JP2004323945A - Die for injection molding, plating method, and plating tool - Google Patents

Die for injection molding, plating method, and plating tool Download PDF

Info

Publication number
JP2004323945A
JP2004323945A JP2003122829A JP2003122829A JP2004323945A JP 2004323945 A JP2004323945 A JP 2004323945A JP 2003122829 A JP2003122829 A JP 2003122829A JP 2003122829 A JP2003122829 A JP 2003122829A JP 2004323945 A JP2004323945 A JP 2004323945A
Authority
JP
Japan
Prior art keywords
plating
treatment
nickel
work
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003122829A
Other languages
Japanese (ja)
Other versions
JP4309690B2 (en
Inventor
Kengo Ajisawa
賢吾 味澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003122829A priority Critical patent/JP4309690B2/en
Publication of JP2004323945A publication Critical patent/JP2004323945A/en
Application granted granted Critical
Publication of JP4309690B2 publication Critical patent/JP4309690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating method capable of obtaining a die for injection molding having a satisfactory molded face free from roughness and further having a long service life in a plating method for a die for injection molding comprising a stock consisting essentially of beryllium copper. <P>SOLUTION: The plating method is the treatment of applying plating, e.g., to the surface of a die for injection molding consisting of beryllium copper as the stock. In the method, successively to degreasing treatment 1, electrolytic activation treatment 2 is performed, then, nickel strike plating treatment 3 and mat nickel plating treatment 4 are performed, further, amorphous electroless nickel plating treatment 5 and passivation treatment 6 are performed, and finally, posttreatment 7 such as water washing treatment, pure hot water washing and drying is performed. By the plating treatment, the die for injection molding free from surface roughness, reduced in the change of dimensions and having a long die life can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ベリリウム銅を含む材料を素材とするメッキ処理が施された射出成形用金型、上記射出成形用金型へのメッキ処理方法、および、メッキ用治具(メッキ処理用保持治具)に関する。
【0002】
【従来の技術】
従来、合成樹脂の射出成形用金型の素材としてベリリウム銅が適用されているが、その金型は、熱処理により硬化された状態で射出成形に供されていた。しかし、上記熱処理のみでは、金型の表面が腐食しやすく、金型の寿命が減じてしまう。
【0003】
そこで、ベリリウム銅を金型として加工し、熱処理により硬化させた後、メッキ処理、例えば、ニッケルメッキを施すことにより金型表面の腐食を防止することが考えられる。
【0004】
そのベリリウム銅金型に対する従来のニッケルメッキ処理は、
(1)脱脂処理工程
(2)表面酸活性化処理工程
(3)ニッケルメッキ処理工程
(4)水洗,純湯洗,乾燥工程
の工程順で処理される。
【0005】
上記脱脂処理では、有機溶剤による脱脂とアルカリ溶液による脱脂が行われる。また、上記表面酸活性化処理では、希塩酸、または、希硫酸により軽く表面を活性化し、硝酸,リン酸,酢酸等の混合液を用いて化学研磨を行い、表面のスケールや不動態皮膜を除去する。また、上記ニッケルメッキ処理では、電気メッキ処理と無電解メッキ処理とが行われる。
【0006】
また、上述した従来のメッキ処理における未処理金型のワークは、図7の従来の電気メッキ処理状態の図、または、図8の従来の無電解メッキ処理状態の図に示すような状態で支持される。図6は、上記従来のメッキ処理に供される未処理金型のワークの斜視図である。
【0007】
図6に示す貫通穴101aを有するワーク101をメッキ処理する場合、図7に示す電気メッキ処理においては、+電極104,105が配置されるメッキ槽102にメッキ液103が満たされる。ワーク101は、ワーク支持具106に貫通穴101aを水平に保った姿勢で保持された状態で+電極104,105の間に浸漬される。このワーク保持状態では、貫通穴101aが両電極に対向し、電流の方向に沿っていることから貫通穴101aを含めて良好なメッキが行われる。
【0008】
一方、図8に示す上記無電解メッキ処理においては、未処理金型であるワーク21をワーク支持具116に付け替えて貫通穴101aを垂直に保った姿勢とし、メッキ液113が満たされたメッキ槽112内に浸漬する。この浸漬状態でメッキが行われる。このワーク保持状態では、貫通穴101aが垂直に保たれているので発生するガスが上方に抜けやすく貫通穴101aを含めて良好なメッキが行われる。
【0009】
なお、従来の金型等の表面のクロムメッキ処理方法に関する提案として特開2001−73164号公報がある。このメッキ処理では金属基材表面にクロムメッキを施した後、該金属基材を酸化雰囲気中で加熱してクロムメッキ表面に酸化クロム不動態被膜が形成される。このメッキ処理は、ゴム成形用金型や射出成形部品に利用可能である。
【0010】
【発明が解決しようとする課題】
しかし、ベリリウム銅製の射出成形用金型を上記従来のニッケルメッキ処理により処理した場合、酸活性化処理工程において表面を酸混合溶液による化学研磨処理するのでその金型の表面が溶解して寸法が変化する。また、酸混合溶液で上記金型表面が肌荒れする問題もあった。また、上記金型表面は、結晶粒界により腐食しやすく、射出成形において、その寿命も短くなり、必ずしも十分なショット数が得られないといった問題もあった。
【0011】
さらに、上記従来のニッケルメッキ処理に適用される従来のワーク支持具では、図7に示した電気メッキ処理の場合と図8に示した無電解メッキ処理の場合とで未処理金型であるワークの保持姿勢が異なるため、各メッキ処理毎の専用のワーク支持具を必要とし、さらに、ワークの付け替え作業を必要とし、手間が掛かっていた。
【0012】
本発明は、上述の問題を解決するためになされたものであり、ベリリウム銅を主とする素材からなる射出成形用金型において、適切なメッキ処理を行うことにより肌荒れのない良好な成形面が得られ、しかも、寿命が長い射出成形用金型を提供し、また、そのメッキ方法を提供し、さらに、上記メッキ処理において未処理金型の保持姿勢を容易に切り換えられるメッキ用治具を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の請求項1記載の射出成形用金型は、ベリリウム銅を主とする素材からなる射出成形用金型において、ニッケルストライクメッキと、無光沢ニッケルメッキと、アモルファス無電解ニッケルメッキと、クロメート皮膜とが施されている。
【0014】
本発明の請求項2記載のメッキ方法は、ベリリウム銅を主とする素材からなる射出成形用金型に対して施されるメッキ方法において、ニッケルストライクメッキ処理と、無光沢ニッケルメッキ処理と、アモルファス無電解ニッケルメッキ処理と、クロメート皮膜による不働態化処理とがベリリウム銅を主とする素材からなる射出成形用金型に対して施されるメッキ方法である。
【0015】
本発明の請求項3記載のメッキ方法は、請求項2記載のメッキ方法において、上記ニッケルストライクメッキ処理の前に塩酸による電解活性化処理を行う。
【0016】
本発明の請求項4記載のメッキ方法は、請求項3記載のメッキ方法において、上記電解活性化処理の前に脱脂処理を行う。
【0017】
本発明の請求項5記載のメッキ方法は、請求項4記載のメッキ方法において、上記脱脂処理は、有機溶剤による脱脂処理、アルカリ浴による脱脂処理、および、水酸化ナトリウムによる電解脱脂処理の工程を含む。
【0018】
本発明の請求項6記載のメッキ方法は、請求項5記載のメッキ方法において、上記電解脱脂処理における水酸化ナトリウムの溶液は、20g/lから100g/lの範囲の溶液濃度である。
【0019】
本発明の請求項7記載のメッキ方法は、請求項2記載のメッキ方法において、上記ニッケルストライクメッキ処理は、塩酸が30ml/lから200ml/lの範囲の溶液濃度であり、塩化ニッケルが100g/lから400g/lの範囲の溶液濃度である。
【0020】
本発明の請求項8記載のメッキ方法は、請求項2記載のメッキ方法において、上記アモルファス無電解ニッケルメッキの溶液の酸性度は、pH2.5からpH4.5の範囲である。
【0021】
本発明の請求項9記載のメッキ用治具は、メッキ対象部品を支持するためのメッキ用治具において、上記部品の姿勢を第1の姿勢と、上記第1の姿勢とは異なる第2の姿勢とに変更可能に支持する姿勢変更手段を有する。
【0022】
本発明の請求項10記載のメッキ用治具は、請求項9記載のメッキ用治具において、上記部品を固定支持する梁部を有し、上記梁部の一端がヒンジ支持され、上記梁部の上記ヒンジに関する回転により上記部品の姿勢を変更可能である。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて説明する。
図1は、本発明の第1の実施形態である未処理状態の射出成形金型の斜視図である。
【0024】
本実施形態の射出成形金型21は、ベリリウム銅素材(以下、ベリリウム銅と記載する)を用いる金型であって、貫通穴21aを有し、メッキ処理時の保持用ネジ穴21bが貫通穴21aに平行に設けられている。そして、この射出成形金型(メッキ未処理金型であるワーク)21の表面は、後述する図2のメッキ処理工程によってメッキ処理が施される。
【0025】
射出成形用金型1ののメッキを行う本発明の第2の実施形態であるメッキ処理の方法について、メッキ処理工程を示す図2を用いて説明する。
このメッキ処理は、ベリリウム銅を素材とする射出成形用金型21等の表面をメッキする処理であって、図2に示すメッキ処理工程順に従った処理が行われる。すなわち、脱脂処理1に続いて電解活性化処理2が行われ、続いて、ニッケルストライクメッキ処理3と、無光沢ニッケルメッキ処理4とが実行され、さらに、アモルファス無電解ニッケルメッキ処理5と、不動態化処理6とが行われ、最後に水洗処理,純湯洗,乾燥等の後処理7が行われる。
【0026】
脱脂処理1では、従来のメッキ処理における脱脂処理と場合と同様に有機溶剤による脱脂と、アルカリ溶液による脱脂を行った後、従来の場合と異なって、電解脱脂が行われる。この電解脱脂は、メッキ液として溶液濃度80g/l(許容範囲20〜100g/l)の水酸化ナトリウム系溶液、例えば、市販浴のクリーナー160(メルテックス株式会社製)を使用し、液温55°C(許容範囲40〜70°C)の状態に保ち、電流密度5A/dm (許容範囲1〜20A/dm )でのマイナス電解処理が時間1minの間(許容範囲10sec〜5min)行われる。この電解脱脂においては、水素ガスが発生するために表面が活性化される。また、メッキ液の濃度を上げて効果を増すようにしている(従来の通常の濃度は、30〜50g/lである)。
【0027】
電解活性化処理2では、メッキ液として体積比濃度10%(許容範囲5〜50%)の塩酸を使用し、液温は常温(許容範囲5〜35°C)の状態に保ち、電流密度5A/dm (許容範囲1〜20A/dm )で時間1min30secの間(許容範囲10sec〜5min)のマイナス電解処理を行う。この電解活性化処理2においては、発生水素ガスと塩酸とによる表面の活性化の相乗効果を奏する。また、マイナス電解状態であることと、メッキ液が薄い酸であるために素地の溶出がなく、金型表面の肌荒れが生じにくい。
【0028】
ニッケルストライクメッキ処理3では、メッキ液として溶液濃度50ml/l(許容範囲30〜200ml/l)の塩酸および溶液濃度300g/l(許容範囲100〜400ml/l)の塩化ニッケル液との混合メッキ液を使用し、液温を常温(許容範囲5〜40°C)の状態に保ち、電流密度3.5A/dm (許容範囲1〜20A/dm )で時間1minの間(許容範囲15sec〜10min)の電気メッキを行う。このニッケルストライクメッキ処理3においては、素地面を塩酸で活性化させながらメッキするために密着性のよい下地メッキが行われる(通常のステンレス材へのメッキと同様の効果である)。さらに、塩酸の濃度を下げ(従来の通常の塩酸濃度は、125ml/l)、塩化ニッケル液の濃度を上げ(従来の通常の塩化ニッケル液は、濃度250g/l)、素地の肌荒れを防止している。
【0029】
無光沢ニッケルメッキ処理4では、メッキ液として濃度250g/l(許容範囲150〜400g/l)の硫酸ニッケル液と、濃度45g/l(許容範囲30〜100g/l)の塩化ニッケル液と、濃度30g/l(許容範囲20〜70g/l)の硼酸液と、濃度5ml/l(許容範囲1〜30ml/l)の添加剤(1次光沢剤)との混合メッキ液を使用し、液温50°C(許容範囲45〜60°C)の状態に保ち、電流密度3A/dm (許容範囲1〜20A/dm )で時間1minの間(許容範囲15sec〜5min)の電気メッキを行う。この無光沢ニッケルメッキ処理4では、ニッケルストライクメッキ処理3でのピンホール穴埋め効果により良好なメッキ面が得られる。
【0030】
アモルファス無電解ニッケルメッキ処理5では、アモルファス無電解ニッケルメッキ液として、例えば、市販のトップニコロンNAC(奥野製薬株式会社製)の濃度80ml/lのA剤と濃度200ml/lのB剤の混合液を使用し、pH3.5〜4.5(許容範囲pH2.5〜4.5)になるように調整する(上記pHは、アンモニア液で調整する)。液温83°C(許容範囲75〜95°C)の状態に保った上記メッキ液に無光沢ニッケルメッキ処理済みの金型であるワーク21を時間1h30min(許容範囲30min〜5h)だけ浸漬して無電解メッキを行う。このアモルファス無電解メッキ処理5では、5〜6μmの膜厚が形成される。そして、アモルファスは、非結晶であるために通常の金属と違って結晶粒界がない。金属の腐食は、結晶粒界から始まるが、このアモルファス無電解ニッケルメッキ処理された表面は、結晶粒界がないため、腐食が発生しにくく、耐食性が向上する。
【0031】
不動態化処理6では、濃度1g/l(許容範囲0.5〜100g/l)の無水クロム酸液を使用し、液温70°C(許容範囲50〜90°C)の状態の上記無水クロム酸液にアモルファス無電解ニッケルメッキ処理済みの金型であるワーク21を時間10minの間(許容範囲1〜30min)だけ浸漬し、不動態化処理を行う。この処理により表面に極薄いクロメート皮膜が生成され、表面が不動態化して耐食性が向上する。
【0032】
上述した脱脂処理1から不動態化処理6までの本実施形態のメッキ処理を施すことによって肌荒れのない良好な成形面であって、寸法変化も少なく、しかも、金型寿命が長いベリリウム銅素材の射出成形用金型が得られる。
なお、上述した液濃度,液温,pH値,電流密度,処理時間等の許容範囲は、メッキ処理を行ったときに許容できる結果が実際に得られた範囲を示している。
【0033】
上述した電解脱脂と電解活性化処理2とニッケルストライクメッキ処理3および無光沢ニッケルメッキ処理4とは、電気メッキ処理(電解脱脂処理を含む)の工程であり、アモルファス無電解ニッケルメッキ処理5と不動態化処理6とは、無電解メッキ処理(溶液に浸漬して行う不動態化を含む)の工程である。したがって、本実施形態のメッキ処理においては、未処理金型であるワーク21(図1)に貫通穴21aが設けられており、良好な表面処理を得るために、上記電気メッキ処理時と上記無電解メッキ処理時とで、ワーク21を異なる姿勢で保持する必要がある。すなわち、ワーク21に貫通穴等がある場合、電気メッキ処理時(電解脱脂処理を含む)には、上記貫通穴等を水平方向にして両電極部に対向させた姿勢にワーク21を保持する。また、無電解メッキ処理時には、貫通穴を鉛直方向に保つようにワーク21を保持する。なお、ワーク21に貫通穴の代わりに溝等がある場合には、その溝等の方向を上述した貫通穴方向と同様に扱ってワークの保持姿勢を定める。
