分図bは断面円形のヘッダタンクの横断面図、図7はコネクタの位置する部位におけるパイプの仮固定の工程を示す図、図8はコネクタの位置しない部位におけるパイプの仮固定の工程を示す図である。
【0027】
この第1実施形態のヘッダタンク31は、従来構造と同様、パイプ32と、パイプ32の両端開口部を閉塞する閉塞部材45と、パイプ32内の長手方向に延びる通路を区切る仕切板46と、をから構成されている。
【0028】
パイプ32は、長手方向に沿って分割された2つのパイプ部材(第1のパイプ部材32A、第2のパイプ部材32B)を組み合わせて角筒形状に形成される。
【0029】
そして、この第1実施形態では、第2のパイプ部材32Bが長手方向で2分割されており、一方はコネクタ53が一体形成されたコネクタ一体部材52であり、他方は、コネクタ53が一体に形成されていない一般部材51である。
【0030】
以下、第1のパイプ部材32Aおよび第2のパイプ部材32Bをより具体的に説明する。
【0031】
第1のパイプ部材32Aは、チューブ保持壁部34と、このチューブ保持壁部34の両端から略直交方向に突設された一対のストレート部36と、を備えて略コ字状となっている。
【0032】
チューブ保持壁部34は、扁平チューブ30を差し込み保持する差込み孔34a、34a、・・・を有し、チューブ30の長手方向と直交した平板状に形成されている。また、一対のストレート部36は、小径湾曲部35を介してチューブ保持壁部34から略直交方向に突設されていて、チューブ30の幅方向両端部30a、30aに沿って設けられている。また、ストレート部36の基端部は、チューブ30の幅方向両端部30a、30aに近接設定されている。
【0033】
一方、第2のパイプ部材32Bは、第1のパイプ部材32Aのコ字状開口部を閉塞する略平板状の本体部41を備えている。この本体部41の両端は第1のパイプ部材32Aのストレート部36の先端部(突き当て部37)が突き当てられる突き当て部42として構成される。また、この本体部41の内周面41aからはストレート部36の先端部(突き当て部37)の内周面37bと接合される接合部としての接合突起43が突設されている。つまり、第2のパイプ部材32Bには、コ字状の第1パイプ部材32Aのストレート部36の先端部(突き当て部37)と当接する外側に開のL字状の接合面42a,43aが形成されている。
【0034】
第2のパイプ部材32Bの本体部41は、突き当て部42、42同士をほぼ直線状に繋いでチューブ30の長手方向とほぼ直交するように形成されている。
【0035】
第2のパイプ部材32Bの本体部41の内周面41aは、一対の接合突起43、43同士を滑らかな面で繋いだ円曲面形状であり、そのためパイプ32内部から加わる圧力に対して耐久性が高い構造となっている。
【0036】
このように構成されるパイプ32は、図7、8に示すように、仕切板(図2参照)を所定部位に挟みこんで第1パイプ部材32Aと2パイプ部材32Bとの突き当て部(ロー付け部)37、42同士を突き合わせたのち、両ストレート部36、36を第2パイプ部材32Bの接合突起43、43に向けてカシメることで仮固定し、この状態でロー付けすることにより製造される。ここで、図7はコネクタ53が一体形成される部位、図8はコネクタ53が位置しないそれ以外の一般部位における仮固定を示している。
【0037】
実際には、仮固定したパイプ32(32A,32B)を、閉塞部材45、チューブ30、フィン、サイドプレートなどと組み合わせた状態で、これらの部材を一体的にロー付け固定することにより、熱交換器が製造される。
【0038】
ここで、図4に示すように第2パイプ部材32Bの接合突起43、43の基端部の、カシメ方向に沿う肉厚d2は、第1パイプ部材32Aのストレート部36の先端部(突き当て部37)肉厚d1よりも、厚く形成されている。そのため、カシメ力を受けても接合突起43が変形してしまうようなことが防止されている。
【0039】
このような実施形態の熱交換器によれば、以下のような効果がある。
【0040】
第1に、第2のパイプ部材32Bにコネクタ53を一体形成したため、従来のコネクタ22のように切削加工などで形成される筒状接続部24が必要なくなり、製造コストを削減することができる。
【0041】
しかもこの実施形態では、第2のパイプ部材32Bがコネクタ一体部材52と一般部材51とにパイプ32の長手方向Zで分割されているため、各部材51、52の体積を最小限に抑えつつも、各部材51、52を長手方向Zに沿って押出成型できる。つまり、図14に示すような金型成型によりコネクタ53と第2のパイプ部材32Bとを一体形成した場合とは異なり、押出成型された各部材51、52の原形ロッドを所定長に切断するのみで最小体積の第2のパイプ部材32Bを用意できるため、さらに製造コストを抑えることができる。なお、図14に示す場合は、部品点数が少ない利点がある。
【0042】
第2に、第2のパイプ部材32Bの第1のパイプ部材32Aとのロー付け部位42、42は、コネクタ53より突出形成されているため、第1パイプ部材32Aと第2パイプ部材32Bとのロー付け時には、第2パイプ部材32Bのロー付け部位42、42の熱がコネクタ53に奪われ難い構造となり、第1パイプ部材32Aと第2パイプ部材32Bのロー付けが安定する。
【0043】
なお、変形例(第3実施形態)として、図12に示すようにコネクタ一体部材72のロー付け部42、42がコネクタ53の側面より突出しない構造である場合には、ロー付け部42、42とコネクタ53との間に断熱層としての溝74を設けることで、同等の作用効果を得られる(請求項3対応)。
【0044】
第3に、第1のパイプ部材32Aには、第2のパイプ部材32Bの突き当て部37の内周面37bが接合される接合突起43を設けてあり、第1のパイプ部材32Aの接合突起43に向けて、第2のパイプ部材32Bの突き当て部37をカシメることでパイプ部材32A、32B同士を仮固定し、次いで、ロー付けすることを特徴とするため、ロー付け時には、第1パイプ部材32Aおよび第2パイプ部材32Bの仮保持用治具が不要となり、無駄な熱容量を浪費することが無くなる。
【0045】
なお、改良例(第2実施形態)として、図9〜図11に示すように第2パイプ部材32B(61、62)の接合突起43、43の基端部に溝64を設け、ストレート部36の先端部としての突き当て部37を溝64内にカシメる構造であると、第1パイプ部材32Aと第2パイプ部材32B(61、62)の仮固定がより確実となる利点がある。
【0046】
第4に、接合突起(接合部)43の少なくとも基端部は、カシメ方向に沿って第1のパイプ部材32Aの突き当て部37よりも肉厚に形成されていることを特徴とするため、第2パイプ部材32Bの接合突起(接合部)43がカシメ力により倒れてしまうようなことが無い。
【0047】
