JP2000046489A - Laminate type heat exchanger - Google Patents

Laminate type heat exchanger

Info

Publication number
JP2000046489A
JP2000046489A JP10216081A JP21608198A JP2000046489A JP 2000046489 A JP2000046489 A JP 2000046489A JP 10216081 A JP10216081 A JP 10216081A JP 21608198 A JP21608198 A JP 21608198A JP 2000046489 A JP2000046489 A JP 2000046489A
Authority
JP
Japan
Prior art keywords
fins
tube
contact
core plate
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10216081A
Other languages
Japanese (ja)
Inventor
Tomohiko Nakamura
友彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10216081A priority Critical patent/JP2000046489A/en
Publication of JP2000046489A publication Critical patent/JP2000046489A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent corrosion of the wall of a tube in back of a caulked part by disposing the part disposed upstream side of an air flow without contact with fins. SOLUTION: Supply air flows from below to above. Since an end 41a of a caulked part 41 is brought into contact with fins 5 at upstream side of the air flow, flow of the air to a wall 42 side for forming a refrigerant passage 52 rear of the part 41 is prevented. Accordingly, an adherence of corrosion accelerating component contained in the air to the wall 42 is prevented, and corrosion of the wall 42 can be prevented. Since the part 41 is brought into contact with fins of a core plate 4 in a longitudinal direction in an outer peripheral edge 49 at upstream side of the air flow, corrosion of the wall 42 in back of an outer peripheral edge 49 can be similarly prevented. Since the part 41 or the edge 49 are not brought into contact with the fins 5 at downstream side of the air flow, there is an advantage to easily drop condensed water via the gaps.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内部に流体通路を有
するチューブを積層した形式の積層型熱交換器に関し、
例えば車両用空調装置の冷媒蒸発器として好適なもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated heat exchanger in which tubes having a fluid passage therein are laminated.
For example, it is suitable as a refrigerant evaporator of a vehicle air conditioner.

【0002】[0002]

【従来の技術】特開平8−291992号公報では、図
13(図1に示す冷媒蒸発器1のE−E断面に相当)に
示すように、一対のコアプレート4を接合してチューブ
2を形成した積層型熱交換器において、コアプレート4
の外周縁部で空気流れ(矢印方向)の上流側に位置す
る部分4aをフィン5に接触させることにより、コアプ
レート4における冷媒通路52を形成する壁面42への
空気の流れを遮断し、それにより、空気中に含まれる銅
粉等の腐食促進成分による壁面42の腐食を防止するよ
うにしたものが提案されている。
2. Description of the Related Art As shown in FIG. 13 (corresponding to the EE section of the refrigerant evaporator 1 shown in FIG. 1), a tube 2 is formed by joining a pair of core plates 4 as shown in FIG. In the formed laminated heat exchanger, the core plate 4
The flow of air to the wall surface 42 of the core plate 4 forming the refrigerant passage 52 is cut off by bringing the portion 4a located on the upstream side of the air flow (in the direction of the arrow) at the outer peripheral edge of the core plate 4 into contact with the fins 5. In order to prevent the corrosion of the wall surface 42 due to a corrosion promoting component such as copper powder contained in the air.

【0003】ところで、この種の積層型熱交換器は、チ
ューブ2やフィン5等を積層して仮組付し、この仮組付
状態を治具にて保持し、この仮組付体をろう付け炉内に
搬入し、次に仮組付体をろう付け炉内にて加熱して所定
の部分を接合(ろう付け)する。しかし、従来は一対の
コアプレート4の位置決めをしていないため、仮組付時
や炉への搬入時に、一対のコアプレート4の相対位置が
ずれたり、冷媒通路52内のインナーフィン(図示せ
ず)の位置がずれたりするという問題がある。
In this type of laminated heat exchanger, the tubes 2 and the fins 5 are laminated and temporarily assembled, the temporarily assembled state is held by a jig, and the temporarily assembled body is brazed. It is carried into a brazing furnace, and then the temporary assembly is heated in a brazing furnace to join (braze) predetermined portions. However, since the pair of core plates 4 has not been conventionally positioned, the relative positions of the pair of core plates 4 are shifted during temporary assembly or loading into the furnace, or the inner fins (shown in FIG. ) Is displaced.

【0004】そこで、図14に示すように、チューブ2
を構成する一対のコアプレート4の外周縁部の一部をか
しめて両者を仮止め(位置決め)し、その後フィン5等
と共に積層して接合するようにして位置ずれを防止する
ものが知られている。また、他の従来例として図15に
示すように一枚のコアプレート4を折り曲げてチューブ
2を構成するものがあり、これによれば、一枚の板の折
り曲げ構造であるので、位置ずれが生じることはない。
Therefore, as shown in FIG.
A part of the outer peripheral edges of a pair of core plates 4 is temporarily fixed (positioned) and then laminated together with fins 5 and the like to prevent displacement. I have. As another conventional example, as shown in FIG. 15, one core plate 4 is bent to form the tube 2. According to this, since the bending structure of one plate is used, the positional deviation is reduced. Will not occur.

【0005】[0005]

【発明が解決しようとする課題】ところで、図14に示
すものは、かしめ部41とその両側に位置するフィン5
との間に隙間、があるため、その隙間、を介し
て空気が流れ、その空気中に含まれる銅粉等の腐食促進
成分が冷媒通路52を形成する壁面42(2か所)に付
着し、その結果壁面42付近が腐食しやすいという問題
があった。
FIG. 14 shows a caulking portion 41 and fins 5 located on both sides thereof.
Air flows through the gap, and corrosion promoting components such as copper powder contained in the air adhere to the wall surfaces 42 (two places) forming the refrigerant passage 52. As a result, there is a problem that the vicinity of the wall surface 42 is easily corroded.

【0006】また、図15に示すものでもコアプレート
4の折り曲げ部43とその両側に位置するフィン5との
間に隙間、があるため、壁面42付近が腐食しやす
いという問題があった。本発明は、コアプレートに位置
決め手段を有する積層型熱交換器において、チューブの
腐食を防止できるようにすることを目的とする。
[0008] Further, even in the structure shown in FIG. 15, there is a gap between the bent portion 43 of the core plate 4 and the fins 5 located on both sides thereof, so that there is a problem that the vicinity of the wall surface 42 is easily corroded. An object of the present invention is to prevent corrosion of tubes in a laminated heat exchanger having positioning means on a core plate.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1ないし3の発明によれば、コアプレート
(4)の外周縁部(49)の一部をかしめてチューブ
(2)を単体で仮止めする形式の積層型熱交換器におい
て、空気流れの上流側に位置するかしめ部(41)をフ
ィン(5)に接触させるようにしている。
To achieve the above object, according to the first to third aspects of the present invention, the tube (2) is crimped by crimping a part of the outer peripheral edge (49) of the core plate (4). In the stacking type heat exchanger of the temporary fixing type, the caulking portion (41) located on the upstream side of the air flow is brought into contact with the fin (5).

【0008】これによれば、腐食促進成分を含む空気が
かしめ部(41)後方へ流れるのを阻止し、その結果、
かしめ部(41)後方でのチューブ(2)の壁面(4
2)の腐食を防止できる。請求項4および5の発明によ
れば、一枚のコアプレート(4)を折り曲げてチューブ
(2)を構成する積層型熱交換器において、コアプレー
ト(4)の折り曲げられた部分(58)を、空気流れの
上流側に配置すると共にフィン(5)に接触させること
により、腐食促進成分を含む空気が折り曲げ部(58)
後方へ流れるのを阻止して、折り曲げ部(58))後方
でのチューブ(2)の壁面(42)の腐食を防止でき
る。
According to this, the air containing the corrosion promoting component is prevented from flowing to the rear of the caulking portion (41), and as a result,
The wall (4) of the tube (2) behind the caulking part (41)
2) Corrosion can be prevented. According to the fourth and fifth aspects of the present invention, in the laminated heat exchanger in which one core plate (4) is bent to form the tube (2), the bent portion (58) of the core plate (4) is removed. The air containing the corrosion promoting component is arranged on the upstream side of the air flow and is brought into contact with the fins (5), so that the air containing the corrosion promoting component is bent (58).
By preventing the tube from flowing backward, corrosion of the wall surface (42) of the tube (2) behind the bent portion (58) can be prevented.

【0009】なお、上記各手段に付した括弧内の符号
は、後述する実施形態記載の具体的手段との対応関係を
示すものである。
The reference numerals in parentheses attached to the above means indicate the correspondence with specific means described in the embodiments described later.

【0010】[0010]

【発明の実施の形態】以下、本発明を図に示す実施形態
について説明する。 (第1実施形態)図1〜図5は本発明を車両用空調装置
の冷凍サイクルにおける冷媒蒸発器1(積層型熱交換
器)に適用した第1実施形態を示しており、この蒸発器
1には、図示しない温度作動式膨張弁(減圧手段)で減
圧され膨張した低温低圧の気液二相冷媒が流入するよう
になっている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention. (First Embodiment) FIGS. 1 to 5 show a first embodiment in which the present invention is applied to a refrigerant evaporator 1 (stacked heat exchanger) in a refrigeration cycle of a vehicle air conditioner. A low-temperature, low-pressure gas-liquid two-phase refrigerant that has been decompressed and expanded by a temperature-operated expansion valve (decompression means) (not shown) flows into the refrigerant.

【0011】図1はこの蒸発器1の全体構成を示してお
り、蒸発器1は、図1に示す上下方向を上下にして、車
両用空調装置の空調ユニットケース(図示せず)内に設
置され、空調送風機の送風空気が図1の紙面垂直方向
(図2、4の矢印方向)に流れるようになっている。
図1に示すように、蒸発器1は、並列に配置された多数
のチューブ2と、隣接するチューブ2間に形成される空
気通路3を有しており、このチューブ2内を流れる冷媒
とチューブ2の外部を流れる空調用送風空気とを熱交換
させて冷媒を蒸発させる。
FIG. 1 shows the overall structure of the evaporator 1. The evaporator 1 is installed in an air conditioning unit case (not shown) of a vehicle air conditioner with the vertical direction shown in FIG. The air blown by the air-conditioning blower flows in the direction perpendicular to the plane of FIG. 1 (the direction of the arrows in FIGS. 2 and 4).
As shown in FIG. 1, the evaporator 1 has a large number of tubes 2 arranged in parallel and an air passage 3 formed between adjacent tubes 2. The refrigerant is evaporated by exchanging heat with the air-conditioning air flowing outside of the refrigerant.

【0012】このチューブ2はコアプレート4の積層構
造により形成されており、コアプレート4は、具体的に
はアルミニュウム心材の両面にろう材をクラッドした両
面クラッド材を所定形状(図2参照)に成形して、これ
を2枚1組として多数組積層した上で、ろう付けにて接
合することにより多数のチューブ2を並列に形成するも
ので、板厚は例えば0.4〜0.6mmである。
The tube 2 is formed by a laminated structure of a core plate 4. More specifically, the core plate 4 is formed by forming a double-sided clad material in which a brazing material is clad on both sides of an aluminum core material into a predetermined shape (see FIG. 2). It is formed by laminating a large number of tubes 2 as a set, and joining them by brazing to form a large number of tubes 2 in parallel. The plate thickness is, for example, 0.4 to 0.6 mm. is there.

【0013】コアプレート4の両端部には、図2に示す
ように、チューブ2よりも積層方向外方へ突出する椀状
突出部からなるタンク部44〜47が2個づつ(合計4
個)形成されている。このタンク部44〜47にはそれ
ぞれチューブ2内の冷媒通路をその両端部(図1の上端
部および下端部)でそれぞれ互いに連通させる連通穴4
4a〜47aが形成されている。
As shown in FIG. 2, two tank portions 44 to 47 each having a bowl-like projection projecting outward from the tube 2 in the stacking direction are provided at both ends of the core plate 4 (total of 4).
Pieces) are formed. Each of the tank portions 44 to 47 has a communication hole 4 for allowing the refrigerant passage in the tube 2 to communicate with each other at both ends (the upper end and the lower end in FIG. 1).
4a to 47a are formed.

【0014】ここで、コアプレート4の具体的形状につ
いてより詳しく説明すると、コアプレート4の幅方向の
中央部を長手方向に延びるリブ形状からなる中央仕切り
部48と、コアプレート4の外縁部の全周にわたってリ
ブ状に形成されている外周縁部49とを有している。そ
して、中央仕切り部48と外周縁部49との間には、こ
の両部分48、49の面より所定寸法だけ外方へ凹んだ
凹状部50を形成している。
Here, the specific shape of the core plate 4 will be described in more detail. A central partitioning portion 48 having a rib shape extending in the center in the width direction of the core plate 4 and a peripheral portion of the outer edge of the core plate 4 are formed. And an outer peripheral edge portion 49 formed in a rib shape over the entire circumference. Further, between the center partition portion 48 and the outer peripheral edge portion 49, a concave portion 50 which is depressed outward by a predetermined dimension from the surfaces of both portions 48, 49 is formed.

【0015】従って、2枚のコアプレート4を互いに上
記中央仕切り部48と外周縁部49の部分で接合するこ
とにより、上記中央仕切り部48の左右両側に2つの冷
媒通路51、52を並列に形成することができる。この
2つの冷媒通路51、52の内部には、それぞれインナ
ーフィン53を配置している。このインナーフィン53
は冷媒流れ方向(図2の上下方向)と直交する方向に蛇
行状に曲げ成形されている。。
Therefore, by joining the two core plates 4 to each other at the central partition 48 and the outer peripheral edge 49, two refrigerant passages 51, 52 are arranged in parallel on both the left and right sides of the central partition 48. Can be formed. Inner fins 53 are arranged inside the two refrigerant passages 51 and 52, respectively. This inner fin 53
Is bent in a meandering shape in a direction perpendicular to the coolant flow direction (vertical direction in FIG. 2). .

【0016】コアプレート4の外周縁部49には、さら
にそこから外方(コアプレート4の幅方向)に向かって
延びる突起部54が各2個形成され、また突起部54と
共同して一対のコアプレート4の位置決めをする切欠部
59が各2個形成されている。そして、一対のコアプレ
ート4は、インナーフィン53を挿入し、突起部54と
切欠部59の位置を合わせた状態で突起部54が図4の
ようにかしめられてかしめ部41が形成され、これによ
り仮止め(位置決め)され、その後他の部品と共に積層
してろう付けされる。
The outer peripheral edge 49 of the core plate 4 is further formed with two projections 54 each extending outwardly (in the width direction of the core plate 4) therefrom. The two notches 59 for positioning the core plate 4 are formed. Then, the inner fins 53 are inserted into the pair of core plates 4, and the protrusions 54 are caulked as shown in FIG. 4 in a state where the positions of the protrusions 54 and the notches 59 are aligned, thereby forming the caulked portions 41. , And then are laminated and brazed together with other parts.

【0017】なお、かしめ部41のかしめ方法として
は、まず突起部54を中間部で約90°折り曲げ、次に
突起部54の先端側を折り曲げる方法(2工程)でもよ
いし、コアプレート4の成形時に予め突起部54の中間
部を約90°折り曲げていてもよい。また、一方のコア
プレート4の凹状部50の深さD1 をコアプレート4の
板厚と同じにして、空気流れの上流側に位置するかしめ
部41の先端部41aが、積層ろう付け後コルゲートフ
ィン5(詳細後述)と接するようにしている。他方のコ
アプレート4の凹状部50の深さD2 はコアプレート4
の板厚より大きくしており、これにより図示しない空気
流れの下流側に位置するかしめ部41の先端部41aが
フィン5と接しないようにいている。
As a method for caulking the caulking portion 41, first, the projection 54 may be bent at about 90 ° at the intermediate portion, and then the tip side of the projection 54 may be bent (two steps). The intermediate portion of the projection 54 may be bent at about 90 ° in advance during molding. Further, the depth D1 of the concave portion 50 of one core plate 4 is set to be the same as the thickness of the core plate 4 so that the tip portion 41a of the caulking portion 41 located on the upstream side of the air flow is corrugated after lamination brazing. It comes into contact with the fin 5 (details will be described later). The depth D 2 of the concave portion 50 of the other core plate 4 is
This prevents the tip 41 a of the caulking portion 41 located downstream of the air flow (not shown) from contacting the fin 5.

【0018】さらに、外周縁部49の内コアプレート4
の長手方向の部分が、空気流れの上流側においてはフィ
ン5と接するように(図3、5参照)、空気流れの下流
側においてはフィン5と接しないように、コアプレート
4の外周縁部49は成形されている。ところで、図1に
示すように、隣接するチューブ2の外面側相互の間隙に
フィン5を接合して空気側の伝熱面積の増大を図ってい
る。このフィン5は、ろう材をクラッドしてないアルミ
ニュウムベア材にて蛇行状に曲げ成形されると共に、ル
ーバ5aが形成されている。
Further, the inner core plate 4 of the outer peripheral edge 49 is provided.
Of the core plate 4 so that the longitudinal portion of the core plate 4 contacts the fins 5 on the upstream side of the air flow (see FIGS. 3 and 5) and does not contact the fins 5 on the downstream side of the air flow. 49 is molded. By the way, as shown in FIG. 1, fins 5 are joined to the gaps between the outer surfaces of the adjacent tubes 2 to increase the heat transfer area on the air side. The fins 5 are formed in a meandering shape from an aluminum bare material in which a brazing material is not clad, and a louver 5a is formed.

【0019】コアプレート4の積層方向の一端部(図1
の右端部)に位置するエンドプレート60、および、こ
れに接合されるサイドプレート61、さらに上記積層方
向の他端部(図1の左端部)に位置するエンドプレート
62、および、これに接合されるサイドプレート63
も、コアプレート4と同様に両面クラッド材から成形さ
れており、但し、これらのプレート60、61、62、
63は強度確保のため、コアプレート4より厚肉(例え
ば1mm程度)にしてある。
One end of the core plate 4 in the stacking direction (FIG. 1)
The end plate 60 located at the right end of the stacking plate and the side plate 61 joined thereto, the end plate 62 located at the other end in the laminating direction (the left end in FIG. 1), and joined thereto. Side plate 63
Is formed from a double-sided clad material in the same manner as the core plate 4, except that these plates 60, 61, 62,
63 is thicker (for example, about 1 mm) than the core plate 4 in order to ensure strength.

【0020】そして、エンドプレート60、62にも、
コアプレート4のタンク部44〜47と同様のタンク部
64〜67が形成され、さらに、右側のサイドプレート
61には、サイド冷媒通路を構成する張出部68が形成
され、左側のサイドプレート63には、サイド冷媒通路
を構成する張出部69が形成されている。右側のサイド
プレート61には配管ジョイント8が配置され、接合さ
れている。この配管ジョイント8は、アルミニュウムベ
ア材にて略長円形のブロック体に成形されており、この
ブロック体の厚さ方向に外部冷媒回路との接続用の冷媒
出口通路穴8aと冷媒入口通路穴8bが2つ並んで貫通
している。冷媒出口通路穴8aは上部のタンク部のう
ち、空気流れ上流側に位置するタンク部44に連通し
て、蒸発を終えたガス冷媒を蒸発器外部へ流出させるも
ので、図示しない圧縮機の吸入配管に連結される。
The end plates 60 and 62 also have
Tank portions 64 to 67 similar to the tank portions 44 to 47 of the core plate 4 are formed. Further, a projecting portion 68 forming a side refrigerant passage is formed in the right side plate 61, and a left side plate 63 is formed. Is formed with an overhang portion 69 that constitutes a side refrigerant passage. The piping joint 8 is arranged and joined to the right side plate 61. The pipe joint 8 is formed of an aluminum bear material into a substantially elliptical block body, and a refrigerant outlet passage hole 8a and a refrigerant inlet passage hole 8b for connection to an external refrigerant circuit in the thickness direction of the block body. Are penetrated side by side. The refrigerant outlet passage hole 8a communicates with the tank 44 located on the upstream side of the air flow in the upper tank to discharge the evaporated gas refrigerant to the outside of the evaporator. Connected to piping.

【0021】また、冷媒入口通路穴8bは図示しない膨
張弁の出口側冷媒配管に連結され、膨張弁からの気液2
相冷媒を受入れ、この冷媒を張出部68内のサイド冷媒
通路を介して下部のタンク部のうち、空気流れ下流側に
位置するタンク部47に流入させる。さらに、上部のタ
ンク部のうち空気流れ下流側に位置するタンク部45
と、下部のタンク部のうち空気流れ上流側に位置するタ
ンク部46とは、張出部69内のサイド冷媒通路によっ
て連通されている。
The refrigerant inlet passage hole 8b is connected to a refrigerant pipe on the outlet side of an expansion valve (not shown).
The phase refrigerant is received, and the refrigerant is caused to flow through the side refrigerant passage in the overhang portion 68 into the tank portion 47 located on the downstream side of the air flow in the lower tank portion. Further, of the upper tank portion, a tank portion 45 located on the downstream side of the air flow.
The lower tank portion and the tank portion 46 located on the upstream side of the air flow are connected to each other by a side refrigerant passage in the overhang portion 69.

【0022】次に、上記構成において蒸発器1の作用を
説明する。図示しない膨張弁で減圧された低温低圧の気
液2相冷媒は、冷媒入口通路穴8b、張出部68内のサ
イド冷媒通路およびタンク部47を介して冷媒通路51
を図1の下方から上方へと流れ、さらにタンク部45、
張出部69内のサイド冷媒通路およびタンク部46を介
して冷媒通路52を図1の下方から上方へと流れる。こ
のとき、冷媒はインナーフィン53、コアプレート4、
およびフィン5を介して、空気通路3を通過する送風空
気と熱交換(送風空気からの吸熱)して蒸発する。
Next, the operation of the evaporator 1 in the above configuration will be described. The low-temperature and low-pressure gas-liquid two-phase refrigerant decompressed by the expansion valve (not shown) passes through the refrigerant inlet passage hole 8 b, the side refrigerant passage in the overhang portion 68 and the tank portion 47 through the refrigerant passage 51.
Flows from the bottom to the top in FIG.
The refrigerant flows from the lower side in FIG. 1 to the upper side in FIG. 1 through the side refrigerant passage in the overhang portion 69 and the tank portion 46. At this time, the refrigerant is the inner fin 53, the core plate 4,
The heat exchanges (heat absorption from the blown air) with the blown air passing through the air passage 3 via the fins 5 and evaporates.

【0023】そして、送風空気は図4において下から上
へ流れるが、空気流れ上流側では、かしめ部41の先端
部41aがフィン5と接しているため、かしめ部41後
方の冷媒通路52を形成する壁面42側への空気の流入
が阻止され、従って送風空気中に含まれる腐食促進成分
の壁面42側への付着も防止され、壁面42の腐食が防
止できる。また、空気流れ上流側では、外周縁部49の
内コアプレート4の長手方向の部分がフィン5と接して
いるため、同様に外周縁部49後方の壁面42の腐食が
防止できる。
Although the blown air flows upward from below in FIG. 4, the front end portion 41a of the caulking portion 41 is in contact with the fin 5 on the upstream side of the air flow, so that the refrigerant passage 52 behind the caulking portion 41 is formed. The inflow of air to the wall surface 42 is prevented, so that the corrosion promoting component contained in the blown air is prevented from adhering to the wall surface 42 side, and the wall surface 42 can be prevented from being corroded. Further, on the upstream side of the air flow, since the longitudinal portion of the inner core plate 4 of the outer peripheral edge portion 49 is in contact with the fin 5, the corrosion of the wall surface 42 behind the outer peripheral edge portion 49 can be similarly prevented.

【0024】また、空気流れ下流側ではかしめ部41や
外周縁部49がフィン5と接しないようにしているた
め、その隙間を介して凝縮水が流れ落ちやすいという利
点がある。 (第2実施形態)次に、図6に示す第2実施形態につい
て説明する。上記実施形態では、凹状部50の深さ
1 ,D2 が異なるため2種類のコアプレート4が必要
となる。
Further, since the caulking portion 41 and the outer peripheral edge portion 49 are not in contact with the fins 5 on the downstream side of the air flow, there is an advantage that condensed water easily flows down through the gap. (Second Embodiment) Next, a second embodiment shown in FIG. 6 will be described. In the above embodiment, two types of core plates 4 are required because the depths D 1 and D 2 of the concave portions 50 are different.

【0025】そこで、本実施形態では、先端部41aの
最先端部にコアプレート4成形時に折り曲げられた折り
曲げ端部41bを形成し、かつ、同一形状・寸法のコア
プレート4を使用した場合に凹状部50の深さやコアプ
レート4の板厚の関係で生じる隙間L1 に相当する寸法
に、この折り曲げ端部41bの突出量を設定している。
これにより、凹状部50の深さが等しいコアプレート4
の使用が可能となり、コアプレート4を1種類にするこ
とができる。 (第3実施形態)図7および8に示す第3実施形態につ
いて説明する。第1、第2実施形態では、かしめ部41
をその両側に位置するフィン5の一方にのみ接触させて
いるのに対し、本実施形態では、かしめ部41をその両
側に位置するフィン5に共に接触させるようにしてい
る。
Therefore, in the present embodiment, a bent end portion 41b which is bent at the time of molding the core plate 4 is formed at the foremost portion of the tip portion 41a, and when the core plate 4 having the same shape and dimensions is used, a concave portion is formed. the dimension corresponding to the gap L 1 caused by the thickness of the relationship between depth and the core plates 4 parts 50, which sets the amount of projection of the bent end 41b.
Thereby, the core plate 4 having the same depth of the concave portion 50 is provided.
Can be used, and one type of core plate 4 can be used. (Third Embodiment) A third embodiment shown in FIGS. 7 and 8 will be described. In the first and second embodiments, the swaging section 41
Is contacted with only one of the fins 5 located on both sides thereof, whereas in the present embodiment, the caulked portion 41 is brought into contact with the fins 5 located on both sides thereof.

【0026】即ち、コアプレート4は、接合面55から
フィン5側に曲げられた折り曲げ板部41cを有し、こ
の折り曲げ板部41cはコアプレート4成形時に同時に
成形される。そして、一対のコアプレート4は、かしめ
部41、先端部41aの順に折り曲げられて仮止めされ
る。これによれば、かしめ部41の両側がフィン5に接
触しているため、先端部41a側の壁面42および折り
曲げ板部41c側の壁面42の腐食を両方とも防止でき
る。 (第4実施形態)図9に示す第4実施形態は、第3実施
形態における折り曲げ端部41bを無くしたもので、こ
の場合もかしめ部41をその両側に位置するフィン5に
共に接触させているため、先端部41a側の壁面42お
よび折り曲げ板部41c側の壁面42の腐食を両方とも
防止できる。 (第5実施形態)次に、図10および11に示す第5実
施形態について説明する。これは、一枚のプレート4を
折り曲げてチューブ2を構成する形式の蒸発器に本発明
を適用したものである。プレート4は、図10において
突起部54と切欠部59を除き左右同一形状で、タンク
部44〜47、中央仕切り部48、外周縁部49、凹状
部50の形状や機能は第1実施形態のものと同じであ
る。また、プレート4は、図10において左右方向中央
に中央板部56を有し、この中央板部56にはスリット
57が形成されている。
That is, the core plate 4 has a bent plate portion 41c bent from the joint surface 55 to the fin 5 side, and the bent plate portion 41c is formed at the same time when the core plate 4 is formed. Then, the pair of core plates 4 are bent in the order of the caulking portion 41 and the tip end portion 41a and temporarily fixed. According to this, since both sides of the caulking portion 41 are in contact with the fins 5, corrosion of both the wall surface 42 on the tip portion 41a side and the wall surface 42 on the bent plate portion 41c side can be prevented. (Fourth Embodiment) In a fourth embodiment shown in FIG. 9, the bent end portion 41b of the third embodiment is eliminated, and in this case, the swaged portion 41 is brought into contact with the fins 5 located on both sides thereof. Therefore, corrosion of both the wall surface 42 on the side of the distal end portion 41a and the wall surface 42 on the side of the bent plate portion 41c can be prevented. (Fifth Embodiment) Next, a fifth embodiment shown in FIGS. 10 and 11 will be described. This is one in which the present invention is applied to an evaporator of a type in which a tube 4 is formed by bending one plate 4. The plate 4 has the same shape on the left and right except for the protrusion 54 and the notch 59 in FIG. 10. The shapes and functions of the tanks 44 to 47, the center partition 48, the outer peripheral edge 49, and the concave 50 are the same as those of the first embodiment. Same as the ones. Further, the plate 4 has a central plate portion 56 at the center in the left-right direction in FIG. 10, and a slit 57 is formed in the central plate portion 56.

【0027】そして、プレート4は、インナーフィン5
3を凹状部50に入れた状態で中央板部56が折り曲げ
られて折り曲げ部58が形成され、さらに突起部54が
切欠部59に係合するようにかしめられて仮止めされ
る。折り曲げ部58は、図11に示すように接合面55
からフィン5側に曲げられてフィン5と接触する2つの
第1板部58aと、2つの第1板部58a間にある第2
板部58bとからなる。第1板部58aはコアプレート
4成形時に同時に成形され、第2板部58bはプレート
4折り曲げ時に図11の下方から先端が凸状の部材で加
圧されて図示形状(凹状)に折り曲げられる。
The plate 4 has an inner fin 5
The central plate portion 56 is bent to form a bent portion 58 with the 3 inserted in the concave portion 50, and the projection portion 54 is caulked so as to engage with the notch portion 59 and temporarily fixed. As shown in FIG.
The first plate portions 58a which are bent to the fin 5 side and come into contact with the fins 5 and the second plate portions between the two first plate portions 58a
And a plate portion 58b. The first plate portion 58a is formed at the same time when the core plate 4 is formed, and the second plate portion 58b is pressurized by a convex member from below in FIG.

【0028】これによれば、空気流れ(矢印方向)上
流側に配置された折り曲げ部58の両側がフィン5に接
触しているため、折り曲げ部58の空気流れ下流側の壁
面42の腐食が防止できる。しかも、折り曲げ部58と
フィン5は、中央板部56の長さL2 (図10)の全域
にわたって接触するため、腐食を一層確実に防止でき
る。
According to this, since both sides of the bent portion 58 arranged on the upstream side of the air flow (in the direction of the arrow) are in contact with the fins 5, corrosion of the wall surface 42 of the bent portion 58 on the downstream side of the air flow is prevented. it can. Moreover, since the bent portion 58 and the fin 5 are in contact with each other over the entire length L 2 (FIG. 10) of the central plate portion 56, corrosion can be more reliably prevented.

【0029】なお、本実施形態では折り曲げ部58を空
気流れ上流側に配置したが、本実施形態における突起部
54を第1〜第4実施形態で示したかしめ部41のよう
にフィン5と接する構成とし、その突起部54をかしめ
て形成したかしめ部41側を空気流れ上流側に配置して
もよい。その場合、空気流れ下流側に位置する折り曲げ
部58の形状は、図15に示すような形状にして凝縮水
を流れやすくした方が望ましい。 (第6実施形態)図12に示す第6実施形態は、第5実
施形態のものとは第2板部58bを平板状にした点が異
なり、他は同一である。この場合、第2板部58bはプ
レート4折り曲げ時に先端が平らな部材で加圧される。
In this embodiment, the bent portion 58 is arranged on the upstream side of the air flow. However, the projection 54 in this embodiment is in contact with the fin 5 like the caulking portion 41 shown in the first to fourth embodiments. Alternatively, the caulking portion 41 formed by caulking the protrusion 54 may be arranged on the upstream side of the air flow. In this case, it is desirable that the bent portion 58 located on the downstream side of the air flow has a shape as shown in FIG. 15 so that the condensed water can easily flow. (Sixth Embodiment) A sixth embodiment shown in FIG. 12 is different from the fifth embodiment in that the second plate portion 58b is formed in a flat plate shape, and the other portions are the same. In this case, the second plate portion 58b is pressed by a member having a flat tip when the plate 4 is bent.

【0030】なお、以上の実施形態ではコアプレート4
に突起部54を各2個設けたが、必要に応じ増減しても
よい。また、インナーフィン53はなくてもよく、その
場合はコアプレート4の凹状部50に伝熱面積増大のた
めに多数のリブを形成した方が望ましい。また、、蒸発
器1全体としての冷媒通路構成等は種々変更してもよい
ことは勿論である。例えば、チューブ2内の冷媒通路と
して、2つに仕切られた冷媒通路51、52を形成せず
に、チューブ2内に1つの冷媒通路のみを形成するタイ
プのものにも本発明は適用できる。
In the above embodiment, the core plate 4
Although two projections 54 are provided in each of the above, the number may be increased or decreased as necessary. Further, the inner fins 53 may not be provided, and in that case, it is desirable to form a large number of ribs in the concave portion 50 of the core plate 4 in order to increase the heat transfer area. In addition, it goes without saying that the refrigerant passage configuration and the like of the entire evaporator 1 may be variously changed. For example, the present invention can also be applied to a type in which only one refrigerant passage is formed in the tube 2 without forming the two divided refrigerant passages 51 and 52 as the refrigerant passage in the tube 2.

【0031】さらに、チューブ2(コアプレート4)の
長手方向の両端部にタンク部44〜47を配置するもの
でなく、チューブ2の長手方向の一端部のみにタンク部
を配置し、チューブ2の長手方向の他端部で冷媒流れを
Uターンさせるタイプにも本発明は適用できる。
Further, the tanks 44 to 47 are not arranged at both ends of the tube 2 (core plate 4) in the longitudinal direction, but the tanks are arranged only at one end of the tube 2 in the longitudinal direction. The present invention can also be applied to a type in which the refrigerant flow is U-turned at the other end in the longitudinal direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する蒸発器の正面図である。FIG. 1 is a front view of an evaporator to which the present invention is applied.

【図2】図1の蒸発器の要部の分解斜視図である。FIG. 2 is an exploded perspective view of a main part of the evaporator of FIG.

【図3】図1のA部拡大図である。FIG. 3 is an enlarged view of a portion A in FIG. 1;

【図4】図3のB−B断面図である。FIG. 4 is a sectional view taken along line BB of FIG. 3;

【図5】図3のC−C断面図である。FIG. 5 is a sectional view taken along the line CC of FIG. 3;

【図6】本発明の第2実施形態を示す要部断面図であ
る。
FIG. 6 is a sectional view of a main part showing a second embodiment of the present invention.

【図7】本発明の第3実施形態を示す要部正面図であ
る。
FIG. 7 is a main part front view showing a third embodiment of the present invention.

【図8】図7のD−D断面図である。8 is a sectional view taken along the line DD of FIG. 7;

【図9】本発明の第4実施形態を示す要部断面図であ
る。
FIG. 9 is a sectional view of a main part showing a fourth embodiment of the present invention.

【図10】本発明の第5実施形態を示す要部正面図であ
る。
FIG. 10 is a front view of an essential part showing a fifth embodiment of the present invention.

【図11】本発明の第5実施形態を示す要部断面図であ
る。
FIG. 11 is a sectional view showing a main part of a fifth embodiment of the present invention.

【図12】本発明の第6実施形態を示す要部断面図であ
る。
FIG. 12 is a cross-sectional view of a principal part showing a sixth embodiment of the present invention.

【図13】従来例を示す要部断面図である。FIG. 13 is a sectional view of a main part showing a conventional example.

【図14】他の従来例を示す要部断面図である。FIG. 14 is a sectional view of a main part showing another conventional example.

【図15】他の従来例を示す要部断面図である。FIG. 15 is a sectional view of a main part showing another conventional example.

【符号の説明】[Explanation of symbols]

1…蒸発器(積層型熱交換器)、2…チューブ、4…コ
アプレート、41…かしめ部、49…外周縁部、51、
52…冷媒(流体)通路、53…インナーフィン、58
…折り曲げ部、5…フィン。
DESCRIPTION OF SYMBOLS 1 ... Evaporator (laminated heat exchanger), 2 ... Tube, 4 ... Core plate, 41 ... Caulking part, 49 ... Peripheral edge, 51,
52: refrigerant (fluid) passage, 53: inner fin, 58
... bending part, 5 ... fin.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 コアプレート(4)の外周縁部(49)
を対向させて内部に流体通路(51,52)を形成した
チューブ(2)と、このチューブ(2)間に配置されて
空気との伝熱面積を増大させるフィン(5)とを備え、
前記外周縁部(49)に設けたかしめ部(41)によっ
て前記チューブ(2)を単体で仮止めし、その後前記チ
ューブ(2)と前記フィン(5)とを積層して接合した
積層型熱交換器において、 空気流れの上流側に位置する前記かしめ部(41)を前
記フィン(5)に接触させたことを特徴とする積層型熱
交換器。
1. An outer peripheral edge (49) of a core plate (4).
A tube (2) having a fluid passageway (51, 52) formed therein, and a fin (5) arranged between the tubes (2) to increase a heat transfer area with air;
The tube (2) is temporarily fixed alone by a caulking portion (41) provided at the outer peripheral edge (49), and then the tube (2) and the fin (5) are laminated and joined. In the heat exchanger, the swaged portion (41) located on the upstream side of the air flow is brought into contact with the fin (5).
【請求項2】 空気流れの上流側に位置する前記かしめ
部(41)を、前記チューブ(2)の両側に位置する前
記フィン(5)の一方にのみ接触させたことを特徴とす
る請求項1に記載の積層型熱交換器。
2. The swaging part (41) located upstream of the air flow is brought into contact with only one of the fins (5) located on both sides of the tube (2). 2. The laminated heat exchanger according to 1.
【請求項3】 空気流れの上流側に位置する前記かしめ
部(41)を、前記チューブ(2)の両側に位置する前
記フィン(5)の両方に接触させたことを特徴とする請
求項1に記載の積層型熱交換器。
3. The swaging section (41) located upstream of the air flow is in contact with both of the fins (5) located on both sides of the tube (2). 5. The laminated heat exchanger according to 1.
【請求項4】 一枚のコアプレート(4)を折り曲げて
内部に流体通路(51、52)を形成したチューブ
(2)と、このチューブ(2)間に配置されて空気との
伝熱面積を増大させるフィン(5)とを備える積層型熱
交換器において、前記コアプレート(4)の折り曲げら
れた部分(58)を、空気流れの上流側に配置すると共
に前記フィン(5)に接触させたことを特徴とする積層
型熱交換器。
4. A tube (2) in which one core plate (4) is bent to form fluid passages (51, 52) therein, and a heat transfer area between the tube (2) and the air disposed between the tubes (2). And a fin (5) for increasing the airflow, wherein the bent portion (58) of the core plate (4) is arranged on the upstream side of the air flow and is brought into contact with the fin (5). A stacked heat exchanger.
【請求項5】 前記コアプレート(4)の折り曲げられ
た部分(58)を、前記チューブ(2)の両側に位置す
る前記フィン(5)の両方に接触させたことを特徴とす
る請求項4に記載の積層型熱交換器。
5. The bent portion (58) of the core plate (4) is brought into contact with both of the fins (5) located on both sides of the tube (2). 5. The laminated heat exchanger according to 1.
【請求項6】前記流体通路(51,52)内を流れる流
体との伝熱面積を増大させるインナーフィン(53)
を、前記流体通路(51,52)内に配置したことを特
徴とする請求項1ないし5のいずれか1つに記載の積層
型熱交換器。
6. An inner fin (53) for increasing a heat transfer area with a fluid flowing in the fluid passages (51, 52).
The heat exchanger according to any one of claims 1 to 5, wherein the heat exchanger is disposed in the fluid passage (51, 52).
JP10216081A 1998-07-30 1998-07-30 Laminate type heat exchanger Pending JP2000046489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10216081A JP2000046489A (en) 1998-07-30 1998-07-30 Laminate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10216081A JP2000046489A (en) 1998-07-30 1998-07-30 Laminate type heat exchanger

Publications (1)

Publication Number Publication Date
JP2000046489A true JP2000046489A (en) 2000-02-18

Family

ID=16682966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10216081A Pending JP2000046489A (en) 1998-07-30 1998-07-30 Laminate type heat exchanger

Country Status (1)

Country Link
JP (1) JP2000046489A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267383A (en) * 2001-03-08 2002-09-18 Sanden Corp Laminated heat exchanger
JP2015081744A (en) * 2013-10-24 2015-04-27 サンデン株式会社 Heat exchanger
JP2015517645A (en) * 2012-05-22 2015-06-22 ヴァレオ システム テルミク Heat exchanger tube, heat exchanger tube bundle, heat exchanger with heat exchanger tube bundle, and method of manufacturing plate of heat exchanger tube
CN106030897A (en) * 2013-10-10 2016-10-12 法雷奥热系统公司 Cost-efficient device for controlling the temperature of a motor vehicle battery module, and manufacturing method
WO2021066083A1 (en) * 2019-10-01 2021-04-08 株式会社ティラド Plate for stack-type heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267383A (en) * 2001-03-08 2002-09-18 Sanden Corp Laminated heat exchanger
JP4605925B2 (en) * 2001-03-08 2011-01-05 サンデン株式会社 Laminate heat exchanger
JP2015517645A (en) * 2012-05-22 2015-06-22 ヴァレオ システム テルミク Heat exchanger tube, heat exchanger tube bundle, heat exchanger with heat exchanger tube bundle, and method of manufacturing plate of heat exchanger tube
CN106030897A (en) * 2013-10-10 2016-10-12 法雷奥热系统公司 Cost-efficient device for controlling the temperature of a motor vehicle battery module, and manufacturing method
JP2016539454A (en) * 2013-10-10 2016-12-15 ヴァレオ システム テルミク Cost effective apparatus and method for controlling the temperature of a motor vehicle battery module
JP2015081744A (en) * 2013-10-24 2015-04-27 サンデン株式会社 Heat exchanger
WO2021066083A1 (en) * 2019-10-01 2021-04-08 株式会社ティラド Plate for stack-type heat exchanger

Similar Documents

Publication Publication Date Title
JP3814917B2 (en) Stacked evaporator
EP0947792B1 (en) Refrigerant evaporator and manufacturing method for the same
US20070256821A1 (en) Header Tank for Heat Exchanger
JPH10318695A (en) Heat exchanger
JP2007147172A (en) Heat exchanger
WO2007132779A1 (en) Pipe connector for heat exchanger
JPH10232097A (en) Heat-exchanger
JP2007113895A (en) Heat exchanger and manufacturing method of heat exchanger
JP3959868B2 (en) Heat exchanger
JPH11173704A (en) Laminate type evaporator
JP2000046489A (en) Laminate type heat exchanger
JP2007147173A (en) Heat exchanger and its manufacturing method
WO2006129598A1 (en) Heat exchanger
JP2005037037A (en) Heat exchanger
JP3812021B2 (en) Laminate heat exchanger
JP4081883B2 (en) Heat exchanger
JP4214582B2 (en) Stacked evaporator
JP4178682B2 (en) Stacked evaporator
WO2003008891A1 (en) Heat exchanger
JP3840736B2 (en) Laminate heat exchanger
JP3682633B2 (en) Method of forming tube element and heat exchanger using the tube element
JP2007144502A (en) Heat exchanger
JP3651091B2 (en) Laminate heat exchanger
JP2002250596A (en) Method for manufacturing stacked heat exchanger
JPH1194398A (en) Laminate type evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605