JP2004322233A - Chamfering work method of hard fragile plate - Google Patents

Chamfering work method of hard fragile plate Download PDF

Info

Publication number
JP2004322233A
JP2004322233A JP2003117328A JP2003117328A JP2004322233A JP 2004322233 A JP2004322233 A JP 2004322233A JP 2003117328 A JP2003117328 A JP 2003117328A JP 2003117328 A JP2003117328 A JP 2003117328A JP 2004322233 A JP2004322233 A JP 2004322233A
Authority
JP
Japan
Prior art keywords
tool
edge
vibration
chamfering
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003117328A
Other languages
Japanese (ja)
Inventor
Naoto Mizumoto
直人 水本
Takasuke Amahi
崇介 天日
Yasuyuki Yamamoto
康行 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Tome Precision Industry Co Ltd
Original Assignee
Nakamura Tome Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Tome Precision Industry Co Ltd filed Critical Nakamura Tome Precision Industry Co Ltd
Priority to JP2003117328A priority Critical patent/JP2004322233A/en
Publication of JP2004322233A publication Critical patent/JP2004322233A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for enhancing quality of a work surface without requiring supply of a cutting liquid by restraining a temperature rise in a work point in the chamfering work method of a hard fragile plate suitable for chamfering the cut-and-split edge of a glass pane used for, for example, a liquid crystal panel. <P>SOLUTION: A tool edge 6 is contacted with a ridgeline part of the chamfering edge of the hard fragile plate 1, and the hard fragile plate and the tool edge are relatively moved in the ridgeline direction being the cutting direction of a tool, and ultrasonic vibration is imparted to the tool edge 6. The vibration direction of the ultrasonic vibration is desirably set as circular and elliptic vibration or rocking vibration including the movement in the ridgeline direction for chamfering. When the tool is a rotary tool, the vibration direction can be set in the shaft direction of the tool. Work is performed without using the cutting liquid at all, and a superior result is sometimes provided in case of performing the work in a wetted state by dripping of the cutting liquid on the work point. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
この発明は、硬質脆性板の辺の鋭い稜線を斜めに又は円弧形状に面取りする方法に関するもので、例えば液晶パネルに用いられるガラス板の割断辺に生ずる鋭い稜線の面取に好適な方法に関するものである。
【0002】
【従来の技術】
電子装置の表示デバイスとして用いられる液晶パネルは、所定寸法のガラス基板上に複数のデバイスをマトリックス状に形成して、その後、各デバイス毎の寸法に割断するという工程で製作されている。ガラス板を割断する一般的な方法は、ガラスの脆性を利用するもので、ダイヤモンドの尖針やローラでガラス表面にスクライブ溝(引っ掻き溝)を形成し、このときスクライブ溝に沿って生ずる微小な垂直クラックを熱や衝撃力で助長して分断するというものである。このような方法で割断されたガラス基板の割断辺の稜線部分には、引っ掻きによる荒れた稜線又は割れによる鋭い稜線が形成される。そこで、この稜線部分を面取して、作業者が持ち上げたときに指先を傷つけたり、稜線に欠けやクラックが発生するのを防止する必要がある。
【0003】
従来この面取は、図6、7に示すように、回転砥石を用いて行われている。即ち、図6に示すように、面取しようとする稜線2aと略平行な軸11回りに回転する、通常は複数枚の円板状の砥石12の外周をワークとなるガラス基板1の稜線2に接触させて、ガラス基板1を当該稜線に沿う図の矢印13方向に砥石12に対して相対移動させる。回転軸11に例えば3枚の砥石を装着したときは、3枚の砥石によって順次切り込まれて、当該稜線部に面取寸法Cの面取が行われる。なお、砥石12の回転方向は、ガラス基板の面から辺に向う図の矢印14方向である。
【0004】
【発明が解決しようとする課題】
図6、7に示すような従来の砥石によるガラス基板の面取においては、砥石12が高速で加工点を摺擦することによる、加工点の温度上昇を抑えるために、加工点に切削液を供給することが不可欠であり、図7に示すように、加工点15に向けた切削液ノズル16から大量の切削液を連続的に供給しながら加工を行う必要があった。即ち、研削砥石によるガラス基板の面取では、加工点における熱発生が大きいため、その熱を奪って温度上昇を抑える加工液の量も多くなり、容量の大きな給水タンクや噴射された切削液を回収するための排水構造などを装置に設ける必要があった。特に回転砥石で面取をする場合には、砥石の回転に伴って切削液が四方八方に飛散するので、飛散した水滴やミストを捕集するための大掛かりなカバーが必要であり、切削液の排水構造が大掛かりになる。
【0005】
また、面取加工の加工能率を向上させるためには、砥石回転の高速化が必要であるが、砥石の回転を高くすると、砥石とガラス基板の摺擦面への切削液の流入が砥石の摺擦速度に追いつかなくなって、ドライ研削に近い状態となり、加工点の温度が急激に上昇してくると共に、加工面の品質が低下するという現象や砥石の寿命低下が起こり、これが限界となってワークの送り速度や砥石の切込深さを大きくするのに限界があるという問題があった。
【0006】
更に、硬質脆性材料の研削においては、砥石がワークをむしり取るように除去して加工を行うので、チッピングや欠けなどを生じやすいという問題があった。
【0007】
この発明は、上記従来技術の問題点を解決するためになされたもので、加工点の温度上昇を可及的に抑えることが可能で、従って大量の切削液の供給を必要とせず、かつ加工面の品質も高くできるガラス基板などの硬質脆性板の面取加工方法を得ることを課題としている。
【0008】
【課題を解決するための手段】
本願の発明に係る硬質脆性板の面取加工方法では、請求項1に記載のように、硬質脆性板1の面取しようとする辺の稜線部に工具刃先6、6a、6bを接触させて、当該硬質脆性板と工具刃先とを工具の切削方向である前記稜線の方向に相対移動させると共に、工具刃先6、6a、6bに超音波振動を付与することにより、上記課題を解決している。
【0009】
上記の面取加工方法において工具刃先6、6a、6bに与える超音波振動の振動方向としては、請求項2に記載のように、上記切削方向すなわち面取りしようとする稜線方向の移動を含む振動、例えば当該方向を直径方向とする円や楕円振動ないし揺動振動とするのが好ましい。
【0010】
また上記の本願の面取加工方法において工具刃先6、6a、6bに与える超音波振動としては、請求項3に記載のように、工具刃先6、6a、6bの振動時における刃先の軌跡が面取りしようとする稜線と交差する方向の軸回り、典型的には当該稜線と直交する方向の軸回りの円又は楕円軌跡の振動ないし円弧又は楕円弧軌跡の揺動振動とするのが好ましい。
【0011】
また工具としてフライスカッタなどの回転工具10を用いるときは、請求項4に記載のように、工具刃先6a、6bに与える超音波振動の振動方向を当該回転工具の回転軸方向とすることも可能である。
【0012】
工具の刃先形状は、一般的な金属切削加工用の工具の刃先形状に準じたものとすることができる。切削液を全く用いないで加工を行うこともできるが、加工点への切削液の滴下などによる湿潤状態で加工を行うことが、場合によっては良い結果が得られる。この場合の切削液の量は極めて僅かであり、装置に特別な排水構造を設ける必要はない。
【0013】
印加する超音波の振動数は、一般的には10〜50キロヘルツで、片振幅数十ミクロンであるが、振動数を高くすれば加工速度を高くすることができる。ワーク送り速度は、印加する超音波の振動数や振幅によって異なるが、数m〜数十m/分の速度である。
【0014】
【発明の実施の形態】
次に図面を参照して、この発明の実施形態を説明する。割断辺2を面取りしようとするガラス板1をテーブル3上に固定し、圧電振動子を内蔵した加振装置4にチップホルダ(ホーン)5を介して装着された工具刃先(スローアウエイチップ)6を臨ませ、圧電振動子に振動発振器7から加振電圧を印加して、工具刃先6を矢印8方向に加振しながら矢印9方向に送る。ここで矢印9で示す送り方向は、割断辺2と平行であり、工具刃先の加振方向8は、送り方向9と同方向である。
【0015】
工具刃先6の振動軌跡は、図3(a)に示すような直線往復運動による直線軌跡でもよいが、同図(b)に示すように、送り方向9と平行な速度成分を有する円弧ないし楕円弧軌跡とするのが好ましく、同図(c)に示すように、円ないし楕円軌跡としてもよい。円ないし楕円軌跡とするときは、工具刃先6がワーク1と接触するときに、工具刃先6が送り方向に移動するように振動させる。
【0016】
このような振動切削においては、振動によって工具刃先6が退避する方向に移動するときの速度が送り速度より大きいことが必要で、これにより工具刃先6が間欠的にワークの切削点から離れ、放熱が促進される。切削点に加工液を供給するときは、工具刃先6の送り方向前方に切削液の滴下ノズルを配置するか、あるいは面取しようとする割断辺2の稜線部分に、予め切削液を塗布するなどの手段を採用できる。
【0017】
加振装置4の振動方向は、チップホルダの軸5aをワークの稜線2aに対してどのような方向に設けるかにもよるが、図1〜3に示すように、ワークの上面1aと直交する方向に設けたときは、当該軸5aを送り方向に撓ませる撓み振動や、軸心回りに捩る捩り振動によって、図3(a)、(b)に示すような振動を刃先に付与することができる。
【0018】
図1、2では三角形の工具刃先を用いてガラス基板1の上方の稜線を斜めに面取りする例を示しているが、工具刃先6の形状により、円弧状に面取することが可能であり、また工具刃先6をガラス基板1の上下に一体に設けて、上下の稜線を同時に面取りすることも可能である。なお、液晶等のガラス基板においては、面取寸法Cは0.3〜0.5mm程度である。
【0019】
図4及び図5は、エンドミルやリーマなどの回転工具10を用いた例を示した図で、図4は回転工具10の端面の刃先6aで加工する例を、図5は周面の刃先6bで加工する例を示している。図中、矢印9は工具10に対するワーク1の送り方向であり、矢印8a、8bは振動方向であり、工具刃先6a、6bを矢印8a、8bのいずれか又は両方の方向に振動させることを示している。
【0020】
【発明の効果】
以上説明したこの発明によれば、ガラス基板等の硬質脆性板の面取加工において、切削抵抗が減少し、加工温度の上昇が抑えられるため、微量の切削液又は条件により切削液を使用せずに面取加工が可能となり、従来必要とした切削液の供給、排出及び飛散防止のための大掛かりな構造が不要となり、ランニングコストも低減できる。また、工具刃先の振動により、小刻みに切り屑が発生するため、工具刃先に切り屑が付着し難く、工具寿命及び加工面精度の向上を図ることができる。更に、振動切削による切削性向上から、送り速度の向上が可能で、硬質脆性板の面取加工の生産性を向上させることができるという効果がある。
【図面の簡単な説明】
【図1】この発明の面取加工方法を模式的に示す斜視図
【図2】図1の方法における加工部の模式的な拡大正面
【図3】工具刃先の振動軌跡の例を示す側面図
【図4】回転工具の端面の刃先で加工する例を示した斜視図
【図5】回転工具の周面の刃先で加工する例を示した斜視図
【図6】従来の回転砥石による面取加工方法を模式的に示す斜視図
【図7】図6の方法における加工部の拡大正面図
【符号の説明】
1 ガラス板
6,6a,6b 工具刃先
10 回転工具
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for chamfering a sharp ridge line of a side of a hard brittle plate obliquely or in an arc shape, for example, to a method suitable for chamfering a sharp ridge line generated on a cut side of a glass plate used for a liquid crystal panel. It is.
[0002]
[Prior art]
2. Description of the Related Art A liquid crystal panel used as a display device of an electronic device is manufactured by a process of forming a plurality of devices in a matrix on a glass substrate having a predetermined size, and then cutting the device into dimensions for each device. A general method of cutting a glass plate is to use the brittleness of glass. A scribe groove (scratch groove) is formed on the surface of the glass with a diamond point or a roller. Vertical cracks are promoted by heat or impact to break the cracks. A rough ridge line due to scratching or a sharp ridge line due to cracks is formed at the ridge portion of the cut side of the glass substrate cut by such a method. Therefore, it is necessary to chamfer the ridge line portion to prevent the fingertip from being hurt when the operator lifts, and to prevent the ridge line from being chipped or cracked.
[0003]
Conventionally, this chamfering is performed using a rotary grindstone as shown in FIGS. That is, as shown in FIG. 6, the outer periphery of a plurality of disk-shaped grindstones 12 rotating around an axis 11 substantially parallel to the ridge line 2a to be chamfered, and the ridge line 2 of the glass substrate 1 serving as a work. To move the glass substrate 1 relative to the grindstone 12 in the direction of arrow 13 in the figure along the ridgeline. When, for example, three grindstones are mounted on the rotating shaft 11, the cutting is sequentially performed by the three grindstones, and chamfering of the chamfer dimension C is performed on the ridge line portion. The rotation direction of the grindstone 12 is the direction of arrow 14 in the figure from the surface of the glass substrate to the side.
[0004]
[Problems to be solved by the invention]
In chamfering a glass substrate using a conventional grindstone as shown in FIGS. 6 and 7, a cutting fluid is applied to a machining point in order to suppress a rise in temperature at the machining point due to the grinding stone 12 rubbing the machining point at high speed. Supply is indispensable, and as shown in FIG. 7, it is necessary to perform machining while continuously supplying a large amount of cutting fluid from the cutting fluid nozzle 16 toward the machining point 15. That is, in the chamfering of the glass substrate by the grinding wheel, since the heat generated at the processing point is large, the amount of the processing liquid for suppressing the temperature rise by depriving the heat also increases, and the water supply tank having a large capacity or the injected cutting liquid is used. It was necessary to provide a drainage structure and the like for recovery in the device. In particular, when chamfering with a rotating grindstone, the cutting fluid scatters in all directions with the rotation of the grindstone, so a large cover is required to collect the scattered water droplets and mist. The drainage structure becomes large.
[0005]
In addition, in order to improve the machining efficiency of chamfering, it is necessary to increase the rotation speed of the grinding wheel. It becomes impossible to catch up with the rubbing speed, it becomes a state close to dry grinding, the temperature of the processing point sharply rises, and the phenomenon that the quality of the processed surface deteriorates and the life of the grinding wheel decreases, and this is the limit There is a problem that there is a limit in increasing the feed speed of the workpiece and the cutting depth of the grinding wheel.
[0006]
Further, in the grinding of a hard brittle material, there is a problem that chipping or chipping is liable to occur since the grinding is performed by removing the work so as to peel off the work.
[0007]
The present invention has been made in order to solve the above-mentioned problems of the prior art, and it is possible to suppress a rise in the temperature of a processing point as much as possible. It is an object of the present invention to provide a method for chamfering a hard brittle plate such as a glass substrate, which can have a high surface quality.
[0008]
[Means for Solving the Problems]
In the method for chamfering a hard brittle plate according to the invention of the present application, the tool cutting edges 6, 6a, 6b are brought into contact with the ridge of the side to be chamfered of the hard brittle plate 1, as described in claim 1. The above problem is solved by relatively moving the hard brittle plate and the tool edge in the direction of the ridge, which is the cutting direction of the tool, and applying ultrasonic vibration to the tool edges 6, 6a, 6b. .
[0009]
As the vibration direction of the ultrasonic vibration applied to the tool cutting edges 6, 6a, 6b in the above chamfering method, as described in claim 2, vibration including movement in the cutting direction, that is, movement in the ridge line direction to be chamfered, For example, a circular or elliptical vibration or oscillating vibration having the direction as the diameter direction is preferable.
[0010]
In the above-described chamfering method of the present application, as the ultrasonic vibration applied to the tool cutting edges 6, 6a, 6b, the locus of the cutting edges when the tool cutting edges 6, 6a, 6b vibrate is chamfered. It is preferable to use vibration of a circular or elliptical locus or oscillation of a circular arc or elliptical arc locus around an axis in a direction intersecting the ridge line to be tried, typically around an axis in a direction orthogonal to the ridge line.
[0011]
When the rotary tool 10 such as a milling cutter is used as the tool, the vibration direction of the ultrasonic vibration applied to the tool edges 6a and 6b may be set to the rotation axis direction of the rotary tool. It is.
[0012]
The shape of the cutting edge of the tool can conform to the shape of the cutting edge of a general metal cutting tool. Processing can be performed without using any cutting fluid, but performing processing in a wet state, such as by dropping a cutting fluid onto a processing point, can provide good results in some cases. In this case, the amount of cutting fluid is extremely small, and it is not necessary to provide a special drainage structure in the apparatus.
[0013]
The frequency of the ultrasonic wave to be applied is generally 10 to 50 kHz and the amplitude of one side is several tens of microns, but the processing speed can be increased by increasing the frequency. The workpiece feed speed varies depending on the vibration frequency and amplitude of the applied ultrasonic wave, but is a speed of several m to several tens m / min.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings. A glass plate 1 whose chamfered side 2 is to be chamfered is fixed on a table 3, and a tool cutting edge (slow-away tip) 6 attached to a vibration device 4 having a built-in piezoelectric vibrator via a tip holder (horn) 5. , A vibration voltage is applied to the piezoelectric vibrator from the vibration oscillator 7, and the tool edge 6 is moved in the direction of arrow 9 while being vibrated in the direction of arrow 8. Here, the feed direction indicated by an arrow 9 is parallel to the cutting side 2, and the vibration direction 8 of the tool edge is the same as the feed direction 9.
[0015]
The vibration trajectory of the tool edge 6 may be a linear trajectory by a linear reciprocating motion as shown in FIG. 3A, but as shown in FIG. 3B, an arc or an elliptical arc having a velocity component parallel to the feed direction 9 It is preferable to use a locus, and a circular or elliptical locus may be used as shown in FIG. When making a circular or elliptical locus, when the tool cutting edge 6 comes into contact with the workpiece 1, the tool cutting edge 6 is vibrated so as to move in the feed direction.
[0016]
In such vibration cutting, it is necessary that the speed at which the tool edge 6 moves in the retreating direction due to vibration is higher than the feed speed, so that the tool edge 6 intermittently separates from the cutting point of the work, and heat radiation occurs. Is promoted. When supplying the cutting fluid to the cutting point, a cutting fluid dripping nozzle is disposed in front of the tool cutting edge 6 in the feed direction, or the cutting fluid is applied in advance to the ridge portion of the cut side 2 to be chamfered. Means can be adopted.
[0017]
The vibration direction of the vibrating device 4 depends on the direction in which the axis 5a of the tip holder is provided with respect to the ridge line 2a of the work, but is orthogonal to the upper surface 1a of the work as shown in FIGS. When provided in the direction, the vibration shown in FIGS. 3A and 3B can be applied to the cutting edge by bending vibration that bends the shaft 5a in the feed direction or torsional vibration that twists around the axis. it can.
[0018]
1 and 2 show an example in which the upper ridge line of the glass substrate 1 is chamfered obliquely using a triangular tool edge, but it is possible to chamfer in an arc shape by the shape of the tool edge 6. It is also possible to provide the tool cutting edge 6 integrally above and below the glass substrate 1 and to chamfer the upper and lower ridge lines at the same time. In the case of a glass substrate such as a liquid crystal, the chamfer dimension C is about 0.3 to 0.5 mm.
[0019]
4 and 5 are views showing an example using a rotary tool 10 such as an end mill or a reamer. FIG. 4 shows an example of processing with a cutting edge 6a on the end face of the rotary tool 10, and FIG. The example which processes by is shown. In the drawing, an arrow 9 is a feed direction of the work 1 with respect to the tool 10, an arrow 8a, 8b is a vibration direction, and indicates that the tool cutting edges 6a, 6b are vibrated in one or both directions of the arrows 8a, 8b. ing.
[0020]
【The invention's effect】
According to the present invention described above, in the chamfering of a hard brittle plate such as a glass substrate, the cutting resistance is reduced, and the increase in the processing temperature is suppressed. This eliminates the need for a large-scale structure for supplying, discharging, and preventing scattering of the cutting fluid, which is required in the past, and reduces running costs. In addition, since chips are generated in small increments due to the vibration of the tool edge, the chips are less likely to adhere to the tool edge, and tool life and machining surface accuracy can be improved. Further, there is an effect that the feed rate can be improved due to the improvement in machinability by vibration cutting, and the productivity of chamfering hard brittle plates can be improved.
[Brief description of the drawings]
1 is a perspective view schematically showing a chamfering method according to the present invention; FIG. 2 is a schematic enlarged front view of a processing portion in the method shown in FIG. 1; FIG. 3 is a side view showing an example of a vibration locus of a tool edge; FIG. 4 is a perspective view showing an example of machining with a cutting edge on the end face of the rotary tool. FIG. 5 is a perspective view showing an example of machining with a cutting edge on the peripheral surface of the rotary tool. FIG. 6 is a chamfer using a conventional rotary grindstone. FIG. 7 is a perspective view schematically showing a processing method. FIG. 7 is an enlarged front view of a processing portion in the method of FIG.
1 Glass plate 6, 6a, 6b Tool edge 10 Rotary tool

Claims (4)

硬質脆性板(1)の面取しようとする辺の稜線部に工具刃先(6,6a,6b)を接触させて、当該硬質脆性板と工具刃先とを工具の切削方向である前記稜線方向に沿って相対移動させると共に、工具刃先(6,6a,6b)に超音波振動を付与することを特徴とする、硬質脆性板の面取加工方法。A tool edge (6, 6a, 6b) is brought into contact with a ridge portion of a side to be chamfered of the hard brittle plate (1), and the hard brittle plate and the tool blade edge are moved in the ridge direction, which is a cutting direction of the tool. A method of chamfering a hard brittle plate, characterized in that ultrasonic vibration is applied to the tool edge (6, 6a, 6b) while being relatively moved along the tool edge. 前記工具刃先(6,6a,6b)に与える超音波振動の振動方向が上記切削方向である、請求項1記載の硬質脆性板の面取加工方法。The chamfering method for a hard brittle plate according to claim 1, wherein the vibration direction of the ultrasonic vibration applied to the tool edge (6, 6a, 6b) is the cutting direction. 上記工具刃先(6,6a,6b)の振動時における刃先の軌跡が前記稜線と交差する軸回りの円又は楕円軌跡ないし円弧又は楕円弧軌跡である、請求項1又は2記載の硬質脆性板の面取加工方法。The surface of the hard brittle plate according to claim 1 or 2, wherein the trajectory of the cutting edge when the tool cutting edge (6, 6a, 6b) vibrates is a circular or elliptical locus or an arc or an elliptical arc locus around an axis intersecting the ridge line. Taking method. 工具が回転工具(10)であり、その工具刃先(6a,6b)に与える超音波振動の振動方向が当該回転工具の回転軸方向である、請求項1記載の硬質脆性板の面取加工方法。The chamfering method for a hard brittle plate according to claim 1, wherein the tool is a rotary tool (10), and a vibration direction of the ultrasonic vibration applied to the tool cutting edge (6a, 6b) is a rotation axis direction of the rotary tool. .
JP2003117328A 2003-04-22 2003-04-22 Chamfering work method of hard fragile plate Pending JP2004322233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117328A JP2004322233A (en) 2003-04-22 2003-04-22 Chamfering work method of hard fragile plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117328A JP2004322233A (en) 2003-04-22 2003-04-22 Chamfering work method of hard fragile plate

Publications (1)

Publication Number Publication Date
JP2004322233A true JP2004322233A (en) 2004-11-18

Family

ID=33497251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117328A Pending JP2004322233A (en) 2003-04-22 2003-04-22 Chamfering work method of hard fragile plate

Country Status (1)

Country Link
JP (1) JP2004322233A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044815A (en) * 2005-08-10 2007-02-22 Kobe Univ Machining device and method using magnetic fluid
JP2009012084A (en) * 2007-06-29 2009-01-22 Okuma Corp Cutting method
WO2015152526A1 (en) * 2014-03-31 2015-10-08 동우화인켐 주식회사 Window substrate and method for processing chamfered part thereof
JP2016524547A (en) * 2013-05-31 2016-08-18 ザウアー ウルトラソニック ゲーエムベーハーSauer Ultrasonic Gmbh Tool, machine tool, and workpiece machining method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224728A (en) * 1995-02-21 1996-09-03 Techno Ishii:Kk Cutting tool
JPH09234616A (en) * 1996-02-29 1997-09-09 ▲桜▼井精技株式会社 Chamfering device and its feeding base
JPH11300501A (en) * 1998-04-16 1999-11-02 Seiko Epson Corp Cutting method and cutting tool of optical part
JP2002066801A (en) * 2000-09-04 2002-03-05 Canon Inc Cutting method, optical element and die for molding it
JP2002346817A (en) * 2001-05-21 2002-12-04 Masao Murakawa Ultra-sonic milling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224728A (en) * 1995-02-21 1996-09-03 Techno Ishii:Kk Cutting tool
JPH09234616A (en) * 1996-02-29 1997-09-09 ▲桜▼井精技株式会社 Chamfering device and its feeding base
JPH11300501A (en) * 1998-04-16 1999-11-02 Seiko Epson Corp Cutting method and cutting tool of optical part
JP2002066801A (en) * 2000-09-04 2002-03-05 Canon Inc Cutting method, optical element and die for molding it
JP2002346817A (en) * 2001-05-21 2002-12-04 Masao Murakawa Ultra-sonic milling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044815A (en) * 2005-08-10 2007-02-22 Kobe Univ Machining device and method using magnetic fluid
JP2009012084A (en) * 2007-06-29 2009-01-22 Okuma Corp Cutting method
US8360698B2 (en) 2007-06-29 2013-01-29 Okuma Corporation Cutting method
JP2016524547A (en) * 2013-05-31 2016-08-18 ザウアー ウルトラソニック ゲーエムベーハーSauer Ultrasonic Gmbh Tool, machine tool, and workpiece machining method
US9981321B2 (en) 2013-05-31 2018-05-29 Sauer Ultrasonic Gmbh Tool, machine tool, and workpiece machining method
WO2015152526A1 (en) * 2014-03-31 2015-10-08 동우화인켐 주식회사 Window substrate and method for processing chamfered part thereof

Similar Documents

Publication Publication Date Title
JP6144107B2 (en) Wafer cutting method
JP2015202545A (en) Grinding device
KR102343159B1 (en) Grinding apparatus
CN101885163A (en) Method for using squirt gun to auxiliarily perform chemical mechanical polishing processing program and system thereof
JP2017094455A (en) Cutting device
JP5651744B1 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JP6145548B1 (en) Chamfering grinding method and chamfering grinding apparatus
JP2004322233A (en) Chamfering work method of hard fragile plate
JP2000015622A (en) Method and device for cutting outer peripheral blade
JP2022047538A (en) Chamfer grinding method and chamfer grinding device
JP2019136845A (en) Cutting blade forming method
JP2946554B2 (en) Grinding cutting method
JPH11226851A (en) Deburring method for copper lined laminated plate and device thereof
JPH11123365A (en) Ultrasonic vibrating combined processing tool
JP5352892B2 (en) Grinding method and grinding apparatus
JP4259044B2 (en) Cutting blade and blade surface machining method
JP2006059914A (en) Semiconductor device and manufacturing method thereof
JPH0624691B2 (en) Precision Surface Polishing Method for Work Surface by Complex Vibration of Grinding Wheel
JP2006281341A (en) Grinding device
JP2006218556A (en) Grinding method
JP3115420U (en) Segment type grinding wheel for vertical surface grinding
JP2006312217A (en) Blade conditioning method
JP2007136425A (en) Washing method and washing device
JP2000015625A (en) Cutting method for hard and fragile material and inner peripheral blade cutting device
JP4695731B2 (en) Precision finishing method for cutting edges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406