第6に、第1パイプ部材32Aを略コ字状に設定したことで、断面円形のパイプ15を用いたヘッダタンク11、12に比べて、チューブ30の挿入深度が浅くて済むため、従来の断面円形のパイプ15と同等の通路断面積を確保しつつもチューブ30の長手方向Xに向けて小型化できる。
【0048】
第7に、第1パイプ部材32Aのチューブ保持壁部34は、チューブ30の長手方向Xと直交する平板状であるため、さらにチューブの長手方向Xに小型化できる。
【0049】
第8に、ヘッダタンク31の第2のパイプ部材32Bは、本体部41の両端に設けられ第1のパイプ部材32Aのストレート部36の先端部37と突き当てられる突き当て部42と、本体部41の内周面41aから突設されストレート部36の先端部37の内周面37bと接合される接合突起43と、を備えるため、図6に示すように、第2のパイプ部材32Bの両端部42、42を第1のパイプ部材32Aのストレート部36よりもチューブ30の幅方向Yにはみ出させることなく、第1のパイプ部材32Aと第2のパイプ部材32Bを組み合わせることができる。そのため、図6bに示すような接合突起21を外側に設けた従来構造に比べ、ヘッダタンク31(パイプ32)をチューブ30の幅方向Yに小型化できる。
【0050】
また、ヘッダタンク31の断面形状は、接合突起43、43の存在によりその内周面が円形に近づくため、さらにヘッダタンク31の耐久性が向上する。
【0051】
なお、突き当て部42には、必ずしもストレート部36の先端面37aが完全に当接されていなくてもよい。つまり、パイプ32の中に介在する仕切板の寸法が大きく設定されている場合には、突き当て部42とストレート部36の先端面37aとは離間する場合がある。
【0052】
第9に、第2パイプ部材32Bの本体部41を直線状に形成したため、さらにヘッダタンク31(パイプ32)をチューブ30の長手方向Xに沿って小型化できる。
【0053】
第10に、第2パイプ部材32Bの本体部41の内周面41aが円曲面であるため、パイプ32を小型化としつつも、パイプの内周面全体が多角形断面で形成される場合にくらべ、耐圧性に優れる。
【0054】
以上のように、本発明によれば、第1のパイプ部材は扁平チューブを差込むチューブ差込み孔を備える一方で、第2のパイプ部材は配管接続用のコネクタが一体形成されているため、従来のコネクタのように切削加工などで形成される筒状接続部が必要なくなり、製造コストを削減できる。しかも、従来構造に比べ部品点数の削減に加え、ロー付け工程の削減、漏れ検査の削減より、大幅に製造コストを抑えることができる。
【0055】
なお、上述の実施形態にあっては、第2のパイプ部材32Bを二分割(51、52)で形成してあるが、本発明にあっては、図13に示すようにコネクタ53の位置に応じて第2のパイプ部材32Bを3分割(81、82、83)以上で構成してもよいし、また図14に示すように第2のパイプ部材32Bを長手方向に分割することなくコネクタ53を一体成型した単一部材91で形成してもよい。
【図面の簡単な説明】
【図1】図1は本発明の熱交換器のヘッダタンクの一実施形態を示す斜視図。
【図2】図2は同ヘッダタンクの分解斜視図。
【図3】図3は同ヘッダタンクの横断面図。
【図4】図4は同ヘッダタンクの縦断面図であり、分図aは分解状態を示す図であり分図bはチューブを差し込んだ組立状態を示す図。
【図5】図5は従来のヘッダタンクとのチューブの長手方向での外径寸法差を示す図であって分図aは本実施形態のヘッダタンクの横断面図あり分図bは従来のヘッダタンクの横断面図。
【図6】図6は従来のヘッダタンクとのチューブの幅方向Yでの外径寸法差を示す図であって分図aは本実施形態のヘッダタンクの横断面図あり分図bは従来のヘッダタンクの横断面図。
【図7】図7はコネクタが位置する部位におけるパイプの仮固定の工程を示す図であって、分図aはカシメ前を示し分図bはカシメ後を示す。
【図8】図8はコネクタが位置しない部位におけるパイプの仮固定の工程を示す図であって、分図aはカシメ前を示し分図bはカシメ後を示す。
【図9】図9は第2実施形態のヘッダタンクを示す分解斜視図。
【図10】図10は第2実施形態においてコネクタが位置する部位におけるパイプの仮固定の工程を示す図であって、分図aはカシメ前を示し分図bはカシメ後を示す。
【図11】図11は第2実施形態においてコネクタが位置しない部位におけるパイプの仮固定の工程を示す図であって、分図aはカシメ前を示し分図bはカシメ後を示す。
【図12】図12は第3実施形態のヘッダタンクの分解斜視図。
【図13】図13は第4実施形態のヘッダタンクを示す図であって、分図aは閉塞部材を外して状態の上面図、分図bは正面図、分図cは側面図。
【図14】図14は第5実施形態のヘッダタンクを示す分解斜視図。
【図15】図15は従来の熱交換器を示す斜視図。
【図16】図16は同熱交換器のヘッダタンクの縦断面図。
【図17】図17は同熱交換器のヘッダタンクとコネクタと分解斜視図。
【符号の説明】
30…扁平チューブ(チューブ)
30a…幅方向両端部
31…ヘッダタンク
32…パイプ
32A…第1のパイプ部材
32B…第2のパイプ部材
34…チューブ保持壁部
34a…チューブ差し込み孔
35…小径湾曲部
36…ストレート部
37…突き当て部(ローズ付け部)
37a…先端面
37b…内周面
41…本体部
41a…内周面
42…突き当て部(ロー付け部)
42a,43a…接合面
43…接合突起(接合部)
45…閉塞部材
46…仕切板
51…一般部材
52…コネクタ一体部材
53…コネクタ
61…一般部材
62…コネクタ一体部材
64…溝
72…コネクタ一体部材
74…溝
91…単一部材
X…チューブの長手方向
Y…チューブの幅方向
Z…パイプの長手方向
d1…肉厚
d2…肉厚
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a header tank for a heat exchanger such as a condenser used for an air conditioner such as an automobile.
[0002]
[Prior art]
2. Description of the Related Art As a heat exchanger of an air conditioner, there is a heat exchanger as disclosed in Patent Document 1. 15 to 17 show this type of heat exchanger (in this example, a condenser). As shown in FIG. 15, the heat exchanger 1 is configured such that openings at both ends of flat tubes 13 arranged in multiple stages are connected to a pair of opposed header tanks 11 and 12. Corrugated fins 14 are interposed between the flat tubes 13 arranged in multiple stages.
[0003]
Each of the header tanks 11 and 12 includes a pipe 15, a closing member 16 for closing both ends of the pipe 15, and a partition plate 17 for partitioning a passage extending in the pipe 15 in the longitudinal direction.
[0004]
As shown in FIGS. 15 and 16, a number of tube insertion holes 18 for inserting the tubes 13 are formed in the pipes 15 constituting the header tanks 11 and 12 by press working. Then, the fin 14 and the periphery of the tube 13 and the insertion hole 18 and the fin 14 are fixed by brazing so that the refrigerant does not leak from the insertion hole 18.
[0005]
The pipe 15 is configured by combining two semi-cylindrical pipe members 19 and 20 divided along the longitudinal direction as shown in FIG. 17 in order to sandwich the partition plate 17 therein. The one pipe member 19 is formed with a substantially L-shaped receiving portion 19a for positioning the opening peripheral portion 20a of the other pipe member 20.
[0006]
In the heat exchanger 1 configured as described above, the refrigerant introduced from the inlet pipe (not shown) through the connector block 22 fixed to the header tank 12 is divided by the partition plate 17 into one of the header tanks 11. It flows in the tube 13 so as to meander between the other and the other header tank 12, and is finally discharged from an outlet pipe (not shown) via the connector block 23 fixed to the header tank 11. At this time, the refrigerant flowing in the heat exchanger 1 exchanges heat with the air flowing through the gap between the fins 14 between the tubes 13. For example, when used as a radiator or a condenser, the refrigerant is cooled, and when used as an evaporator, the refrigerant is heated.
[0007]
[Patent Document 1]
JP-A-7-27496
[Problems to be solved by the invention]
As shown in FIG. 17, in the method of fixing the connector block 22 (23) of the prior art, the cylindrical connection portion 24 (25) of the connector block 22 (23) is connected to the coolant inlet 26 (coolant) of the header tank 12 (11). The connector block 22 (23) and the header tank 12 (11) are temporarily fixed while being fitted to the connection port as the outlet 27), and finally, the connector block 22 (23) and the header tank 12 (11). ) And braze. FIG. 17 shows one of the two connector blocks 22 as a representative.
[0009]
Here, since the tubular connecting portion 24 (25) of the connector block 22 (23) needs to be formed by cutting or the like, the manufacturing cost of the heat exchanger tends to be high. In addition, when the heat exchanger 1 is manufactured, no leak passage is generated between the cylindrical connection portion 24 (25) of the connector block 22 (23) and the connection port 26 (27) of the header tank 12 (22). Strict dimensional accuracy is required as described above, and a leakage inspection is required after production, so that the production cost is inevitably increased.
