JP2004323303A - 自己再生型カーボンナノチューブ・グラファイト混合膜の形成方法 - Google Patents

自己再生型カーボンナノチューブ・グラファイト混合膜の形成方法 Download PDF

Info

Publication number
JP2004323303A
JP2004323303A JP2003120459A JP2003120459A JP2004323303A JP 2004323303 A JP2004323303 A JP 2004323303A JP 2003120459 A JP2003120459 A JP 2003120459A JP 2003120459 A JP2003120459 A JP 2003120459A JP 2004323303 A JP2004323303 A JP 2004323303A
Authority
JP
Japan
Prior art keywords
carbon
nickel
graphite
solid solution
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003120459A
Other languages
English (en)
Other versions
JP3686948B2 (ja
Inventor
Daisuke Fujita
大介 藤田
Keiko Onishi
桂子 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003120459A priority Critical patent/JP3686948B2/ja
Publication of JP2004323303A publication Critical patent/JP2004323303A/ja
Application granted granted Critical
Publication of JP3686948B2 publication Critical patent/JP3686948B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】外部から炭素源を供給することなくカーボンナノチューブを創製する。
【解決手段】炭素を0.1〜2.7at%固溶したニッケルまたはニッケル基合金を超高真空中で炭素固溶限温度以上に加熱保持し、次いで冷却する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この出願の発明は、自己再生型カーボンナノチューブ・グラファイト混合膜の形成方法に関するものである。さらに詳しくは、この出願の発明は、走査プローブ顕微鏡の探針、電界放射材料、水素吸収材料、耐食性皮膜材料、低ガス放出性真空材料、電極材料等として有用なカーボンナノチューブをグラファイトとの混合膜として再生可能に金属表面に形成することのできる新しい方法に関するものである。
【0002】
【従来の技術とその課題】
従来、カーボンナノチューブの代表的な創製方法として、アーク蒸発法(文献1および2)やレーザー蒸発法(文献3)、あるいはまた一般にCVD法と呼ばれている化学気相蒸着法(以下、CVD法と称す)(文献4)等が知られているが、これら従来の方法は、いずれも気相状態にした炭素を直接基体の表面へ供給する方法であり、カーボンナノチューブが創製される速度は気相中の分子もしくは原子が表面に衝突する頻度に依存するため、複雑な形状をした基体の全面にカーボンナノチューブを簡便、かつ効率的に、均一に被覆することは困難であった。
【0003】
【文献】
1:特開2002−249306号公報
2:特開2002−201014号公報
3:特開2002−80211号公報
4:特開2002−180252号公報
【0004】
そこで、この出願の発明は従来技術の問題点を解消して、複雑形状をしている基体であっても、カーボンナノチューブを簡便、かつ効率的に、しかも均一に生成被覆することのできる新しい技術手段を提供することを課題としている。
【0005】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、炭素を固溶させたニッケル−炭素合金を真空減圧下に炭素固溶限温度以上に加熱した後に冷却して、カーボンナノチューブとグラファイトの混合膜を形成することを特徴とする自己再生型カーボンナノチューブ・グラファイト混合膜の形成方法を提供し、第2には、ニッケル−炭素合金の炭素濃度は2.7at%以下の範囲とする上記カーボンナノチューブ・グラファイト混合膜の形成方法を提供する。
【0006】
さらにこの出願の発明は、第3には、炭素固溶ニッケル−炭素合金の表面に存在することを特徴とするカーボンナノチューブ・グラファイト混合膜を提供し、第4には、炭素固溶ニッケルー炭素合金の加熱と冷却とにより再生可能であることを特徴とするカーボンナノチューブ・グラファイト混合膜を、第5には、炭素固溶ニッケル−炭素合金の炭素濃度が2.7at%以下であることを特徴とするカーボンナノチューブ・グラファイト混合膜を提供する。
【0007】
そして、この出願の発明は、第6には、上記いずれかの混合膜を有することを特徴とする物品を提供し、第7には、トンネル顕微鏡微細探針であることを特徴とする物品を提供する。
【0008】
以上のとおりのこの出願の発明は、発明者により見出された全く新しい技術的知見、すなわち炭素を固溶したニッケル合金を真空中で炭素偏析および炭素析出の熱処理を施す場合、表面にグラファイトとカーボンナノチューブの混合層が生成されるとの知見に基づいて完成されたものである。
【0009】
この出願の発明を図1に沿って原理的に説明すると、まず、(A)炭素を固溶したニッケル−炭素合金(C−doped Ni)を、(B)真空減圧下において、炭素の固溶限直上の温度にまで加熱すると、固溶していた炭素は合金の表面に偏析する。そして、(C)温度を固溶限直下にまで降下させるとニッケル−炭素合金の表面にはカーボンナノチューブとグラファイトの混合層が生成される。
【0010】
この出願の発明の方法は、以上のとおりの機序に基づくものである。
【0011】
【発明の実施の形態】
この出願の発明は、上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。
【0012】
まず、この出願の発明に使用するニッケル−炭素合金としては、好適には、ニッケルに対して炭素を0.1〜2.7at%の範囲で固溶させたものが考慮される。上限を2.7at%については、図2に示されているように、炭素のニッケルに対する最大固溶量が2.7at%であることに基づいている。
【0013】
ニッケル−炭素合金には、他の金属元素が添加されてもよいが、金属元素は炭化物を生成しないものであることが必要であり、添加に好適な金属元素としてはたとえばコバルト(Co)やパラジュウム(Pd)が考慮される。
【0014】
炭素を0.1〜2.7at%の範囲で固溶したニッケル−炭素合金の作製には、たとえば図3に例示したような装置を用いることができる。この装置は、グラファイト容器(3)、高温炉(4)、超高真空容器(5)、PID温度制御電源(6)、真空計(7)、ターボ分子ポンプ(8)、粗引きポンプ(9)を備えており、グラファイト容器(3)内にニッケル(1)とグラファイト粉末(2)を装填して超高真空高温に保持することにより、炭素をニッケルへ固溶させることができる。この方法は一般に拡散固溶法と呼ばれている。そして、たとえば、このようにして作製したニッケル−炭素合金の表面を研磨した後、充分に清浄化処理をする。
【0015】
得られた炭素固溶ニッケルー炭素合金について、この出願の発明では真空減圧下に炭素固溶温度以上に加熱し、次いで冷却する。この際の真空減圧の条件については、通常、1×10−6Torr未満の、たとえば1×10−8Torr、さらには1×10−9Torr未満の超高真空領域にまで減圧することが望ましい。1×10−6Torrよりも高い圧力の雰囲気では酸化反応が顕著になり、析出した炭素がCOに酸化されて気化してしまう。このため酸化によるCO放出を最小限にするためには、真空度は高いほど望ましい。
【0016】
また、炭素固溶限温度以上での加熱保持時間は最低1時間以上保持することが望ましい。長いほど表面層の安定化と平坦化が進む。炭素の析出の度合と、表面層の安定化、平坦化を考慮して実際の保持時間を定めることができる。
【0017】
固溶限度温度以下への冷却速度については、一般に冷却速度は遅い方が炭素ナノチューブの成長が促進されるので長いナノチューブが形成されやすく、また、冷却速度が速い程、成長核密度が増大するが、長さは短くなることを考慮して、通常は、炭素ナノチューブの成長可能な温度範囲として、0.1K/分から100K/分までとすることができる。
【0018】
たとえば冷却速度を1K/分〜30K/分の範囲とすること等が考慮される。
【0019】
この出願の発明においては外部から炭素源を供給することなくニッケル−炭素合金の表面にカーボンナノチューブとグラファイトの混合層を形成することができる。
【0020】
したがって、この出願の発明では、たとえ、要求される基体の形状が複雑であっても、基体であるニッケル−炭素合金の形状そのものを所望の形状に成形しておくことで全表面に均一にカーボンナノチューブとグラファイトの混合層を形成することができる。
【0021】
このような特徴は、基体の裏面まで均一に被覆することが困難であった従来法のアーク蒸発法、レーザー蒸発法、CVD法等の方法に比較して優れた利点である。
【0022】
しかも、この出願の発明によれば、内部に固溶した炭素原子濃度が充分であれば、たとえ、カーボンナノチューブとグラファイトの混合層が剥離したとしても、同じ熱処理を繰り返すことにより再びカーボンナノチューブとグラファイトの混合層の析出が可能となる、いわゆる自己再生機能が実現される。
【0023】
そして、この出願の発明で創製されるものはカーボンナノチューブとグラファイトの混合層であり、基板のニッケルに比較して安定で耐酸化性が優れており、走査プローブ顕微鏡の探針として好適である。しかも、表面層は導電性のグラファイトとカーボンナノチューブの混合層により被覆されているため燃料電池の電極材料などの耐食性と電気伝導性が要求される材料に適している。
【0024】
グラファイトと炭素ナノチューブの混合割合は熱処理条件及び初期炭素濃度により制御することができる。たとえば、炭素固溶濃度が大きいほど、また、冷却速度が大きいほど、表面への炭素供給速度が大きくなり、ナノチューブ化の為の核形成が起こりやすく、ナノチューブの表面密度は大きくなる。しかし、冷却速度が大きすぎるとナノドット化の段階で成長が止まるので、長いナノチューブの成長が阻害される。
【0025】
そこで以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって発明が限定されることはない。
【0026】
【実施例】
<実施例1>
図3の装置を用いて、純度99.995%の高純度ニッケル(111)単結晶の板状試料(1)と純度99.99%の高純度グラファイト粉末(2)をグラファイト容器(3)内に装填し、超高真空高温炉(5)中で約1045Kに保持してニッケルのバルク中へ炭素を0.3at%拡散固溶させた。この炭素の固溶量と温度の関係については図2の炭素−ニッケル(C−Ni)2元系の状態図から求めることができる。
【0027】
そして、得られた炭素固溶ニッケル単結晶をアルミナの微粉末で表面研磨し、アセトン液中に浸しながら超音波クリーナで清浄化処理をして充分に脱脂した。
【0028】
次いで、炭素固溶ニッケル単結晶試料を超高真空高温装置に入れて1150Kの温度に加熱して5〜6時間程度保持した。試料表面は、グラファイトからなる炭素表面偏析状態となる。この炭素の表面偏析状態は1195〜1045Kの温度範囲において生成することが確認されている。その後、2.5K/minの速さで冷却すると、温度が850Kあたりでカーボンナノチューブとグラファイト混合層が形成されることが確認された。
【0029】
図4はニッケル合金基体の表面に析出したカーボンナノチューブの走査トンネル顕微鏡(STM)写真である。このSTM写真においてグラファイトとカーボンナノチューブが成長している下地テラスはグラファイト(0001)基底面である。グラファイトとカーボンナノチューブとの混合状態が確認される。そして、カーボンナノチューブによる表面被覆割合は約3%である。なお、この他にも走査オージェ顕微鏡や走査電子顕微鏡により同定した。そして、図5は図4と同じものの断面プロファイルである。
<実施例2>
実施例1と同様にして、約1at%の炭素を固溶させた多結晶ニッケルワイヤの表面に、カーボンナノチューブ・グラファイトの混合膜を形成させた。図6に模式的に示したように、ワイヤの先端にはカーボンナノチューブ探針が形成された。このカーボンナノチューブ探針で珪素(Si)(111)表面を観測したところ、原子分解能の像が安定して得られ、高分解能かつ長寿命、さらに再生可能な探針として利用することが可能であることが確認された。図7はカーボンナノチューブ探針により計測した珪素(111)表面の走査トンネル顕微鏡写真である。
【0030】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、ニッケル−炭素合金を高真空中で加熱処理をするだけで任意の形状の基材表面にカーボンナノチューブとグラファイト混合層を均一に形成することが可能となる。混合層は安定で電導性を有しているため走査プローブ顕微鏡の探針や燃料電池等の電極材料に適している。さらに自己再生機能を有しており、高価な部品に使用しても何度でも再利用することができる。
【図面の簡単な説明】
【図1】本発明の機序を原理的に示した図である。
A:炭素完全固溶状態を示したものであり、
B:固溶限直上に保持した炭素表面偏析状態を示したものであり、
C:固溶限直下に保持した炭素表面析出状態を示したものである。
【図2】固溶限の温度依存性を示した炭素−ニッケル(C−Ni)2元系の状態図である。
【図3】拡散固溶法によるニッケル試料へ炭素を固溶させるための装置の模式図である。
【図4】炭素を固溶させたニッケル(111)を真空中熱処理により表面にグラファイトとカーボンナノチューブの混合層を析出成長させた時の走査トンネル顕微鏡写真である。
【図5】炭素を固溶させたニッケル(111)を真空中熱処理により表面にグラファイトとカーボンナノチューブの混合層を析出成長させた時の断面プロファイルである。
【図6】炭素固溶ニッケル上に創製させたカーボンナノチューブの応用例を示す模式図である。
【図7】カーボンナノ探針により計測した珪素(111)表面の走査トンネル顕微鏡写真である。
【符号の説明】
1 高純度ニッケル単結晶
2 高純度グラファイト粉末
3 グラファイト容器
4 高温炉
5 超高真空容器
6 PID温度制御電源
7 真空計
8 ターボ分子ポンプ
9 粗引きポンプ

Claims (7)

  1. 炭素を固溶させたニッケル−炭素合金を真空減圧下に炭素固溶限温度以上に加熱した後に冷却して、前記合金表面にカーボンナノチューブとグラファイトの混合膜を形成することを特徴とする自己再生型カーボンナノチューブ・グラファイト混合膜の形成方法。
  2. ニッケル−炭素合金の炭素濃度は2.7at%以下の範囲とすることを特徴とする請求項1の自己再生型カーボンナノチューブ・グラファイト混合膜の形成方法。
  3. 炭素固溶ニッケル−炭素合金の表面に存在することを特徴とするカーボンナノチューブ・グラファイト混合膜。
  4. 炭素固溶ニッケルー炭素合金の加熱と冷却とにより再生可能であることを特徴とする請求項3のカーボンナノチューブ・グラファイト混合膜。
  5. 炭素固溶ニッケル−炭素合金の炭素濃度が2.7at%以下であることを特徴とする請求項3または4のカーボンナノチューブ・グラファイト混合膜。
  6. 請求項3ないし5のいずれかの混合膜を有することを特徴とする物品。
  7. トンネル顕微鏡微細探針であることを特徴とする請求項6の物品。
JP2003120459A 2003-04-24 2003-04-24 自己再生型カーボンナノチューブ・グラファイト混合膜の形成方法 Expired - Lifetime JP3686948B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120459A JP3686948B2 (ja) 2003-04-24 2003-04-24 自己再生型カーボンナノチューブ・グラファイト混合膜の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120459A JP3686948B2 (ja) 2003-04-24 2003-04-24 自己再生型カーボンナノチューブ・グラファイト混合膜の形成方法

Publications (2)

Publication Number Publication Date
JP2004323303A true JP2004323303A (ja) 2004-11-18
JP3686948B2 JP3686948B2 (ja) 2005-08-24

Family

ID=33499361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120459A Expired - Lifetime JP3686948B2 (ja) 2003-04-24 2003-04-24 自己再生型カーボンナノチューブ・グラファイト混合膜の形成方法

Country Status (1)

Country Link
JP (1) JP3686948B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051801A (ja) * 2009-08-31 2011-03-17 National Institute For Materials Science グラフェンフィルム製造方法
JP2013170101A (ja) * 2012-02-21 2013-09-02 National Institute Of Advanced Industrial Science & Technology ナノワイヤ及びその製造方法
JP2015073006A (ja) * 2013-10-02 2015-04-16 Jfeエンジニアリング株式会社 太陽電池及びそのカーボン電極の製造方法
CN106571245A (zh) * 2015-10-10 2017-04-19 联创汽车电子有限公司 膨胀石墨碳纳米管复合材料制造方法及其制造的超级电容

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051801A (ja) * 2009-08-31 2011-03-17 National Institute For Materials Science グラフェンフィルム製造方法
JP2013170101A (ja) * 2012-02-21 2013-09-02 National Institute Of Advanced Industrial Science & Technology ナノワイヤ及びその製造方法
JP2015073006A (ja) * 2013-10-02 2015-04-16 Jfeエンジニアリング株式会社 太陽電池及びそのカーボン電極の製造方法
CN106571245A (zh) * 2015-10-10 2017-04-19 联创汽车电子有限公司 膨胀石墨碳纳米管复合材料制造方法及其制造的超级电容

Also Published As

Publication number Publication date
JP3686948B2 (ja) 2005-08-24

Similar Documents

Publication Publication Date Title
Zhang et al. Imaging as-grown single-walled carbon nanotubes originated from isolated catalytic nanoparticles
US7582507B2 (en) Catalyst support substrate, method for growing carbon nanotubes using the same, and the transistor using carbon nanotubes
JP2006007213A (ja) 炭素ナノチューブ製造用触媒の製造方法
CA2564421C (en) Method of producing carbon nanostructure
US20070020168A1 (en) Synthesis of long and well-aligned carbon nanotubes
JP2005330175A (ja) カーボンナノ構造体の製造方法
JP2009196873A (ja) カーボンナノチューブの製造方法及び製造装置
JP2017019718A (ja) カーボンナノチューブの製造方法
US7585484B2 (en) Apparatus and method for synthesizing carbon nanotubes
US20100239491A1 (en) Method of producing carbon nanotubes
JP4378350B2 (ja) 気相成長法による二重壁炭素ナノチューブの大量合成方法
JP2007186363A (ja) カーボンナノチューブの製造方法および製造装置
JP3686948B2 (ja) 自己再生型カーボンナノチューブ・グラファイト混合膜の形成方法
JPH059735A (ja) ダイヤモンドの気相合成方法
KR100596677B1 (ko) 기상합성법에 의한 이중벽 탄소나노튜브의 대량 합성 방법
KR100596676B1 (ko) 기상합성법에 의한 단일벽 탄소 나노튜브의 대량 합성 방법
JP2001506572A (ja) 気相合成によるダイヤモンド皮膜の形成方法
JP2010138033A (ja) Cnt合成用基板、その製造方法、及びcntの製造方法
JP4881504B2 (ja) 熱cvd法によるグラファイトナノファイバー薄膜の選択形成方法
Xie et al. Growth of p-type Si nanotubes by catalytic plasma treatments
JP2005126323A (ja) 触媒担持基板、それを用いたカーボンナノチューブの成長方法及びカーボンナノチューブを用いたトランジスタ
JP2007320810A (ja) カーボンナノチューブの製造方法及びカーボンナノチューブの製造装置
JP2007262509A (ja) カーボンナノチューブ生成用合金基板とその作製方法、それを用いて生成したカーボンナノチューブ生成合金基板とその製造方法、及びその用途
US7767275B2 (en) Method for synthesizing self-aligned carbon nanomaterials on large area
EP0989211B1 (en) Process for obtaining diamond layers by gaseous-phase synthesis

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

R150 Certificate of patent or registration of utility model

Ref document number: 3686948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term