JP2004323319A - Quartz burner, and method of producing glass particulate deposit - Google Patents

Quartz burner, and method of producing glass particulate deposit Download PDF

Info

Publication number
JP2004323319A
JP2004323319A JP2003122522A JP2003122522A JP2004323319A JP 2004323319 A JP2004323319 A JP 2004323319A JP 2003122522 A JP2003122522 A JP 2003122522A JP 2003122522 A JP2003122522 A JP 2003122522A JP 2004323319 A JP2004323319 A JP 2004323319A
Authority
JP
Japan
Prior art keywords
glass
quartz
quartz burner
burner
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003122522A
Other languages
Japanese (ja)
Inventor
Masamoto Ooe
将元 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003122522A priority Critical patent/JP2004323319A/en
Publication of JP2004323319A publication Critical patent/JP2004323319A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quartz burner with which glass particulates can stably be deposited into a desired state, and to provide a method of producing glass particulates depositcapable of efficiently producing an optical fiber preform free from cracks and deformation. <P>SOLUTION: A quartz tube 1 is arranged at the center, and a plurality of gas feed tubes 2, 3, 4, 5, 6, 7 and 8 are arranged in layers to the quartz tube 1 to form a quartz burner 10 of a multi-tube. The thickness t of the quartz tube 1 is 1.0 to 2.0 mm. A combustion gas and a glass raw material are fed from the quartz burner 10, and glass particulates are formed and deposited to produce the glass particulate deposit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、石英バーナ及びガラス微粒子堆積体の製造方法に関する。
【0002】
【従来の技術】
一般に、コアとクラッドよりなる光ファイバは、多孔質のガラス微粒子堆積体を加熱することにより透明化して光ファイバ母材とし、これを線引きすることにより製造される。ガラス微粒子堆積体を製造する方法として、例えばVAD法が挙げられる。このVAD法においては、複数のポートを有するバーナから、可燃性ガスと支燃性ガスからなる燃焼ガス、及びガラス原料を吹き出し、燃焼ガスの燃焼により生じる酸水素火炎中においてガラス原料を加水分解させて、軸状の出発材上にコアとなるべきガラス微粒子を堆積させるとともに、その周囲にクラッドとなるべきガラス微粒子を堆積させる。
【0003】
図5に示すように、例えば単一モード光ファイバ用のガラス微粒子堆積体を製造する場合、コア用バーナ51により酸水素火炎52を形成し、この火炎52中にガラス原料ガスを吹き出して、火炎加水分解により原料ガスをガラス微粒子とし、このガラス微粒子を回転する出発材55に堆積させて、コア部多孔質ガラス体(コアスート)53を形成する。同様に、クラッド用バーナ56により酸水素火炎57を形成し、この火炎57の中心よりガラス原料ガスを吹き出して、コアスート53を取り囲むようにクラッド部多孔質ガラス体58を形成し、コアスート53及びクラッド部多孔質ガラス体58よりなるガラス微粒子堆積体60を得ている。
【0004】
この種のガラス微粒子堆積体を製造するためのバーナに関する技術として、例えば、多孔質のガラス微粒子堆積体の高嵩密度化と合成速度向上の両立を図るために、ガラス微粒子堆積体を合成する多重管バーナの直径を、多孔質母材の外径の0.2〜0.5倍の範囲内に設定したものが開示されている(特許文献1参照。)。
【0005】
【特許文献1】
特開昭63−123828号公報
【0006】
【発明が解決しようとする課題】
ところで、光ファイバの伝送特性の一つである分散特性を向上させるためには、コア部の屈折率分布の形状をステップ状にすることが望ましい。図4に屈折率分布の種類を示す。図4(a)はコア部からクラッド部にかけて屈折率の傾斜がある場合を示し、図4(b)はコア部の外周部に局部的に屈折率が大きくなった部分がある場合を示し、図4(c)はコア部からクラッド部にかけての屈折率分布がステップ状になっている場合を示す。
【0007】
コア部多孔質ガラス体(コアスート)には、屈折率を増加させるためにドーパントであるゲルマニウム(Ge)が添加されており、光ファイバの屈折率分布は、ドーパントの分布に依存して決まる。また、ガラス微粒子堆積体に割れや変形等が発生するのを抑制するために、原料ガスの流量や火炎の方向を精度良く制御して、ガラス微粒子を所望に堆積させる必要がある。ガラス微粒子堆積体に欠陥があると、ガラス微粒子堆積体を透明化させた後に光ファイバ母材から線引きされて作成される光ファイバの特性を、所望の特性とすることが困難となるからである。
【0008】
一方、近年、光ファイバ母材の大型化、長尺化の強い要求があり、これに伴ってバーナ自体も大型化、長尺化の傾向があり、バーナの長手方向長さは、例えば40cm〜50cm程度の長さとなっている。通常、バーナは、水平又は斜めに設置されるので、バーナが大型且つ長尺になると自重による撓みが生じ、火炎の制御の障害となってガラス微粒子を所望の状態に安定して堆積させにくくなる問題がある。このような問題は、一般に細径とされた、光ファイバのコアとなるべきコア部多孔質を形成するためのコア用バーナに顕著である。
特許文献1に開示の技術は、光ファイバ母材の高嵩密度化と合成速度向上とを図ったものであり、バーナの大型化、長尺化に伴う上述した問題には言及されておらず、改善の余地がある。
【0009】
本発明は、前述した課題に鑑みてなされたものであり、その目的は、ガラス微粒子を所望の状態に安定して堆積させることができる石英バーナ、及び、割れ,変形のない光ファイバ母材を効率良く製造できるガラス微粒子堆積体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
前述した目的を達成するために、本発明に係る石英バーナは、中心に配置された石英管と、前記石英管に対し層状に配置された複数の石英管とを有する石英バーナであって、前記石英管の肉厚が1.0mm〜2.0mmである。
【0011】
また、本発明に係るガラス微粒子堆積体の製造方法は、本発明に係る石英バーナから燃焼ガス及びガラス原料を供給し、ガラス微粒子を生成し、堆積させて、ガラス微粒子堆積体を形成する。
【0012】
【発明の実施の形態】
以下、本発明に係る実施形態を図面に基づいて詳細に説明する。
図1は本発明の実施形態に係る石英バーナの模式図であり、(a)はガス吹出口から見た平面図、(b)は要部断面図、図2は本発明の実施形態に係る石英バーナを用いたガラス微粒子堆積体の製造方法の一実施形態を示す概略図、図3は変形例の石英バーナの模式図である。
【0013】
図1に示すように、本発明の実施形態に係る石英バーナ10は、複数の管が同心円状とされることにより層状に配置された多重管バーナであり、中心には肉厚tが1mm〜2mmとされた石英管1が配置され、石英管1と同心に7本の石英管2〜8が配置されている。石英管1及び7本の石英管2〜8によって、第1ポートP1から第8ポートP8の8個のポートが形成されている。ガラス合成速度を向上させる目的から、第5ポートP5から第8ポートP8は、第1ポートP1から第4ポートP4より、5mm前方に突出して形成されている。尚、第1ポートP1から第8ポートP8の8個のポートの先端は、段差を設けず一致させた形態であってもよい。また、石英バーナ10の長手方向長さは、光ファイバ母材の大型化、長尺化に対応すべく、例えば、40cm〜50cm程度とされている。
【0014】
石英管1の肉厚tを1mm〜2mmとしたのは、石英バーナ10の長さが長くなっても、水平又は斜めに配設された場合に、石英バーナ10の自重による撓みを抑制するためであり、肉厚tを1mm以上としたのは、肉厚tが1mm未満の場合、石英バーナ10を水平又は斜めに設置した場合、撓み易く、ガラス微粒子を所望の状態に堆積できないからである。また、肉厚tを2mm以下としたのは、肉厚tが2mmを超えると、第1ポートP1と第2ポートP2との距離が長くなり過ぎて、ガラス原料と燃焼ガスとの火炎中における混合状態を所望の混合状態にしにくく、ガラス微粒子を所望の状態に堆積できないからである。特に、第1ポートP1(石英管1)の内径dが3mm未満となって肉厚tが2mmを超えると、第1ポートP1がガラス原料に起因する生成物によって詰まりやすくなる。よって、第1ポートP1(石英管1)の内径は、3mm以上が好ましく、通常、4mm以下とされるのが好ましい。このように構成された石英バーナ10は、図2に示すように、スス付け装置(図示せず)の下部に配設される。
【0015】
次に、上述した石英バーナを用いた、ガラス微粒子堆積体の製造方法について説明する。本発明の実施形態に係るガラス微粒子堆積体の製造方法は、図2に示すように、ガラス微粒子堆積体20を構成するコア部多孔質ガラス体(コアスート)21とクラッド部多孔質ガラス体22を、それぞれ別の石英バーナ10とクラッド用バーナ11を用いて同時に形成するものである。
【0016】
石英バーナ10により酸水素火炎12を形成し、この火炎12中にガラス原料ガスを吹き出して、火炎加水分解により原料ガスをガラス微粒子とし、このガラス微粒子を回転する軸状の出発材23に堆積させて、コアスート21を形成する。同様に、クラッド用バーナ11により酸水素火炎13を形成し、この火炎13の中心よりガラス原料ガスを吹き出して、コア部多孔質ガラス体21を取り囲むようにクラッド部多孔質ガラス体22を形成し、コアスート21及びクラッド部多孔質ガラス体22よりなるガラス微粒子堆積体20を得る。
【0017】
光ファイバは、一般にクラッド径がコア径よりも大きい。よって、このような光ファイバを製造できる光ファイバ母材を確実かつ効率良く得るために、石英バーナ10は、クラッド用バーナ11よりも細径に形成されて、上記した寸法とされるとともに、出発材23の軸線方向と、石英バーナ10の軸線方向(石英バーナ10の中心軸線に対して、石英バーナ10のガス供給側とは反対側の端部にて接する接線の方向)との角度は、通常、35°〜65°とされている。
【0018】
石英バーナ10には、例えば、中心の第1ポートP1に四塩化ケイ素(SiCl)と四塩化ゲルマニウム(GeCl)と水素(H)を、第2,第6ポートP2,P6に水素(H)を、第4,第8ポートP4,P8に酸素(O)を、第3,第5,第7ポートP3,P5,P7にシール用の不活性ガスであるアルゴン(Ar)ガスを、燃料ガス及び原料ガスとして供給する(図1参照)。
【0019】
尚、火炎の広がりの制御や加熱効率を向上させるために、第4ポートP4の酸素ガスの流速は4m/秒〜16m/秒に設定し、また、石英バーナ10のガス吹き出し口からガラス微粒子の堆積面までの距離は5cm〜30cmに設定するのが好ましい。また、本発明に用いる可燃性ガスとしては、水素以外に、CH、C、Cなどの炭化水素も採用できる。また、原料ポートには水素ではなく酸素を混入して供給することも可能である。
【0020】
上述したように、石英バーナ10は、1mm〜2mmの肉厚tを有する石英管1を中心に配置した多重管バーナとしたので、石英バーナ10の先端の撓みが防止されて、ガラス微粒子を所望の状態に安定して堆積させることが可能となる。これにより、得られる光ファイバ母材の割れ、変形を低減できる。
【0021】
次に、石英バーナの変形例について図3を参照して説明する。図3は本発明に係る石英バーナのガス吹出口から見た平面図である。変形例の石英バーナ30は、中心に1mm〜2mmの肉厚tを有する石英管31が配置され、その石英管31に対し層状に4本の石英管32〜35が配置されている。石英管32と石英管33との間には、小径のポートであるノズル36が複数本配置されており、石英管31、石英管32〜35及びノズル36によって、第1ポートP1から第6ポートP6の6個のポートが形成されている。
【0022】
石英バーナ30に供給される燃料ガス及び原料ガスは、例えば、第1ポートP1に四塩化ケイ素(SiCl)と四塩化ゲルマニウム(GeCl)と水素(H)を、第3ポートP3に水素(H)を、第5,第6ポートP5,P6に酸素(O)を、第2,第4ポートP2,P4にシール用の不活性ガスであるアルゴン(Ar)ガスを供給する。石英バーナ30を使用するガラス微粒子堆積体の製造方法は、石英バーナ10を使用する実施形態と同様であるので、説明を省略する。
【0023】
【実施例】
次に、実施例及び比較例を挙げて、本発明を詳細に説明する。実施例及び比較例は、図1に示す同心円状の多重管バーナである石英バーナ10を用い、燃料ガス及び原料ガスとして、第1ポートP1に四塩化ケイ素(SiCl)と四塩化ゲルマニウム(GeCl)と水素(H)を供給し、第2,第6ポートP2,P6に水素(H)を供給し、第4,第8ポートP4,P8に酸素(O)を供給し、第3,第5,第7ポートP3,P5,P7にシール用の不活性ガスであるアルゴン(Ar)ガスを供給する。
【0024】
第8ポートP8の直径は、30mmであり、外側火炎の噴出ポート(P5〜P8)は内側火炎の噴出ポート(P1〜P4)より5mm前方に突出させている。更に、第4ポートP4の酸素の流速を14m/秒に設定し、内側火炎の噴出ポート(P1〜P4)からコアスート21の堆積面までの距離を20cmとする。
【0025】
そして、図2に示すように、石英バーナ10により酸水素火炎12を形成し、この火炎12中にガラス原料ガスを吹き出して、火炎加水分解により原料ガスをガラス微粒子とし、このガラス微粒子を回転する軸状の出発材23に堆積させて、コアスート21を形成する。同様に、クラッド用バーナ11により酸水素火炎13を形成し、この火炎13の中心よりガラス原料ガスを吹き出して、コア部多孔質ガラス体21を取り囲むようにクラッド部多孔質ガラス体22を形成し、コアスート21及びクラッド部多孔質ガラス体22よりなるガラス微粒子堆積体20を製作する。ここで、出発材23の軸線方向と石英バーナの軸線方向との角度は、50°とされている。
【0026】
石英管1の肉厚tを表1に示すように変化させたときの、石英バーナ10のガス供給側の先端の変位量(撓まないと仮定した場合における先端中心と、実際の先端中心との距離)及びガラス微粒子堆積体20の歩留を表1に示す。尚、歩留とは、製造したガラス微粒子堆積体20の総本数の内、割れや変形のないガラス微粒子堆積体20の本数の割合である。
【0027】
【表1】

Figure 2004323319
【0028】
表1から分かるように、石英管1の肉厚tの増加と共に、石英バーナ10の先端の変位量は減少する。また、歩留は、逆に肉厚tの増加と共に増加して、肉厚tが2.0mmでは95%の高い収率となっている。実用の観点からすると、歩留が80%未満では、所望のガラス微粒子堆積体を効率的に製造することができない。一方、歩留が80%以上、特に歩留が90%以上であれば、割れや変形のない所望のガラス微粒子堆積体を効率的に製造できる。従って、石英管10の肉厚tを1.0mm以上とすれば、80%以上の歩留を確保することができ、所望のガラス微粒子堆積体を効率的に製造できる。
特に、大型のガラス微粒子堆積体をOVD法で製造する場合においては、バーナを水平に取り付けるため、バーナの先端が自重でたれ下りやすく、本発明を適用する効果は大きい。
【0029】
尚、本発明は、前述した実施形態及び変形例に限定されるものではなく、適宜、変形、改良、等が可能である。その他、前述した実施形態及び変形例における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。例えば、本発明内での実施例はコア用多孔質母材のみに限定しての記載であるが、大型の多孔質母材は適切な嵩密度分布を保つことが安定生産には重要であり、このようなケースでは本発明を適用することにより、問題の解決を図ることができる。
【0030】
【発明の効果】
以上、説明したように、本発明によれば、ガラス微粒子を所望の状態に安定して堆積させることができる石英バーナ、及び、割れ,変形のない光ファイバ母材を効率良く製造できるガラス微粒子堆積体の製造方法を提供できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る石英バーナの模式図であり、(a)はガス吹出口から見た平面図、(b)は要部断面図である。
【図2】本発明の実施形態に係る石英バーナを用いたガラス微粒子堆積体の製造方法を説明する概略図である。
【図3】本発明の他の実施形態に係る石英バーナの模式図である。
【図4】屈折率の分布の例であり、(a)はコア部からクラッド部にかけて屈折率の傾斜がある場合を示し、(b)はコア部の外周部に局部的に屈折率が大きくなった部分がある場合を示し、(c)はコア部からクラッド部にかけての屈折率分布がステップ状になっている場合を示す図である。
【図5】従来の、ガラス微粒子堆積体の製造方法を説明する概略図である。
【符号の説明】
1,2,3,4,5,6,7,8,31,32,33,34,35 石英管
10,30 石英バーナ
20 ガラス微粒子堆積体
t 石英管の肉厚[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a quartz burner and a glass particle deposit.
[0002]
[Prior art]
In general, an optical fiber composed of a core and a clad is manufactured by heating a porous glass fine particle deposit to form an optical fiber preform, and drawing the optical fiber preform. As a method for producing a glass fine particle deposit, for example, a VAD method is given. In this VAD method, a combustion gas comprising a combustible gas and a supporting gas and a glass material are blown out from a burner having a plurality of ports, and the glass material is hydrolyzed in an oxyhydrogen flame generated by combustion of the combustion gas. Thus, the glass fine particles to be the core are deposited on the axial starting material, and the glass fine particles to be the clad are deposited around the core.
[0003]
As shown in FIG. 5, for example, in the case of manufacturing a glass particulate deposit for a single-mode optical fiber, an oxyhydrogen flame 52 is formed by a core burner 51, and a glass raw material gas is blown into the flame 52 to form a flame. The raw material gas is converted into glass fine particles by hydrolysis, and the glass fine particles are deposited on the rotating starting material 55 to form a core portion porous glass body (core soot) 53. Similarly, an oxyhydrogen flame 57 is formed by the cladding burner 56, and a glass raw material gas is blown out from the center of the flame 57 to form a cladding porous glass body 58 so as to surround the core soot 53. The glass fine particle deposit 60 made of the partially porous glass body 58 is obtained.
[0004]
As a technique relating to a burner for producing this kind of glass particle deposit, for example, in order to achieve both a high bulk density of a porous glass particle deposit and an improvement in the synthesis speed, a multiplexing method of synthesizing a glass particle deposit is used. There is disclosed a pipe burner in which the diameter is set within a range of 0.2 to 0.5 times the outer diameter of the porous base material (see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-63-123828
[Problems to be solved by the invention]
By the way, in order to improve the dispersion characteristic which is one of the transmission characteristics of the optical fiber, it is desirable that the shape of the refractive index distribution of the core portion be stepped. FIG. 4 shows the types of the refractive index distribution. FIG. 4A shows a case where there is a gradient of the refractive index from the core portion to the cladding portion, and FIG. 4B shows a case where there is a portion where the refractive index is locally increased at the outer peripheral portion of the core portion. FIG. 4C shows a case where the refractive index distribution from the core portion to the clad portion has a step shape.
[0007]
Germanium (Ge) as a dopant is added to the core porous glass body (core soot) in order to increase the refractive index, and the refractive index distribution of the optical fiber is determined depending on the dopant distribution. Further, in order to suppress the occurrence of cracks, deformation, and the like in the glass fine particle deposit, it is necessary to precisely control the flow rate of the raw material gas and the direction of the flame to deposit the glass fine particles as desired. This is because, if the glass fine particle deposit has a defect, it is difficult to make the characteristics of the optical fiber formed by drawing the glass fine particle deposit from the optical fiber preform to be the desired characteristics. .
[0008]
On the other hand, in recent years, there has been a strong demand for larger and longer optical fiber preforms, and with this, the burners themselves have also tended to be larger and longer, and the longitudinal length of the burners is, for example, 40 cm to The length is about 50 cm. Usually, since the burner is installed horizontally or obliquely, if the burner is large and long, it will bend due to its own weight, hindering the control of the flame and making it difficult to stably deposit glass particles in a desired state. There's a problem. Such a problem is remarkable in a core burner for forming a core having a small diameter, which is to be a core of an optical fiber.
The technique disclosed in Patent Literature 1 aims at increasing the bulk density of the optical fiber preform and improving the synthesis speed, and does not mention the above-described problems associated with the enlargement and lengthening of the burner. There is room for improvement.
[0009]
The present invention has been made in view of the above-described problems, and has as its object to provide a quartz burner capable of stably depositing glass fine particles in a desired state, and an optical fiber preform free from cracks and deformation. An object of the present invention is to provide a method for manufacturing a glass fine particle deposit that can be efficiently manufactured.
[0010]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, a quartz burner according to the present invention is a quartz burner having a quartz tube arranged at a center and a plurality of quartz tubes arranged in layers with respect to the quartz tube, The thickness of the quartz tube is 1.0 mm to 2.0 mm.
[0011]
In the method for producing a glass particle deposit according to the present invention, a combustion gas and a glass raw material are supplied from the quartz burner according to the present invention to generate and deposit glass particles to form a glass particle deposit.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
1A and 1B are schematic views of a quartz burner according to an embodiment of the present invention. FIG. 1A is a plan view seen from a gas outlet, FIG. 1B is a cross-sectional view of a main part, and FIG. FIG. 3 is a schematic view showing one embodiment of a method for manufacturing a glass particle deposit using a quartz burner, and FIG. 3 is a schematic view of a quartz burner according to a modification.
[0013]
As shown in FIG. 1, a quartz burner 10 according to an embodiment of the present invention is a multi-tube burner in which a plurality of tubes are concentrically arranged in a layered manner. A quartz tube 1 of 2 mm is arranged, and seven quartz tubes 2 to 8 are arranged concentrically with the quartz tube 1. Eight ports from the first port P1 to the eighth port P8 are formed by the quartz tube 1 and the seven quartz tubes 2 to 8. For the purpose of improving the glass synthesis speed, the fifth port P5 to the eighth port P8 are formed so as to protrude 5 mm forward from the first port P1 to the fourth port P4. Note that the ends of the eight ports from the first port P1 to the eighth port P8 may have the same shape without providing a step. The length of the quartz burner 10 in the longitudinal direction is, for example, about 40 cm to 50 cm in order to cope with an increase in the size and length of the optical fiber preform.
[0014]
The thickness t of the quartz tube 1 is set to 1 mm to 2 mm in order to suppress the deflection of the quartz burner 10 due to its own weight when the quartz burner 10 is disposed horizontally or diagonally, even if the length of the quartz burner 10 becomes long. The reason why the thickness t is set to 1 mm or more is that when the thickness t is less than 1 mm, when the quartz burner 10 is installed horizontally or obliquely, the quartz burner 10 easily bends and glass particles cannot be deposited in a desired state. . In addition, the reason why the thickness t is set to 2 mm or less is that when the thickness t exceeds 2 mm, the distance between the first port P1 and the second port P2 becomes too long and the flame between the glass raw material and the combustion gas is increased. This is because it is difficult to change the mixed state to a desired mixed state, and glass particles cannot be deposited in a desired state. In particular, when the inner diameter d of the first port P1 (quartz tube 1) is less than 3 mm and the thickness t exceeds 2 mm, the first port P1 is likely to be clogged with a product derived from the glass raw material. Therefore, the inner diameter of the first port P1 (quartz tube 1) is preferably 3 mm or more, and is usually preferably 4 mm or less. As shown in FIG. 2, the quartz burner 10 configured as described above is disposed below a soot forming device (not shown).
[0015]
Next, a method for producing a glass particle deposit using the above-described quartz burner will be described. As shown in FIG. 2, the method for manufacturing a glass fine particle deposit according to the embodiment of the present invention includes a core porous glass body (core soot) 21 and a clad porous glass body 22 constituting a glass fine particle deposit 20. Are formed simultaneously using different quartz burners 10 and clad burners 11, respectively.
[0016]
An oxyhydrogen flame 12 is formed by a quartz burner 10, and a glass raw material gas is blown out into the flame 12, and the raw material gas is made into glass fine particles by flame hydrolysis, and the glass fine particles are deposited on a rotating shaft-shaped starting material 23. Thus, the core soot 21 is formed. Similarly, an oxyhydrogen flame 13 is formed by the cladding burner 11, and a glass material gas is blown out from the center of the flame 13 to form a cladding porous glass body 22 so as to surround the core porous glass body 21. , A glass particle deposit body 20 composed of a core soot 21 and a clad porous glass body 22 is obtained.
[0017]
The optical fiber generally has a clad diameter larger than a core diameter. Therefore, in order to reliably and efficiently obtain an optical fiber preform capable of manufacturing such an optical fiber, the quartz burner 10 is formed to have a smaller diameter than the cladding burner 11 and has the above-described dimensions. The angle between the axial direction of the material 23 and the axial direction of the quartz burner 10 (the direction of a tangent line which is in contact with the central axis of the quartz burner 10 at the end opposite to the gas supply side of the quartz burner 10) is Usually, it is 35 ° to 65 °.
[0018]
In the quartz burner 10, for example, silicon tetrachloride (SiCl 4 ), germanium tetrachloride (GeCl 4 ), and hydrogen (H 2 ) are supplied to the first port P1 at the center, and hydrogen (H 2 ) is supplied to the second and sixth ports P2, P6. H 2 ), oxygen (O 2 ) at the fourth and eighth ports P4 and P8, and argon (Ar) gas as an inert gas for sealing at the third, fifth and seventh ports P3, P5 and P7. Is supplied as a fuel gas and a source gas (see FIG. 1).
[0019]
In order to control the spread of the flame and improve the heating efficiency, the flow rate of the oxygen gas at the fourth port P4 is set to 4 m / sec to 16 m / sec. The distance to the deposition surface is preferably set to 5 cm to 30 cm. Further, as the flammable gas used in the present invention, hydrocarbons such as CH 4 , C 2 H 6 , and C 3 H 8 can be employed in addition to hydrogen. Further, it is also possible to mix and supply oxygen instead of hydrogen to the raw material port.
[0020]
As described above, since the quartz burner 10 is a multi-tube burner centered on the quartz tube 1 having a thickness t of 1 mm to 2 mm, bending of the tip of the quartz burner 10 is prevented, and glass fine particles are desired. It is possible to stably deposit in the state described above. Thereby, cracking and deformation of the obtained optical fiber preform can be reduced.
[0021]
Next, a modified example of the quartz burner will be described with reference to FIG. FIG. 3 is a plan view of the quartz burner according to the present invention as viewed from a gas outlet. In the quartz burner 30 of the modified example, a quartz tube 31 having a thickness t of 1 mm to 2 mm is arranged at the center, and four quartz tubes 32 to 35 are arranged in layers on the quartz tube 31. A plurality of nozzles 36, which are small-diameter ports, are arranged between the quartz tube 32 and the quartz tube 33. The quartz tube 31, the quartz tubes 32 to 35, and the nozzle 36 cause the first port P1 to the sixth port. Six ports P6 are formed.
[0022]
The fuel gas and the source gas supplied to the quartz burner 30 are, for example, silicon tetrachloride (SiCl 4 ), germanium tetrachloride (GeCl 4 ) and hydrogen (H 2 ) in the first port P1, and hydrogen in the third port P3. (H 2 ), oxygen (O 2 ) is supplied to the fifth and sixth ports P5 and P6, and argon (Ar) gas as an inert gas for sealing is supplied to the second and fourth ports P2 and P4. The method for manufacturing the glass particle deposit using the quartz burner 30 is the same as that of the embodiment using the quartz burner 10, and a description thereof will be omitted.
[0023]
【Example】
Next, the present invention will be described in detail with reference to Examples and Comparative Examples. In Examples and Comparative Examples, a quartz burner 10 which is a concentric multi-tube burner shown in FIG. 1 was used, and silicon tetrachloride (SiCl 4 ) and germanium tetrachloride (GeCl 4 ) were supplied to a first port P1 as a fuel gas and a raw material gas. 4) and supplying the hydrogen (H 2), second, and supplies the hydrogen (H 2) to the sixth port P2, P6, supplying oxygen (O 2) in the fourth, eighth port P4, P8, Argon (Ar) gas, which is an inert gas for sealing, is supplied to the third, fifth, and seventh ports P3, P5, and P7.
[0024]
The diameter of the eighth port P8 is 30 mm, and the ejection ports (P5 to P8) for the outer flame project 5 mm forward from the ejection ports (P1 to P4) for the inner flame. Further, the flow rate of oxygen at the fourth port P4 is set to 14 m / sec, and the distance from the inner flame ejection ports (P1 to P4) to the deposition surface of the core soot 21 is set to 20 cm.
[0025]
Then, as shown in FIG. 2, an oxyhydrogen flame 12 is formed by the quartz burner 10, and a glass raw material gas is blown out into the flame 12, the raw material gas is converted into glass fine particles by flame hydrolysis, and the glass fine particles are rotated. The core soot 21 is formed by being deposited on the shaft-like starting material 23. Similarly, an oxyhydrogen flame 13 is formed by the cladding burner 11, and a glass raw material gas is blown out from the center of the flame 13 to form a cladding porous glass body 22 so as to surround the core porous glass body 21. , A glass particle deposit body 20 composed of a core soot 21 and a clad porous glass body 22 is manufactured. Here, the angle between the axial direction of the starting material 23 and the axial direction of the quartz burner is set to 50 °.
[0026]
The amount of displacement of the tip on the gas supply side of the quartz burner 10 when the thickness t of the quartz tube 1 is changed as shown in Table 1 Are shown in Table 1. The yield is the ratio of the number of glass particle deposits 20 that are not cracked or deformed to the total number of manufactured glass particle deposits 20.
[0027]
[Table 1]
Figure 2004323319
[0028]
As can be seen from Table 1, the displacement of the tip of the quartz burner 10 decreases as the thickness t of the quartz tube 1 increases. Conversely, the yield increases with an increase in the thickness t, and when the thickness t is 2.0 mm, a high yield of 95% is obtained. From a practical viewpoint, if the yield is less than 80%, a desired glass particle deposit cannot be efficiently produced. On the other hand, if the yield is 80% or more, particularly if the yield is 90% or more, it is possible to efficiently produce a desired glass fine particle deposit having no crack or deformation. Therefore, if the thickness t of the quartz tube 10 is 1.0 mm or more, a yield of 80% or more can be secured, and a desired glass particle deposit can be efficiently manufactured.
In particular, in the case where a large-sized glass particle deposit is manufactured by the OVD method, since the burner is mounted horizontally, the tip of the burner easily falls down by its own weight, and the effect of applying the present invention is great.
[0029]
It should be noted that the present invention is not limited to the above-described embodiments and modified examples, but can be appropriately modified and improved. In addition, the materials, shapes, dimensions, numerical values, forms, numbers, arrangement locations, and the like of the respective constituent elements in the above-described embodiments and modifications are arbitrary and are not limited as long as the present invention can be achieved. For example, although the examples in the present invention are described only for the porous base material for the core, it is important for a large-sized porous base material to maintain an appropriate bulk density distribution for stable production. In such a case, the problem can be solved by applying the present invention.
[0030]
【The invention's effect】
As described above, according to the present invention, a quartz burner capable of stably depositing glass particles in a desired state, and a glass particle deposition capable of efficiently producing an optical fiber preform without cracks and deformations. A method for producing a body can be provided.
[Brief description of the drawings]
FIGS. 1A and 1B are schematic views of a quartz burner according to an embodiment of the present invention, in which FIG. 1A is a plan view as viewed from a gas outlet, and FIG.
FIG. 2 is a schematic diagram illustrating a method for manufacturing a glass particle deposit using a quartz burner according to an embodiment of the present invention.
FIG. 3 is a schematic view of a quartz burner according to another embodiment of the present invention.
4A and 4B are examples of a refractive index distribution, in which FIG. 4A shows a case where the refractive index is inclined from the core to the cladding, and FIG. 4B shows a case where the refractive index is locally large at the outer periphery of the core; (C) is a diagram showing a case where the refractive index distribution from the core portion to the clad portion has a step shape.
FIG. 5 is a schematic view illustrating a conventional method for producing a glass fine particle deposit.
[Explanation of symbols]
1,2,3,4,5,6,7,8,31,32,33,34,35 Quartz tube 10,30 Quartz burner 20 Glass fine particle deposit t Thickness of quartz tube

Claims (2)

中心に配置された石英管と、前記石英管に対し層状に配置された複数の石英管とを有する石英バーナであって、前記石英管の肉厚が1.0mm〜2.0mmである石英バーナ。A quartz burner comprising: a quartz tube arranged at a center; and a plurality of quartz tubes arranged in layers with respect to the quartz tube, wherein the thickness of the quartz tube is 1.0 mm to 2.0 mm. . 請求項1に記載の石英バーナから燃焼ガス及びガラス原料を供給し、ガラス微粒子を生成し、堆積させて、ガラス微粒子堆積体を形成するガラス微粒子堆積体の製造方法。A method for producing a glass fine particle deposit, comprising supplying a combustion gas and a glass raw material from the quartz burner according to claim 1 to generate and deposit glass fine particles to form a glass fine particle deposit.
JP2003122522A 2003-04-25 2003-04-25 Quartz burner, and method of producing glass particulate deposit Pending JP2004323319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122522A JP2004323319A (en) 2003-04-25 2003-04-25 Quartz burner, and method of producing glass particulate deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122522A JP2004323319A (en) 2003-04-25 2003-04-25 Quartz burner, and method of producing glass particulate deposit

Publications (1)

Publication Number Publication Date
JP2004323319A true JP2004323319A (en) 2004-11-18

Family

ID=33500718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122522A Pending JP2004323319A (en) 2003-04-25 2003-04-25 Quartz burner, and method of producing glass particulate deposit

Country Status (1)

Country Link
JP (1) JP2004323319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058510A (en) * 2011-10-18 2013-04-24 信越化学工业株式会社 Burner used for producing porous glass preform and method for producing porous glass preform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228812A (en) * 1984-04-27 1985-11-14 Furukawa Electric Co Ltd:The Glass burner and manufacture thereof
JPH1095623A (en) * 1996-09-19 1998-04-14 Sumitomo Electric Ind Ltd Production of porous glass preform and burner for producing the same preform
JPH11199264A (en) * 1998-01-09 1999-07-27 Furukawa Electric Co Ltd:The Multitube burner and production of glass preform for optical fiber using the same
JP2000327341A (en) * 1999-05-11 2000-11-28 Shin Etsu Chem Co Ltd Multiple pipe burner for producing porous glass base material and method and device for producing porous glass base material by use of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228812A (en) * 1984-04-27 1985-11-14 Furukawa Electric Co Ltd:The Glass burner and manufacture thereof
JPH1095623A (en) * 1996-09-19 1998-04-14 Sumitomo Electric Ind Ltd Production of porous glass preform and burner for producing the same preform
JPH11199264A (en) * 1998-01-09 1999-07-27 Furukawa Electric Co Ltd:The Multitube burner and production of glass preform for optical fiber using the same
JP2000327341A (en) * 1999-05-11 2000-11-28 Shin Etsu Chem Co Ltd Multiple pipe burner for producing porous glass base material and method and device for producing porous glass base material by use of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058510A (en) * 2011-10-18 2013-04-24 信越化学工业株式会社 Burner used for producing porous glass preform and method for producing porous glass preform

Similar Documents

Publication Publication Date Title
US9260339B2 (en) Method of fabricating an optical fiber preform and a burner therefor
GB2128981A (en) Fabrication method of optical fiber preforms
JP2011230936A (en) Burner for manufacturing porous glass preform
JP2004035365A (en) Multiple pipe burner and method of manufacturing glass body using the same
CN109626809B (en) Method for preparing porous glass deposit for optical fiber
US9227869B2 (en) Porous glass base material manufacturing burner and optical fiber porous glass base material manufacturing apparatus
JP2004323319A (en) Quartz burner, and method of producing glass particulate deposit
KR101035432B1 (en) Method for producing optical fiber preform
JPH0463018B2 (en)
KR101035437B1 (en) Burner for producing porous glass preform
JP7195703B2 (en) Burner for synthesizing porous body and method for producing porous body
JP4097982B2 (en) Method for producing porous preform for optical fiber
JP3953820B2 (en) Method for manufacturing optical fiber porous preform
JP4196700B2 (en) Manufacturing method of glass particulate deposits
JP4530687B2 (en) Method for producing porous glass preform for optical fiber
JP2005029396A (en) Production method for glass fine particle deposit, and burner for forming glass fine particle
KR20050006057A (en) Method of producing glass-particle-deposited body and glass-particle-synthesizing burner
JP4483434B2 (en) Manufacturing method of glass base material
JP4185304B2 (en) Method for producing porous preform for optical fiber
JP2012001411A (en) Burner for synthesizing glass particulate, and method for producing glass particulate deposit
JPH1121143A (en) Production of preform for optical fiber
JPH0986948A (en) Production of porous glass base material for optical fiber
JP2000063141A (en) Production of porous glass preform for optical fiber
JPS6041627B2 (en) Manufacturing method of optical fiber base material
JP4053305B2 (en) Method for producing porous preform for optical fiber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070307