[0010]
The present invention has been made based on such a conventional technique, and an object of the present invention is to provide a heat exchanger that can reduce manufacturing costs.
[0011]
[Means for Solving the Problems]
An invention according to claim 1 is a heat exchanger in which tubes are connected to at least a pair of header tanks in a plurality of stages, and a pipe formed by combining two pipe members divided along a longitudinal direction, and both ends of the pipe. A heat exchanger for manufacturing the header tank by integrally brazing a closing member that closes the opening,
The first pipe member has a tube insertion hole into which a tube is inserted, and the second pipe member is formed integrally with a connector for connecting a pipe.
[0012]
According to the second aspect of the present invention, in the heat exchanger according to the first aspect, a brazing portion of the second pipe member with the first pipe member is formed so as to protrude from the connector. It is a feature.
[0013]
According to a third aspect of the present invention, in the heat exchanger according to the first aspect, a brazing portion of the second pipe member to the first pipe member includes a heat insulating layer between the second pipe member and the connector. It is a feature.
[0014]
According to a fourth aspect of the present invention, in the heat exchanger according to the first aspect, one of the pipe members is provided with a joining portion to which an inner peripheral surface of an abutting portion of the other pipe member is joined,
The pipe members are temporarily fixed to each other by caulking an abutting portion of the other pipe member toward the joint portion of the one pipe member, and then brazed.
[0015]
According to a fifth aspect of the present invention, in the heat exchanger according to the fourth aspect, at least a base end of the joining portion is formed to be thicker than the abutting portion of the other pipe member along the caulking direction. It is characterized by having.
[0016]
According to a sixth aspect of the present invention, in the heat exchanger according to the fourth or fifth aspect, a groove is provided at a base end portion of a joining portion of the one pipe member, and the abutting portion of the other pipe member is provided with the abutting portion. It is characterized by caulking in the groove.
[0017]
The invention according to claim 7 is the heat exchanger according to any one of claims 1 to 6,
The second pipe member is characterized by being formed in a longitudinal direction of the pipe member into a general member and a connector integrated member integrally formed with the connector.
[0018]
【The invention's effect】
According to the first aspect of the present invention, a pipe formed by combining two pipe members divided along the longitudinal direction and a closing member that closes both ends of the pipe are integrally brazed. The first pipe member is provided with a tube insertion hole into which a tube is inserted, while the second pipe member is formed with a connector for pipe connection. A cylindrical connection portion formed by cutting or the like, unlike a connector, is not required, and manufacturing costs can be reduced. Also, compared to the conventional structure, in addition to the reduction in the number of parts, the manufacturing cost can be greatly reduced due to the reduction in the number of soldering steps and the reduction in leakage inspection.
[0019]
According to the second aspect of the present invention, in addition to the effect of the first aspect of the invention, since the brazing portion of the second pipe member to the first pipe member is formed so as to protrude from the connector, When brazing the pipe member and the second pipe member, the structure is such that the heat of the brazing portion of the second pipe member is not easily taken away by the connector, and the brazing condition of the first pipe member and the second pipe member is stable. I do.
[0020]
According to the invention described in claim 3, in addition to the effect of the invention described in claim 1, since the brazing portion of the second pipe member with the first pipe member is provided with a heat insulating layer between the second pipe member and the connector, The same effect as the second aspect is obtained. In other words, when brazing the first pipe member and the second pipe member, the structure is such that the heat of the brazing portion of the second pipe member is not easily taken away by the connector, and the brazing of the first pipe member and the second pipe member is performed. The condition is stable.
[0021]
According to the fourth aspect of the invention, in addition to the effect of the first aspect, the first pipe member and the second pipe member are temporarily fixed to each other by caulking of the abutting portion of the second pipe member. At the time of brazing, a jig for temporarily holding the first pipe member and the second pipe member becomes unnecessary, and wasteful heat capacity is not wasted.
[0022]
According to the fifth aspect of the present invention, in addition to the effect of the fourth aspect, at least the base end of the joining portion is formed to be thicker than the butting portion of the other pipe member along the caulking direction. Therefore, the joint of the second pipe member does not fall due to the caulking force.
[0023]
According to a sixth aspect of the present invention, in the heat exchanger according to the fourth or fifth aspect, a groove is provided at a base end portion of a joining portion of one pipe member, and an abutting portion of the other pipe member is provided in the groove. It is characterized by caulking. Since the butting portion is locked in the groove of the joining portion, the temporary fixing of the first pipe member and the second pipe member becomes more reliable.
[0024]
In addition to the effects of the first to sixth aspects of the present invention, the invention according to claim 7 further includes a part where the connector is integrally formed at a position where the connector is arranged, and a part where the connector is not integrally formed. Since the two pipe members are divided in the longitudinal direction, each member can be extruded along the longitudinal direction. As a result, the second pipe member having the minimum volume can be prepared only by cutting off the extruded original rods to a predetermined length, and the manufacturing cost can be further reduced.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Since the overall structure of the heat exchanger is the same as that of the conventional heat exchanger, the description of the configuration and the function and effect will be omitted.
[0026]
First Embodiment: FIG. 1 is a perspective view of a header tank of the heat exchanger of the present invention, FIG. 2 is an exploded perspective view of the header tank, FIG. 3 is a longitudinal sectional view of the header tank, and FIG. FIG. 5A is a longitudinal sectional view, FIG. 5A is an exploded state, FIG. 5B is an assembled state in which a tube is inserted, and FIG. 5 is an outer diameter difference from a header tank having a circular cross section (the longitudinal direction of the tube). FIG. 6A is a cross-sectional view of the header tank of the present embodiment, and FIG. 6B is a cross-sectional view of the header tank having a circular cross section. FIG. 7 is a view showing (a width direction Y of the tube), and FIG. 7A is a cross-sectional view of the header tank of this embodiment, and FIG. 7B is a cross-sectional view of the header tank having a circular cross-section. FIG. 8 shows a process of temporarily fixing a pipe in FIG. It is a diagram showing a temporary fixing step of the pipe at the site.
[0027]
As in the conventional structure, the header tank 31 of the first embodiment includes a pipe 32, a closing member 45 for closing both ends of the pipe 32, a partition plate 46 for partitioning a passage extending in the pipe 32 in a longitudinal direction, It is composed of
[0028]
The pipe 32 is formed in a rectangular cylindrical shape by combining two pipe members (first pipe member 32A, second pipe member 32B) divided along the longitudinal direction.
[0029]
In the first embodiment, the second pipe member 32B is divided into two in the longitudinal direction. One is a connector integrated member 52 in which a connector 53 is integrally formed, and the other is a connector integrated member 52 in which the connector 53 is integrally formed. It is a general member 51 that is not performed.
[0030]
Hereinafter, the first pipe member 32A and the second pipe member 32B will be described more specifically.
[0031]
The first pipe member 32A has a substantially U-shape including a tube holding wall portion 34 and a pair of straight portions 36 projecting from both ends of the tube holding wall portion 34 in substantially orthogonal directions. .
[0032]
The tube holding wall portion 34 has insertion holes 34a, 34a,... For inserting and holding the flat tube 30, and is formed in a flat plate shape orthogonal to the longitudinal direction of the tube 30. The pair of straight portions 36 protrude from the tube holding wall portion 34 in a substantially orthogonal direction via the small-diameter curved portion 35, and are provided along both widthwise end portions 30 a, 30 a of the tube 30. The base end of the straight portion 36 is set close to both ends 30 a, 30 a in the width direction of the tube 30.
[0033]
On the other hand, the second pipe member 32B includes a substantially flat plate-shaped main body 41 that closes the U-shaped opening of the first pipe member 32A. Both ends of the main body 41 are configured as abutting portions 42 against which the distal end portion (abutting portion 37) of the straight portion 36 of the first pipe member 32A is abutted. From the inner peripheral surface 41a of the main body portion 41, a joining protrusion 43 as a joining portion to be joined to the inner peripheral surface 37b of the tip portion (abutting portion 37) of the straight portion 36 is provided in a protruding manner. In other words, the second pipe member 32B has L-shaped joint surfaces 42a and 43a that are open to the outside and come into contact with the distal end portion (butting portion 37) of the straight portion 36 of the U-shaped first pipe member 32A. Is formed.
[0034]
The main body 41 of the second pipe member 32 </ b> B is formed so as to connect the butting portions 42, 42 almost linearly and to be substantially orthogonal to the longitudinal direction of the tube 30.
[0035]
The inner peripheral surface 41a of the main body portion 41 of the second pipe member 32B has a circular curved surface shape in which a pair of joining projections 43, 43 are connected to each other by a smooth surface, and therefore, is resistant to pressure applied from inside the pipe 32. Has a high structure.
[0036]
As shown in FIGS. 7 and 8, the pipe 32 configured as described above sandwiches a partition plate (see FIG. 2) at a predetermined location and abuts (low) on the first pipe member 32 </ b> A and the second pipe member 32 </ b> B. After the butting portions 37 and 42 are abutted with each other, the straight portions 36 and 36 are temporarily fixed by caulking toward the joining projections 43 and 43 of the second pipe member 32B, and brazing is performed in this state. Is done. Here, FIG. 7 shows a portion where the connector 53 is integrally formed, and FIG. 8 shows a temporary fixing at a general portion where the connector 53 is not located.
[0037]
Actually, in a state where the temporarily fixed pipe 32 (32A, 32B) is combined with the closing member 45, the tube 30, the fin, the side plate, and the like, these members are integrally brazed and fixed, so that heat exchange is performed. Vessels are manufactured.
[0038]
Here, as shown in FIG. 4, the thickness d2 along the caulking direction of the base end of the joint projection 43, 43 of the second pipe member 32B is equal to the tip end of the straight portion 36 of the first pipe member 32A (abutment). The portion 37) is formed thicker than the thickness d1. For this reason, it is possible to prevent the joining protrusion 43 from being deformed even when receiving the caulking force.
[0039]
According to the heat exchanger of such an embodiment, the following effects are obtained.
[0040]
First, since the connector 53 is formed integrally with the second pipe member 32B, the cylindrical connecting portion 24 formed by cutting or the like as in the conventional connector 22 is not required, and the manufacturing cost can be reduced.
[0041]
Moreover, in this embodiment, since the second pipe member 32B is divided into the connector integral member 52 and the general member 51 in the longitudinal direction Z of the pipe 32, the volume of each member 51, 52 can be minimized. The members 51 and 52 can be extruded along the longitudinal direction Z. That is, unlike the case where the connector 53 and the second pipe member 32B are integrally formed by die molding as shown in FIG. 14, only the original rods of the extruded members 51 and 52 are cut to a predetermined length. Thus, since the second pipe member 32B having the minimum volume can be prepared, the manufacturing cost can be further reduced. In the case shown in FIG. 14, there is an advantage that the number of parts is small.
[0042]
Secondly, since the brazing portions 42, 42 of the second pipe member 32B with the first pipe member 32A are formed so as to protrude from the connector 53, the first pipe member 32A and the second pipe member 32B are connected to each other. At the time of brazing, the heat of the brazing portions 42, 42 of the second pipe member 32B is not easily taken away by the connector 53, and the brazing of the first pipe member 32A and the second pipe member 32B is stabilized.
[0043]
As a modification (third embodiment), as shown in FIG. 12, when the brazing portions 42, 42 of the connector integrated member 72 do not protrude from the side surface of the connector 53, the brazing portions 42, 42 By providing the groove 74 as a heat insulation layer between the connector and the connector 53, the same operation and effect can be obtained (corresponding to claim 3).
[0044]
Third, the first pipe member 32A is provided with a joining projection 43 to which the inner peripheral surface 37b of the butting portion 37 of the second pipe member 32B is joined, and the joining projection 43 of the first pipe member 32A is provided. 43, the pipe members 32A and 32B are temporarily fixed to each other by caulking the butting portion 37 of the second pipe member 32B, and then brazed. A jig for temporarily holding the pipe member 32A and the second pipe member 32B becomes unnecessary, and wasteful heat capacity is not wasted.
[0045]
As an improved example (second embodiment), as shown in FIGS. 9 to 11, a groove 64 is provided at the base end of the joint protrusion 43 of the second pipe member 32 </ b> B (61, 62), and the straight portion 36 is formed. With the structure in which the abutting portion 37 as the tip of the first pipe member is caulked in the groove 64, there is an advantage that the temporary fixing of the first pipe member 32A and the second pipe member 32B (61, 62) becomes more reliable.
[0046]
Fourth, since at least the base end of the joint protrusion (joint portion) 43 is formed to be thicker than the butting portion 37 of the first pipe member 32A along the caulking direction, The joining protrusion (joining portion) 43 of the second pipe member 32B does not fall down due to the caulking force.
[0047]
Sixth, by setting the first pipe member 32A in a substantially U-shape, the insertion depth of the tube 30 can be smaller than that of the header tanks 11 and 12 using the pipes 15 having a circular cross section. The size of the tube 30 can be reduced in the longitudinal direction X while securing a passage cross-sectional area equivalent to that of the pipe 15 having a circular cross section.
[0048]
Seventh, since the tube holding wall portion 34 of the first pipe member 32A has a flat plate shape orthogonal to the longitudinal direction X of the tube 30, the size can be further reduced in the longitudinal direction X of the tube.
[0049]
Eighth, the second pipe member 32B of the header tank 31 is provided at both ends of the main body portion 41 with an abutting portion 42 that abuts against the distal end portion 37 of the straight portion 36 of the first pipe member 32A, As shown in FIG. 6, both ends of the second pipe member 32 </ b> B are provided so as to protrude from the inner peripheral surface 41 a of the first pipe member 41 and are joined to the inner peripheral surface 37 b of the distal end portion 37 of the straight portion 36. The first pipe member 32A and the second pipe member 32B can be combined without protruding the portions 42, 42 in the width direction Y of the tube 30 beyond the straight portion 36 of the first pipe member 32A. Therefore, the header tank 31 (pipe 32) can be downsized in the width direction Y of the tube 30 as compared with the conventional structure in which the joining protrusion 21 is provided on the outside as shown in FIG.
[0050]
In addition, the cross-sectional shape of the header tank 31 becomes closer to a circular shape due to the presence of the joining projections 43, 43, so that the durability of the header tank 31 is further improved.
[0051]
Note that the tip end surface 37a of the straight portion 36 does not necessarily have to completely contact the butting portion 42. That is, when the size of the partition plate interposed in the pipe 32 is set to be large, the abutting portion 42 and the distal end surface 37a of the straight portion 36 may be separated from each other.
[0052]
Ninth, since the main body 41 of the second pipe member 32B is formed in a straight line, the header tank 31 (the pipe 32) can be further downsized along the longitudinal direction X of the tube 30.
[0053]
Tenth, since the inner peripheral surface 41a of the main body portion 41 of the second pipe member 32B is a circular curved surface, it is possible to reduce the size of the pipe 32 and to form the entire inner peripheral surface of the pipe with a polygonal cross section. Superior in pressure resistance compared to
[0054]
As described above, according to the present invention, the first pipe member is provided with the tube insertion hole into which the flat tube is inserted, while the second pipe member is integrally formed with the pipe connection connector. The need for a cylindrical connecting portion formed by cutting or the like as in the case of the connector is unnecessary, and the manufacturing cost can be reduced. Moreover, compared to the conventional structure, the manufacturing cost can be greatly reduced due to the reduction in the number of parts, the reduction in the number of brazing steps, and the reduction in leakage inspection.
[0055]
In the above-described embodiment, the second pipe member 32B is formed in two parts (51, 52). However, in the present invention, as shown in FIG. Accordingly, the second pipe member 32B may be constituted by three or more divisions (81, 82, 83) or the connector 53 without dividing the second pipe member 32B in the longitudinal direction as shown in FIG. May be formed as a single member 91 integrally molded.
[Brief description of the drawings]
FIG. 1 is a perspective view showing one embodiment of a header tank of a heat exchanger of the present invention.
FIG. 2 is an exploded perspective view of the header tank.
FIG. 3 is a cross-sectional view of the header tank.
4 is a longitudinal sectional view of the header tank, FIG. 4A is a view showing an exploded state, and FIG. 4B is a view showing an assembled state in which a tube is inserted.
FIG. 5 is a diagram showing a difference in outer diameter in the longitudinal direction of a tube from a conventional header tank. FIG. 5A is a cross-sectional view of the header tank of the present embodiment, and FIG. FIG. 3 is a cross-sectional view of the header tank.
FIG. 6 is a diagram showing a difference in outer diameter in the width direction Y of a tube from a conventional header tank. FIG. 6A is a cross-sectional view of the header tank of this embodiment, and FIG. Sectional view of the header tank of FIG.
FIG. 7 is a view showing a process of temporarily fixing a pipe at a position where a connector is located, wherein a diagram a shows before caulking and a diagram b shows after caulking.
FIG. 8 is a view showing a process of temporarily fixing a pipe in a portion where a connector is not located, wherein a diagram a shows before crimping and a diagram b shows after crimping.
FIG. 9 is an exploded perspective view showing a header tank according to a second embodiment.
FIG. 10 is a view showing a process of temporarily fixing a pipe at a position where a connector is located in the second embodiment, wherein a diagram a shows before crimping and a diagram b shows after crimping.
FIG. 11 is a view showing a process of temporarily fixing a pipe at a portion where a connector is not located in the second embodiment, wherein a diagram a shows before caulking and a diagram b shows after caulking.
FIG. 12 is an exploded perspective view of a header tank according to a third embodiment.
FIG. 13 is a view showing a header tank according to a fourth embodiment, wherein FIG. 13A is a top view with a blocking member removed, FIG. 13B is a front view, and FIG. 13C is a side view.
FIG. 14 is an exploded perspective view showing a header tank according to a fifth embodiment.
FIG. 15 is a perspective view showing a conventional heat exchanger.
FIG. 16 is a longitudinal sectional view of a header tank of the heat exchanger.
FIG. 17 is an exploded perspective view of the header tank and the connector of the heat exchanger.
[Explanation of symbols]
30 ... Flat tube (tube)
30a ... width direction both ends 31 ... header tank 32 ... pipe 32A ... first pipe member 32B ... second pipe member 34 ... tube holding wall portion 34a ... tube insertion hole 35 ... small diameter curved portion 36 ... straight portion 37 ... thrust Rest part (Rose attachment part)
37a ... tip surface 37b ... inner peripheral surface 41 ... body part 41a ... inner peripheral surface 42 ... butting part (brazing part)
42a, 43a: joining surface 43: joining protrusion (joining portion)
45 ... closing member 46 ... partition plate 51 ... general member 52 ... connector integral member 53 ... connector 61 ... general member 62 ... connector integral member 64 ... groove 72 ... connector integral member 74 ... groove 91 ... single member X ... longitudinal length of the tube Direction Y: Tube width direction Z: Pipe longitudinal direction d1: wall thickness d2: wall thickness

Claims (7)

少なくとも一対のヘッダタンク(31、31)に複数多段にチューブ(30)を連通接続した熱交換器において、
長手方向に沿って分割された2つのパイプ部材(32A、32B)を組み合わせてなるパイプ(32)と、該パイプ(32)の両端開口部を閉塞する閉塞部材(45)と、を一体的にロー付けすることで前記ヘッダタンク(31)を製造する熱交換器であって、
前記第1のパイプ部材(32A)はチューブ(30)を差込むチューブ差込み孔(34a)を備え、前記第2のパイプ部材(32B)は配管接続用のコネクタ(53)が一体形成されていることを特徴とする熱交換器。
In a heat exchanger in which a plurality of tubes (30) are communicatively connected to at least a pair of header tanks (31, 31) in a plurality of stages,
A pipe (32) formed by combining two pipe members (32A, 32B) divided along the longitudinal direction, and a closing member (45) for closing both ends of the pipe (32) are integrally formed. A heat exchanger for manufacturing the header tank (31) by brazing,
The first pipe member (32A) has a tube insertion hole (34a) into which the tube (30) is inserted, and the second pipe member (32B) is integrally formed with a connector (53) for pipe connection. A heat exchanger, characterized in that:
請求項1記載の熱交換器において、
前記第2のパイプ部材(32B)の前記第1のパイプ部材(32A)とのロー付け部位(42)は、前記コネクタ(53)より突出形成されていることを特徴とする熱交換器。
The heat exchanger according to claim 1,
A heat exchanger, wherein a brazing portion (42) of the second pipe member (32B) with the first pipe member (32A) is formed so as to protrude from the connector (53).
請求項1記載の熱交換器において、
前記第2のパイプ部材(32B)の前記第1のパイプ部材(32A)とのロー付け部位(42)は、前記コネクタ(53)との間に断熱層(74)を備えることを特徴とする熱交換器。
The heat exchanger according to claim 1,
A brazing portion (42) of the second pipe member (32B) with the first pipe member (32A) includes a heat insulating layer (74) between the second pipe member (32B) and the connector (53). Heat exchanger.
請求項1記載の熱交換器において、
いずれか一方のパイプ部材(32A)には、他方のパイプ部材(32B)の突き当て部(37)の内周面(37b)が接合される接合部(43)を設けてあり、
前記一方のパイプ部材(32A)の接合部(43)に向けて、前記他方のパイプ部材(32B)の突き当て部(37)をカシメることでパイプ部材(32A、32B)同士を仮固定し、次いで、ロー付けすることを特徴とする熱交換器。
The heat exchanger according to claim 1,
One of the pipe members (32A) is provided with a joint (43) to which the inner peripheral surface (37b) of the butting portion (37) of the other pipe member (32B) is joined.
The pipe members (32A, 32B) are temporarily fixed to each other by caulking the butting portion (37) of the other pipe member (32B) toward the joint (43) of the one pipe member (32A). And then brazing.
請求項4記載の熱交換器において、
前記接合部(43、43)の少なくとも基端部は、前記カシメ方向に沿って前記他方のパイプ部材(32A)の突き当て部(37)よりも肉厚に形成されていることを特徴とする熱交換器。
The heat exchanger according to claim 4,
At least a base end portion of the joint portion (43, 43) is formed to be thicker than the abutting portion (37) of the other pipe member (32A) along the caulking direction. Heat exchanger.
請求項4または請求項5記載の熱交換器において、
前記一方のパイプ部材(32B)の接合部(43)の基端部に溝(61)を設け、前記他方のパイプ部材(32A)の突き当て部(37)を前記溝(61)内にカシメたことを特徴とする熱交換器。
In the heat exchanger according to claim 4 or 5,
A groove (61) is provided at the base end of the joint (43) of the one pipe member (32B), and the butting portion (37) of the other pipe member (32A) is caulked in the groove (61). A heat exchanger.
請求項1〜6の何れか1項記載の熱交換器において、
前記第2のパイプ部材(32B)は、一般部材(51)と、前記コネクタ(53)が一体形成されているコネクタ一体部材(52)と、にパイプ部材(32B)の長手方向で分割形成されていることを特徴とする熱交換器。
The heat exchanger according to any one of claims 1 to 6,
The second pipe member (32B) is divided and formed in the longitudinal direction of the pipe member (32B) into a general member (51) and a connector integrated member (52) integrally formed with the connector (53). A heat exchanger.
JP2003117394A 2003-04-22 2003-04-22 Heat exchanger Withdrawn JP2004324938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117394A JP2004324938A (en) 2003-04-22 2003-04-22 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117394A JP2004324938A (en) 2003-04-22 2003-04-22 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2004324938A true JP2004324938A (en) 2004-11-18

Family

ID=33497296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117394A Withdrawn JP2004324938A (en) 2003-04-22 2003-04-22 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2004324938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060271A (en) * 2008-08-21 2010-03-18 Delphi Technologies Inc Manifold with multiple passages and cross-counterflow heat exchanger incorporating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060271A (en) * 2008-08-21 2010-03-18 Delphi Technologies Inc Manifold with multiple passages and cross-counterflow heat exchanger incorporating the same
EP2157392A3 (en) * 2008-08-21 2013-10-16 Delphi Technologies, Inc. Manifold with multiple passages and crosscounterflow heat exchanger incorporating the same

Similar Documents

Publication Publication Date Title
US7201218B2 (en) Header tank for heat exchanger
US20050011637A1 (en) Heat exchanger and tube for heat exchanger
JPH11226685A (en) Manufacture of heat exchanger and header tank
JP2541409B2 (en) Heat exchanger
JPH11311497A (en) Double type heat exchanger
WO2005114066A1 (en) Header pipe of evaporator for automobile
JP2007333373A (en) Pipe connector for heat exchanger
JP2004347210A (en) Pipe connection structure of heat exchanger
US20050263271A1 (en) Stacking-type, multi-flow, heat exchangers and methods for manufacturing such heat exchangers
JP6583071B2 (en) Tank and heat exchanger
US6739386B2 (en) Heat exchanger with cut tubes
JPH11142087A (en) Heat-exchanger
JP2004184001A (en) Heat exchanger
JP2004324938A (en) Heat exchanger
JP4280133B2 (en) Heat exchanger
JP2004301455A (en) Header tank for heat exchanger
JP4081883B2 (en) Heat exchanger
JP4418246B2 (en) Heat exchanger
JP2000046489A (en) Laminate type heat exchanger
JP2709860B2 (en) Heat exchanger manufacturing method
JP2007255872A (en) Heat exchanger for air conditioner
JP2007144502A (en) Heat exchanger
JP2002318093A (en) Heat exchanger
JP2002206889A (en) Heat exchanger
JP2000130986A (en) Duplex type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A761 Written withdrawal of application

Effective date: 20070802

Free format text: JAPANESE INTERMEDIATE CODE: A761