【0034】
上記メッキ処理を行うに際して上述した状態に未処理金型(メッキ対象部品)であるワーク21を保持するために図3〜5に示す本発明の第3の実施形態のメッキ用治具(メッキ処理用保持治具)であるワーク保持具を適用する。
図3は、上記ワーク保持具の正面図であって、電気メッキ時のワーク保持状態と無電解メッキ時のワーク保持状態とを合わせて2点鎖線で示す。図4は、電気メッキ処理時のワーク保持状態における図3のA方向矢視図である。図5は、上記ワーク保持具の下ワーク保持部を図4のB方向から見た分解斜視図であり、同時に電気メッキ処理時と無電解メッキ処理時でのワーク保持状態を合わせて2点鎖線で示す。
【0035】
なお、図3〜5において、HxまたはHy方向(Hxと直交)とV方向とは、それぞれ上記ワーク保持具をメッキ槽に浸漬したときの水平方向と鉛直方向を示している。
【0036】
上記ワーク保持具30は、導電材料からなり、−電極と電気的に結合される吊り金具31と、吊り金具31の下方の上側に配される上ワーク保持部33と、下方の下側に配される下ワーク保持部34とを有してなり、メッキ処理時に2つの未処理金型であるワーク21を異なる姿勢で保持可能である。すなわち、このワーク保持具30によれば、上述した電気メッキ処理と無電解メッキ処理との処理切り換え時に後述する姿勢保持板の付け換え作業のみで金型21を取り外すことなく、単一のワーク保持具によりその保持姿勢を変更することができる。
【0037】
ワーク保持具30の吊り金具31は、ステンレス鋼板製であって、その上部にワーク保持具支持用のフック部31aを有し、下方部に上,下ワーク保持部33,34が組み付けられている。なお、フック部31aと上ワーク保持部33の間は、クランク状に折り曲げられ、その折り曲げ部分には、補強板32が溶接されている。
【0038】
上ワーク保持部33と下ワーク保持部34とは、同一の構成を有しているが、上記処理切り換え時のワーク姿勢の切り換えのとき、互いの干渉を避け、かつ、無電解メッキ時気泡等が滞らせないために上ワーク保持部33と下ワーク保持部34とは、Hx方向に少なくともワークの厚み分ずれて配置されている。
【0039】
上ワーク保持部33は、吊り金具31に上方から下方に向けて順に固着される固定ブロック41,固定ブロック42,軸支ブロック43を有し、さらに、その軸支ブロック43に対してヒンジピン(ヒンジ)48を介して回転可能に支持される姿勢変更手段(梁部)のワーク支持板44と、ワーク支持板44に回転可能に支持される姿勢変更手段の姿勢保持板45と、さらに、蝶ネジ46,47やワーク固定ビス71等を有してなる。図4においては、ワーク21を電気メッキ処理時の姿勢状態を示している。
【0040】
下ワーク保持部34は、吊り金具31に上方から下方に向けて順に固着される固定ブロック51,固定ブロック52,軸支ブロック53を有し、さらに、その軸支ブロック53に対してヒンジピン(ヒンジ)58を介して回転可能に支持される姿勢変更手段(梁部)のワーク支持板54と、ワーク支持板54に回転可能に支持される姿勢変更手段の姿勢保持板55と、さらに、蝶ネジ56,57やワーク固定ビス72等を有してなる。
【0041】
上ワーク保持部33と下ワーク保持部34とは、同様の構成を有しているので、以下、下ワーク保持部34の詳細な構成について図5を用いて説明する。
【0042】
ワーク支持板54は、その一端部が軸支穴54aに挿通するヒンジピン58を介して軸支ブロック53に回動自在に支持され、他端部がネジ穴54bに螺着される軸支ピン59を介して姿勢保持板55の一端に設けられた軸支穴55aにてスペーサ60を挟んだ状態で姿勢保持板55が回動自在に連結されている。軸支ピン59の外側には、ピン抜け止め用止め輪61が嵌入される。また、このワーク支持板54には、軸支穴54bの近傍にてHx方向に直角に折り曲げて形成される凸部上にワーク取り付け穴54cが設けられる。このワーク取り付け穴54cにワーク固定ビス72を挿通させ、ワーク21に螺着することによりワーク21がワーク支持板54に固定される。
【0043】
姿勢保持板55は、その一端がワーク支持板54に回動自在に支持され、他端に切り欠き55bが設けられている。切り欠き55bは、固定ブロック51、または、52に対してネジ部51a,52aに螺着される蝶ネジ56、または、57により切り換えて係止可能である。姿勢保持板55の係止位置の切り換えによってワーク支持板54は、ヒンジピン58中心に回転し、この支持板54がV方向に沿った状態とHy方向に沿った状態とに切り換え保持可能である。
【0044】
上ワーク保持部33においても下ワーク保持部34と同様に吊り金具31に回動可能に支持されるワーク支持板44が姿勢保持板45の係止位置の切り換えによってヒンジピン48中心に回転し、V方向に沿った状態とHy方向に沿った状態に切り換え保持可能である。
【0045】
上述した構成を有する上記ワーク保持具31を用いて図2に示した一連のメッキ処理を行う場合、まず、2つの未処理金型であるワーク21をワーク支持具30のワーク支持板44,54にビス71,72により取り付ける。
【0046】
ワーク支持具30に取り付けられたワーク21は、メッキ処理に際してメッキ漕のメッキ液に浸漬されるが、そのときのメッキ処理が電気メッキ処理であるか無電解メッキ処理であるかによりワーク21の姿勢が切り換えられる。
【0047】
すなわち、電解活性化処理2からニッケルストライクメッキ処理3を経て無光沢ニッケルメッキ処理4まで(図2)の間の電解活性化処理を含む電気メッキ処理では、姿勢保持板45の切り欠きおよび姿勢保持板55の切り欠き部55bをそれぞれ固定ブロック42、52にねじ嵌合している蝶ネジ47,57のネジ軸に係止して固定し、2つのワーク21をその貫通穴21aが図3に示すHy方向の沿った姿勢(第1の姿勢)に保持する。この保持姿勢であれば、貫通穴21aが+電極104,105と対向し、電流方向と一致し、良好なメッキ層の生成、あるいは、良好な表面の電解活性化が行われる。
【0048】
また、アモルファス無電解ニッケルメッキ処理5から不動態化処理6まで(図2)の間の無電解処理では、姿勢保持板45の切り欠きおよび姿勢保持板55の切り欠き部55bをそれぞれ固定ブロック41、51にネジ嵌合している蝶ネジ46,56のネジ軸に切り換えて固定し、2つのワーク21をその貫通穴21aが図3に示すV方向の沿った姿勢(第2の姿勢)に切り換える。この保持姿勢では、貫通穴21aが鉛直方向に沿っているので貫通穴内で発生するガスが逃げやすくなり、良好なメッキ層、または、不動態膜の生成がなされる。
【0049】
上述した本実施形態のワーク支持具30を利用して未処理金型であるワーク21を取り付けて電気メッキ処理および無電解メッキ処理を行うようにすれば、ワーク21を単一のワーク支持具30を用いてそのワーク支持具から取り外すことなく、容易に電気メッキ処理、または、無電解メッキ処理に適した姿勢に切り換えることができ、メッキ処理の必要工数を減らすことができる。
【0050】
また、本願発明のメッキ処理用保持治具(メッキ用治具)は、導電性材料からなる吊り金具部材31と、導電性材料からなり、上記メッキ処理が成されるワークをネジなど、若しくは、バネ等をワーク穴内に挿入して保持可能とし、一端を上記吊り金具部材31に対して回動するワーク保持腕44、54と、導電性材料からなり、一端で上記ワーク保持腕の他端と相対回勅する姿勢保持板45,55と、上記吊り金具部材31に設けられ、上記ワークの姿勢を切り換えるため、上記姿勢保持板の他端を上記吊り金具部材31に対して互いに異なる2箇所の位置で係止する複数の係止部(なお、係止部の例として、蝶ネジ56、57に代わり、バネ部材などで上記姿勢保持板を保持係止してもよい)とで構成させてもよい。
【0051】
なお、第3の実施形態のワーク支持具30において、ワーク21の姿勢を貫通穴21aの方向を対象にして切り換えるようにしたが、貫通穴に限らずメッキ処理に影響する各種の形状を対象にしてワークの姿勢を切り換えてもよい。また、切り換えられる姿勢の角度も本実施形態では、90°であったが、90°以外の角度であってもよい。
【0052】
【発明の効果】
上述のように本発明によれば、ベリリウム銅を主とする素材からなる射出成形用金型において、適切なメッキ処理を行うことにより肌荒れのない良好な成形面が得られ、しかも、寿命が長い射出成形用金型、および、そのメッキ方法を提供することができ、さらに、メッキ処理においてワークの保持姿勢を容易に切り換えられるメッキ用治具を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の射出成形用金型の斜視図である。
【図2】本発明の第2の実施形態のメッキ処理方法におけるメッキ処理工程図である。
【図3】本発明の第3の実施形態のメッキ用治具であるワーク保持具の正面図である。
【図4】図3のワーク保持具のA方向の矢視図である。
【図5】図3のワーク保持具の下ワーク保持部をB方向から見た斜視図である。
【図6】従来のメッキ処理に供される未処理金型のワークの斜視図である。
【図7】従来の電気メッキ処理状態を示す図である。
【図8】従来の無電解メッキ処理状態を示す図である。
【符号の説明】
3 …ニッケルストライクメッキ処理
4 …無光沢ニッケルメッキ処理
5 …アモルファス無電解ニッケルメッキ処理
6 …不動態化処理
21 …ワーク(射出成形用金型)
44,54…ワーク支持板(梁部,姿勢変更手段)
45,55…姿勢保持板(姿勢変更手段)
48,58…ヒンジピン(ヒンジ)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an injection-molding mold that has been subjected to plating using a material containing beryllium copper, a plating method for the injection-molding mold, and a plating jig (a plating jig holding jig). ).
[0002]
[Prior art]
Conventionally, beryllium copper has been applied as a material of a synthetic resin injection mold, and the mold has been subjected to injection molding in a state of being cured by heat treatment. However, with only the above heat treatment, the surface of the mold is easily corroded, and the life of the mold is shortened.
[0003]
Thus, it is conceivable to process beryllium copper as a mold, harden it by heat treatment, and then apply plating, for example, nickel plating, to prevent corrosion of the mold surface.
[0004]
The conventional nickel plating process for the beryllium copper mold,
(1) Degreasing treatment step (2) Surface acid activation treatment step (3) Nickel plating treatment step (4) The treatment is performed in the order of water washing, pure hot water washing and drying.
[0005]
In the degreasing treatment, degreasing with an organic solvent and degreasing with an alkaline solution are performed. In the above-mentioned surface acid activation treatment, the surface is lightly activated with dilute hydrochloric acid or dilute sulfuric acid, and chemically polished using a mixed solution of nitric acid, phosphoric acid, acetic acid, etc. to remove the scale and the passivation film on the surface. I do. In the nickel plating process, an electroplating process and an electroless plating process are performed.
[0006]
In addition, the work of the unprocessed mold in the above-described conventional plating process is supported in a state as shown in the diagram of the conventional electroplating process in FIG. 7 or the diagram of the conventional electroless plating process in FIG. Is done. FIG. 6 is a perspective view of a workpiece of an unprocessed mold to be subjected to the conventional plating process.
[0007]
In the case of plating the work 101 having the through hole 101a shown in FIG. 6, in the electroplating shown in FIG. 7, the plating bath 102 in which the + electrodes 104 and 105 are arranged is filled with the plating solution 103. The work 101 is immersed between the + electrodes 104 and 105 in a state where the work 101 is held by the work support 106 with the through hole 101a kept horizontal. In this work holding state, since the through-hole 101a faces both electrodes and is along the direction of the current, good plating including the through-hole 101a is performed.
[0008]
On the other hand, in the above-described electroless plating process shown in FIG. 8, the workpiece 21 which is an unprocessed mold is replaced with a workpiece support 116 so that the through hole 101a is kept vertical, and a plating tank filled with a plating solution 113 is provided. Immerse in 112. Plating is performed in this immersion state. In this work holding state, since the through-hole 101a is held vertically, the generated gas easily escapes upward, and good plating is performed including the through-hole 101a.
[0009]
Japanese Patent Application Laid-Open No. 2001-73164 discloses a conventional proposal for a chrome plating method for a surface of a mold or the like. In this plating treatment, a chromium plating is applied to the surface of the metal substrate, and then the metal substrate is heated in an oxidizing atmosphere to form a chromium oxide passivation film on the chromium plating surface. This plating process can be used for rubber molding dies and injection molded parts.
[0010]
[Problems to be solved by the invention]
However, when a beryllium copper injection mold is treated by the above-described conventional nickel plating, the surface is chemically polished with an acid mixed solution in the acid activation treatment step, so that the surface of the mold is dissolved and the dimensions are reduced. Change. There is also a problem that the surface of the mold is roughened by the acid mixed solution. In addition, the mold surface is liable to be corroded by crystal grain boundaries, has a short life in injection molding, and has a problem that a sufficient number of shots cannot always be obtained.
[0011]
Further, in the conventional workpiece support applied to the above-described conventional nickel plating, the workpiece is an unprocessed mold in the case of the electroplating shown in FIG. 7 and the case of the electroless plating shown in FIG. Since the holding postures of the workpieces are different, a dedicated work support for each plating process is required, and further, work for replacing the work is required, which is troublesome.
[0012]
The present invention has been made in order to solve the above-described problems, and in an injection molding die made of a material mainly composed of beryllium copper, by performing an appropriate plating process, a good molding surface without rough surface is obtained. Provided is an injection mold that can be obtained and has a long service life, provides a plating method thereof, and further provides a plating jig that can easily switch a holding position of an untreated mold in the plating process. The purpose is to do.
[0013]
[Means for Solving the Problems]
An injection mold according to claim 1 of the present invention is a mold for injection molding comprising a material mainly composed of beryllium copper, wherein nickel strike plating, matte nickel plating, amorphous electroless nickel plating, and chromate A coating is applied.
[0014]
The plating method according to claim 2 of the present invention is a plating method applied to an injection mold made of a material mainly composed of beryllium copper, wherein nickel strike plating, matte nickel plating, amorphous The electroless nickel plating treatment and the passivation treatment with a chromate film are plating methods applied to an injection mold made of a material mainly containing beryllium copper.
[0015]
According to a third aspect of the present invention, in the plating method according to the second aspect, an electrolytic activation process using hydrochloric acid is performed before the nickel strike plating process.
[0016]
A plating method according to a fourth aspect of the present invention is the plating method according to the third aspect, wherein a degreasing treatment is performed before the electrolytic activation treatment.
[0017]
In a plating method according to a fifth aspect of the present invention, in the plating method according to the fourth aspect, the degreasing treatment includes a degreasing treatment with an organic solvent, a degreasing treatment with an alkali bath, and an electrolytic degreasing treatment with sodium hydroxide. Including.
[0018]
The plating method according to claim 6 of the present invention is the plating method according to claim 5, wherein the solution of sodium hydroxide in the electrolytic degreasing treatment has a solution concentration of 20 g / l to 100 g / l.
[0019]
The plating method according to claim 7 of the present invention is the plating method according to claim 2, wherein the nickel strike plating treatment has a solution concentration of hydrochloric acid in a range of 30 ml / l to 200 ml / l and nickel chloride of 100 g / l. Solution concentrations range from 1 to 400 g / l.
[0020]
The plating method according to claim 8 of the present invention is the plating method according to claim 2, wherein the acidity of the solution of the amorphous electroless nickel plating is in the range of pH 2.5 to pH 4.5.
[0021]
A plating jig according to a ninth aspect of the present invention is the plating jig for supporting a component to be plated, wherein the orientation of the component is a first orientation and a second orientation different from the first orientation. There is a posture changing means for supporting the posture changeably.
[0022]
A plating jig according to a tenth aspect of the present invention is the plating jig according to the ninth aspect, further comprising a beam portion for fixing and supporting the component, one end of the beam portion is hinged, and the beam portion is provided. The orientation of the component can be changed by rotating the hinge with respect to the hinge.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view of an untreated injection molding die according to the first embodiment of the present invention.
[0024]
The injection molding die 21 of the present embodiment is a die using a beryllium copper material (hereinafter referred to as beryllium copper), has a through hole 21a, and has a through hole 21b for holding during plating. It is provided in parallel with 21a. Then, the surface of the injection molding die (work which is a non-plated die) 21 is subjected to a plating process by a plating process step of FIG. 2 described later.
[0025]
A plating method according to a second embodiment of the present invention for plating the injection molding die 1 will be described with reference to FIG. 2 showing a plating step.
This plating process is a process for plating the surface of the injection molding die 21 or the like made of beryllium copper as a material, and is performed in accordance with the plating process sequence shown in FIG. That is, the electrolytic activation process 2 is performed after the degreasing process 1, the nickel strike plating process 3 and the matte nickel plating process 4 are performed, and the amorphous electroless nickel plating process 5 A activating process 6 is performed, and finally, a post-process 7 such as a water washing process, a pure hot water washing, and drying is performed.
[0026]
In the degreasing treatment 1, the degreasing with an organic solvent and the degreasing with an alkali solution are performed in the same manner as in the case of the conventional plating, and then, unlike the conventional case, electrolytic degreasing is performed. This electrolytic degreasing is performed by using a sodium hydroxide-based solution having a solution concentration of 80 g / l (permissible range: 20 to 100 g / l) as a plating solution, for example, a commercially available bath cleaner 160 (manufactured by Meltex Co., Ltd.), and the solution temperature is 55 ° C (allowable range: 40 to 70 ° C), and a negative electrolytic treatment at a current density of 5 A / dm 2 (allowable range: 1 to 20 A / dm 2 ) for 1 minute (allowable range: 10 sec to 5 min) Is In this electrolytic degreasing, the surface is activated because hydrogen gas is generated. Further, the effect is increased by increasing the concentration of the plating solution (the conventional ordinary concentration is 30 to 50 g / l).
[0027]
In the electrolytic activation treatment 2, hydrochloric acid having a concentration by volume of 10% (permissible range of 5 to 50%) is used as a plating solution, the liquid temperature is maintained at a normal temperature (permissible range of 5 to 35 ° C.), and the current density is 5A. The negative electrolytic treatment is performed for 1 min 30 sec (permissible range 10 sec to 5 min) at / dm 2 (permissible range 1 to 20 A / dm 2 ). In the electrolytic activation treatment 2, a synergistic effect of the surface activation by the generated hydrogen gas and hydrochloric acid is exerted. In addition, since the plating solution is in a negative electrolysis state and the plating solution is a thin acid, there is no elution of the substrate, and the surface of the mold is hardly roughened.
[0028]
In the nickel strike plating process 3, a plating solution mixed with hydrochloric acid having a solution concentration of 50 ml / l (allowable range of 30 to 200 ml / l) and nickel chloride solution having a solution concentration of 300 g / l (allowable range of 100 to 400 ml / l) as a plating solution using, maintaining the liquid temperature to a state of normal temperature (tolerance 5 to 40 ° C), current density 3.5A / dm 2 (tolerance 1 to 20A / dm 2) between the time 1min (tolerance 15sec~ Electroplating for 10 min) is performed. In the nickel strike plating process 3, a base coat having good adhesion is performed for plating while activating the base surface with hydrochloric acid (the same effect as that of plating on a normal stainless steel material). Furthermore, the concentration of hydrochloric acid is reduced (conventional ordinary hydrochloric acid concentration is 125 ml / l), and the concentration of nickel chloride solution is increased (conventional ordinary nickel chloride solution is 250 g / l) to prevent roughening of the substrate. ing.
[0029]
In the matte nickel plating treatment 4, a nickel sulfate solution having a concentration of 250 g / l (permissible range: 150 to 400 g / l), a nickel chloride solution having a concentration of 45 g / l (permissible range: 30 to 100 g / l), A mixed plating solution of a boric acid solution of 30 g / l (acceptable range of 20 to 70 g / l) and an additive (primary brightener) having a concentration of 5 ml / l (acceptable range of 1 to 30 ml / l) is used. Electroplating is performed at a current density of 3 A / dm 2 (allowable range of 1 to 20 A / dm 2 ) for 1 minute (allowable range of 15 sec to 5 min) while maintaining the temperature at 50 ° C. (allowable range of 45 to 60 ° C.). . In this matte nickel plating process 4, a good plated surface can be obtained due to the pinhole filling effect in the nickel strike plating process 3.
[0030]
In the amorphous electroless nickel plating treatment 5, as the amorphous electroless nickel plating solution, for example, a mixture of a commercially available Top Nicolon NAC (manufactured by Okuno Pharmaceutical Co., Ltd.) with the A agent having a concentration of 80 ml / l and the B agent having a concentration of 200 ml / l is used. Using a liquid, the pH is adjusted to be 3.5 to 4.5 (permissible range: pH 2.5 to 4.5) (the pH is adjusted with an ammonia liquid). The work 21 which is a die coated with matte nickel plating is immersed in the plating solution maintained at a liquid temperature of 83 ° C. (permissible range of 75 to 95 ° C.) for 1 hour 30 min (permissible range of 30 min to 5 h). Perform electroless plating. In the amorphous electroless plating process 5, a film thickness of 5 to 6 μm is formed. Since amorphous is amorphous, it does not have crystal grain boundaries unlike ordinary metals. Corrosion of the metal starts from the crystal grain boundaries. However, since the surface subjected to the amorphous electroless nickel plating treatment has no crystal grain boundaries, corrosion hardly occurs and corrosion resistance is improved.
[0031]
In the passivation treatment 6, a chromic anhydride solution having a concentration of 1 g / l (permissible range: 0.5 to 100 g / l) was used, and the anhydrous solution at a liquid temperature of 70 ° C (permissible range: 50 to 90 ° C) was used. A work 21 which is a mold having been subjected to an amorphous electroless nickel plating treatment is immersed in a chromic acid solution for a time of 10 min (permissible range: 1 to 30 min) to perform a passivation treatment. By this treatment, an extremely thin chromate film is formed on the surface, the surface is passivated, and the corrosion resistance is improved.
[0032]
By performing the plating treatment of the present embodiment from the above-described degreasing treatment 1 to the passivation treatment 6, the beryllium copper material having a good molded surface without rough surface, small dimensional change, and long mold life is obtained. An injection mold is obtained.
Note that the above-described allowable ranges of the liquid concentration, the liquid temperature, the pH value, the current density, the processing time, and the like indicate the ranges in which acceptable results were actually obtained when plating was performed.
[0033]
The above-described electrolytic degreasing and electrolytic activation treatment 2, nickel strike plating treatment 3, and matte nickel plating treatment 4 are steps of electroplating treatment (including electrolytic degreasing treatment). The passivation process 6 is a step of electroless plating (including passivation performed by immersion in a solution). Therefore, in the plating process of the present embodiment, the through-hole 21a is provided in the workpiece 21 (FIG. 1) which is an unprocessed mold, and in order to obtain a good surface treatment, the through-hole 21a and the non-processed metal mold are used. It is necessary to hold the work 21 in a different posture between when the electrolytic plating process is performed. That is, when the work 21 has a through-hole or the like, during the electroplating process (including the electrolytic degreasing process), the work 21 is held in a posture facing the both electrode portions with the through-hole or the like horizontal. In the electroless plating process, the work 21 is held so that the through holes are kept in the vertical direction. When the work 21 has a groove or the like instead of the through hole, the direction of the groove or the like is treated in the same manner as the above-described direction of the through hole, and the holding posture of the work is determined.
[0034]
In order to hold the workpiece 21 which is an unprocessed mold (part to be plated) in the above-described state when performing the plating process, a plating jig (plating process) according to the third embodiment of the present invention shown in FIGS. The work holding jig is used.
FIG. 3 is a front view of the work holder, and shows the work holding state during electroplating and the work holding state during electroless plating in two-dot chain lines. FIG. 4 is a view in the direction of arrow A in FIG. 3 in a state of holding the workpiece during the electroplating process. FIG. 5 is an exploded perspective view of the lower work holding portion of the work holding tool as viewed from the direction B in FIG. 4, and simultaneously shows the work holding state during the electroplating process and the electroless plating process by a two-dot chain line. Indicated by
[0035]
3 to 5, the Hx or Hy direction (perpendicular to Hx) and the V direction indicate the horizontal direction and the vertical direction when the work holder is immersed in the plating bath, respectively.
[0036]
The work holder 30 is made of a conductive material, and is electrically connected to a negative electrode. The upper work holder 33 is disposed above the lower part of the suspender 31, and is disposed below the lower part. And a lower work holding portion 34 that can hold the two unprocessed dies 21 in different postures during the plating process. That is, according to the work holder 30, when the process is switched between the electroplating process and the electroless plating process, a single work is held without removing the mold 21 only by replacing the posture holding plate described later. The holding posture can be changed by a tool.
[0037]
The hanging bracket 31 of the work holder 30 is made of a stainless steel plate, has a hook 31a for supporting the work holder on the upper part, and upper and lower work holders 33 and 34 are assembled on the lower part. . Note that a portion between the hook portion 31a and the upper work holding portion 33 is bent in a crank shape, and a reinforcing plate 32 is welded to the bent portion.
[0038]
The upper work holding unit 33 and the lower work holding unit 34 have the same configuration, but when switching the work posture at the time of the process switching, avoid interference with each other and avoid air bubbles during electroless plating. The upper work holding portion 33 and the lower work holding portion 34 are arranged so as to be displaced by at least the thickness of the work in the Hx direction so as not to be delayed.
[0039]
The upper work holding part 33 has a fixed block 41, a fixed block 42, and a shaft support block 43 that are fixed to the hanging metal member 31 in order from above to below, and further, a hinge pin (hinge) is attached to the shaft support block 43. A) a work supporting plate 44 of posture changing means (beam portion) rotatably supported via 48; a posture holding plate 45 of posture changing means rotatably supported by the work supporting plate 44; 46, 47 and a work fixing screw 71 are provided. FIG. 4 shows the posture state of the work 21 during the electroplating process.
[0040]
The lower work holding portion 34 has a fixed block 51, a fixed block 52, and a support block 53, which are fixed to the suspension fitting 31 in order from above to below, and further, a hinge pin (hinge) is attached to the support block 53. A) a work supporting plate 54 of a posture changing means (beam portion) rotatably supported via 58; a posture holding plate 55 of a posture changing means rotatably supported by the work supporting plate 54; 56, 57, a work fixing screw 72, and the like.
[0041]
Since the upper work holding unit 33 and the lower work holding unit 34 have the same configuration, the detailed structure of the lower work holding unit 34 will be described below with reference to FIG.
[0042]
One end of the work support plate 54 is rotatably supported by the support block 53 via a hinge pin 58 inserted into the support hole 54a, and the other end of the work support plate 54 is screwed into the screw hole 54b. The posture holding plate 55 is rotatably connected to a shaft support hole 55a provided at one end of the posture holding plate 55 with the spacer 60 interposed therebetween. A retaining ring 61 for retaining the pin is fitted to the outside of the pivot pin 59. The work support plate 54 is provided with a work mounting hole 54c on a convex portion formed by being bent at a right angle in the Hx direction near the shaft support hole 54b. The work 21 is fixed to the work support plate 54 by inserting the work fixing screw 72 into the work mounting hole 54c and screwing it to the work 21.
[0043]
One end of the posture holding plate 55 is rotatably supported by the work support plate 54, and a notch 55b is provided at the other end. The notch 55b can be switched and locked to the fixed block 51 or 52 by a thumb screw 56 or 57 screwed to the screw portions 51a and 52a. By switching the locking position of the attitude holding plate 55, the work support plate 54 rotates about the hinge pin 58, and the support plate 54 can be switched and held between a state along the V direction and a state along the Hy direction.
[0044]
In the upper work holding portion 33 as well as the lower work holding portion 34, the work support plate 44 rotatably supported by the hanging bracket 31 rotates around the hinge pin 48 by switching the locking position of the posture holding plate 45, and V The state can be switched between the state along the direction and the state along the Hy direction.
[0045]
When performing the series of plating processes shown in FIG. 2 using the work holder 31 having the above-described configuration, first, the two unprocessed dies 21 are transferred to the work support plates 44 and 54 of the work support 30. Is attached to the base with screws 71 and 72.
[0046]
The work 21 attached to the work support 30 is immersed in a plating solution of a plating tank at the time of plating, and the posture of the work 21 depends on whether the plating at that time is electroplating or electroless plating. Is switched.
[0047]
That is, in the electroplating process including the electrolytic activation process from the electrolytic activation process 2 to the matte nickel plating process 4 through the nickel strike plating process 3 (FIG. 2), the notch and the position holding of the position holding plate 45 are performed. The notch 55b of the plate 55 is locked and fixed to the screw shafts of the thumb screws 47 and 57 screwed to the fixing blocks 42 and 52, respectively, and the two workpieces 21 are provided with the through holes 21a in FIG. The posture (first posture) along the indicated Hy direction is maintained. With this holding posture, the through-hole 21a faces the + electrodes 104 and 105 and coincides with the current direction, so that a good plating layer is generated or a good surface electrolytic activation is performed.
[0048]
In the electroless process between the amorphous electroless nickel plating process 5 and the passivation process 6 (FIG. 2), the notch of the position holding plate 45 and the notch 55b of the position holding plate 55 are fixed to the fixing block 41, respectively. , 51 are switched to and fixed to the screw shafts of the thumb screws 46 and 56 screwed to the two workpieces 21 so that the through-holes 21a of the two workpieces 21 are in the posture (second posture) along the V direction shown in FIG. Switch. In this holding posture, the gas generated in the through-hole becomes easy to escape because the through-hole 21a extends in the vertical direction, and a good plating layer or a passivation film is generated.
[0049]
If the work 21 which is an unprocessed mold is mounted using the work support 30 of the present embodiment described above to perform the electroplating process and the electroless plating process, the work 21 can be replaced with a single work support 30. , It is possible to easily switch to a position suitable for electroplating or electroless plating without removing the workpiece from the work support, thereby reducing the number of steps required for plating.
[0050]
In addition, the plating holding jig (plating jig) of the present invention includes a hanging metal member 31 made of a conductive material and a work made of a conductive material, and the work to be plated is screwed, or the like. A spring or the like can be inserted and held in the work hole, one end of which is made of a conductive material, and the other end of the work holding arm is made of a conductive material. The other end of the posture holding plate is provided at two different positions with respect to the hanging metal member 31 so as to switch the posture of the work. A plurality of locking portions that lock at a position (note that the position holding plate may be held and locked by a spring member or the like instead of the thumb screws 56 and 57 as an example of the locking portion). Is also good.
[0051]
In the work support 30 of the third embodiment, the posture of the work 21 is switched with respect to the direction of the through hole 21a. The posture of the workpiece may be switched. In the present embodiment, the angle of the posture to be switched is 90 °, but may be an angle other than 90 °.
[0052]
【The invention's effect】
As described above, according to the present invention, in an injection molding die made of a material mainly composed of beryllium copper, a good molded surface without rough surface can be obtained by performing an appropriate plating treatment, and the life is long. An injection mold and a plating method thereof can be provided, and further, a plating jig capable of easily switching a holding posture of a work in a plating process can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view of an injection molding die according to a first embodiment of the present invention.
FIG. 2 is a plating process diagram in a plating method according to a second embodiment of the present invention.
FIG. 3 is a front view of a work holder which is a plating jig according to a third embodiment of the present invention.
FIG. 4 is a view of the work holder of FIG.
FIG. 5 is a perspective view of a lower work holding portion of the work holding tool of FIG. 3 when viewed from a direction B.
FIG. 6 is a perspective view of a workpiece of an unprocessed mold provided for a conventional plating process.
FIG. 7 is a view showing a state of a conventional electroplating process.
FIG. 8 is a diagram showing a state of a conventional electroless plating process.
[Explanation of symbols]
3 Nickel strike plating treatment 4 Matte nickel plating treatment 5 Amorphous electroless nickel plating treatment 6 Passivation treatment 21 Work (injection molding die)
44, 54: Work support plate (beam, posture changing means)
45, 55 ... posture holding plate (posture changing means)
48, 58 ... hinge pin (hinge)

Claims (10)

ベリリウム銅を主とする素材からなる射出成形用金型において、
ニッケルストライクメッキと、
無光沢ニッケルメッキと、
アモルファス無電解ニッケルメッキと、
クロメート皮膜と、
が施されたことを特徴とする射出成形用金型。
In an injection mold made of beryllium copper-based material,
Nickel strike plating,
Matte nickel plating,
Amorphous electroless nickel plating,
Chromate film,
A metal mold for injection molding characterized by having been subjected to.
ベリリウム銅を主とする素材からなる射出成形用金型に対して施されるメッキ方法において、
ニッケルストライクメッキ処理と、
無光沢ニッケルメッキ処理と、
アモルファス無電解ニッケルメッキ処理と、
クロメート皮膜による不働態化処理と、
がベリリウム銅を主とする素材からなる射出成形用金型に対して施されることを特徴とするメッキ方法。
In a plating method applied to an injection mold made of a material mainly composed of beryllium copper,
Nickel strike plating,
Matte nickel plating,
Amorphous electroless nickel plating,
Passivation treatment by chromate film,
Is applied to an injection mold made of a material mainly composed of beryllium copper.
上記ニッケルストライクメッキ処理の前に塩酸による電解活性化処理を行うことを特徴とする請求項2記載のメッキ方法。3. The plating method according to claim 2, wherein an electrolytic activation treatment with hydrochloric acid is performed before the nickel strike plating treatment. 上記電解活性化処理の前に脱脂処理を行うことを特徴とする請求項3記載のメッキ方法。The plating method according to claim 3, wherein a degreasing treatment is performed before the electrolytic activation treatment. 上記脱脂処理は、有機溶剤による脱脂処理、アルカリ浴による脱脂処理、および、水酸化ナトリウムによる電解脱脂処理の工程を含むことを特徴とする請求項4記載のメッキ方法。The plating method according to claim 4, wherein the degreasing treatment includes a degreasing treatment with an organic solvent, a degreasing treatment with an alkaline bath, and an electrolytic degreasing treatment with sodium hydroxide. 上記電解脱脂処理における水酸化ナトリウムの溶液は、20g/lから100g/lの範囲の溶液濃度であることを特徴とする請求項5記載のメッキ方法,The plating method according to claim 5, wherein the sodium hydroxide solution in the electrolytic degreasing treatment has a solution concentration in a range of 20 g / l to 100 g / l. 上記ニッケルストライクメッキ処理は、塩酸が30ml/lから200ml/lの範囲の溶液濃度であり、塩化ニッケルが100g/lから400g/lの範囲の溶液濃度であることを特徴とする請求項2記載のメッキ方法。3. The nickel strike plating process according to claim 2, wherein hydrochloric acid has a solution concentration in a range of 30 ml / l to 200 ml / l, and nickel chloride has a solution concentration in a range of 100 g / l to 400 g / l. Plating method. 上記アモルファス無電解ニッケルメッキの溶液の酸性度は、pH2.5からpH4.5の範囲であることを特徴とする請求項2記載のメッキ方法。The plating method according to claim 2, wherein the acidity of the solution for the amorphous electroless nickel plating is in the range of pH 2.5 to pH 4.5. メッキ対象部品を支持するためのメッキ用治具において、
上記部品の姿勢を第1の姿勢と、上記第1の姿勢とは異なる第2の姿勢とに変更可能に支持する姿勢変更手段を有することを特徴とするメッキ用治具。
In plating jigs for supporting parts to be plated,
A plating jig, comprising: posture changing means for supporting a posture of the component so as to be changeable between a first posture and a second posture different from the first posture.
上記部品を固定支持する梁部を有し、上記梁部の一端がヒンジ支持され、上記梁部の上記ヒンジに関する回転により上記部品の姿勢を変更可能としたことを特徴とする請求項9記載のメッキ用治具。10. The device according to claim 9, further comprising a beam portion for fixedly supporting the component, wherein one end of the beam portion is hingedly supported, and the posture of the component can be changed by rotation of the beam portion with respect to the hinge. Jig for plating.
JP2003122829A 2003-04-25 2003-04-25 Injection mold and plating method Expired - Fee Related JP4309690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122829A JP4309690B2 (en) 2003-04-25 2003-04-25 Injection mold and plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122829A JP4309690B2 (en) 2003-04-25 2003-04-25 Injection mold and plating method

Publications (2)

Publication Number Publication Date
JP2004323945A true JP2004323945A (en) 2004-11-18
JP4309690B2 JP4309690B2 (en) 2009-08-05

Family

ID=33500920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122829A Expired - Fee Related JP4309690B2 (en) 2003-04-25 2003-04-25 Injection mold and plating method

Country Status (1)

Country Link
JP (1) JP4309690B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262548A (en) * 2006-03-30 2007-10-11 Yamagata Prefecture Method of forming functional metal coated film onto metal product provided with temperature control function
KR100918975B1 (en) 2009-06-12 2009-09-25 (주)중앙피엔피 Car wheel nut plating method and electroless nickel plating device
CN104073851A (en) * 2014-06-20 2014-10-01 中磁科技股份有限公司 Electrogalvanizing process for neodymium-iron-boron permanent-magnet material
KR101770651B1 (en) * 2016-02-23 2017-08-24 리녹스 주식회사 Method of Manufacturing a electroplating pipe
CN113510451A (en) * 2021-04-20 2021-10-19 昆山缔微致精密电子有限公司 3D special-shaped waterway manufacturing process
CN113930810A (en) * 2020-06-29 2022-01-14 比亚迪股份有限公司 Iron-based metal piece, metal plastic composite material and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262548A (en) * 2006-03-30 2007-10-11 Yamagata Prefecture Method of forming functional metal coated film onto metal product provided with temperature control function
JP4644814B2 (en) * 2006-03-30 2011-03-09 山形県 Method for forming a functional metal film on a metal product having a temperature control function
KR100918975B1 (en) 2009-06-12 2009-09-25 (주)중앙피엔피 Car wheel nut plating method and electroless nickel plating device
CN104073851A (en) * 2014-06-20 2014-10-01 中磁科技股份有限公司 Electrogalvanizing process for neodymium-iron-boron permanent-magnet material
KR101770651B1 (en) * 2016-02-23 2017-08-24 리녹스 주식회사 Method of Manufacturing a electroplating pipe
CN113930810A (en) * 2020-06-29 2022-01-14 比亚迪股份有限公司 Iron-based metal piece, metal plastic composite material and preparation method thereof
CN113930810B (en) * 2020-06-29 2024-02-27 比亚迪股份有限公司 Iron-based metal part, metal plastic composite material and preparation method thereof
CN113510451A (en) * 2021-04-20 2021-10-19 昆山缔微致精密电子有限公司 3D special-shaped waterway manufacturing process

Also Published As

Publication number Publication date
JP4309690B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
US3716462A (en) Copper plating on zinc and its alloys
JPH0544075A (en) Copper striking method substituted for electroless copper plating
JP6150822B2 (en) Method for metallizing non-conductive plastic surface
US2636850A (en) Electroplating of copper from cyanide electrolytes
KR980006215A (en) Suitable nickel coatings and methods for coating articles with such nickel coatings
JP4309690B2 (en) Injection mold and plating method
JPH0793498B2 (en) Through hole plating printed circuit board manufacturing method
JPS6036666A (en) Metallization of electrically insulating flexible film of thermoplastic material and products therefrom
JP4027320B2 (en) Copper plating method for zinc objects and zinc alloy objects using non-cyanide compounds
JP2923754B2 (en) Magnesium alloy plating method
US10287688B2 (en) Plating method
TWI443230B (en) Use of phosphinic acids and/or phosphonic acids in redox processes
JP3915762B2 (en) Partial plating equipment
JP5495369B2 (en) Resin plating method using ozone water treatment
JP2010031306A (en) Method of plating on resin base material
JP4494309B2 (en) Method for improving corrosion resistance of copper-free nickel-chromium resin plating
JP2008506836A (en) Method for improving soldering characteristics of nickel coating
JP4636790B2 (en) High rigidity / hardness plating method for resin casing
JPH0797719B2 (en) Method of forming electromagnetic wave shield layer
JP2933986B2 (en) Release agent for electroforming
GB2065175A (en) Method and Composition for Producing Palladium Electrodeposition
US2890992A (en) Apparatus for fabricating electrotyping shells
JP2001303291A (en) Method for manufacturing metal/plastic composite
JP5397300B2 (en) Method for producing metal film on electrodeposited resin film
JP2000343644A (en) Composite of metal and plastic and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees