JP2004323910A - Method of producing nickel powder - Google Patents

Method of producing nickel powder Download PDF

Info

Publication number
JP2004323910A
JP2004323910A JP2003119854A JP2003119854A JP2004323910A JP 2004323910 A JP2004323910 A JP 2004323910A JP 2003119854 A JP2003119854 A JP 2003119854A JP 2003119854 A JP2003119854 A JP 2003119854A JP 2004323910 A JP2004323910 A JP 2004323910A
Authority
JP
Japan
Prior art keywords
powder
nickel
nickel powder
producing
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003119854A
Other languages
Japanese (ja)
Other versions
JP4549034B2 (en
Inventor
Youichi Kamikooriyama
洋一 上郡山
Sumikazu Ogata
純和 尾形
Takashi Mukono
隆 向野
Kei Anai
圭 穴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003119854A priority Critical patent/JP4549034B2/en
Publication of JP2004323910A publication Critical patent/JP2004323910A/en
Application granted granted Critical
Publication of JP4549034B2 publication Critical patent/JP4549034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing nickel powder which has excellent dispersibility in an organic vehicle in the preparation of electrically conductive paste, is suitable for preparing electrically conductive paste used for the formation of a thin internal electrode free from projections because of its sharp grain size distribution, can obtain a dry film having high density and reduced Ra after pasting and is suitably used for the production of a multilayer ceramic condenser. <P>SOLUTION: In the method of producing nickel powder, powder selected from the group consisting of nickel salt power and nickel hydroxide powder is suspended into polyol containing a noble metal compound catalyst and a dispersant, the powder is heated to a temperature sufficient for reducing the powder into nickel powder to produce nickel powder, and the produced flocculated nickel powder is subjected to crushing treatment so as to simply be dispersed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はニッケル粉の製造方法に関し、より詳しくは、凝集が少なく単分散状態に近いので、導電ペーストの調製において有機ビヒクル中での分散性が優れており、更に粒度分布がシャープであるので薄くて突起のない内部電極の形成に用いる導電ペーストの調製に適しており、ペースト化した後に得られる乾燥膜の密度が高く且つRaが小さく、積層セラミックコンデンサの製造に好適に用いることができるニッケル粉の製造方法に関する。
【0002】
【従来の技術】
ポリオール法でニッケル塩粉体又はニッケル水酸化物粉体を還元してニッケル粉を製造した場合には、高純度、高結晶、均一一次粒径のニッケル粉が得られることは公知である(例えば、特許文献1参照。)。
【0003】
また、一般に、乾式反応もしくは湿式反応により製造されたままの状態の金属粉は程度の差はあっても何れも凝集しており、ニッケル粉においても、この凝集の問題は大きく、特に導電ペーストの調製の際には有機ビヒクル中への分散性が重要なポイントであり、凝集のより少ない、いわゆるできるだけ単分散状態に近いニッケル粉が求められている。
【0004】
【特許文献1】
特公平4−24402号公報
【0005】
【発明が解決しようとする課題】
しかしながら、ポリオール法で得られるニッケル粉は一次粒子同士が強固に凝集して二次粒子を形成しているので、そのままではペースト化が困難であり、またニッケル粉をペースト化した後に得られる乾燥膜の密度が低く、Raも悪い傾向がある。
【0006】
本発明は、凝集が少なく単分散状態に近いので、導電ペーストの調製において有機ビヒクル中での分散性が優れており、更に粒度分布がシャープであるので薄くて突起のない内部電極の形成に用いる導電ペーストの調製に適しており、ペースト化した後に得られる乾燥膜の密度が高く且つRaが小さく、積層セラミックコンデンサの製造に好適に用いることができるニッケル粉の製造方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明者等は上記の目的を達成するために鋭意検討した結果、ポリオール法で製造したニッケル粉を湿式解砕法又は乾式解砕法による解砕処理を実施するか、又は振動流動乾燥機を用いることにより、ペースト化が容易であり、ペースト化した後に得られる乾燥膜の密度が高く且つRaが小さく、積層セラミックコンデンサの製造に好適に用いることのできる単分散ニッケル粉が得られることを見出し、本発明を完成した。
【0008】
即ち、本発明のニッケル粉の製造方法は、ポリオール中に、ニッケル塩粉体及びニッケル水酸化物粉体からなる群より選ばれる粉体を懸濁させ、該粉体をニッケル粉に還元するのに十分な温度に加熱してニッケル粉を生成させ、生成した凝集ニッケル粉を解砕処理して単分散化することを特徴とする。
【0009】
また、本発明のニッケル粉の製造方法は、ポリオール中に、ニッケル塩粉体及びニッケル水酸化物粉体からなる群より選ばれる粉体を懸濁させ、該粉体をニッケル粉に還元するのに十分な温度に加熱してニッケル粉を生成させ、生成した凝集ニッケル粉を、沸点が100℃以下の有機溶媒又は該有機溶媒と水との混合溶媒で洗浄し、ボールを充填した振動乾燥機中で乾燥することを特徴とする。
【0010】
【発明の実施の形態】
本発明の製造方法で用いることのできる貴金属化合物触媒として、塩化パラジウム、硝酸パラジウム、酢酸パラジウム、塩化アンモニウムパラジウム、酸化パラジウム等のパラジウム化合物、硝酸銀、乳酸銀、酸化銀、硫酸銀、シクロヘキサン酸銀、酢酸銀等の銀化合物、塩化白金酸、塩化白金酸カリウム、塩化白金酸ナトリウム等の白金化合物、塩化金酸、塩化金酸ナトリウム等の金化合物等を挙げることができ、コスト、ニッケル粉の純度の観点から、硝酸パラジウム、酢酸パラジウム、酸化パラジウム、硝酸銀、酢酸銀、酸化銀が好ましい。
【0011】
本発明の製造方法で用いることのできる分散剤として、例えばポリビニルピロリドン、ポリエチレンイミン、ポリアクリルアミド、ポリ(2−メチル−2−オキサゾリン)等の含窒素有機化合物や、ポリビニルアルコール等を挙げることができる。
【0012】
本発明の製造方法で用いることのできるポリオールとして、特公平4−24402号公報に記載されている種々のポリオールを挙げることができ、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、ジプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、それらの混合物を挙げることができる。本発明の製造方法においては、反応温度において液状のポリオールを用いる。
【0013】
本発明の製造方法で用いるニッケル塩、ニッケル水酸化物として、硫酸ニッケル、硝酸ニッケル、塩化ニッケル、臭化ニッケル、水酸化ニッケル等を挙げることができる。
【0014】
本発明の製造方法においては、反応速度を考慮して、ニッケル塩粉及びニッケル水酸化物粉からなる群より選ばれる粉体が懸濁している懸濁液を、該粉体をニッケル粉に還元するのに十分な温度に加熱する必要がある。この加熱温度は85℃以上であることが好ましく、100℃以上であることが一層好ましい。加熱温度の上限は分散剤の沸点又は分解温度、ポリオールの沸点の内で一番低い温度によって制限される。
【0015】
本発明の製造方法においては、分散剤の沸点又は分解温度が100℃以上であり、上記懸濁液の加熱温度が85℃以上で該分散剤の沸点又は分解温度未満であることが好ましい。
【0016】
本発明の製造方法においては、分散剤の含有量がポリオールの量の0.01質量%以上、好ましくはポリオールの量の0.05〜5質量%であることが好適である。分散剤の含有量がポリオールの量の0.01質量%未満である場合には、本発明で目的としている効果が不十分となる傾向がある。
【0017】
本発明の製造方法においては、解砕処理として、例えば、湿式解砕法又は乾式解砕法を採用することができ、例えば、ニッケル粉を高速で回転している回転部に衝突させて粉砕させる高速回転式衝突粉砕処理、ニッケル粉をビーズ等と共に攪拌して粉砕させるメディア攪拌式粉砕処理、ニッケル粒子のスラリーを高水圧で2方向から衝突させて粉砕させる高水圧式解砕処理、噴流衝合処理等を挙げることができる。
【0018】
そのような処理を実施するための装置の分類として、高速動体衝突式気流型粉砕機、衝撃式粉砕機、ケージミル、媒体攪拌形ミル、軸流ミル、噴流衝合装置等がある。具体的には、スーパーハイブリッドミル(石川島播磨重工製)、ジェットミル(荏原製作所製)、スーパーマスコロイダー(増幸産業製)、ビーズミル(入江商会製)、アルティマイザー(スギノマシン製)、NCミル(石井粉砕機械製作所製)、ディスインテグレータ(大塚鉄工製)、ACMパルベライザ(ホソカワミクロン製)、ターボミル(マツボー製)、スーパーミクロン(ホソカワミクロン製)、マイクロス(奈良機械製)、ニューコスモマイザー(奈良機械製)、ファインビクトルミル(ホソカワミクロン製)、エコプレックス(ホソカワミクロン製)、CFミル(宇部興産製)、ハイブリダイザ(奈良機械製)、ピンミル(アルピネー製)、圧力ホモジナイザ(日本精機製作所製)、ハレルホモジナイザ(国産精工製)、メカノフュージョンシステム(ホソカワミクロン製)、サンドミル(ヨドキャスティング製)等がある。
【0019】
本発明の製造方法においては、上記の諸条件下で実施することにより、凝集が少なく単分散状態に近いので、導電ペーストの調製において有機ビヒクル中での分散性が優れており、更に粒度分布の標準偏差σが0.18以下のシャープな粒度分布であるので薄くて突起のない内部電極の形成に用いる導電ペーストの調製に適しており、ペースト化した後に得られる乾燥膜の密度を4.8g/cm以上にでき、且つRaを0.20μm以下にでき、積層セラミックコンデンサの製造に好適に用いることができる単分散ニッケル粉を製造することができる。
【0020】
次に、積層セラミックコンデンサ用導電ペーストの好ましい製造方法について述べる。
積層セラミックコンデンサ用導電ペーストは、本発明の製造方法で得られるニッケル粉、樹脂、溶剤等で構成され、更に必要により分散剤、焼結抑制剤等を含有することができる。具体的には、樹脂としてエチルセルロース等のセルロース誘導体、アクリル樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール等のビニル系の非硬化型樹脂、エポキシ、アクリル等の好ましくは過酸化物を併用した熱硬化性樹脂等を用いることができる。また、溶剤として、テルピネオール、テトラリン、ブチルカルビトール、カルビトールアセテート等を単独で又は混合して用いることができる。また、このペーストには必要に応じてガラスフリットを加えてもよい。本発明の積層セラミックコンデンサ用導電ペーストは以上の原料をボールミル、三本ロール等の混合用機械を用いて混合攪拌することにより得られる。
【0021】
【実施例】
以下に実施例及び比較例に基づいて本発明を具体的に説明する。
実施例1
50Lのタンクにエチレングリコール(三井化学株式会社製)30Kg及び分散剤としてポリビニルピロリドンK30(和光純薬工業株式会社製)0.81Kgを加え、小型攪拌機を用いて回転数350rpmで攪拌してポリビニルピロリドンK30を溶解させた(この溶液を便宜上、溶液Aと記す)。
【0022】
次に、溶液Aに、水酸化ニッケル(OM Group社製)16.28Kg及び100g/Lに調製した硝酸パラジウム溶液(田中貴金属工業株式会社製)10.6mLを添加した(この溶液を便宜上、溶液Bと記す)。この溶液Bを200Lの反応槽へ送液し、更にエチレングリコール152.9Kgを添加し、190℃まで加温した。昇温に伴い、反応槽内の液色が緑色から黒色へと変化した。なお、副生成する水及び有機物等は留去ラインで留出させた。190℃に到達後、1時間ごとにサンプリングを行い、反応の進行状態をXRDで確認した。5時間で完全に還元されてニッケル粉が生成していることが確認された。
【0023】
反応終了後、室温まで降温させ、磁選機を用いて上澄みをカットし、濃度80質量%のスラリーを得た。このスラリーを70Lのタンクに入れ、純水30Lを加えて強撹拌した後、磁選機を用いて上澄みをカットした。この操作を2回行った。
【0024】
得られたスラリーに純水を加えて濃度10質量%に調整した。湿式微粒化装置(アルティマイザーシステム:スギノマシン製)を使用し、圧力245MPaの条件で解砕処理を行った。
【0025】
解砕処理した後に80℃で5時間乾燥させて得られたニッケル微粒子のSEM観察による平均一次粒径(1次粒子の平均粒径)は0.3μmであった。また、粒度分布をレーザー回折散乱式粒度分布測定装置X100(マイクロトラック社製)で測定した結果、D10が0.29μm、D50が0.38μm、D90が0.55μm、及びDmaxは0.97μmであり、粒度分布の標準偏差(σ)は0.098であった。また、真比重は8.61g/cm、タップ密度は3.8g/cm、及び比表面積は2.58m/gであった。
【0026】
このニッケル粉50g、エチルセルロース2.5g及びターピネオール47.5gを混合し、3本ロールで混練してペースト化した。塗工機で成膜した後、80℃で乾燥させた。得られた乾燥膜の密度は5.23g/cmであり、Raは0.12μmであった。
【0027】
実施例2
反応操作までは実施例1と同一の操作を実施してニッケル粉を生成させた。
反応終了後、室温まで降温させ、磁選機を用いて上澄みをカットし、濃度80質量%のスラリーを得た。このスラリーを70Lのタンクに加え、純水30Lを加えて強撹拌した後、磁選機を用いて上澄みをカットした。この操作を2回行った。
得られたスラリーを80℃で5時間乾燥してニッケル粉を得た。得られたニッケル粉をハイブリダイザー(奈良機械製作所製)を用いて解砕処理した。
【0028】
解砕処理した後、ニッケル微粒子のSEM観察による平均一次粒径(1次粒子の平均粒径)は0.3μmであった。また、粒度分布をレーザー回折散乱式粒度分布測定装置X100(マイクロトラック社製)で測定した結果、D10が0.29μm、D50が0.41μm、D90が0.64μm、及びDmaxは1.38μmであり、粒度分布の標準偏差(σ)は0.133であった。また、真比重は8.71g/cm、タップ密度は3.5g/cm、及び比表面積は2.89m/gであった。
【0029】
このニッケル粉50g、エチルセルロース2.5g及びターピネオール47.5gを混合し、3本ロールで混練してペースト化した。塗工機で成膜した後、80℃で乾燥させた。得られた乾燥膜の密度は5.02g/cmであり、Raは0.13μmであった。
【0030】
実施例3
反応操作までは実施例1と同一の操作を実施してニッケル粉を生成させた。
反応終了後、室温まで降温させ、磁選機を用いて上澄みをカットし、濃度80質量%のスラリーを得た。このスラリーを70Lのタンクに入れ、純水30Lを加え、強撹拌した後、磁選機を用いて上澄みをカットした。この操作を2回行った。
【0031】
このスラリーを70Lのタンクに入れ、さらにメタノール30Lを加え、強撹拌を行った。この操作を2回行った。
得られたスラリーを洗浄した後、濃度を60質量%に調整し、ボールを充填させた振動流動乾燥機(中央化工機製)を用いて80℃で5時間の条件で乾燥させた。
【0032】
得られたニッケル微粒子のSEM観察による平均一次粒径(1次粒子の平均粒径)は0.3μmであった。また、粒度分布をレーザー回折散乱式粒度分布測定装置X100(マイクロトラック社製)で測定した結果、D10が0.30μm、D50が0.43μm、D90が0.66μm、及びDmaxは1.38μmであり、粒度分布の標準偏差(σ)は0.140であった。また、真比重は8.65g/cm、タップ密度は3.4g/cm、及び比表面積は2.69m/gであった。
【0033】
このニッケル粉50g、エチルセルロース2.5g及びターピネオール47.5gを混合し、3本ロールで混練してペースト化した。塗工機で成膜した後、80℃で乾燥させた。得られた乾燥膜の密度は4.91g/cmであり、Raは0.18μmであった。
【0034】
比較例1
湿式解砕処理を実施しなかった以外は実施例1と同様な操作を実施してニッケル粉を生成させた。
80℃で5時間乾燥させた後、粒度分布をレーザー回折散乱式粒度分布測定装置X100(マイクロトラック社製)で測定した結果、D10が0.38μm、D50が0.68μm、D90が1.10μm、及びDmaxは2.75μmであり、標準偏差(σ)は0.270であった。また、真比重は8.60g/cm、タップ密度は3.0g/cm、及び比表面積は2.48m/gであった。
【0035】
このニッケル粉50g、エチルセルロース2.5g及びターピネオール47.5gを混合し、3本ロールで混練してペースト化した。塗工機で成膜した後、80℃で乾燥させた。得られた乾燥膜の密度は4.17g/cmであり、Raは0.89μmであった。
【0036】
比較例2
乾式解砕処理を実施しなかった以外は実施例2と同様な操作を実施してニッケル粉を生成させた。
80℃で5時間乾燥させた後、粒度分布をレーザー回折散乱式粒度分布測定装置X100(マイクロトラック社製)で測定した結果、D10が0.35μm、D50が0.69μm、D90が1.26μm、及びDmaxは5.50μmであり、標準偏差(σ)は0.346であった。また、真比重は8.71g/cm、タップ密度は2.9g/cm、及び比表面積は2.75m/gであった。
【0037】
このニッケル粉50g、エチルセルロース2.5g及びターピネオール47.5gを混合し、3本ロールで混練してペースト化した。塗工機で成膜した後、80℃で乾燥させた。得られた乾燥膜の密度は4.02g/cmであり、Raは1.15μmであった。
【0038】
比較例3
メタノールによる処理を実施しなかった以外は実施例3と同様な操作を実施してニッケル粉を生成させた。
80℃で5時間乾燥させた後、粒度分布をレーザー回折散乱式粒度分布測定装置X100(マイクロトラック社製)で測定した結果、D10が0.48μm、D50が0.84μm、D90が1.31μm、及びDmaxは3.27μmであり、標準偏差(σ)は0.314であった。また、真比重は8.64g/cm、タップ密度は2.8g/cm、及び比表面積は2.57m/gであった。
【0039】
このニッケル粉50g、エチルセルロース2.5g及びターピネオール47.5gを混合し、3本ロールで混練してペースト化した。塗工機で成膜した後、80℃で乾燥させた。得られた乾燥膜の密度は4.11g/cmであり、Raは1.21μmであった。
【0040】
上記の実施例、比較例のデータから明らかなように、解砕処理等を実施しなかった比較例1〜3の場合には、凝集があるので、標準偏差σが大きく、粒度分布はブロードであり、ペースト化した後に得られる乾燥膜の密度が小さく、Raが大きい。
【0041】
これに対して、実施例1〜3の本発明の製造方法では、凝集が少なく単分散状態に近く、粒度分布の標準偏差σが0.18以下のシャープな粒度分布であり、ペースト化した後に得られる乾燥膜の密度が4.8g/cm以上であり、且つRaが0.20μm以下であり、積層セラミックコンデンサの製造に好適に用いることができる単分散ニッケル粉を製造することができる。
【0042】
【発明の効果】
本発明の製造方法で得られる単分散ニッケル粉は、凝集が少なく単分散状態に近いので、導電ペーストの調製において有機ビヒクル中での分散性が優れており、更に粒度分布の標準偏差σが0.18以下のシャープな粒度分布であるので薄くて突起のない内部電極の形成に用いる導電ペーストの調製に適しており、ペースト化した後に得られる乾燥膜の密度を4.8g/cm以上にでき、且つRaを0.20μm以下にでき、積層セラミックコンデンサの製造に好適に用いることができる単分散ニッケル粉である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a nickel powder, and more specifically, because it is less agglomerated and close to a monodispersed state, has excellent dispersibility in an organic vehicle in the preparation of a conductive paste, and has a sharp particle size distribution, so that it is thin. Nickel powder that is suitable for the preparation of a conductive paste used to form internal electrodes without protrusions and that has a high dry film density and a small Ra after being made into a paste, and can be suitably used for the production of multilayer ceramic capacitors. And a method for producing the same.
[0002]
[Prior art]
It is known that when a nickel powder is produced by reducing a nickel salt powder or a nickel hydroxide powder by a polyol method, a nickel powder having a high purity, a high crystallinity and a uniform primary particle size can be obtained (for example, And Patent Document 1.).
[0003]
In addition, generally, any metal powder in a state as produced by a dry reaction or a wet reaction is agglomerated to varying degrees, and the problem of agglomeration is also great for nickel powder, particularly for conductive paste. At the time of preparation, dispersibility in an organic vehicle is an important point, and a nickel powder with less aggregation, that is, a so-called monodispersed state as close as possible has been demanded.
[0004]
[Patent Document 1]
Japanese Patent Publication No. 4-24402 [0005]
[Problems to be solved by the invention]
However, the nickel powder obtained by the polyol method is difficult to paste as it is because the primary particles are strongly agglomerated to form secondary particles, and a dried film obtained after the nickel powder is pasted. Has a low density and Ra tends to be poor.
[0006]
The present invention is used for the formation of an internal electrode which is thin and has no protrusion because the aggregation is small and close to a monodispersed state, so that the dispersibility in an organic vehicle is excellent in the preparation of a conductive paste, and the particle size distribution is sharp. An object of the present invention is to provide a method for producing nickel powder which is suitable for preparing a conductive paste, has a high density of a dried film obtained after pasting and has a small Ra, and can be suitably used for producing a multilayer ceramic capacitor. I have.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, the nickel powder produced by the polyol method is subjected to a wet crushing method or a dry crushing method, or a vibration fluidized dryer is used. It is found that a monodispersed nickel powder which is easy to paste, has a high density of a dried film obtained after pasting and has a small Ra, and can be suitably used for manufacturing a multilayer ceramic capacitor is obtained. Completed the invention.
[0008]
That is, the method for producing a nickel powder of the present invention comprises suspending a powder selected from the group consisting of a nickel salt powder and a nickel hydroxide powder in a polyol, and reducing the powder to a nickel powder. In this case, the powder is heated to a temperature sufficient to generate nickel powder, and the generated agglomerated nickel powder is crushed to be monodispersed.
[0009]
Further, the method for producing a nickel powder of the present invention comprises suspending a powder selected from the group consisting of a nickel salt powder and a nickel hydroxide powder in a polyol, and reducing the powder to a nickel powder. To a temperature sufficient to generate nickel powder, and wash the generated agglomerated nickel powder with an organic solvent having a boiling point of 100 ° C. or lower or a mixed solvent of the organic solvent and water, and fill a ball with a vibration dryer. It is characterized by drying in.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
As a noble metal compound catalyst that can be used in the production method of the present invention, palladium chloride, palladium nitrate, palladium acetate, ammonium palladium chloride, palladium compounds such as palladium oxide, silver nitrate, silver lactate, silver oxide, silver sulfate, silver cyclohexanoate, Silver compounds such as silver acetate; platinum compounds such as chloroplatinic acid, potassium chloroplatinate and sodium chloroplatinate; gold compounds such as chloroauric acid and sodium chloroaurate; and the cost and purity of nickel powder. From the viewpoint, palladium nitrate, palladium acetate, palladium oxide, silver nitrate, silver acetate, and silver oxide are preferred.
[0011]
Examples of the dispersant that can be used in the production method of the present invention include nitrogen-containing organic compounds such as polyvinylpyrrolidone, polyethyleneimine, polyacrylamide, and poly (2-methyl-2-oxazoline), and polyvinyl alcohol. .
[0012]
Examples of the polyol that can be used in the production method of the present invention include various polyols described in Japanese Patent Publication No. Hei 4-24402. Specifically, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene Examples thereof include glycol, 1,2-propanediol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, and mixtures thereof. In the production method of the present invention, a polyol which is liquid at the reaction temperature is used.
[0013]
Examples of the nickel salt and nickel hydroxide used in the production method of the present invention include nickel sulfate, nickel nitrate, nickel chloride, nickel bromide, nickel hydroxide and the like.
[0014]
In the production method of the present invention, in consideration of the reaction rate, a suspension in which a powder selected from the group consisting of nickel salt powder and nickel hydroxide powder is suspended is reduced to nickel powder. Need to be heated to a temperature sufficient to This heating temperature is preferably at least 85 ° C, more preferably at least 100 ° C. The upper limit of the heating temperature is limited by the boiling point or the decomposition temperature of the dispersant, or the lowest temperature among the boiling points of the polyol.
[0015]
In the production method of the present invention, it is preferable that the boiling point or the decomposition temperature of the dispersant is 100 ° C. or higher, and the heating temperature of the suspension is 85 ° C. or higher and lower than the boiling point or the decomposition temperature of the dispersant.
[0016]
In the production method of the present invention, the content of the dispersant is preferably 0.01% by mass or more of the amount of the polyol, and more preferably 0.05 to 5% by mass of the amount of the polyol. When the content of the dispersant is less than 0.01% by mass of the polyol, the effects aimed at in the present invention tend to be insufficient.
[0017]
In the production method of the present invention, as the crushing treatment, for example, a wet crushing method or a dry crushing method can be adopted, for example, a high-speed rotation method in which nickel powder is crushed by colliding with a rotating part rotating at a high speed. Collision crushing treatment, media stirring crushing treatment in which nickel powder is stirred and crushed with beads, etc., high water pressure crushing treatment in which a slurry of nickel particles collides and crushes from two directions with high water pressure, jet abutment treatment, etc. Can be mentioned.
[0018]
As a classification of a device for performing such a process, there are a high-speed moving body collision type air-flow type pulverizer, an impact type pulverizer, a cage mill, a medium stirring type mill, an axial flow mill, a jet abutment device, and the like. Specifically, a super hybrid mill (manufactured by Ishikawajima-Harima Heavy Industries), a jet mill (manufactured by Ebara Corporation), a supermass colloider (manufactured by Masuko Sangyo), a bead mill (manufactured by Irie Shokai), an optimizer (manufactured by Sugino Machine), an NC mill ( Ishii Pulverizer Co., Ltd., Disintegrator (Otsuka Iron Works), ACM Pulverizer (Hosokawa Micron), Turbo Mill (Matsubo), Supermicron (Hosokawa Micron), Micros (Nara Machinery), New Cosmomizer (Nara Machinery) ), Fine Victor Mill (Hosokawa Micron), Ecoplex (Hosokawa Micron), CF Mill (Ube Industries), Hybridizer (Nara Machinery), Pin Mill (Alpinay), Pressure Homogenizer (Nippon Seiki Seisakusho), Harel Homogenizer ( Domestic Seiko), mechanical Fusion system (Hosokawa Micron), there is a sand mill (Yodo made by casting), and the like.
[0019]
In the production method of the present invention, by carrying out under the above-mentioned conditions, since the aggregation is small and close to a monodispersed state, the dispersibility in the organic vehicle in preparing the conductive paste is excellent, and the particle size distribution is further improved. It has a sharp particle size distribution with a standard deviation σ of 0.18 or less and is suitable for preparing a conductive paste used for forming a thin and projection-free internal electrode. The density of a dried film obtained after the formation of the paste is 4.8 g. / Cm 3 or more, and Ra can be 0.20 μm or less, and monodispersed nickel powder which can be suitably used for production of a multilayer ceramic capacitor can be produced.
[0020]
Next, a preferred method for producing a conductive paste for a multilayer ceramic capacitor will be described.
The conductive paste for a multilayer ceramic capacitor is composed of nickel powder, a resin, a solvent, and the like obtained by the production method of the present invention, and can further contain a dispersant, a sintering inhibitor, and the like, if necessary. Specifically, as a resin, a cellulose derivative such as ethyl cellulose, an acrylic resin, a polyvinyl butyral resin, a vinyl-based non-curable resin such as polyvinyl alcohol, and a thermosetting resin preferably used in combination with a peroxide such as epoxy and acrylic Can be used. In addition, terpineol, tetralin, butyl carbitol, carbitol acetate, and the like can be used alone or in combination as a solvent. Further, a glass frit may be added to this paste as needed. The conductive paste for a multilayer ceramic capacitor of the present invention is obtained by mixing and stirring the above raw materials using a mixing machine such as a ball mill or a three-roll mill.
[0021]
【Example】
Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples.
Example 1
30 kg of ethylene glycol (manufactured by Mitsui Chemicals, Inc.) and 0.81 kg of polyvinylpyrrolidone K30 (manufactured by Wako Pure Chemical Industries, Ltd.) were added to a 50 L tank, and the mixture was stirred with a small stirrer at a rotational speed of 350 rpm to obtain polyvinylpyrrolidone. K30 was dissolved (this solution is referred to as solution A for convenience).
[0022]
Next, 16.28 Kg of nickel hydroxide (manufactured by OM Group) and 10.6 mL of palladium nitrate solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) adjusted to 100 g / L were added to solution A (for convenience, this solution was used as a solution). B). This solution B was sent to a 200 L reaction tank, and 152.9 kg of ethylene glycol was further added thereto, followed by heating to 190 ° C. As the temperature rose, the liquid color in the reaction tank changed from green to black. In addition, water and organic substances by-produced were distilled off in a distillation line. After reaching 190 ° C., sampling was performed every hour, and the progress of the reaction was confirmed by XRD. It was confirmed that nickel powder was generated by complete reduction in 5 hours.
[0023]
After the completion of the reaction, the temperature was lowered to room temperature, and the supernatant was cut using a magnetic separator to obtain a slurry having a concentration of 80% by mass. This slurry was put in a 70 L tank, 30 L of pure water was added thereto, and the mixture was vigorously stirred. Then, the supernatant was cut using a magnetic separator. This operation was performed twice.
[0024]
Pure water was added to the obtained slurry to adjust the concentration to 10% by mass. Using a wet atomizer (Ultimizer system: manufactured by Sugino Machine Co., Ltd.), crushing was performed under the conditions of a pressure of 245 MPa.
[0025]
The average primary particle size (average primary particle size) of the nickel fine particles obtained by crushing and drying at 80 ° C. for 5 hours was 0.3 μm by SEM observation. As a result of the particle size distribution measured with a laser diffraction scattering particle size distribution analyzer X100 (manufactured by Microtrac Inc.), D 10 is 0.29 .mu.m, D 50 is 0.38 .mu.m, D 90 is 0.55 .mu.m, and D max is 0.97 μm, and the standard deviation (σ) of the particle size distribution was 0.098. The true specific gravity was 8.61 g / cm 3 , the tap density was 3.8 g / cm 3 , and the specific surface area was 2.58 m 2 / g.
[0026]
50 g of this nickel powder, 2.5 g of ethylcellulose and 47.5 g of terpineol were mixed, kneaded with a three-roll mill, and made into a paste. After forming a film with a coating machine, the film was dried at 80 ° C. The density of the obtained dried film was 5.23 g / cm 3 , and Ra was 0.12 μm.
[0027]
Example 2
Up to the reaction operation, the same operation as in Example 1 was performed to generate nickel powder.
After the completion of the reaction, the temperature was lowered to room temperature, and the supernatant was cut using a magnetic separator to obtain a slurry having a concentration of 80% by mass. This slurry was added to a 70 L tank, 30 L of pure water was added, and the mixture was vigorously stirred. The supernatant was cut using a magnetic separator. This operation was performed twice.
The obtained slurry was dried at 80 ° C. for 5 hours to obtain a nickel powder. The obtained nickel powder was crushed using a hybridizer (manufactured by Nara Machinery Co., Ltd.).
[0028]
After the crushing treatment, the nickel particles had an average primary particle size (average particle size of primary particles) of 0.3 μm by SEM observation. As a result of the particle size distribution measured with a laser diffraction scattering particle size distribution analyzer X100 (manufactured by Microtrac Inc.), D 10 is 0.29 .mu.m, D 50 is 0.41 .mu.m, D 90 is 0.64 .mu.m, and D max is The particle size distribution was 1.38 μm, and the standard deviation (σ) of the particle size distribution was 0.133. The true specific gravity was 8.71 g / cm 3 , the tap density was 3.5 g / cm 3 , and the specific surface area was 2.89 m 2 / g.
[0029]
50 g of this nickel powder, 2.5 g of ethylcellulose and 47.5 g of terpineol were mixed, kneaded with a three-roll mill, and made into a paste. After forming a film with a coating machine, the film was dried at 80 ° C. The density of the obtained dried film was 5.02 g / cm 3 , and Ra was 0.13 μm.
[0030]
Example 3
Up to the reaction operation, the same operation as in Example 1 was performed to generate nickel powder.
After the completion of the reaction, the temperature was lowered to room temperature, and the supernatant was cut using a magnetic separator to obtain a slurry having a concentration of 80% by mass. This slurry was placed in a 70 L tank, 30 L of pure water was added, and the mixture was vigorously stirred, and the supernatant was cut using a magnetic separator. This operation was performed twice.
[0031]
This slurry was put into a 70 L tank, 30 L of methanol was further added, and vigorous stirring was performed. This operation was performed twice.
After washing the obtained slurry, the concentration was adjusted to 60% by mass, and the slurry was dried at 80 ° C. for 5 hours using a vibration fluidized drier (manufactured by Chuo Kakoki) filled with balls.
[0032]
The average primary particle size (average primary particle size) of the obtained nickel fine particles by SEM observation was 0.3 μm. As a result of the particle size distribution measured with a laser diffraction scattering particle size distribution analyzer X100 (manufactured by Microtrac Inc.), D 10 is 0.30 .mu.m, D 50 is 0.43 .mu.m, D 90 is 0.66 .mu.m, and D max is 1.38 μm, and the standard deviation (σ) of the particle size distribution was 0.140. The true specific gravity was 8.65 g / cm 3 , the tap density was 3.4 g / cm 3 , and the specific surface area was 2.69 m 2 / g.
[0033]
50 g of this nickel powder, 2.5 g of ethylcellulose and 47.5 g of terpineol were mixed, kneaded with a three-roll mill, and made into a paste. After forming a film with a coating machine, the film was dried at 80 ° C. The density of the obtained dried film was 4.91 g / cm 3 , and Ra was 0.18 μm.
[0034]
Comparative Example 1
The same operation as in Example 1 was performed except that the wet crushing treatment was not performed, to generate nickel powder.
After drying at 80 ° C. 5 hours, the results of the particle size distribution measured by a laser diffraction scattering particle size distribution analyzer X100 (manufactured by Microtrac Inc.), D 10 is 0.38 .mu.m, D 50 is 0.68 .mu.m, D 90 is 1.10 μm, D max was 2.75 μm, and standard deviation (σ) was 0.270. Also, true specific gravity of 8.60 g / cm 3, a tap density of 3.0 g / cm 3, and specific surface area was 2.48m 2 / g.
[0035]
50 g of this nickel powder, 2.5 g of ethylcellulose and 47.5 g of terpineol were mixed, kneaded with a three-roll mill, and made into a paste. After forming a film with a coating machine, the film was dried at 80 ° C. The density of the obtained dried film was 4.17 g / cm 3 , and Ra was 0.89 μm.
[0036]
Comparative Example 2
The same operation as in Example 2 was performed except that the dry crushing treatment was not performed, to generate nickel powder.
After drying at 80 ° C. for 5 hours, the particle size distribution was measured with a laser diffraction / scattering type particle size distribution analyzer X100 (manufactured by Microtrac Co., Ltd.). As a result, D 10 was 0.35 μm, D 50 was 0.69 μm, and D 90 was 1.26 μm, D max was 5.50 μm, and standard deviation (σ) was 0.346. The true specific gravity was 8.71 g / cm 3 , the tap density was 2.9 g / cm 3 , and the specific surface area was 2.75 m 2 / g.
[0037]
50 g of this nickel powder, 2.5 g of ethylcellulose and 47.5 g of terpineol were mixed, kneaded with a three-roll mill, and made into a paste. After forming a film with a coating machine, the film was dried at 80 ° C. The density of the obtained dried film was 4.02 g / cm 3 , and Ra was 1.15 μm.
[0038]
Comparative Example 3
Except that the treatment with methanol was not performed, the same operation as in Example 3 was performed to generate nickel powder.
After drying at 80 ° C. 5 hours, the results of the particle size distribution measured by a laser diffraction scattering particle size distribution analyzer X100 (manufactured by Microtrac Inc.), D 10 is 0.48 .mu.m, D 50 is 0.84 .mu.m, D 90 is 1.31 μm, D max was 3.27 μm, and standard deviation (σ) was 0.314. Also, true specific gravity of 8.64 g / cm 3, a tap density of 2.8 g / cm 3, and specific surface area was 2.57m 2 / g.
[0039]
This nickel powder (50 g), ethyl cellulose (2.5 g) and terpineol (47.5 g) were mixed and kneaded with a three-roll mill to form a paste. After forming a film with a coating machine, the film was dried at 80 ° C. The density of the obtained dried film was 4.11 g / cm 3 , and Ra was 1.21 μm.
[0040]
As is clear from the data of the above Examples and Comparative Examples, in Comparative Examples 1 to 3 in which the crushing treatment was not performed, since there was aggregation, the standard deviation σ was large, and the particle size distribution was broad. Yes, the density of the dried film obtained after pasting is low, and Ra is high.
[0041]
On the other hand, in the production methods of the present invention of Examples 1 to 3, the agglomeration is small, close to a monodispersed state, and the standard deviation σ of the particle size distribution is a sharp particle size distribution of 0.18 or less. The density of the obtained dried film is 4.8 g / cm 3 or more, and Ra is 0.20 μm or less, and monodispersed nickel powder which can be suitably used for production of a multilayer ceramic capacitor can be produced.
[0042]
【The invention's effect】
Since the monodispersed nickel powder obtained by the production method of the present invention has little aggregation and is close to a monodispersed state, it has excellent dispersibility in an organic vehicle in the preparation of a conductive paste, and further has a standard deviation σ of particle size distribution of 0. Since it has a sharp particle size distribution of .18 or less, it is suitable for preparing a conductive paste used for forming a thin and projection-free internal electrode, and the density of a dried film obtained after the formation of the paste is 4.8 g / cm 3 or more. It is a monodispersed nickel powder that can be made and has a Ra of 0.20 μm or less, and can be suitably used for manufacturing a multilayer ceramic capacitor.

Claims (5)

貴金属化合物触媒及び分散剤を含有するポリオール中に、ニッケル塩粉体及びニッケル水酸化物粉体からなる群より選ばれる粉体を懸濁させ、該粉体をニッケル粉に還元するのに十分な温度に加熱してニッケル粉を生成させ、生成した凝集ニッケル粉を解砕処理して単分散化することを特徴とするニッケル粉の製造方法。In a polyol containing a noble metal compound catalyst and a dispersant, a powder selected from the group consisting of a nickel salt powder and a nickel hydroxide powder is suspended, and sufficient to reduce the powder to nickel powder. A method for producing nickel powder, characterized in that the powder is heated to a temperature to generate nickel powder, and the generated agglomerated nickel powder is crushed and monodispersed. 解砕処理を湿式解砕法又は乾式解砕法で実施する請求項1記載のニッケル粉の製造方法。The method for producing nickel powder according to claim 1, wherein the crushing treatment is performed by a wet crushing method or a dry crushing method. 貴金属化合物触媒及び分散剤を含有するポリオール中に、ニッケル塩粉体及びニッケル水酸化物粉体からなる群より選ばれる粉体を懸濁させ、該粉体をニッケル粉に還元するのに十分な温度に加熱してニッケル粉を生成させ、生成した凝集ニッケル粉を、沸点が100℃以下の有機溶媒又は該有機溶媒と水との混合溶媒で洗浄し、ボールを充填した振動乾燥機中で乾燥することを特徴とするニッケル粉の製造方法。In a polyol containing a noble metal compound catalyst and a dispersant, a powder selected from the group consisting of a nickel salt powder and a nickel hydroxide powder is suspended, and sufficient to reduce the powder to nickel powder. The powder is heated to a temperature to generate nickel powder, and the generated agglomerated nickel powder is washed with an organic solvent having a boiling point of 100 ° C. or lower or a mixed solvent of the organic solvent and water, and dried in a vibration drier filled with balls. A method for producing nickel powder. 粒度分布の標準偏差σが0.18以下である単分散ニッケル粉を製造する請求項1〜3の何れかに記載のニッケル粉の製造方法。The method for producing nickel powder according to any one of claims 1 to 3, wherein monodisperse nickel powder having a standard deviation σ of particle size distribution of 0.18 or less is produced. ニッケル粉をペースト化した後に得られる乾燥膜の密度を4.8g/cm以上にでき、且つRaを0.20μm以下にできる単分散ニッケル粉を製造する請求項1〜4の何れかに記載のニッケル粉の製造方法。5. A monodisperse nickel powder capable of producing a dried film having a density of at least 4.8 g / cm < 3 > and a Ra of at most 0.20 [mu] m after the nickel powder is made into a paste. Production method of nickel powder.
JP2003119854A 2003-04-24 2003-04-24 Nickel powder manufacturing method and multilayer ceramic capacitor manufacturing method Expired - Fee Related JP4549034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119854A JP4549034B2 (en) 2003-04-24 2003-04-24 Nickel powder manufacturing method and multilayer ceramic capacitor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119854A JP4549034B2 (en) 2003-04-24 2003-04-24 Nickel powder manufacturing method and multilayer ceramic capacitor manufacturing method

Publications (2)

Publication Number Publication Date
JP2004323910A true JP2004323910A (en) 2004-11-18
JP4549034B2 JP4549034B2 (en) 2010-09-22

Family

ID=33498963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119854A Expired - Fee Related JP4549034B2 (en) 2003-04-24 2003-04-24 Nickel powder manufacturing method and multilayer ceramic capacitor manufacturing method

Country Status (1)

Country Link
JP (1) JP4549034B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174354A (en) * 2009-01-30 2010-08-12 Mitsui Mining & Smelting Co Ltd Nickel hydroxide-coated nickel particle and method for producing the same
KR101251567B1 (en) * 2004-12-10 2013-04-08 미쓰이 긴조꾸 고교 가부시키가이샤 Nickel powder, process for producing the same, and conductive paste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251567B1 (en) * 2004-12-10 2013-04-08 미쓰이 긴조꾸 고교 가부시키가이샤 Nickel powder, process for producing the same, and conductive paste
TWI399254B (en) * 2004-12-10 2013-06-21 Mitsui Mining & Smelting Co Nickel powder and its manufacturing method and conductive paste
JP5522885B2 (en) * 2004-12-10 2014-06-18 三井金属鉱業株式会社 Nickel powder, method for producing the same, and conductive paste
JP2010174354A (en) * 2009-01-30 2010-08-12 Mitsui Mining & Smelting Co Ltd Nickel hydroxide-coated nickel particle and method for producing the same

Also Published As

Publication number Publication date
JP4549034B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP5449154B2 (en) Method for forming electrically conductive copper pattern layer by laser irradiation
CN105598468A (en) Preparation method of silver coated copper nanoparticles capable of being used for conductive ink
KR20070030274A (en) Nanocarbon composite structure having ruthenium oxide trapped therein
US6494931B1 (en) Nickel powder and conductive paste
US6632265B1 (en) Nickel powder, method for preparation thereof and conductive paste
JP4178374B2 (en) Silver coated flake copper powder, method for producing the silver coated flake copper powder, and conductive paste using the silver coated flake copper powder
CN113369491B (en) Spherical and flaky mixed silver powder and manufacturing method thereof
KR20200114890A (en) Mixed silver powder and conductive paste comprising same
WO2019117234A1 (en) Spherical silver powder
CN101781520A (en) Water-based conducting polymer/metal composite nano-coating for porous wall board and preparation method thereof
CN106794520B (en) Method for producing capacitor-grade powder and capacitor-grade powder resulting from said method
JP4109520B2 (en) Low cohesive silver powder, method for producing the low cohesive silver powder, and conductive paste using the low cohesive silver powder
CN110642299A (en) Preparation method of aluminum-doped cobalt hydroxide applied to high-voltage LCO (liquid Crystal on oxide) coating material
JP6900357B2 (en) Spherical silver powder
JP7361464B2 (en) AgPd core-shell particles and their use
JP4569727B2 (en) Silver powder and method for producing the same
JP2004217952A (en) Surface-treated copper powder, method for manufacturing surface-treated copper powder, and electroconductive paste using the surface-treated copper powder
CN1792820A (en) Process for preparing nano manganese dioxide uniforming dispersing in water phate
JP4227373B2 (en) Flake copper powder and copper paste using the flake copper powder
CN112404450B (en) Chemical synthesis method of high-dispersion high-sphericity porous silver powder
JP2004323910A (en) Method of producing nickel powder
JP6975527B2 (en) Spherical silver powder and its manufacturing method, and conductive paste
JP3934869B2 (en) Fine copper powder for circuit formation
KR20170038465A (en) The manufacturing method of flake silver powder using the agglomerated silver powder
JP5985216B2 (en) Silver powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees