JP2004321309A - Apparatus and method for deodorization - Google Patents

Apparatus and method for deodorization Download PDF

Info

Publication number
JP2004321309A
JP2004321309A JP2003117230A JP2003117230A JP2004321309A JP 2004321309 A JP2004321309 A JP 2004321309A JP 2003117230 A JP2003117230 A JP 2003117230A JP 2003117230 A JP2003117230 A JP 2003117230A JP 2004321309 A JP2004321309 A JP 2004321309A
Authority
JP
Japan
Prior art keywords
electrodes
odorant
pair
voltage
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003117230A
Other languages
Japanese (ja)
Inventor
Kazuya Yokoyama
和也 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2003117230A priority Critical patent/JP2004321309A/en
Publication of JP2004321309A publication Critical patent/JP2004321309A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deodorization apparatus and a method for deodorization in which energy saving can be achieved. <P>SOLUTION: An odorous material in gas is stayed and accumulated in an electrical insulating odorous material staying means 30. And, when voltage is applied between electrodes 21 and 22, an electric field acts on the odorous material held in the odorous material staying means 30 and the odorous material is decomposed. Thus, when the is applied after the odorous material is stayed and accumulated enough in the odorous material staying means 30, the frequency of discharge can be reduced relative to the case where there is no odorous material staying means 30 and the odorous material is not accumulated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、臭気物質が滞留された電気絶縁体に所定の電界を作用させて臭気物質を分解する脱臭装置に関する。
【0002】
【従来の技術】
従来より、一対の電極間に電圧を印加して電界を発生させると共にこの一対の電極間に臭気物質を含有する空気を導入し、臭気物質を分解させる脱臭装置が知られている。
【0003】
【特許文献1】
特開2001−190652号公報
【0004】
【発明が解決しようとする課題】
しかしながら、臭気物質を含有する空気中において、臭気物質の濃度は非常に薄い場合が多い。このため、分解すべき臭気物質の量に比べて、処理すべき臭気物質を含有する空気の量が多く、電圧の印加回数が多くなる傾向がある。したがって、より省エネルギー化が可能な脱臭装置が望まれている。
【0005】
本発明は、上記課題に鑑みてなされたものであり、省エネルギー化が可能な脱臭装置及び脱臭方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に係る脱臭装置は、互いに対向する一対の電極と、上記一対の電極間に設けられ、電気絶縁体であると共に、臭気物質を含む流体と接触すると上記流体中の臭気物質を選択的に滞留させる臭気物質滞留手段と、上記一対の電極間に電圧を印加する電圧印加装置と、を備える。
【0007】
本発明の脱臭装置によれば、流体中の臭気物質が絶縁性の臭気物質滞留手段に滞留され蓄積される。そして、電極間に電圧が印加されると、臭気物質滞留手段に蓄積された臭気物質に対して電界が作用し、臭気物質が分解される。このため、臭気物質が臭気物質滞留手段に滞留されて十分蓄積された後に電圧印加を行えばよいので、臭気物質滞留手段がなく臭気物質が蓄積しない場合に比して、放電回数を低減できる。このため、省エネルギー化が可能となる。
【0008】
ここで、上記臭気物質滞留手段は、上記臭気物質を含む流体と接触すると上記流体中の臭気物質を選択的に吸着することが好ましい。
【0009】
これによれば、臭気物質滞留手段によって、臭気物質が他の流体成分に比して選択的に吸着されるので、臭気物質を好適に滞留させて蓄積できる。
【0010】
ここで、臭気物質滞留手段としては、多孔質セラミック又はガラス製等のキャピラリ管を例示できる。これらを臭気物質滞留手段として用いることにより、空気中に含まれるアルデヒドや脂肪酸といった臭気物質が、吸着等の作用によって多孔質セラミックの細孔やキャピラリ間の内壁面に選択的に滞留され、好適に蓄積させることができる。
【0011】
また、上記電圧印加装置は、上記一対の電極間に単極性のパルス電圧を印加することが好ましい。
【0012】
これによれば、一対の電極間の電界の強さを高めることができるので、臭気物質をより好適に分解することができる。
【0013】
また、上記電圧印加装置は、上記一対の電極間の電界の強さが0.8kV/mm以上3.0kV/mm以下となるように上記一対の電極間に電圧を印加することが好ましい。
【0014】
一対の電極間の電界の強さが0.8kV/mmよりも低くなると、臭気物質の分解が起こりにくくなる傾向がある。一方、一対の電極間の電界の強さが3.0kV/mmを超えると絶縁が破壊されやすくなって電極間の実効電界が低下し、分解効率、エネルギー効率が低下する傾向がある。
【0015】
また、上記臭気物質滞留手段から排出される流体に含まれる臭気物質の濃度に関する情報を取得する臭気センサと、上記臭気物質の濃度に関する情報に基づいて上記電圧印加装置による電圧印加のタイミングを制御する印加タイミング制御装置と、を有することが好ましい。
【0016】
これによれば、流体中の臭気物質が、臭気物質滞留手段にその滞留可能な最大容量まで滞留された後、それ以上の滞留が不能となって臭気物質が臭気物質滞留手段から排出されることを臭気センサによって検知でき、さらに、これを検知したときに一対の電極間に電圧を印加させて臭気物質滞留手段に保持された臭気物質を分解させることができる。これにより、流体中の臭気物質の量に応じて電圧印加のタイミングを最適化でき、さらなる省エネルギー化が達成できる。
【0017】
また、上記臭気物質を含む流体を所定の方向に向かって流し、上記一対の電極の各々を上記流体の流れに平行に配置することができる。
【0018】
これによれば、一対の電極間の厚みを変えることなく、流れ方向の臭気物質滞留手段の長さを変えて、臭気物質の滞留可能な容量の最大値の変更が可能となり、脱臭条件の変動に合わせた脱臭装置の構成の変更が容易となっている。
【0019】
また、上記一対の電極の内の一方を挟んで上記臭気物質滞留手段と反対側に第二の臭気物質滞留手段を備え、上記第二の臭気物質滞留手段を挟んで上記一対の電極の内の一方と反対側には、上記一対の電極の内の他方と電気的に接続された第二の電極を備えてもよい。
【0020】
これによれば、流体の流れに垂直な幅方向の管路の径を、各電極間の距離に比べて十分大きくすることができる。これによって、電極間の距離を例えば10mm程度に維持して、10kV程度の電圧の印加により1.0kV/mm程度の電界を発生させる一方、臭気物質滞留手段と電極との組合せを幅方向に複数設けることにより幅の広い管路においても好適な脱臭が可能となる。また、管路の径を維持した場合には、電極間距離が小さくなるので、電極に印加する電圧を低減できる。
【0021】
また、上記臭気物質を含む流体は所定の方向に向かって流され、上記一対の電極の各々は、上記流体の流れに交差する方向に配置されると共にメッシュ形状であってもよい。
【0022】
これによれば、流体の流れに垂直な幅方向の管路の径を大きくした場合でも、メッシュ形状の電極間の距離を維持することができ、大処理量の脱臭装置を容易に実現できる。
【0023】
また、上記一対の電極の内の一方は棒状であると共に、上記電極の内の他方は上記一方の電極を取り囲む筒状形状を呈してもよい。
【0024】
これによれば、筒状の電極と棒状の電極とを有しているので、円形の管路内において、内部空間を有効に利用して、臭気物質滞留手段と、一対の電極とを配置できる。
【0025】
本発明に係る脱臭方法は、臭気物質を含む流体を電気絶縁体と接触させ上記流体中の臭気物質を上記電気絶縁体に選択的に滞留させる工程と、上記臭気物質が滞留された電気絶縁体に対して、所定の電界を作用させる工程と、を含む。
【0026】
本発明の脱臭方法によれば、流体中の臭気物質が電気絶縁体に滞留され蓄積される。そして、この電気絶縁体を挟んでいる電極に電圧が印加されると、電気絶縁体に滞留された臭気物質に対して電界が作用し、臭気物質が分解される。このため、臭気物質が電気絶縁体に滞留されて十分蓄積された後に電圧印加を行えばよいので、臭気を電気絶縁体に滞留させずに臭気物質を蓄積させない場合に比して、放電回数を低減できる。このため、省エネルギー化が可能となる。
【0027】
【発明の実施の形態】
以下、添付図面を参照しながら、本発明に係る脱臭装置の好適な実施形態について詳細に説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。
【0028】
(第一実施形態)
図1は、第一実施形態に係る脱臭装置の模式図である。本実施形態に係る脱臭装置100は、ポンプ1を介して供給されて管路10内を図示右方向に流れる、臭気物質を含む被処理空気を脱臭するものである。ここで、臭気物質とは、例えば、吉草酸等の各種脂肪酸、アルデヒド、アンモニア、HS、SO等、人間に対して臭気を感じさせる物質である。そして、被処理空気中には、例えば、これらの臭気物質を1ppb〜1ppm含むものとする。
【0029】
この脱臭装置100は、電極21及び電極22と、電極21と電極22との間に挟まれ管路10内を流れる被処理空気と接触する多孔質絶縁体(臭気物質滞留手段)30と、電極21と電極22との間に電圧を印加する電圧印加装置40と、電圧印加装置40による電圧印加のタイミングを制御する印加タイミング制御装置50と、多孔質絶縁体30と接触した後に多孔質絶縁体30から排出される処理済空気中の臭気物質の濃度を検出する臭気センサ60と、を備えている。
【0030】
電極21及び電極22は、各々平板形状を呈する金属等の導電体であり、管路10内で被処理空気の流れ方向に平行に各々配置されて互いに対向している。
【0031】
電圧印加装置40は、端子40aと端子40bとを有しこれらの端子40a、40b間にパルス状の直流電圧を発生させる。電極21はラインL1を介して電圧印加装置40の端子40aに電気的に接続され、電極22はラインL2を介して電圧印加装置40の端子40bと電気的に接続されている。そして、電圧印加装置40は、端子40a、40b間にパルス状の直流電圧を発生させることにより、電極21と電極22との間に所定のパルス電圧を印加し、電極21,22間に所定の電界を発生させる。
【0032】
多孔質絶縁体30は、電気絶縁体であり、電極21と電極22との間に設けられている。この多孔質絶縁体30は、多数の細孔で満たされており、被処理空気をこの細孔内を流路として通過させることができる。また、この多孔質絶縁体30の材質は、空気の主成分である窒素や酸素に比べて、臭気物質との親和性が高い材料であり、臭気物質を含む被処理空気と接触すると、被処理空気中の臭気物質を選択的にその表面に吸着させる。
【0033】
このような多孔質絶縁体30の材料としては、例えば、アルミナ、シリカ、ゼオライト、炭化珪素等のセラミクス材料が挙げられる。また、ガラス製又は樹脂製等のキャピラリー管を多数束ねてなるキャピラリープレートを用いることもできる。これらを用いると、窒素や酸素に比して分子の大きな臭気物質を好適に吸着させて滞留できる。
【0034】
特に、臭気物質として、アルデヒドや脂肪酸を対象とした場合は、アルミナ、ゼオライト、炭化珪素等の多孔質体を多孔質絶縁体30として用いると、これらのアルデヒドや脂肪酸を被処理空気中から選択的に吸着できる。
【0035】
そして、例えば、上述の多孔質の材料を所望形状に切り出したり、上述の多孔質の材料の粒子を充填して充填層としたり、上述の多孔質の材料を用いて流れ方向に隔壁が延在するハニカム構造の構造体としたり、キャピラリ管を多数束ねてキャピラリプレートとしたりすることにより、多孔質絶縁体30を構成できる。
【0036】
多孔質絶縁体30の細孔径あるいはキャピラリ径は、1μm〜50μm程度とすることが好ましい。これらの径が1μmを下回ると、被処理空気の通過時の圧力損失が大きくなる傾向がある一方、50μmを超えると、比表面積が低下して、臭気物質の最大保持容量が低下する傾向がある。
【0037】
臭気センサ60は、多孔質絶縁体30と接触した後、多孔質絶縁体30から排出される処理済空気中の臭気物質の濃度を測定するものであり、例えば、熱線型焼結半導体センサや、基板型半導体センサ等が利用できる。この臭気センサ60は、印加タイミング制御装置50に接続されており臭気物質の濃度に関する情報は印加タイミング制御装置50に送信される。
【0038】
印加タイミング制御装置50は、電圧印加装置40に接続されている。この印加タイミング制御装置50は、臭気センサ60からの臭気濃度に関する情報に基づいて、処理済み空気中の臭気物質の濃度が所定の濃度より高くなった場合に、電極21と電極22との間に所定の回数の単極性のパルス電圧が印加されるように電圧印加装置40の電圧印加のタイミングを制御する。
【0039】
次に、本実施形態に係る脱臭装置100の作用について説明する。まず、ポンプ1によって、臭気物質を含む被処理空気が管路10内を図示左から右に流されると、この被処理空気は多孔質絶縁体30と接触しつつ多孔質絶縁体30内を図示右側に流れていく。
【0040】
ここで、アルデヒド等の臭気物質と、空気中の窒素及び酸素とは、多孔質絶縁体30との親和力に差があり、臭気物質の方が多孔質絶縁体30との親和性が高くて臭気物質は多孔質絶縁体30に吸着されやすい。このため、臭気物質は、窒素や酸素に比べて、多孔質絶縁体30を通過するのに時間を要する。
【0041】
このため、臭気物質は多孔質絶縁体30内に滞留して蓄積されることとなる。これによって、多孔質絶縁体30の下流側の端部から流出する処理済空気には、臭気物質がほとんど存在しない状態となり、被処理空気の脱臭が成されることとなる。
【0042】
この状態はしばらく続き、多孔質絶縁体30内に滞留された臭気物質の量が増えていくこととなる。そして、所定の時間経過すると、多孔質絶縁体30内の臭気物質の滞留量が飽和し、多孔質絶縁体30の下流側の端部から臭気物質が排出され始める。
【0043】
すると、臭気センサ60がこれを検知し、印加タイミング制御装置50は、電圧印加装置40を制御して電極21と電極22との間にパルス電圧を所定回数印加する。
【0044】
これにより、電極21と電極22との間に、所定の電界が発生し、多孔質絶縁体30内に保持されている臭気物質が分解される。このとき、電極21,22間には、絶縁破壊が起きない程度の放電が発生する。
【0045】
そして、分解により生成した成分は、多孔質絶縁体30から下流側に排出され、多孔質絶縁体30においてさらなる臭気物質の滞留が可能となる。
【0046】
以上説明したように、本実施形態に係る脱臭装置100においては、被処理空気が、多孔質絶縁体30と接触することにより当該被処理空気中の臭気物質が選択的に多孔質絶縁体30内に滞留され、処理済み空気から臭気物質が除去される。さらに、多孔質絶縁体30内に臭気物質が所定量滞留された後この多孔質絶縁体30を挟む一対の電極21,22に電圧が印加されるので、多孔質絶縁体30内に滞留されて蓄積された臭気物質に対して電界が作用し、臭気物質が分解される。このため、再び被処理空気中の臭気物質を多孔質内に十分滞留することが可能となる。
【0047】
そして、臭気物が多孔質絶縁体30に保持されて十分蓄積される毎に電圧の印加を行えばよいので、多孔質絶縁体30を有さず臭気物質が蓄積されない場合に比して、放電回数が低減されている。
【0048】
なお、多孔質絶縁体30を導電性とする、すなわち、電極21,22自体を多孔質にして臭気物質を蓄積させたとしても、導電体内には電界を生じさせることができないため、多孔質体内での臭気物質の分解はほとんど行われず本実施形態のような効果はない。
【0049】
また、この多孔質絶縁体30は、被処理空気中の臭気物質を選択的に吸着するので、被処理空気が通過する際に臭気物質をその内部に好適に滞留させ蓄積させることができる。これにより、電圧印加回数を十分低減できている。
【0050】
また、電圧印加装置40は、電極21,22間にパルス電圧を印加している。このため、電極21,22間において、強い電界を発生させることができるので、臭気物質の分解がより好適に行われている。
【0051】
ここで、パルス幅は、絶縁体に蓄積された臭気物質を好適に分解すべく、1ns以上200ns以下であることが好ましい。
【0052】
また、パルスの電圧は、電極21,22間の電界の強さが、0.8kV/mm以上3.0kV/mm以下となるように設定されることが好ましい。
【0053】
電極21,22間の電界の強さが0.8kV/mmよりも低くなると、臭気物質の分解が起こりにくくなる傾向がある。一方、電極21,22間の電界の強さが3.0kV/mmを超えると絶縁が破壊されやすくなって電極21,22間の実効電界が低下し、分解効率、エネルギー効率が低下する傾向がある。なお、この範囲における最適な電界の強さ(印加する電圧の大きさ)は、湿度や気圧等によって異なる。
【0054】
また、電極21と電極22との間の距離は、5mm以上20mm以下とすることが好ましい。そして、例えば、電極21,22間の距離が10mmであるとすると、電極21,22間の電界の強さを0.8kV/mm以上3.0kV/mm以下とするには、パルス電圧を8kV以上30kV以下とすれば良い。
【0055】
また、多孔質絶縁体30は、被処理空気の条件に応じてその内部に滞留可能な臭気物質の最大値を有し、この最大値を超えて臭気物質が供給されると、臭気物質をそのまま排出する。そこで、多孔質絶縁体30から排出される処理済み空気に含まれる臭気物質の濃度に関する情報を臭気センサ60で取得し、この臭気物質の濃度が所定の閾値を超えると電圧印加装置40による電圧印加が行われるように印加タイミング制御装置50が電圧印加装置40を制御している。
【0056】
このため、被処理空気中の臭気物質の濃度の変動や、被処理物質の供給量の変動等に左右されることなく、多孔質絶縁体30内に滞留可能な最大限の臭気物質を滞留させた後に、電界を作用させるための電圧を印加することができる。これにより、電圧印加のタイミングを最適化でき、さらなる省エネルギー化が達成できている。
【0057】
また、被処理空気は図示右方向に向かって流されると共に、電極21,22は、被処理空気の流れに平行に各々配置されている。このため、電極21,22間の厚みを変えることなく、流れ方向の多孔質絶縁体30の長さを変えて、臭気物質の滞留可能な容量の最大値の変更が可能となり、脱臭条件の変動に合わせた脱臭装置の構成の変更が容易となっている。
【0058】
(第二実施形態)
次に、第二実施形態に係る脱臭装置200について説明する。本実施形態に係る脱臭装置200が、上記脱臭装置100と異なる点は、多孔質絶縁体30の下方に、多孔質絶縁体30と同様の多孔質絶縁体31,32,33が、各々被処理空気の流れに平行に、かつ、互いに所定距離離間されて下方に向かってこの順で配置されている点と、これに対応して、これらの多孔質絶縁体31,32,33にも所定の電界が印加されるようになっている点である。
【0059】
多孔質絶縁体31と多孔質絶縁体32との間には電極121が、多孔質絶縁体32と多孔質絶縁体33との間には電極222が、多孔質絶縁体33の下方には電極221が、各々設けられている。また、電極121及び電極221は、電極21と同様にラインL1を介して電圧印加装置40の端子40bに電気的に接続されている。また、電極222は、電極22と同様に、ラインL2を介して電圧印加装置40の端子40aに電気的に接続されている。
【0060】
このような脱臭装置200によれば、多孔質絶縁体31には電極22と電極121とによって、多孔質絶縁体32には電極121と電極222とによって、多孔質絶縁体33には電極222と電極221とによって、各々電界が作用することとなるので、各々の多孔質絶縁体30〜33において上述の脱臭装置100と同様の作用効果を有する。
【0061】
これに加えて、管路10の幅方向に複数の多孔質絶縁体30〜33を有し、各々の多孔質絶縁体30に対して管路10の幅方向に電界が作用する。このため、各電極間の距離を管路10の幅方向の長さに比して十分小さくすることができる。これによって、電極間の距離を例えば10mm程度に維持して、10kV程度の電圧の印加により1.0kV/mm程度の電界を発生させる一方、多孔質絶縁体30と電極との組合せを幅方向に複数設けることにより幅の広い管路10においても好適な脱臭が可能となる。また、管路10の径を維持した場合には、電極間距離が小さくなるので、電極に印加する電圧を低減できる。
【0062】
(第三実施形態)
次に、第三実施形態にかる脱臭装置300について説明する。本実施形態に係る脱臭装置300が、第一実施形態の脱臭装置100と異なる点は、被処理空気の流れに平行に配置された電極21,22に代えて、被処理空気の流れる方向に垂直に各々配置され互いに対向するメッシュ状電極321,322を備えている点である。このメッシュ状電極321,322は、このメッシュ状電極321,322を垂直に突き抜けて被処理空気が流通可能となるようにメッシュ状に形成されている。また、多孔質絶縁体30は、メッシュ状電極321、322に挟まれており、メッシュ状電極321はラインL1を介して電圧印加装置40の端子40bに電気的に接続され、メッシュ状電極322はラインL2を介して電圧印加装置40の端子40aに電気的に接続されている。
【0063】
このような脱臭装置300によれば、脱臭装置100と同様の作用効果を奏すると共に、管路10の内径を大きくした場合でも、メッシュ状電極321,322間の距離を維持することができ、大処理量の脱臭装置を容易に実現できる。
【0064】
(第四実施形態)
次に、図4を参照して、第四実施形態に係る脱臭装置400について説明する。本実施形態に係る脱臭装置400が、第一実施形態の脱臭装置100と異なる点は、円筒状の管路10内に、管路10と同軸の円筒状の筒状電極421を有し、筒状電極421内に筒状電極421と同軸の円柱状の多孔質絶縁体430を有し、多孔質絶縁体430内には多孔質絶縁体430の中央を軸方向に貫通する棒状の中心電極422が設けられた点である。
【0065】
筒状電極421は、管路410内にほぼ内接するような大きさとされており、ラインL1を介して、電圧印加装置40の端子40bと電気的に接続されている。
【0066】
棒状電極422は、ラインL2を介して電圧印加装置40の端子40aと電気的に接続されている。
【0067】
このような脱臭装置400においては、棒状電極422と筒状電極421との間に所定の電界が発生するので第一実施形態と同様の作用効果を奏する。
【0068】
これに加えて、筒状電極421と棒状電極422とを有しているので、円形の管路10において、内部空間を有効に利用して、多孔質絶縁体30と、電極421,422とを配置できる。
【0069】
なお、本発明に係る脱臭装置は、上記実施形態に限定されるものではなく、種々の変形態様をとることが可能である。
【0070】
例えば、上記実施形態では、空気中に含まれる臭気物質を除去しているが、これに限られず、例えば、窒素ガス中の臭気物質等を除去することもできる。この場合は、脱臭の対象となる臭気物質の性質と、それ以外の非対象ガスの性質に応じて、脱臭物質をより選択的に吸着できるような材料、すなわち、非対象ガスよりも臭気物質との親和性が高い材料を多孔質絶縁体30として選択すればよい。また、同様にしてガスに変えて液体にも適用でき、例えば、河川水中の臭気物質の除去にも応用できる。
【0071】
また、多孔質絶縁体30における選択的滞留のメカニズムは、吸着に限られず、化学的な結合や、分子篩い等を利用するものでも良い。
【0072】
また、上記実施形態では、多孔質絶縁体30に対して被処理空気を強制的に供給しているが、単に、被処理空気が存在する空間内に脱臭装置100〜400を設置してもよく、この場合でも時間の経過と共に拡散等によって多孔質絶縁体30内に臭気物質が蓄積し、所定時間毎にこれを電界によって分解することができる。
【0073】
また、管路10の断面形状は、円形、矩形等に限られず、任意の断面形状の管路に適用可能である。
そして、上述のような脱臭装置は、例えば、電車内、自動車内、飛行機内、建物内、工場内など、の閉空間内の脱臭やこれらからの排気ガス、排水の脱臭に適用できる。
【0074】
【発明の効果】
上述のように、本発明によれば、流体中の臭気物質が絶縁性の臭気物質滞留手段に滞留され蓄積される。そして、電極間に電圧が印加されると、臭気物質滞留手段に保持された臭気物質に対して電界が作用し、臭気物質が分解される。このため、臭気物質が臭気物質滞留手段に滞留されて十分蓄積された後に電圧印加を行えばよく、臭気物質滞留手段がなく臭気物質が蓄積しない場合に比して、放電回数を低減できる。このため、脱臭装置の省エネルギー化が可能となる。
【図面の簡単な説明】
【図1】第一実施形態に係る脱臭装置を示す概略構成図である。
【図2】第二実施形態に係る脱臭装置を示す概略構成図である。
【図3】第三実施形態に係る脱臭装置を示す一部破断斜視図である。
【図4】第四実施形態に係る脱臭装置を示す一部破断斜視図である。
【符号の説明】
21,22,121,221,222…電極、321,322…メッシュ状電極、421…筒状電極、422…棒状電極、30、31,32,33,430…多孔質絶縁体(臭気物質滞留手段)、40…電圧印加装置、50…印加タイミング制御装置、60…臭気センサ、100、200,300,400…脱臭装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a deodorizing device that decomposes odor substances by applying a predetermined electric field to an electric insulator in which odor substances are retained.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a deodorizing device has been known in which a voltage is applied between a pair of electrodes to generate an electric field, and air containing an odorant is introduced between the pair of electrodes to decompose the odorant.
[0003]
[Patent Document 1]
JP-A-2001-190652
[Problems to be solved by the invention]
However, in air containing odorants, the concentration of odorants is often very low. Therefore, the amount of air containing the odorant to be treated is larger than the amount of the odorant to be decomposed, and the number of times of voltage application tends to increase. Therefore, a deodorizing device that can save more energy is desired.
[0005]
The present invention has been made in view of the above problems, and has as its object to provide a deodorizing apparatus and a deodorizing method that can save energy.
[0006]
[Means for Solving the Problems]
The deodorizing device according to the present invention is provided with a pair of electrodes facing each other, and is provided between the pair of electrodes, is an electrical insulator, and selectively contacts the fluid containing the odor material to selectively remove the odor material in the fluid. An odorant staying means for staying, and a voltage applying device for applying a voltage between the pair of electrodes are provided.
[0007]
According to the deodorizing device of the present invention, the odor substance in the fluid is retained and accumulated in the insulating odor substance retaining means. Then, when a voltage is applied between the electrodes, an electric field acts on the odor substance accumulated in the odor substance retaining means, and the odor substance is decomposed. Therefore, it is sufficient to apply the voltage after the odor substance is accumulated in the odor substance retaining means and sufficiently accumulated, so that the number of times of discharge can be reduced as compared with the case where the odor substance is not accumulated without the odor substance retaining means. For this reason, energy can be saved.
[0008]
Here, it is preferable that the odorant staying means selectively adsorbs the odorant in the fluid when the odorant stays in contact with the fluid containing the odorant.
[0009]
According to this, since the odor substance is selectively adsorbed by the odor substance retaining means as compared with other fluid components, the odor substance can be appropriately retained and accumulated.
[0010]
Here, as the odor substance retention means, a capillary tube made of porous ceramic or glass can be exemplified. By using these as the odor substance retention means, odor substances such as aldehydes and fatty acids contained in the air are selectively retained on the inner wall surface between the pores of the porous ceramic and the capillaries by the action of adsorption or the like, which is preferable. Can be accumulated.
[0011]
Further, it is preferable that the voltage applying device applies a unipolar pulse voltage between the pair of electrodes.
[0012]
According to this, the intensity of the electric field between the pair of electrodes can be increased, so that the odorous substance can be more appropriately decomposed.
[0013]
Further, it is preferable that the voltage application device applies a voltage between the pair of electrodes so that the intensity of the electric field between the pair of electrodes is 0.8 kV / mm or more and 3.0 kV / mm or less.
[0014]
When the intensity of the electric field between the pair of electrodes is lower than 0.8 kV / mm, the decomposition of the odorant tends to be difficult to occur. On the other hand, when the strength of the electric field between the pair of electrodes exceeds 3.0 kV / mm, insulation is easily broken, the effective electric field between the electrodes is reduced, and the decomposition efficiency and the energy efficiency tend to be reduced.
[0015]
Further, an odor sensor for acquiring information on the concentration of the odor substance contained in the fluid discharged from the odor substance retaining means, and a timing of voltage application by the voltage application device are controlled based on the information on the concentration of the odor substance. And an application timing control device.
[0016]
According to this, after the odorous substance in the fluid is retained in the odorant retaining means to the maximum capacity that can be retained, the odorant can no longer be retained and the odorous substance is discharged from the odorant retaining means. Can be detected by the odor sensor. Further, when this is detected, a voltage is applied between the pair of electrodes to decompose the odor substance held by the odor substance retaining means. Thereby, the timing of voltage application can be optimized according to the amount of the odorous substance in the fluid, and further energy saving can be achieved.
[0017]
Further, the fluid containing the odorant can be caused to flow in a predetermined direction, and each of the pair of electrodes can be arranged in parallel with the flow of the fluid.
[0018]
According to this, it is possible to change the length of the odor substance retaining means in the flow direction without changing the thickness between the pair of electrodes, thereby changing the maximum value of the capacity that can retain the odor substance, and changing the deodorizing condition. It is easy to change the configuration of the deodorizing device according to the requirements.
[0019]
Further, a second odor substance retention means is provided on the opposite side to the odor substance retention means with one of the pair of electrodes interposed therebetween, and the second odor substance retention means is sandwiched between the two electrodes. A second electrode electrically connected to the other of the pair of electrodes may be provided on the side opposite to the one.
[0020]
According to this, the diameter of the pipe in the width direction perpendicular to the flow of the fluid can be made sufficiently larger than the distance between the electrodes. Thus, the distance between the electrodes is maintained at, for example, about 10 mm, and an electric field of about 1.0 kV / mm is generated by applying a voltage of about 10 kV, while a plurality of combinations of the odorant retention means and the electrodes are arranged in the width direction. Providing such a structure enables suitable deodorization even in a wide pipe. In addition, when the diameter of the conduit is maintained, the distance between the electrodes is reduced, so that the voltage applied to the electrodes can be reduced.
[0021]
Further, the fluid containing the odorant may be caused to flow in a predetermined direction, and each of the pair of electrodes may be arranged in a direction intersecting the flow of the fluid and may have a mesh shape.
[0022]
According to this, even when the diameter of the conduit in the width direction perpendicular to the flow of the fluid is increased, the distance between the mesh-shaped electrodes can be maintained, and a large-volume deodorizing apparatus can be easily realized.
[0023]
In addition, one of the pair of electrodes may have a rod shape, and the other of the electrodes may have a cylindrical shape surrounding the one electrode.
[0024]
According to this, since it has the cylindrical electrode and the rod-shaped electrode, the odor substance retention means and the pair of electrodes can be disposed in the circular pipe, by effectively utilizing the internal space. .
[0025]
The deodorizing method according to the present invention includes a step of bringing a fluid containing an odorant into contact with an electrical insulator to selectively retain the odorant in the fluid on the electrical insulator, and an electrical insulator containing the odorant. Applying a predetermined electric field to the
[0026]
According to the deodorizing method of the present invention, the odorous substance in the fluid is retained and accumulated in the electric insulator. Then, when a voltage is applied to the electrode sandwiching the electric insulator, an electric field acts on the odor substance retained in the electric insulator, and the odor substance is decomposed. For this reason, the voltage may be applied after the odor substance is accumulated in the electric insulator and sufficiently accumulated, so that the number of times of discharge is smaller than in the case where the odor substance is not accumulated without accumulating the odor in the electric insulator. Can be reduced. For this reason, energy can be saved.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a deodorizing device according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or corresponding elements have the same reference characters allotted, and overlapping description will be omitted.
[0028]
(First embodiment)
FIG. 1 is a schematic diagram of a deodorizing device according to the first embodiment. The deodorizing apparatus 100 according to the present embodiment is for deodorizing air to be treated containing an odorous substance, which is supplied via the pump 1 and flows in the pipeline 10 rightward in the drawing. Here, the odor substance is a substance that makes a human feel an odor, such as various fatty acids such as valeric acid, aldehyde, ammonia, H 2 S, and SO 2 . The air to be treated contains, for example, 1 ppb to 1 ppm of these odorous substances.
[0029]
The deodorizing apparatus 100 includes an electrode 21 and an electrode 22, a porous insulator (odor substance retaining means) 30 that is interposed between the electrode 21 and the electrode 22, and comes into contact with air to be processed flowing in the pipeline 10. A voltage application device 40 for applying a voltage between the electrode 21 and the electrode 22, an application timing control device 50 for controlling the timing of voltage application by the voltage application device 40, and a porous insulator 30 after contacting the porous insulator 30. An odor sensor 60 for detecting the concentration of odorous substances in the treated air discharged from the exhaust gas 30.
[0030]
The electrode 21 and the electrode 22 are each a conductor such as a metal having a flat plate shape, are arranged in the pipe 10 in parallel with the flow direction of the air to be processed, and face each other.
[0031]
The voltage application device 40 has a terminal 40a and a terminal 40b, and generates a pulsed DC voltage between the terminals 40a and 40b. The electrode 21 is electrically connected to a terminal 40a of the voltage application device 40 via a line L1, and the electrode 22 is electrically connected to a terminal 40b of the voltage application device 40 via a line L2. The voltage application device 40 generates a pulsed DC voltage between the terminals 40a and 40b, thereby applying a predetermined pulse voltage between the electrodes 21 and 22 and a predetermined pulse voltage between the electrodes 21 and 22. Generate an electric field.
[0032]
The porous insulator 30 is an electric insulator, and is provided between the electrode 21 and the electrode 22. The porous insulator 30 is filled with a large number of pores, and the air to be processed can pass through the pores as a flow path. The material of the porous insulator 30 has a higher affinity for odorous substances than nitrogen or oxygen, which is a main component of air. Odorous substances in the air are selectively adsorbed on the surface.
[0033]
Examples of the material of the porous insulator 30 include ceramic materials such as alumina, silica, zeolite, and silicon carbide. Further, a capillary plate formed by bundling a number of capillary tubes made of glass or resin can also be used. When these are used, an odorant having a larger molecule than nitrogen or oxygen can be appropriately adsorbed and retained.
[0034]
In particular, when an aldehyde or a fatty acid is used as the odorant, if a porous body such as alumina, zeolite, or silicon carbide is used as the porous insulator 30, the aldehyde or the fatty acid can be selectively used in the air to be treated. Can be adsorbed.
[0035]
Then, for example, the above-described porous material is cut into a desired shape, or the above-mentioned porous material is filled with particles to form a packed layer, or the partition wall extends in the flow direction using the above-described porous material. The porous insulator 30 can be configured by forming a honeycomb structured body or a bundle of a number of capillary tubes to form a capillary plate.
[0036]
It is preferable that the pore diameter or the capillary diameter of the porous insulator 30 be about 1 μm to 50 μm. When these diameters are less than 1 μm, the pressure loss at the time of passage of the air to be treated tends to increase, while when they exceed 50 μm, the specific surface area tends to decrease, and the maximum holding capacity of the odorant tends to decrease. .
[0037]
The odor sensor 60 measures the concentration of the odorant in the treated air discharged from the porous insulator 30 after coming into contact with the porous insulator 30, and includes, for example, a hot-wire sintered semiconductor sensor, A substrate type semiconductor sensor or the like can be used. The odor sensor 60 is connected to the application timing control device 50, and information on the concentration of the odorant is transmitted to the application timing control device 50.
[0038]
The application timing control device 50 is connected to the voltage application device 40. The application timing control device 50 determines whether the odor substance in the treated air has a concentration higher than a predetermined concentration based on the information on the odor concentration The voltage application timing of the voltage application device 40 is controlled so that a predetermined number of unipolar pulse voltages are applied.
[0039]
Next, the operation of the deodorizing apparatus 100 according to the present embodiment will be described. First, when air to be treated containing an odorous substance flows through the pipe 10 from left to right in the figure by the pump 1, the air to be treated contacts the porous insulator 30 while the inside of the porous insulator 30 is shown in the figure. It flows to the right.
[0040]
Here, the odor substance such as aldehyde and the nitrogen and oxygen in the air have a difference in affinity with the porous insulator 30, and the odor substance has a higher affinity with the porous insulator 30 and has an odor. The substance is easily adsorbed on the porous insulator 30. Therefore, the odorous substance requires more time to pass through the porous insulator 30 than nitrogen and oxygen.
[0041]
For this reason, the odorous substance stays and accumulates in the porous insulator 30. As a result, the treated air flowing out from the downstream end of the porous insulator 30 has almost no odorous substance, and the air to be treated is deodorized.
[0042]
This state continues for a while, and the amount of the odor substance retained in the porous insulator 30 increases. Then, after a lapse of a predetermined time, the amount of the odor substance retained in the porous insulator 30 is saturated, and the odor substance starts to be discharged from the downstream end of the porous insulator 30.
[0043]
Then, the odor sensor 60 detects this, and the application timing control device 50 controls the voltage application device 40 to apply a pulse voltage between the electrode 21 and the electrode 22 a predetermined number of times.
[0044]
As a result, a predetermined electric field is generated between the electrode 21 and the electrode 22, and the odorous substance held in the porous insulator 30 is decomposed. At this time, a discharge is generated between the electrodes 21 and 22 to such an extent that dielectric breakdown does not occur.
[0045]
The components generated by the decomposition are discharged from the porous insulator 30 to the downstream side, so that the odorant can be further retained in the porous insulator 30.
[0046]
As described above, in the deodorizing apparatus 100 according to the present embodiment, when the air to be treated comes into contact with the porous insulator 30, the odorous substance in the air to be treated is selectively present in the porous insulator 30. And removes odorous substances from the treated air. Further, after a predetermined amount of the odor substance is retained in the porous insulator 30, a voltage is applied to the pair of electrodes 21 and 22 sandwiching the porous insulator 30, so that the odor substance is retained in the porous insulator 30. An electric field acts on the accumulated odor substance, and the odor substance is decomposed. For this reason, the odorous substance in the air to be treated can be sufficiently retained in the porous material again.
[0047]
Then, the voltage may be applied each time the odor is held and sufficiently accumulated in the porous insulator 30. Therefore, compared to the case where the odor is not accumulated without the porous insulator 30 and the odor substance is not accumulated, the discharge is performed. The number of times has been reduced.
[0048]
Even if the porous insulator 30 is made conductive, that is, even if the electrodes 21 and 22 are made porous and odorous substances are accumulated, an electric field cannot be generated in the conductor, so that the porous insulator 30 is made conductive. At this time, the decomposition of the odorous substance is hardly performed, and the effect of this embodiment is not obtained.
[0049]
Further, since the porous insulator 30 selectively adsorbs odorous substances in the air to be treated, the odorous substances can be appropriately retained and accumulated inside the air when the air to be treated passes. Thereby, the number of times of voltage application can be sufficiently reduced.
[0050]
Further, the voltage applying device 40 applies a pulse voltage between the electrodes 21 and 22. For this reason, since a strong electric field can be generated between the electrodes 21 and 22, the decomposition of the odorous substance is performed more suitably.
[0051]
Here, the pulse width is preferably 1 ns or more and 200 ns or less in order to suitably decompose the odor substance accumulated in the insulator.
[0052]
Further, it is preferable that the pulse voltage is set so that the intensity of the electric field between the electrodes 21 and 22 is 0.8 kV / mm or more and 3.0 kV / mm or less.
[0053]
When the intensity of the electric field between the electrodes 21 and 22 is lower than 0.8 kV / mm, the decomposition of the odorant tends to be difficult to occur. On the other hand, if the strength of the electric field between the electrodes 21 and 22 exceeds 3.0 kV / mm, insulation is easily broken, the effective electric field between the electrodes 21 and 22 decreases, and the decomposition efficiency and energy efficiency tend to decrease. is there. Note that the optimum electric field strength (the magnitude of the applied voltage) in this range varies depending on humidity, atmospheric pressure, and the like.
[0054]
The distance between the electrode 21 and the electrode 22 is preferably 5 mm or more and 20 mm or less. For example, assuming that the distance between the electrodes 21 and 22 is 10 mm, the pulse voltage is set to 8 kV in order to make the electric field intensity between the electrodes 21 and 22 0.8 kV / mm or more and 3.0 kV / mm or less. The voltage may be set to 30 kV or less.
[0055]
In addition, the porous insulator 30 has a maximum value of the odor substance that can be retained inside the porous insulator 30 depending on the condition of the air to be treated, and when the odor substance is supplied beyond the maximum value, the odor substance is left as it is. Discharge. Therefore, information on the concentration of the odorant contained in the treated air discharged from the porous insulator 30 is acquired by the odor sensor 60, and when the concentration of the odorant exceeds a predetermined threshold, the voltage application by the voltage application device 40 is performed. Is performed by the application timing control device 50 to control the voltage application device 40.
[0056]
For this reason, the maximum amount of odor substances that can be retained in the porous insulator 30 is retained without being affected by a change in the concentration of the odor substance in the air to be processed or a change in the supply amount of the substance to be processed. After that, a voltage for applying an electric field can be applied. Thereby, the timing of voltage application can be optimized, and further energy saving can be achieved.
[0057]
The air to be processed is caused to flow toward the right in the drawing, and the electrodes 21 and 22 are arranged in parallel with the flow of the air to be processed. For this reason, it is possible to change the length of the porous insulator 30 in the flow direction without changing the thickness between the electrodes 21 and 22, thereby changing the maximum value of the capacity in which the odorant can be retained, and changing the deodorizing conditions. It is easy to change the configuration of the deodorizing device according to the requirements.
[0058]
(Second embodiment)
Next, a deodorizing apparatus 200 according to the second embodiment will be described. The deodorizing apparatus 200 according to the present embodiment is different from the deodorizing apparatus 100 in that porous insulators 31, 32, and 33 similar to the porous insulator 30 are processed below the porous insulator 30. The points arranged in this order in parallel with the flow of the air and at a predetermined distance from each other in the downward direction, and correspondingly, these porous insulators 31, 32, 33 The point is that an electric field is applied.
[0059]
An electrode 121 is provided between the porous insulator 31 and the porous insulator 32, an electrode 222 is provided between the porous insulator 32 and the porous insulator 33, and an electrode is provided below the porous insulator 33. 221 are provided, respectively. Further, the electrode 121 and the electrode 221 are electrically connected to the terminal 40b of the voltage applying device 40 via the line L1 similarly to the electrode 21. The electrode 222 is electrically connected to the terminal 40a of the voltage applying device 40 via the line L2, similarly to the electrode 22.
[0060]
According to such a deodorizing apparatus 200, the porous insulator 31 is provided with the electrode 22 and the electrode 121, the porous insulator 32 is provided with the electrode 121 and the electrode 222, and the porous insulator 33 is provided with the electrode 222 and the electrode 222. Since an electric field acts on each of the electrodes 221, each of the porous insulators 30 to 33 has the same operation and effect as the above-described deodorizing apparatus 100.
[0061]
In addition, a plurality of porous insulators 30 to 33 are provided in the width direction of the pipe 10, and an electric field acts on each of the porous insulators 30 in the width direction of the pipe 10. Therefore, the distance between the electrodes can be made sufficiently smaller than the length of the conduit 10 in the width direction. Thereby, the distance between the electrodes is maintained at, for example, about 10 mm, and an electric field of about 1.0 kV / mm is generated by applying a voltage of about 10 kV, while the combination of the porous insulator 30 and the electrodes is moved in the width direction. By providing a plurality of pipes, suitable deodorization becomes possible even in a wide pipeline 10. Further, when the diameter of the conduit 10 is maintained, the distance between the electrodes is reduced, so that the voltage applied to the electrodes can be reduced.
[0062]
(Third embodiment)
Next, a deodorizing device 300 according to a third embodiment will be described. The deodorizing device 300 according to the present embodiment is different from the deodorizing device 100 of the first embodiment in that the electrodes 21 and 22 arranged in parallel to the flow of the air to be processed are perpendicular to the flowing direction of the air to be processed. Is provided with mesh-like electrodes 321 and 322 which are respectively arranged in the same manner as above. The mesh electrodes 321 and 322 are formed in a mesh shape so that air to be processed can flow through the mesh electrodes 321 and 322 vertically. The porous insulator 30 is sandwiched between the mesh electrodes 321 and 322. The mesh electrode 321 is electrically connected to the terminal 40b of the voltage application device 40 via the line L1, and the mesh electrode 322 is It is electrically connected to the terminal 40a of the voltage applying device 40 via the line L2.
[0063]
According to the deodorizing device 300, the same operation and effect as those of the deodorizing device 100 can be obtained, and even when the inner diameter of the pipe 10 is increased, the distance between the mesh electrodes 321 and 322 can be maintained. It is possible to easily realize a deodorizing apparatus for the throughput.
[0064]
(Fourth embodiment)
Next, a deodorizing device 400 according to a fourth embodiment will be described with reference to FIG. The deodorizing device 400 according to the present embodiment is different from the deodorizing device 100 of the first embodiment in that a cylindrical tubular electrode 421 coaxial with the pipeline 10 is provided in the cylindrical pipeline 10. The cylindrical electrode 421 has a columnar porous insulator 430 coaxial with the cylindrical electrode 421, and the rod-shaped center electrode 422 penetrating through the center of the porous insulator 430 in the axial direction in the porous insulator 430. Is provided.
[0065]
The cylindrical electrode 421 is sized so as to be substantially inscribed in the conduit 410, and is electrically connected to the terminal 40b of the voltage applying device 40 via the line L1.
[0066]
The rod-shaped electrode 422 is electrically connected to the terminal 40a of the voltage applying device 40 via the line L2.
[0067]
In such a deodorizing device 400, a predetermined electric field is generated between the rod-shaped electrode 422 and the cylindrical electrode 421, so that the same operation and effect as in the first embodiment can be obtained.
[0068]
In addition, since it has the cylindrical electrode 421 and the rod-shaped electrode 422, the porous insulator 30 and the electrodes 421 and 422 are effectively used in the circular conduit 10 by effectively using the internal space. Can be placed.
[0069]
Note that the deodorizing device according to the present invention is not limited to the above embodiment, and can take various modifications.
[0070]
For example, in the above embodiment, the odor substance contained in the air is removed. However, the present invention is not limited to this. For example, the odor substance and the like in the nitrogen gas can be removed. In this case, depending on the properties of the odor substance to be deodorized and the properties of the other non-target gases, a material capable of selectively adsorbing the deodorant substance, that is, a odor substance rather than a non-target gas. What is necessary is just to select a material having high affinity for the porous insulator 30. Similarly, it can be applied to liquid instead of gas, for example, it can be applied to removal of odorous substances in river water.
[0071]
In addition, the mechanism of the selective residence in the porous insulator 30 is not limited to the adsorption, and may use a chemical bond, a molecular sieve, or the like.
[0072]
In the above embodiment, the air to be treated is forcibly supplied to the porous insulator 30. However, the deodorizing devices 100 to 400 may be simply installed in the space where the air to be treated is present. Even in this case, the odorous substance accumulates in the porous insulator 30 due to diffusion or the like with the passage of time, and can be decomposed by the electric field every predetermined time.
[0073]
Further, the cross-sectional shape of the conduit 10 is not limited to a circle, a rectangle, or the like, and can be applied to a conduit having an arbitrary cross-sectional shape.
The deodorizing device as described above can be applied to, for example, deodorization in closed spaces such as in trains, cars, airplanes, buildings, factories, and the like, and deodorization of exhaust gas and wastewater therefrom.
[0074]
【The invention's effect】
As described above, according to the present invention, the odor substance in the fluid is retained and accumulated in the insulating odor substance retaining means. Then, when a voltage is applied between the electrodes, an electric field acts on the odor substance held by the odor substance retaining means, and the odor substance is decomposed. Therefore, it is sufficient to apply the voltage after the odor substance is accumulated in the odor substance retaining means and sufficiently accumulated, and the number of times of discharge can be reduced as compared with the case where the odor substance is not accumulated without the odor substance retaining means. For this reason, energy saving of the deodorizing device becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a deodorizing device according to a first embodiment.
FIG. 2 is a schematic configuration diagram illustrating a deodorizing device according to a second embodiment.
FIG. 3 is a partially broken perspective view showing a deodorizing device according to a third embodiment.
FIG. 4 is a partially broken perspective view showing a deodorizing device according to a fourth embodiment.
[Explanation of symbols]
21, 22, 121, 221, 222 ... electrode, 321, 322 ... mesh electrode, 421 ... cylindrical electrode, 422 ... rod electrode, 30, 31, 32, 33, 430 ... porous insulator (odor substance retention means ), 40: voltage applying device, 50: application timing control device, 60: odor sensor, 100, 200, 300, 400: deodorizing device.

Claims (11)

互いに対向する一対の電極と、
前記一対の電極間に設けられ、電気絶縁体であると共に、臭気物質を含む流体と接触すると前記流体中の臭気物質を選択的に滞留させる臭気物質滞留手段と、
前記一対の電極間に電圧を印加する電圧印加装置と、
を備える脱臭装置。
A pair of electrodes facing each other,
Odor substance retention means provided between the pair of electrodes, which is an electrical insulator, and selectively retains the odor substance in the fluid when it comes into contact with the fluid containing the odor substance,
A voltage application device that applies a voltage between the pair of electrodes,
Deodorizing device provided with.
前記臭気物質滞留手段は、前記臭気物質を含む流体と接触すると前記流体中の臭気物質を選択的に吸着する請求項1の脱臭装置。2. The deodorizing apparatus according to claim 1, wherein the odorant staying means selectively adsorbs the odorant in the fluid when the odorant stays in contact with the fluid containing the odorant. 前記臭気物質滞留手段は、多孔質セラミック又はキャピラリ管を有する請求項1又は2の脱臭装置。3. The deodorizing apparatus according to claim 1, wherein said odor substance retaining means includes a porous ceramic or a capillary tube. 前記電圧印加装置は、前記一対の電極間にパルス電圧を印加することを特徴とする、請求項1又は2に記載の脱臭装置。The deodorization device according to claim 1, wherein the voltage application device applies a pulse voltage between the pair of electrodes. 前記電圧印加装置は、前記一対の電極間の電界の強さが0.8kV/mm以上3.0kV/mm以下となるように前記一対の電極間に電圧を印加する請求項4に記載の脱臭装置。The deodorizing device according to claim 4, wherein the voltage applying device applies a voltage between the pair of electrodes so that an electric field intensity between the pair of electrodes is 0.8 kV / mm or more and 3.0 kV / mm or less. apparatus. 前記臭気物質滞留手段から排出される流体に含まれる臭気物質の濃度に関する情報を取得する臭気センサと、
前記臭気物質の濃度に関する情報に基づいて前記電圧印加装置による電圧印加のタイミングを制御する印加タイミング制御装置と、
を有する、請求項1〜5の何れか一項に記載の脱臭装置。
An odor sensor that acquires information on the concentration of the odorant contained in the fluid discharged from the odorant retention unit,
An application timing control device that controls timing of voltage application by the voltage application device based on information about the concentration of the odorant,
The deodorizing device according to any one of claims 1 to 5, comprising:
前記臭気物質を含む流体は所定の方向に向かって流され、前記一対の電極の各々が前記流体の流れに平行に配置された請求項1〜6の何れか一項に記載の脱臭装置。The deodorizing device according to any one of claims 1 to 6, wherein the fluid containing the odorant is caused to flow in a predetermined direction, and each of the pair of electrodes is arranged in parallel with the flow of the fluid. 前記一対の電極の内の一方を挟んで前記臭気物質滞留手段と反対側に第二の臭気物質滞留手段を備え、前記第二の臭気物質滞留手段を挟んで前記一対の電極の内の一方と反対側には、前記一対の電極の内の他方と電気的に接続された第二の電極を備える請求項7の脱臭装置。A second odorant retention means is provided on the opposite side to the odorant retention means with one of the pair of electrodes interposed therebetween, and one of the pair of electrodes sandwiches the second odorant retention means. The deodorizing device according to claim 7, further comprising a second electrode electrically connected to the other of the pair of electrodes on the opposite side. 前記臭気物質を含む流体は所定の方向に向かって流され、前記一対の電極の各々が、前記流体の流れに交差する方向に配置され、かつ、メッシュ形状である請求項1〜6の何れか一項に記載の脱臭装置。The fluid containing the odorant is caused to flow in a predetermined direction, and each of the pair of electrodes is arranged in a direction intersecting the flow of the fluid, and has a mesh shape. The deodorizing device according to claim 1. 前記一対の電極の内の一方は棒状であると共に、前記一対の電極の内の他方は前記一方の電極を取り囲む筒状形状を呈する請求項1〜6の何れか一項に記載の脱臭装置。The deodorizing device according to any one of claims 1 to 6, wherein one of the pair of electrodes has a rod shape, and the other of the pair of electrodes has a cylindrical shape surrounding the one electrode. 臭気物質を含む流体を電気絶縁体と接触させ、前記流体中の臭気物質を前記電気絶縁体に選択的に滞留させる工程と、
前記臭気物質が滞留された電気絶縁体に対して、所定の電界を作用させる工程と、
を含む臭気物質の脱臭方法。
Contacting a fluid containing an odorant with an electrical insulator, and selectively retaining the odorant in the fluid on the electrical insulator;
A step of applying a predetermined electric field to the electric insulator in which the odorous substance is retained,
A method for deodorizing odorous substances including.
JP2003117230A 2003-04-22 2003-04-22 Apparatus and method for deodorization Pending JP2004321309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117230A JP2004321309A (en) 2003-04-22 2003-04-22 Apparatus and method for deodorization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117230A JP2004321309A (en) 2003-04-22 2003-04-22 Apparatus and method for deodorization

Publications (1)

Publication Number Publication Date
JP2004321309A true JP2004321309A (en) 2004-11-18

Family

ID=33497185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117230A Pending JP2004321309A (en) 2003-04-22 2003-04-22 Apparatus and method for deodorization

Country Status (1)

Country Link
JP (1) JP2004321309A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041225A (en) * 2010-08-18 2012-03-01 Daikoh Shoji Corp Method for generating hydrogen, device for performing the method, and automobile fuel power generator using the device
JP2014193807A (en) * 2014-04-14 2014-10-09 Daikoh Shoji Corp Hydrogen generation method, apparatus for execution of the method and fuel power generator for vehicle using the apparatus
JP2015196109A (en) * 2014-03-31 2015-11-09 株式会社Nbcメッシュテック Gas treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041225A (en) * 2010-08-18 2012-03-01 Daikoh Shoji Corp Method for generating hydrogen, device for performing the method, and automobile fuel power generator using the device
JP2015196109A (en) * 2014-03-31 2015-11-09 株式会社Nbcメッシュテック Gas treatment device
JP2014193807A (en) * 2014-04-14 2014-10-09 Daikoh Shoji Corp Hydrogen generation method, apparatus for execution of the method and fuel power generator for vehicle using the apparatus

Similar Documents

Publication Publication Date Title
Kim et al. A multidisciplinary approach to understand the interactions of nonthermal plasma and catalyst: A review
JP4718344B2 (en) Air purification apparatus and air purification method using the same
Bahri et al. Impact of design parameters on the performance of non-thermal plasma air purification system
JP5067802B2 (en) Plasma generating apparatus, radical generating method, and cleaning and purifying apparatus
JP2009162173A (en) Fuel reforming device
KR100956844B1 (en) Odor removal device and method of removing odor
JP2006187766A (en) Gas treatment apparatus and gas treatment cartridge
JP2015070921A (en) Deodorization device
JPH08266854A (en) Deodorizing device
JP2004321309A (en) Apparatus and method for deodorization
JP2003053129A (en) Plasma type gas purifying apparatus and streamer discharge circuit
JP2005313108A (en) Dielectric
JP2005144445A (en) Method for treating gas with non-equilibrium plasma, discharge electrode and gas treatment apparatus equipped therewith
JP2003181278A (en) Deodorizing apparatus
JP2004113704A (en) Deodorizing element
JP2006291930A (en) Method and device for exhaust emission control
JPH11319489A (en) Catalyst structural body and deodorizing device having catalyst structural body
JP2005193151A (en) Gas treatment apparatus
JP2019035516A (en) Air cleaner and control method for air cleaner
KR101194702B1 (en) Device for removing odorous gas using plasma discharge
JP5810260B2 (en) Active species generator
JP2001157816A (en) Exhaust gas treatment device
JP2009125123A (en) Air cleaner
JP2004337345A (en) Deodorizing apparatus and deodorizing method
JP5640353B2 (en) Nitrogen oxide separation membrane, and nitrogen oxide separation device, nitrogen oxide separation method, nitrogen oxide purification device, and nitrogen oxide purification method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610