JP2004323882A - Metastable austenitic stainless steel - Google Patents

Metastable austenitic stainless steel Download PDF

Info

Publication number
JP2004323882A
JP2004323882A JP2003117210A JP2003117210A JP2004323882A JP 2004323882 A JP2004323882 A JP 2004323882A JP 2003117210 A JP2003117210 A JP 2003117210A JP 2003117210 A JP2003117210 A JP 2003117210A JP 2004323882 A JP2004323882 A JP 2004323882A
Authority
JP
Japan
Prior art keywords
martensite
amount
surface layer
stainless steel
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003117210A
Other languages
Japanese (ja)
Inventor
Ikuya Kurosaki
郁也 黒▲崎▼
Kazuhiko Fukamachi
一彦 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Metal Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Metal Manufacturing Co Ltd filed Critical Nikko Metal Manufacturing Co Ltd
Priority to JP2003117210A priority Critical patent/JP2004323882A/en
Priority to TW093109705A priority patent/TWI247817B/en
Priority to KR1020040026814A priority patent/KR100586209B1/en
Priority to CNB2004100353137A priority patent/CN1282754C/en
Publication of JP2004323882A publication Critical patent/JP2004323882A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stainless steel having high levels of both mechanical properties such as strength and fatigue characteristics. <P>SOLUTION: This stainless steel contains less than 65% martensite in terms of the average value of the content in the first part which is a thinner range of a 10 μm inner part from the surface layer and a 20% inner part of the sheet thickness from the surface layer; 70% or more martensite in terms of the average value of the content in the second part which is the other part than the first part in the whole material; and 60-75% martensite in terms of the average value of the content in the whole material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子機器部品に使用される準安定オーステナイト系ステンレス鋼に係り、とくに、強度等の機械的特性と疲労特性とを高いレベルで両立したステンレス鋼の開発技術に関する。
【0002】
【従来の技術】
近年、携帯電話やパソコン等の電子機器においては、高密度の実装化が進み、このため、これら電子機器に使用される電子部品については、軽薄・短小化が図られている。また、電子部品の使用環境では、金属部材に繰返し負荷される応力が増大するのみならず、その負荷回数も増大する傾向にある。これらの結果、電子部品の疲労特性向上が要請されており、具体的には、上記軽薄・短小化に対応し得る強度等の機械的特性および疲労特性を有する金属部材の開発が要請されている。
【0003】
このような金属材料を高強度化し、しかも疲労特性を向上させる技術に関しては種々の技術が開示されており、例えば、材料の圧延加工度を増大するなどして、材料の引張強さを高める方法が開示されている(例えば、非特許文献1参照)。ただし、材料の強度が一定値に達すると、強度の増大と疲労特性の向上とが、必ずしも一致しないため、実際には強度等の機械的特性と疲労特性とのバランスが良好な材料を開発する必要がある。
【0004】
【非特許文献1】
舟久保▲照▼康、西島敏訳、「金属の疲れ」、丸善株式会社、1973年5月10日、p.216−219
【0005】
このような機械的特性と疲労特性とを必要とする用途には、一般的に、SUS304またはSUS301等の加工硬化型の準安定オーステナイト系ステンレス鋼が用いられる。これらのステンレス鋼は、溶体化処理後にオーステナイト相を呈し、その後の冷間圧延で加工誘起マルテンサイト相を生成して、電子機器部品に使用するに相当な機械的特性および疲労特性を得ることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記した加工硬化型の準安定オーステナイト系ステンレス鋼が上記したような溶体化処理および冷間圧延等を経て処理された場合には、マルテンサイト相の生成量が多くなると、高強度化を図ることはできるものの、疲労特性の向上が鈍化する場合や逆に疲労特性が低下する場合がある。このため、これらのステンレス鋼においては、強度等の機械的特性と疲労特性とを高いレベルで両立することができないという問題がある。
【0007】
本発明は、上記問題に鑑みてなされたものであり、従来から機械的特性と疲労特性とを必要とする用途に使用されている加工硬化型の準安定オーステナイト系ステンレス鋼について、機械的特性と疲労特性とを高いレベルで両立することを目的としている。
【0008】
【課題を解決するための手段】
本発明者らは、加工硬化型の準安定オーステナイト系ステンレス鋼に関し、上記機械的特性と疲労特性とを高いレベルで両立することができる条件について鋭意研究を重ねた結果、材料のマルテンサイト量に着目し、材料表層の厚さ方向のマルテンサイト量の分布の適正化、および材料全体の平均マルテンサイト量の適正化を図ることによって、高強度と高疲労特性とが同時に高いレベルで満たされるとの知見を得た。
【0009】
すなわち、本発明の準安定オーステナイト系ステンレス鋼は、板厚方向において表層から10μmの部分または表層から板厚の20%の部分のうちの小さい範囲の第1の部分についてのマルテンサイト量の平均値が65%未満であり、かつ、材料全体から上記第1の部分を除いた第2の部分のマルテンサイト量の平均値が70%以上であり、しかも材料全体のマルテンサイト量の平均値が60〜75%であることを特徴としている。
【0010】
本発明では、まず、材料全体から上記第1の部分を除いた第2の部分のマルテンサイト量の平均値を70%以上としている。このように、材料内部のマルテンサイト量を高くして高強度化を図り、これにより疲労特性の向上をも図ることができる。
【0011】
また、本発明では、板厚方向において表層から10μmの部分または表層から板厚の20%の部分のうちの小さい範囲の第1の部分についてのマルテンサイト量の平均値を65%未満としている。このように、材料表層部のマルテンサイト量を低くすることにより、残留オーステナイト量が多くなる。これによって、疲労破壊の初期段階として発生する材料表層の亀裂の先端部に加工誘起マルテンサイト相が発生し易くなり、このマルテンサイト相が亀裂の進展を起こり難くさせ、これにより疲労特性を向上させることができる。
【0012】
さらに、本発明では、材料全体のマルテンサイト量の平均値を60〜75%としている。このように、材料全体のマルテンサイト量の適正化を図ることで、材料全体としては十分な強度を実現するとともに、材料表層のマルテンサイト量を上記の値に調整可能とすることができる。
【0013】
このような準安定オーステナイト系ステンレス鋼は、コネクタまたはスイッチなどの接点部品さらにメタルドーム型スイッチに使用することが望ましい。このように、本発明の準安定オーステナイト系ステンレス鋼を近年軽薄・短小化する電子機器部品に使用することにより、その優れた強度等の機械的特性および疲労特性を充分に発揮することができ、たとえ電子部品の使用環境時に、金属部材に繰返し負荷される応力が大きく、またその負荷回数が多い場合であっても、電子機器部品として使用に十分耐え得るステンレス鋼の特性を発揮することができる。
【0014】
【発明の実施の形態】
以下に、本発明の実施形態を図面を参照して説明する。
まず、材料の各部および全体についてのマルテンサイト量の限定理由について説明する。
準安定オーステナイト系ステンレス鋼では、材料に繰返し応力を負荷した場合に、疲労破壊の初期段階として発生する材料表層の亀裂についてその先端部分に応力が集中して加工誘起マルテンサイト相が発生し、硬化するため、亀裂の進展が起こりにくくなる。板厚方向表層からの厚さについて、10μm、または板厚の20%の部分のどちらか小さい方について、この部分のマルテンサイト量の平均値を65%未満としたのは、この値が65%以上になると、あらかじめ存在するマルテンサイト相により、亀裂が発生した部分に、新たにマルテンサイト相が発生し難く、材料表層の亀裂の進展を妨げることが困難になるからである。すなわち、上記マルテンサイト量の平均値を65%以上とした場合には、疲労特性を向上させることができない。
【0015】
次に、板厚方向表層からの厚さについて、10μm、あるいは板厚の20%の部分のどちらか小さい方について、この部分を除いた残部、および材料全体のマルテンサイト量については、十分な強度を確保すること、および材料表層のマルテンサイト量を上記の値に調整可能という観点から、それぞれ、70%以上、および60〜75%とした。
【0016】
【実施例】
以下、実施例により本発明を具体的に説明する。
実施例に用いた準安定オーステナイト系ステンレスはSUS301である。その成分組成を表1に示す。JISの規定に基いた成分の範囲において溶解鋳造によって得られたSUS301のインゴットを鍛造後、板厚3mmまで熱間圧延し、溶体化処理後、冷間圧延と再結晶焼鈍とをそれぞれ2回繰り返し、さらに、最終圧延にて板厚0.1mmまで加工した。
【0017】
【表1】

Figure 2004323882
【0018】
なお、材料全体のマルテンサイト量の平均値は、最終圧延の加工度を変えることで調整した。また、材料表層および表層を除いた部分のマルテンサイト量の平均値は、最終圧延において材料にかけるテンション、ワークロール径によって調整した。例えば、テンションを高く設定すると、材料の板厚方向中心部に比して、材料表層の圧延変形量が少なくなるため、材料表層のマルテンサイト量を少なくすることができる。一方、テンションを低く設定すると、材料の板厚方向中心部に比して、材料表層の圧延変形量が多くなるため、材料表層のマルテンサイト量が増大する。このように、テンション等によってマルテンサイト量の調整が可能である。それらの条件を表2に示した。
【0019】
【表2】
Figure 2004323882
【0020】
以上のように材料全体および各部のマルテンサイト量を調整し、表3に示す平均マルテンサイト量を持つ実施例1〜3および比較例1〜3の各ステンレス鋼帯を得た。なお、加工後の材料について、引張り試験および疲労試験を実施した。
【0021】
【表3】
Figure 2004323882
【0022】
以下に、表3に示すマルテンサイト量および各種機械的特性(引張強さ、降伏応力および伸び)の評価について詳述する。
(1)マルテンサイト量
マルテンサイト量は、オーステナイト相が非磁性であるのに対してマルテンサイト相が常磁性であることを利用することで、材料の磁性の強さを磁気誘導によるフェライト含有量計(フェライトスコープ)で測定することにより、マルテンサイト相への変態量、具体的には体積率により求めた。また、板厚方向については、材料を圧延上りのまま、および材料表層10μmを化学研磨により除去した後にマルテンサイト量を測定することで、材料表層のマルテンサイト量を算出した。
【0023】
(2)機械的特性(引張強さ、降伏応力および伸び)
JIS Z 2201に規定されている13B号に準拠した板状試験片を打ち抜き、JIS Z 2241に準拠した引張り試験を実施した。実施例1〜3は、材料の強度ととともに、材料全体のマルテンサイト量が増加しており、最終圧延の加工度を変えて試料を作製した。また、実施例2と比較例1では、強度と材料全体のマルテンサイト量とがほぼ同じであるが、材料表層のマルテンサイト量が後者の方が多くなっており、これは、実施例2よりも比較例1の方のテンションを下げて試料を作製した。
【0024】
(3)疲労特性
疲労特性は、JIS Z 2273に準拠し、プーリを用いた極薄板寿命試験機を用い、最大負荷応力1150MPaで破断までの繰返し耐久回数を測定した。
【0025】
表3によれば、実施例1は、表層、表層以外、および全体のマルテンサイト量が、本発明の範囲内であり、このため機械的特性(引張強さ、降伏応力および伸び)および疲労特性は良好である。また、比較例2では、材料表層のマルテンサイト量が少なくなっているが疲労特性が劣化している。これは、比較例2の材料全体、または表層以外のマルテンサイト量が少なく、このため、引張強さが低くなっているためである。さらに、実施例3と比較例1とは、材料全体のマルテンサイト量、引張強さ、降伏応力および伸びの各値がほぼ同じであるが、比較例1の方が疲労特性が劣化している。これは、比較例1の材料表層のマルテンサイト量が多くなっているためである。なお、比較例3は、材料表層および全体のマルテンサイト量が高いため、疲労特性の劣化がみられる。
【0026】
【発明の効果】
以上説明したように本発明によれば、加工硬化型の準安定オーステナイト系ステンレス鋼に関し、材料のマルテンサイト量に着目し、材料表層の厚さ方向のマルテンサイト量の分布比率の適正化、および材料全体の平均マルテンサイト量の適正化を図ることによって、強度等の機械的特性と疲労特性とを高いレベルで両立することができる。よって、本発明は、各種電子機器部品材料として好適な準安定オーステナイト系ステンレス鋼を提供することができる点で有望である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metastable austenitic stainless steel used for various electronic device parts, and more particularly to a technology for developing a stainless steel having both mechanical properties such as strength and fatigue properties at a high level.
[0002]
[Prior art]
2. Description of the Related Art In recent years, electronic devices such as mobile phones and personal computers have been mounted at high density, and electronic components used in these electronic devices have been reduced in weight and thickness. Further, in an environment in which electronic components are used, not only the stress repeatedly applied to the metal member increases, but also the number of times of application tends to increase. As a result, there is a demand for improvement of the fatigue properties of electronic components, and specifically, the development of metal members having mechanical properties such as strength and fatigue properties capable of coping with the above-mentioned lightness, thinness and shortening has been demanded. .
[0003]
Various techniques have been disclosed with respect to techniques for increasing the strength of such metal materials and improving fatigue characteristics. For example, a method of increasing the tensile strength of a material by, for example, increasing the degree of rolling of the material. Is disclosed (for example, see Non-Patent Document 1). However, when the strength of the material reaches a certain value, the increase in strength and the improvement in fatigue properties do not always match, so actually developing a material with a good balance between mechanical properties such as strength and fatigue properties. There is a need.
[0004]
[Non-patent document 1]
Funakubo, Teru, Yasushi and Nishijima, translated, "Metal Fatigue", Maruzen Co., Ltd., May 10, 1973, p. 216-219
[0005]
For applications requiring such mechanical properties and fatigue properties, work-hardening metastable austenitic stainless steel such as SUS304 or SUS301 is generally used. These stainless steels exhibit an austenite phase after solution treatment, and then form a work-induced martensite phase by cold rolling, which can provide mechanical properties and fatigue properties that are considerable for use in electronic components. it can.
[0006]
[Problems to be solved by the invention]
However, when the above-mentioned work-hardening metastable austenitic stainless steel is processed through the above-mentioned solution treatment and cold rolling, when the amount of the generated martensite phase increases, the strength increases. Although it can be achieved, the improvement of the fatigue characteristics may be slowed down or the fatigue characteristics may be reduced. For this reason, these stainless steels have a problem that mechanical properties such as strength and fatigue properties cannot be compatible at a high level.
[0007]
The present invention has been made in view of the above-described problems, and has been developed for a work-hardening metastable austenitic stainless steel that has been conventionally used for applications requiring mechanical properties and fatigue properties. The purpose is to achieve both high levels of fatigue characteristics.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive research on the conditions under which the above mechanical properties and fatigue properties can be compatible at a high level with respect to the work hardening type metastable austenitic stainless steel. Paying attention, by optimizing the distribution of martensite in the thickness direction of the material surface layer and optimizing the average martensite amount of the entire material, high strength and high fatigue properties are simultaneously satisfied at a high level. Was obtained.
[0009]
That is, in the metastable austenitic stainless steel of the present invention, the average value of the amount of martensite in the portion of 10 μm from the surface layer or the first portion in a small range of the portion of 20% of the thickness from the surface layer in the thickness direction. Is less than 65%, and the average value of the martensite amount in the second portion excluding the first portion from the entire material is 70% or more, and the average value of the martensite amount in the entire material is 60%. ~ 75%.
[0010]
In the present invention, first, the average value of the amount of martensite in the second portion excluding the first portion from the entire material is set to 70% or more. As described above, the strength of the material is increased by increasing the amount of martensite inside the material, whereby the fatigue characteristics can be improved.
[0011]
Further, in the present invention, the average value of the amount of martensite is set to less than 65% in a portion of 10 μm from the surface layer or a first portion in a small range of 20% of the plate thickness from the surface layer in the thickness direction. As described above, by reducing the amount of martensite in the surface layer of the material, the amount of retained austenite increases. As a result, a work-induced martensite phase is easily generated at the tip of a crack in the surface layer of the material generated as an initial stage of fatigue fracture, and this martensite phase makes it difficult for crack propagation to occur, thereby improving fatigue characteristics. be able to.
[0012]
Further, in the present invention, the average value of the amount of martensite in the entire material is set to 60 to 75%. In this way, by optimizing the amount of martensite in the entire material, it is possible to realize sufficient strength as the whole material and to adjust the amount of martensite in the surface layer of the material to the above value.
[0013]
Such a metastable austenitic stainless steel is desirably used for a contact part such as a connector or a switch and also for a metal dome switch. Thus, by using the metastable austenitic stainless steel of the present invention in recent years for electronic equipment parts that are lighter and shorter, it is possible to sufficiently exhibit mechanical properties such as excellent strength and fatigue properties, Even in the use environment of electronic parts, even when the stress repeatedly applied to the metal member is large and the number of times of the load is large, it is possible to exhibit the characteristics of stainless steel which can sufficiently withstand use as an electronic device part. .
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the reasons for limiting the amount of martensite in each part and the entire material will be described.
In metastable austenitic stainless steel, when stress is repeatedly applied to the material, stress is concentrated at the tip of the material surface crack that occurs as an initial stage of fatigue fracture, and a work-induced martensite phase is generated, and hardening occurs. Therefore, crack propagation is unlikely to occur. Regarding the thickness from the surface layer in the thickness direction of 10 μm or 20% of the thickness, whichever is smaller, the average value of the amount of martensite in this portion was less than 65% because this value was 65% This is because a martensite phase existing in advance makes it difficult for a martensite phase to be newly generated in a portion where a crack has occurred, and it is difficult to prevent the propagation of a crack in the surface layer of the material. That is, when the average value of the martensite amount is 65% or more, the fatigue characteristics cannot be improved.
[0015]
Next, for the thickness from the surface layer in the thickness direction, 10 μm or 20% of the thickness, whichever is smaller, the remainder excluding this portion, and the martensite amount of the entire material, sufficient strength From the viewpoint of ensuring the above-mentioned values and adjusting the amount of martensite in the surface layer of the material to the above-mentioned values, respectively, 70% or more and 60 to 75%.
[0016]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
The metastable austenitic stainless steel used in the examples is SUS301. Table 1 shows the composition of the components. After forging an SUS301 ingot obtained by melting and casting in the range of components based on JIS, hot rolling to a plate thickness of 3 mm, after solution treatment, cold rolling and recrystallization annealing are repeated twice each. Further, it was processed to a sheet thickness of 0.1 mm by final rolling.
[0017]
[Table 1]
Figure 2004323882
[0018]
The average value of the amount of martensite in the entire material was adjusted by changing the working ratio of the final rolling. Further, the average value of the martensite amount in the surface layer of the material and the portion excluding the surface layer was adjusted by the tension applied to the material in the final rolling and the diameter of the work roll. For example, when the tension is set high, the amount of rolling deformation of the surface layer of the material is reduced as compared with the central portion in the thickness direction of the material, so that the amount of martensite in the surface layer of the material can be reduced. On the other hand, when the tension is set low, the rolling deformation of the surface layer of the material is increased as compared with the central portion in the thickness direction of the material, so that the amount of martensite in the surface layer of the material is increased. Thus, the amount of martensite can be adjusted by tension or the like. Table 2 shows the conditions.
[0019]
[Table 2]
Figure 2004323882
[0020]
The martensite content of the entire material and each part was adjusted as described above, and stainless steel strips of Examples 1 to 3 and Comparative Examples 1 to 3 having the average martensite content shown in Table 3 were obtained. Note that a tensile test and a fatigue test were performed on the processed material.
[0021]
[Table 3]
Figure 2004323882
[0022]
Hereinafter, the evaluation of the amount of martensite and various mechanical properties (tensile strength, yield stress, and elongation) shown in Table 3 will be described in detail.
(1) Amount of martensite The amount of martensite is determined by taking advantage of the fact that the austenite phase is non-magnetic while the martensite phase is paramagnetic. The amount of transformation to the martensite phase, specifically, the volume ratio was determined by measuring with a meter (ferrite scope). In the thickness direction, the amount of martensite in the surface layer of the material was calculated by measuring the amount of martensite as it was after rolling the material and after removing the surface layer of the material by 10 μm by chemical polishing.
[0023]
(2) Mechanical properties (tensile strength, yield stress and elongation)
A plate-like test piece based on No. 13B specified in JIS Z 2201 was punched out, and a tensile test based on JIS Z 2241 was performed. In Examples 1 to 3, the amount of martensite in the entire material was increased along with the strength of the material, and samples were prepared by changing the degree of work of the final rolling. In Example 2 and Comparative Example 1, the strength and the amount of martensite in the entire material were almost the same, but the amount of martensite in the surface layer of the material was larger in the latter. Also, a sample was prepared by lowering the tension of Comparative Example 1.
[0024]
(3) Fatigue Properties Fatigue properties were measured in accordance with JIS Z 2273 by using an ultra-thin plate life tester using a pulley and measuring the number of repetition endurance up to fracture at a maximum load stress of 1150 MPa.
[0025]
According to Table 3, in Example 1, the amount of martensite in the surface layer, other than the surface layer, and the whole was within the range of the present invention, and therefore, the mechanical properties (tensile strength, yield stress and elongation) and fatigue properties Is good. In Comparative Example 2, the amount of martensite in the surface layer of the material was small, but the fatigue characteristics were deteriorated. This is because the amount of martensite other than the entire material of Comparative Example 2 or the surface layer was small, and thus the tensile strength was low. Furthermore, Example 3 and Comparative Example 1 have substantially the same martensite content, tensile strength, yield stress, and elongation values of the entire material, but Comparative Example 1 has deteriorated fatigue properties. . This is because the amount of martensite in the material surface layer of Comparative Example 1 was large. In Comparative Example 3, since the surface martensite material and the entire martensite content were high, deterioration in fatigue characteristics was observed.
[0026]
【The invention's effect】
As described above, according to the present invention, with respect to a work-hardening metastable austenitic stainless steel, focusing on the amount of martensite in the material, optimizing the distribution ratio of the amount of martensite in the thickness direction of the material surface layer, and By optimizing the average martensite amount of the entire material, it is possible to achieve both mechanical properties such as strength and fatigue properties at a high level. Therefore, the present invention is promising in that it can provide a metastable austenitic stainless steel suitable as a material for various electronic devices.

Claims (3)

板厚方向において表層から10μmの部分または表層から板厚の20%の部分のうちの小さい範囲である第1の部分に関するマルテンサイト量の平均値が65%未満であり、かつ、材料全体から前記第1の部分を除いた第2の部分のマルテンサイト量の平均値が70%以上であり、しかも材料全体のマルテンサイト量の平均値が60〜75%であることを特徴とする準安定オーステナイト系ステンレス鋼。In the thickness direction, the average value of the amount of martensite for the first portion that is a small portion of the portion of 10 μm from the surface layer or the portion of 20% of the thickness from the surface layer is less than 65%, and The metastable austenite characterized in that the average value of martensite in the second portion excluding the first portion is 70% or more, and the average value of martensite in the entire material is 60 to 75%. Series stainless steel. コネクタまたはスイッチなどの接点部品に使用することを特徴とする請求項1に記載の準安定オーステナイト系ステンレス鋼。The metastable austenitic stainless steel according to claim 1, which is used for a contact part such as a connector or a switch. メタルドーム型スイッチに使用することを特徴とする請求項2に記載の準安定オーステナイト系ステンレス鋼。The metastable austenitic stainless steel according to claim 2, which is used for a metal dome switch.
JP2003117210A 2003-04-22 2003-04-22 Metastable austenitic stainless steel Pending JP2004323882A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003117210A JP2004323882A (en) 2003-04-22 2003-04-22 Metastable austenitic stainless steel
TW093109705A TWI247817B (en) 2003-04-22 2004-04-08 Metastable austenite series stainless steel
KR1020040026814A KR100586209B1 (en) 2003-04-22 2004-04-19 Metastable austenitic stainless steel
CNB2004100353137A CN1282754C (en) 2003-04-22 2004-04-22 Metastable austenitic stainless steels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117210A JP2004323882A (en) 2003-04-22 2003-04-22 Metastable austenitic stainless steel

Publications (1)

Publication Number Publication Date
JP2004323882A true JP2004323882A (en) 2004-11-18

Family

ID=33497174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117210A Pending JP2004323882A (en) 2003-04-22 2003-04-22 Metastable austenitic stainless steel

Country Status (4)

Country Link
JP (1) JP2004323882A (en)
KR (1) KR100586209B1 (en)
CN (1) CN1282754C (en)
TW (1) TWI247817B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207005A (en) * 2005-01-31 2006-08-10 Nikko Kinzoku Kk Metastable austenitic stainless steel strip having excellent fatigue property
WO2008041638A1 (en) * 2006-09-29 2008-04-10 Nippon Mining & Metals Co., Ltd. Process for producing metastable austenitic stainless steel strip excelling in fatigue property and the steel strip

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056985B2 (en) * 2009-11-18 2012-10-24 住友金属工業株式会社 Austenitic stainless steel sheet and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207005A (en) * 2005-01-31 2006-08-10 Nikko Kinzoku Kk Metastable austenitic stainless steel strip having excellent fatigue property
WO2008041638A1 (en) * 2006-09-29 2008-04-10 Nippon Mining & Metals Co., Ltd. Process for producing metastable austenitic stainless steel strip excelling in fatigue property and the steel strip

Also Published As

Publication number Publication date
TWI247817B (en) 2006-01-21
KR20040091558A (en) 2004-10-28
KR100586209B1 (en) 2006-06-08
CN1540003A (en) 2004-10-27
TW200426235A (en) 2004-12-01
CN1282754C (en) 2006-11-01

Similar Documents

Publication Publication Date Title
Peng et al. Effect of aging on the impact toughness of 25Cr–20Ni–Nb–N steel
JP5091732B2 (en) Stainless steel for low Ni springs with excellent sag resistance and bendability
Matoso et al. Processing a twinning-induced plasticity steel by high-pressure torsion
TW201139701A (en) Duplex stainless steel material for vacuum vessels, and process for manufacturing same
JP2004360005A (en) High strength pc steel wire having excellent delayed fracture property, and its production method
WO2002101108A1 (en) Double phase stainless steel strip for steel belt
KR102471303B1 (en) Martensitic stainless steel sheet, manufacturing method thereof, and spring member
JP5347600B2 (en) Austenitic stainless steel and method for producing austenitic stainless steel sheet
Chiu et al. Low-cycle fatigue-induced martensitic transformation in SAF 2205 duplex stainless steel
JP2004323882A (en) Metastable austenitic stainless steel
JP2009133001A (en) Austenitic stainless steel having excellent hydrogen embrittlement resistance
JP6361402B2 (en) Duplex stainless steel for spring and method for producing the same
JP4451919B1 (en) Steel sheet and manufacturing method thereof, and steel belt for continuously variable transmission
TWI271438B (en) Metastable austenite series stainless steel strap with excellent fatigue resistance
JP5233428B2 (en) Ferritic stainless steel sheet excellent in deep drawability and method for producing the same
JP2008195976A (en) Steel sheet for spring, spring material using the same, and method for manufacturing them
JP4234969B2 (en) High-strength austenitic stainless steel strip with excellent bending workability
JP2006207005A (en) Metastable austenitic stainless steel strip having excellent fatigue property
JP2006070313A (en) Surface-nitrided high-strength stainless steel strip superior in delayed-fracture resistance, and manufacturing method therefor
JP2004323870A (en) High strength pc steel wire with excellent delayed fracture resistance, and its manufacturing method
JP2003226940A (en) Stainless steel wire for spring
WO2008041638A1 (en) Process for producing metastable austenitic stainless steel strip excelling in fatigue property and the steel strip
JP5114749B2 (en) Steel plate for enamel with excellent resistance to jumping nails
JP2007197807A (en) Austenitic stainless steel and coin produced by the steel
JP2018135592A (en) Austenitic stainless steel for high-pressure hydrogen