JP2004320744A - Optical radio transmission apparatus, optical axis adjustment method of the optical radio transmission apparatus, optical radio communication method, and optical radio transmission system - Google Patents

Optical radio transmission apparatus, optical axis adjustment method of the optical radio transmission apparatus, optical radio communication method, and optical radio transmission system Download PDF

Info

Publication number
JP2004320744A
JP2004320744A JP2004099760A JP2004099760A JP2004320744A JP 2004320744 A JP2004320744 A JP 2004320744A JP 2004099760 A JP2004099760 A JP 2004099760A JP 2004099760 A JP2004099760 A JP 2004099760A JP 2004320744 A JP2004320744 A JP 2004320744A
Authority
JP
Japan
Prior art keywords
light
optical
wireless transmission
optical axis
emitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004099760A
Other languages
Japanese (ja)
Other versions
JP4273458B2 (en
Inventor
Kiriko Yamada
桐子 山田
Manabu Sakane
学 坂根
Masahisa Sakai
雅久 境
Takeyoshi Sasao
剛良 笹生
Takashi Iwamoto
岩本  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2004099760A priority Critical patent/JP4273458B2/en
Publication of JP2004320744A publication Critical patent/JP2004320744A/en
Application granted granted Critical
Publication of JP4273458B2 publication Critical patent/JP4273458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical radio transmission apparatus which controls the optical axis of sending and receiving by reflecting the optical axis of transmission light emitted from a light-emitting device and a receiving light, irradiated from an optical radio transmission apparatus of the other party side to a reflector having a moving portion as a co-axis and by moving only the reflector. <P>SOLUTION: The optical axis is adjusted, by moving the reflector 4 and from a presence or absence and an intensity of the receiving light at a light-receiving processing portion 8 and at an operation portion 13. Since the optical axis of the transmission light of the light-receiving element 1 and the receiving light supplied to a light receiving element 6 is set as the co-axis by using a beam splitter 3, the transmitted light is set to the optical axis and communication is started, by adjusting the optical axis of the received light. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、データ信号により変調された光信号を送信・受信することよりデータ伝送を行う光無線伝送装置、光無線伝送装置の光軸調整方法、光無線通信方法、及び光無線伝送システムに関する。     The present invention relates to an optical wireless transmission device that performs data transmission by transmitting and receiving an optical signal modulated by a data signal, an optical axis adjustment method of the optical wireless transmission device, an optical wireless communication method, and an optical wireless transmission system.

一般に、光無線を介して信号を伝送する場合に、送信側の発光素子としてLED(発光ダイオード)やレーザダイオードが用いられている。このうち、LEDにより信号を送信する装置では、指向性の広いLED光のビーム径を集束レンズで絞らなければならないが、この絞りに限界があるために長距離を伝送するとビーム系が広がり、受信されるパワーが減少する。またこの様にビーム径が広がると、複数の装置をパラレルで用いた場合に干渉が発生するという問題点がある。   Generally, when transmitting a signal via optical wireless, an LED (light emitting diode) or a laser diode is used as a light emitting element on a transmitting side. Among these, in a device that transmits a signal using an LED, the beam diameter of the LED light having a wide directivity must be converged by a focusing lens. Power is reduced. Further, when the beam diameter is widened in this manner, there is a problem that interference occurs when a plurality of devices are used in parallel.

これを解決するため、例えば図15に示すような屋内光無線伝送装置が提案されている。この光無線伝送装置では、一方の装置(親機14)にデータ信号送信のための発光部15とは別に発光手段16を設け、この発光手段16から光軸調整用のパイロット光16Aを送出し、他方の光無線伝送装置(子機18)では、その光軸方向を変位させて受光装置17によりパイロット光16Aを受信し、このパイロット光16Aの受光レベルに基づいて光軸合わせを行うように構成されている。本装置は、LED光をパラボラリフレクタにより平行化してビーム径を絞るようにしたもので、指向性の狭いビーム光を受信する受光装置17をステッピングモータ等により回転させることにより、水平・垂直方向に走査して、2次元座標において最大の受光レベルが得られる点をサーチするという形態で具体化されている。(例えば、特許文献1参照。)   In order to solve this, for example, an indoor optical wireless transmission device as shown in FIG. 15 has been proposed. In this optical wireless transmission device, a light emitting unit 16 is provided in one device (master unit 14) separately from a light emitting unit 15 for transmitting a data signal, and a pilot light 16A for optical axis adjustment is transmitted from the light emitting unit 16. The other optical wireless transmission device (slave device 18) receives the pilot light 16A by the light receiving device 17 while displacing the optical axis direction, and performs optical axis alignment based on the light receiving level of the pilot light 16A. It is configured. In this device, the LED light is collimated by a parabolic reflector to narrow the beam diameter, and the light receiving device 17 that receives the light beam with a narrow directivity is rotated by a stepping motor or the like, so that it can be horizontally and vertically. It is embodied in a form of scanning and searching for a point at which a maximum light receiving level is obtained in two-dimensional coordinates. (For example, refer to Patent Document 1.)

一方、レーザダイオードを用いた屋外光無線伝送装置においては、ミラーとビームスプリッタによる光軸調整方法が採用されている。(例えば、特許文献2参照。)   On the other hand, in an outdoor optical wireless transmission device using a laser diode, an optical axis adjustment method using a mirror and a beam splitter is adopted. (For example, see Patent Document 2.)

特許第3059870号公報(第12図、第18図)Japanese Patent No. 3059870 (FIGS. 12 and 18)

特開平6−152541号公報(第1図)JP-A-6-152541 (FIG. 1)

上記の屋内光無線伝送装置で光軸調整を行うには、受光素子及びその光学系を含む受光装置と、発光素子及びその光学系を含む発光装置とを、同時に回転させる必要があるため、屋内で使用するためには装置が大型なものとなる。
また、より高速な伝送を行うためには、受信側で、他の端末からの送信光を高効率に受光する必要があり、送信光は指向角数度[deg]程度の、非常に狭指向のビームにしなければならない。データ伝送を行う際は、送信装置と受信装置との光軸を一致させる必要があるが、送信光の指向性が非常に狭い場合、光軸合わせを高精度且つ高速に行うことは困難であった。
In order to perform optical axis adjustment in the indoor optical wireless transmission device, it is necessary to simultaneously rotate the light receiving device including the light receiving element and the optical system thereof and the light emitting device including the light emitting device and the optical system. In order to use it, the apparatus becomes large.
Also, in order to perform higher-speed transmission, it is necessary for the receiving side to receive transmission light from other terminals with high efficiency, and the transmission light has a very narrow directional angle of several degrees [deg]. Beam. When performing data transmission, it is necessary to match the optical axes of the transmitting device and the receiving device. However, if the directivity of the transmitted light is very narrow, it is difficult to perform optical axis alignment with high accuracy and high speed. Was.

更に、送信と受信の光軸を一致させる光軸調整方法として、上記の屋外光無線伝送装置の調整方法が考えられるが、本装置は多数の光学素子が用いられた大規模なものであるために装置が大型なものとなり、また、ある程度光軸調整を行った後の微調整に用いられるものであるため、相手装置をサーチ可能な範囲が数度程度の狭く、屋内の様々な場所に移動して使用される装置には適さないものとなっている。   Furthermore, as an optical axis adjustment method for matching the optical axes of transmission and reception, the above-described adjustment method of the outdoor optical wireless transmission device can be considered, but since this device is a large-scale device using many optical elements, Since the device becomes large and is used for fine adjustment after adjusting the optical axis to some extent, the searchable range of the partner device is narrow about several degrees and it can be moved to various places indoors. It is not suitable for a device used as a mobile phone.

本発明の目的は、装置の小型化を図る共に、光軸合わせを高精度且つ高速に行うことが可能であり、屋内使用にも適した光無線伝送装置、光無線伝送装置の光軸調整方法、光無線通信方法、及び光無線伝送システムを提供することにある。   SUMMARY OF THE INVENTION It is an object of the present invention to reduce the size of an apparatus, to perform optical axis alignment with high accuracy and high speed, and to be suitable for indoor use. , An optical wireless communication method, and an optical wireless transmission system.

本発明は、上記課題を解決するために、以下の1)〜8)に記載の手段よりなる。
すなわち、
1)相手装置から送出されたパイロット光を反射する反射板と、
前記反射板の偏向角を可変するための駆動手段と、
前記反射板により反射されたパイロット光を偏向して出射する光制御素子と、
前記出射されたパイロット光を集光させるための第1の光学素子と、
前記集光されて出射されたパイロット光を受光するための受光素子と、
前記受光したパイロット光に基づいて前記相手装置との光軸を合わせるために前記反射板の偏向角を制御するための偏向角制御信号を生成し、この制御信号に基づいて前記反射板の駆動手段を制御するための偏向角制御部と、
入来するデータ信号に応じて変調された光信号を出射する発光素子と、
前記発光素子から出射された光信号を平行光に近いビーム光に成形する第2の光学素子と、
を有し、
前記第2の光学素子から出射された出射光を前記光制御素子において前記パイロット光の入来方向とは逆経路をたどって前記反射板方向に透過させ、この透過入来光を前記反射板より前記光軸合わせされた光軸上をたどって前記相手装置に送出するようにしたことを特徴とする光無線伝送装置。
2)相手装置から送出されたパイロット光を反射する反射板と、
前記反射板の偏向角を可変するための駆動手段と、
前記反射板により反射されたパイロット光を透過して出射する光制御素子と、
前記出射されたパイロット光を集光させるための第1の光学素子と、
前記集光されて出射されたパイロット光を受光するための受光素子と、
前記受光したパイロット光に基づいて前記相手装置との光軸を合わせるために前記反射板の偏向角を制御するための偏向角制御信号を生成し、この制御信号に基づいて前記反射板の駆動手段を制御するための偏向角制御部と、
入来するデータ信号に応じて変調された光信号を出射する発光素子と、
前記発光素子から出射された光信号を平行光に近いビーム光に成形する第2の光学素子と、
を有し、
前記第2の光学素子から出射された出射光を前記光制御素子において前記パイロット光の入来方向とは逆経路をたどって前記反射板方向に偏向して出射させ、この出射入来光を前記反射板より前記光軸合わせされた光軸上をたどって前記相手装置に送出するようにしたことを特徴とする光無線伝送装置。
3)前記2)記載の光無線伝送装置において、
前記光制御素子の反射面は、前記反射光学系で反射される光の面積よりも小さいことを特長とする光無線伝送装置。
4)前記1)乃至3)のいずれか一に記載の光無線伝送装置において、
前記受光素子は多分割された受光素子により構成され、
前記偏向角制御部は、前記受光素子の各分割領域での受光量に基づいて前記反射光学系の移動方向と移動量を演算して偏向角制御信号を得る演算手段と、前記演算手段で演算された偏向角制御信号に基づいて前記反射光学系の駆動手段を水平方向又は垂直方向に駆動して、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行う制御手段と、
を備えることを特徴とする光無線伝送装置。
5)前記1)乃至4)のいずれか一に記載の光無線伝送装置において、
前記受発光部を同一基板上に一体に配置したことを特徴とする光無線伝送装置。
6)前記1)乃至5)のいずれか一に記載の光無線伝送装置の光軸調整方法において、
前記相手装置から入射するパイロット光を前記受光素子で受光し、当該受光素子、または前記受光素子を構成する各受光素子における受光量に基づいて前記反射光学系の移動方向と移動量を演算して偏向角制御信号を得ると共に、当該偏向角制御信号に基づいて前記反射光学系の駆動手段を水平方向または垂直方向に駆動することにより、前記発光素子から出射する光と前記相手装置から入射するパイロット光の光軸合わせを行うことを特徴とする光無線伝送装置の光軸調整方法。
7)前記1)乃至5)のいずれか一に記載の光無線伝送装置において、前記6)に記載の光無線伝送装置の光軸調整方法により光軸合わせを行った後、通信を行う光無線通信方法。
8)前記6)記載の光軸調整方法により光軸調整を行うことを特徴とする、前記1)乃至5)のいずれか一に記載の光無線伝送装置を用いた光無線伝送システム。
The present invention, in order to solve the above-mentioned problems, comprises the following means 1) to 8).
That is,
1) a reflector for reflecting the pilot light transmitted from the partner device;
Driving means for changing the deflection angle of the reflection plate,
A light control element that deflects and emits the pilot light reflected by the reflector,
A first optical element for condensing the emitted pilot light,
A light receiving element for receiving the condensed and emitted pilot light,
Generating a deflection angle control signal for controlling a deflection angle of the reflection plate to align an optical axis with the counterpart device based on the received pilot light; and driving the reflection plate based on the control signal. Deflection angle control unit for controlling the
A light-emitting element that emits an optical signal modulated according to an incoming data signal;
A second optical element for shaping an optical signal emitted from the light emitting element into a light beam close to a parallel light;
Has,
The outgoing light emitted from the second optical element is transmitted in the light control element in the direction of the reflector by following a path reverse to the incoming direction of the pilot light, and the transmitted incoming light is transmitted from the reflector. An optical wireless transmission device characterized in that the optical wireless transmission device is adapted to follow the optical axis aligned with the optical axis and to transmit to the partner device.
2) a reflector for reflecting the pilot light transmitted from the partner device;
Driving means for changing the deflection angle of the reflection plate,
A light control element that transmits and emits the pilot light reflected by the reflection plate,
A first optical element for condensing the emitted pilot light,
A light receiving element for receiving the condensed and emitted pilot light,
Generating a deflection angle control signal for controlling a deflection angle of the reflection plate to align an optical axis with the counterpart device based on the received pilot light; and driving the reflection plate based on the control signal. Deflection angle control unit for controlling the
A light-emitting element that emits an optical signal modulated according to an incoming data signal;
A second optical element for shaping an optical signal emitted from the light emitting element into a light beam close to a parallel light;
Has,
The outgoing light emitted from the second optical element is deflected in the light control element in the direction of the reflector by following a path reverse to the incoming direction of the pilot light, and is emitted. An optical wireless transmission apparatus characterized in that the light is transmitted to the partner device by following the optical axis aligned with the optical axis from the reflection plate.
3) The optical wireless transmission device according to 2),
An optical wireless transmission device, wherein a reflection surface of the light control element is smaller than an area of light reflected by the reflection optical system.
4) The optical wireless transmission device according to any one of 1) to 3),
The light receiving element is configured by a multi-divided light receiving element,
The deflection angle control unit calculates a moving direction and a moving amount of the reflection optical system based on a light receiving amount in each divided area of the light receiving element to obtain a deflection angle control signal. Control means for driving the driving means of the reflection optical system in the horizontal direction or the vertical direction based on the deflection angle control signal thus obtained, so as to align the optical axes of the light emitted from the light emitting element and the light incident from the partner device. When,
An optical wireless transmission device comprising:
5) The optical wireless transmission device according to any one of 1) to 4),
An optical wireless transmission device, wherein the light emitting and receiving unit is integrally disposed on the same substrate.
6) In the optical axis adjustment method of the optical wireless transmission device according to any one of 1) to 5),
Pilot light incident from the partner device is received by the light receiving element, and the moving direction and the moving amount of the reflection optical system are calculated based on the light receiving amount of the light receiving element or each light receiving element constituting the light receiving element. A deflection angle control signal is obtained, and a driving unit of the reflection optical system is driven in a horizontal direction or a vertical direction based on the deflection angle control signal, so that light emitted from the light emitting element and a pilot incident from the partner device are emitted. An optical axis adjusting method for an optical wireless transmission device, comprising: performing optical axis alignment of light.
7) In the optical wireless transmission device according to any one of 1) to 5), after performing optical axis alignment by the optical axis adjustment method of the optical wireless transmission device according to 6), perform optical communication. Communication method.
8) An optical wireless transmission system using the optical wireless transmission device according to any one of 1) to 5), wherein the optical axis adjustment is performed by the optical axis adjustment method described in 6).

本発明によれば、受発光部の反射光学系を動かすことにより、送信光とパイロット光の光軸合わせを同軸で制御することができるため、受光装置と発光装置とを同時に回転させる従来装置に比べ装置を小型化することができる。また、送信光に狭い指向角のビームを用いた場合でも、高精度且つ高速な光軸合わせが可能となる。さらに、相手装置をサーチ可能な範囲が広いため、屋内使用において様々な場所に移動させて使用することができる。
従って、本発明に係わる光無線伝送装置を屋内光無線伝送システムに適用した場合は、高精度なデータ伝送が可能となる。
According to the present invention, since the optical axis alignment of the transmission light and the pilot light can be controlled coaxially by moving the reflection optical system of the light receiving / emitting unit, a conventional device that rotates the light receiving device and the light emitting device simultaneously is used. The apparatus can be made smaller in comparison. Further, even when a beam having a narrow directional angle is used as the transmission light, high-precision and high-speed optical axis alignment can be performed. Further, since the searchable range of the partner device is wide, it can be moved to various places for indoor use.
Therefore, when the optical wireless transmission device according to the present invention is applied to an indoor optical wireless transmission system, highly accurate data transmission becomes possible.

以下、本発明の光無線伝送装置の発明を実施するための最良の形態について説明する。
まず図1を参照して実施の形態1に関わる光無線伝送装置の構成と本装置を組み合わせた屋内光無線伝送システムについて説明する。
[実施の形態1]
図1は、実施の形態1に関わる光無線伝送装置の概略構成図である。
受発光部9において、発光部は、外部インターフェース7Aから入来するデータ信号に応じてデータ供給部7により変調された光信号を出射する発光素子1と、その出射光を平行光に近いビーム光に成形するコリメータレンズ等のレンズ2と、このビーム光を透過する光制御素子3と、光制御素子3を透過したビーム光を図示しない相手装置へ反射する反射光学系4とから構成されている。
また、受光部は、図示しない相手装置から送出されたパイロット光を光制御素子3に反射する反射光学系4と、反射光学系4で反射されたパイロット光をさらに集光するレンズ5へ反射する光制御素子3と、このパイロット光を集光するレンズ5と、このレンズ5で集光されたパイロット光を受光するフォトダイオード(以下、適宜にPDという)等からなる受光素子6とから構成されている。
そしてこの受光素子6は偏向角制御信号供給部8と接続されている。
Hereinafter, the best mode for carrying out the invention of the optical wireless transmission device of the present invention will be described.
First, an indoor optical wireless transmission system in which the configuration of the optical wireless transmission apparatus according to the first embodiment and this apparatus are combined will be described with reference to FIG.
[Embodiment 1]
FIG. 1 is a schematic configuration diagram of the optical wireless transmission device according to the first embodiment.
In the light receiving / emitting unit 9, the light emitting unit is a light emitting element 1 that emits an optical signal modulated by the data supply unit 7 according to a data signal coming from the external interface 7A, and converts the emitted light into a beam light close to a parallel light. A lens 2, such as a collimator lens, which is molded into a light beam, a light control element 3 that transmits the light beam, and a reflection optical system 4 that reflects the light beam transmitted through the light control element 3 to a partner device (not shown). .
Further, the light receiving unit reflects a pilot light transmitted from a partner device (not shown) to a light control element 3 and a reflection optical system 4 and a lens 5 for further condensing the pilot light reflected by the reflection optical system 4. It comprises a light control element 3, a lens 5 for condensing the pilot light, and a light receiving element 6 including a photodiode (hereinafter, appropriately referred to as PD) for receiving the pilot light condensed by the lens 5. ing.
The light receiving element 6 is connected to a deflection angle control signal supply unit 8.

受発光部9では、外部インターフェース7Aからデータ信号が供給された、データ供給部7によって、データ信号に応じた光信号に強度変調された光信号が発光素子1から出射される。この光はレンズ2により平行光に近いビーム光に成形され、光制御素子3を透過した後、反射光学系4で反射されて送信光として図示しない相手装置へ送出される。また、図示しない相手装置から送出されたパイロット光は、反射光学系4で反射されて光制御素子3で反射された後、レンズ5で集光されて受光素子6で受光される。受光素子6では、受光したパイロット光が光−電気変換され、相手装置の位置情報として偏向角制御信号供給部8へ出力される。   In the light receiving / emitting section 9, the data signal supplied from the external interface 7A is emitted from the light emitting element 1 by the data supply section 7, and the optical signal is intensity-modulated to an optical signal corresponding to the data signal. This light is shaped into a light beam close to a parallel light by the lens 2, transmitted through the light control element 3, reflected by the reflection optical system 4, and transmitted as transmission light to a partner device (not shown). Further, the pilot light transmitted from a partner device (not shown) is reflected by the reflection optical system 4 and reflected by the light control element 3, then condensed by the lens 5 and received by the light receiving element 6. In the light receiving element 6, the received pilot light is subjected to optical-electrical conversion, and output to the deflection angle control signal supply unit 8 as position information of the partner device.

次に図2〜8を参照して、受発光部9を構成する各部について更に詳細に説明する。
発光素子1としては、レーザダイオードを用いることができる。レーザダイオードは出射光のビームが細く、それを更にレンズ2によって平行に近い光にすることによって、出射光を高効率で光制御素子3及び反射光学系4に照射することが出来る。レーザの波長は近赤外に限らず、長波長のものでもよい。
Next, with reference to FIGS. 2 to 8, each unit constituting the light emitting / receiving unit 9 will be described in more detail.
As the light emitting element 1, a laser diode can be used. The laser diode emits a narrow beam of emitted light, and the light is made nearly parallel by the lens 2 so that the emitted light can be irradiated to the light control element 3 and the reflection optical system 4 with high efficiency. The wavelength of the laser is not limited to near-infrared, but may be a long wavelength.

図2は、データ供給部7の構成を示すブロック図である。データ供給部7は、外部インターフェース7Aからのデータ信号を、光によって伝送可能な信号に変換する信号処理部11と、信号処理された信号によって、光が点滅する様に発光素子1を駆動する発光駆動部10から成る。
屋内光無線伝送システムのアプリケーションとしてLANを考え、外部インターフェースから入力される信号が100Base−FXである場合、データ供給部7内の信号処理部11では、図3のブロック図に示すように、4B/5Bエンコーダ101によりクロック自己再生のための4B/5B符号化を行い、デスクランブル/スクランブル部102によりデータをスクランブル化し、パラレル/シリアル変換部103によりパラレルデータをシリアルデータに変換し、更にNRZ/NRZI変換部104(及びPLL105)により、DC成分を持たない信号にするためにNRZ/NRZI変換を行う、という信号処理がなされ、データ信号として発光駆動部10に入力される、という信号処理がなされ、データ信号として発光駆動部10に入力される。
FIG. 2 is a block diagram illustrating a configuration of the data supply unit 7. The data supply unit 7 includes a signal processing unit 11 that converts a data signal from the external interface 7A into a signal that can be transmitted by light, and a light emission that drives the light emitting element 1 so that the light blinks by the signal processed signal. It comprises a drive unit 10.
Considering a LAN as an application of the indoor optical wireless transmission system, when the signal input from the external interface is 100Base-FX, the signal processing unit 11 in the data supply unit 7 performs 4B as shown in the block diagram of FIG. 4B / 5B encoding for clock self-reproduction is performed by a / 5B encoder 101, data is scrambled by a descrambling / scrambler 102, parallel data is converted to serial data by a parallel / serial converter 103, and NRZ / The NRZI conversion unit 104 (and the PLL 105) performs signal processing of performing NRZ / NRZI conversion to make a signal having no DC component, and performs signal processing of being input to the light emission drive unit 10 as a data signal. , The light emission drive unit 1 as a data signal It is input to.

図4は、偏向制御信号供給部8の構成を示すブロック図である。受発光部9の受光素子6は、相手装置からのパイロット光を光-電気変換し、受信光の有無、または受光量、受光方向などの位置情報信号を偏向制御信号供給部8へ供給する。偏向制御信号供給部8は、受発光部9から得られた位置情報信号に基づいて、相手装置からの光に自身の受信の光軸を合わせるように、反射光学系4を動かす移動方向及び移動量を演算して偏向角制御信号を得る演算部13と、反射光学系4の図示しない駆動手段を水平方向または垂直方向に駆動する制御部12から成る。   FIG. 4 is a block diagram showing the configuration of the deflection control signal supply unit 8. The light receiving element 6 of the light receiving / emitting unit 9 performs optical-to-electric conversion of the pilot light from the partner device, and supplies the deflection control signal supply unit 8 with the presence / absence of the received light, or the position information signal such as the amount of received light and the direction of receiving light. The deflection control signal supply unit 8 moves the reflection optical system 4 based on the position information signal obtained from the light emitting / receiving unit 9 so that the optical axis of its own reception is adjusted to the light from the partner device. It comprises a calculation unit 13 for calculating a quantity to obtain a deflection angle control signal, and a control unit 12 for driving a driving unit (not shown) of the reflection optical system 4 in a horizontal direction or a vertical direction.

図5は、反射光学系4の駆動手段として、ピエゾアクチュエータを用いた場合の構成図である。ピエゾアクチュエータは、ピエゾ素子の圧電効果を応用したもので、図5(a)のように反射光学系4の反射部18の裏側の4箇所にピエゾアクチュエータ19を設けている(図5ではそのうち2つを示す)。各ピエゾアクチュエータ19は、図5(b)、(c)に示すように、電極20に加えた電圧によって伸張する。従って、4つのピエゾアクチュエータ19に異なる電圧を印加して反射光学系4を3次元で偏向させることにより、光軸に対する偏向角を制御することができる。   FIG. 5 is a configuration diagram when a piezo actuator is used as a driving unit of the reflection optical system 4. The piezo actuator applies the piezoelectric effect of a piezo element. As shown in FIG. 5A, piezo actuators 19 are provided at four places on the back side of the reflecting portion 18 of the reflecting optical system 4 (in FIG. 5, two of them are provided). One). As shown in FIGS. 5B and 5C, each piezo actuator 19 is extended by a voltage applied to the electrode 20. Therefore, by applying different voltages to the four piezo actuators 19 to deflect the reflecting optical system 4 in three dimensions, the deflection angle with respect to the optical axis can be controlled.

なお、本発明における駆動手段はピエゾアクチュエータに限定されるものではなく、電流または電圧等により制御可能なアクチュエータを適宜に用いることができる。また、反射光学系4の反射部18が曲面を有し、その曲面が凹凸に駆動されることによって、光軸に対する偏向角を制御することができる。   It should be noted that the driving means in the present invention is not limited to a piezo actuator, and an actuator which can be controlled by a current or a voltage can be used as appropriate. In addition, the reflecting portion 18 of the reflecting optical system 4 has a curved surface, and the curved surface is driven to be uneven, so that the deflection angle with respect to the optical axis can be controlled.

反射光学系4の反射部18としては、光学樹脂へAu(金)を蒸着することにより生成されたミラーを用いることができる。Au膜の反射率分光特性を図6に示す。また、特定の波長のみ反射するような薄膜を蒸着した場合、受信光における外来光成分をカットするフィルタの機能も果たすことにもなる。   As the reflecting portion 18 of the reflecting optical system 4, a mirror generated by depositing Au (gold) on an optical resin can be used. FIG. 6 shows the reflectance spectral characteristics of the Au film. In addition, when a thin film that reflects only a specific wavelength is deposited, it also functions as a filter that cuts off extraneous light components in the received light.

光制御素子3としては、無偏光ビームスプリッタを用いることができる。また、特定の波長のみを通過(反射)するようなビームスプリッタを用いることも可能であり、その場合には、受信光における外来光成分をカットするフィルタの機能も果たすことにもなる。   As the light control element 3, a non-polarization beam splitter can be used. It is also possible to use a beam splitter that passes (reflects) only a specific wavelength, and in that case, it also functions as a filter that cuts off extraneous light components in the received light.

次に図7〜9を参照して、偏向角制御信号供給部8において、受発光部9から得られた情報に基づいて光軸に対する偏向角を制御する場合の動作について説明する。
図7は、偏向角制御信号供給部8による反射光学系4の制御手順を示すフローチャート、図8は、4分割PDで構成された受光素子6上で受光したパイロット光の受光スポットが段階的に移動する様子を示す説明図、図9は、偏向角制御信号供給部8において図7の制御手順を実現するための構成を示すブロック図である。
ここでは、図8に示すように、受光素子6が4分割されたフォトダイオード(PD_A、_B、_C、_D)により構成され、且つ、反射光学系4が3次元に制御可能な場合を例とする。以下、図7のフローチャートに従って、適宜に図8、9を参照しながら説明する。
Next, an operation in the case where the deflection angle control signal supply unit 8 controls the deflection angle with respect to the optical axis based on the information obtained from the light emitting / receiving unit 9 will be described with reference to FIGS.
FIG. 7 is a flowchart showing a control procedure of the reflection optical system 4 by the deflection angle control signal supply unit 8, and FIG. 8 shows a stepwise change of the light receiving spot of the pilot light received on the light receiving element 6 constituted by the four-divided PD. FIG. 9 is a block diagram showing a configuration for realizing the control procedure of FIG. 7 in the deflection angle control signal supply unit 8.
Here, as an example, as shown in FIG. 8, a case where the light receiving element 6 is constituted by photodiodes (PD_A, _B, _C, _D) divided into four, and the reflection optical system 4 can be controlled three-dimensionally. I do. Hereinafter, description will be given with reference to FIGS. 8 and 9 as appropriate according to the flowchart of FIG.

相手装置からの送信光は、ある周波数を有する光信号であり、受発光部9では、4分割されたPD(受光素子6)のそれぞれのPD(PD_A、B、C、D)での受光量を光−電気変換され、受光量に応じた振幅を有する電気信号(SIG_A、B、C、D)として、偏向角制御信号供給部8に送られる(ステップS1)。偏向角制御信号供給部8内の演算部13では、それぞれの信号振幅をアンプ21、22、23、24によって増幅し(ステップS2)、A/Dコンバータ25、26、27、28によってその振幅値をA/D変換することによって、信号レベル、すなわち各PDでの受光量をDC値として得ることができる(ステップS3)。   The transmitted light from the partner device is an optical signal having a certain frequency, and the light receiving / emitting unit 9 receives light at each PD (PD_A, B, C, D) of the PD (light receiving element 6) divided into four. Is converted into an electric signal (SIG_A, B, C, D) having an amplitude corresponding to the amount of received light, and sent to the deflection angle control signal supply unit 8 (step S1). The arithmetic unit 13 in the deflection angle control signal supply unit 8 amplifies each signal amplitude by the amplifiers 21, 22, 23, and 24 (step S2), and the A / D converters 25, 26, 27, and 28 amplify the respective signal amplitudes. Is subjected to A / D conversion, the signal level, that is, the amount of light received by each PD can be obtained as a DC value (step S3).

続いて、マイコン・DSPなどのマイクロプロセッサ29によって、水平方向(Pan)・垂直方向(Tilt)に対向するPD同士の受光レベルの差を算出し(ステップS4)、その受光レベル差が0とするための、反射光学系4の移動方向・及び移動量を算出し、制御部12に与える(ステップS5→S6、ステップS9→S10)。制御部12はD/Aコンバータ30、31によって、与えられた値をD/A変換し、偏向角制御信号としてドライバ32、33に与え、ドライバ32、33によって反射光学系4を水平・垂直方向に駆動する(ステップS7→S8、S11→S12)。   Subsequently, the microprocessor 29 such as a microcomputer or a DSP calculates the difference between the light receiving levels of the PDs facing each other in the horizontal direction (Pan) and the vertical direction (Tilt) (step S4). For this purpose, the moving direction and moving amount of the reflecting optical system 4 are calculated and given to the control unit 12 (steps S5 → S6, steps S9 → S10). The control unit 12 performs D / A conversion of the given value by the D / A converters 30 and 31, and supplies it to the drivers 32 and 33 as a deflection angle control signal. The drivers 32 and 33 control the reflection optical system 4 in the horizontal and vertical directions. (Steps S7 → S8, S11 → S12).

次に4分割PD上での受光スポットの動きを図8により説明する。図中、符号6Aはパイロット光が照射したときの4分割PD上での受光スポットを示す。   Next, the movement of the light receiving spot on the four-divided PD will be described with reference to FIG. In the drawing, reference numeral 6A denotes a light receiving spot on the quadrant PD when the pilot light is irradiated.

図8において、1で示すステップでは、まず垂直方向に対向するA、BそれぞれのPDの受光量の差を演算し、差を0にする方向(図8では下方向)に、光が照射されるように、反射光学系4を垂直方向に動かす。次いで、2で示すステップの組では水平方向に対向するC,DのそれぞれのPDの受光量の差を演算し、差を0にする方向(図8では右方向)に、スポットが照射されるように、反射光学系4を水平方向に動かす。   In the step indicated by 1 in FIG. 8, first, a difference between the light receiving amounts of the PDs A and B opposing each other in the vertical direction is calculated, and light is emitted in a direction to make the difference 0 (downward in FIG. 8). The reflecting optical system 4 is moved in the vertical direction as described above. Next, in a set of steps indicated by 2, a difference between the amounts of received light of the PDs C and D which are opposed to each other in the horizontal direction is calculated, and the spot is irradiated in a direction in which the difference is set to 0 (rightward in FIG. 8). Thus, the reflecting optical system 4 is moved in the horizontal direction.

このように、受発光部9においては、送信光と受信光とは光制御素子3により同軸で制御可能であるため、相手装置から送出される光と本装置で受信する光軸とを合わせることによって、本装置の送信光を相手装置に照射することになる。   As described above, in the light emitting / receiving unit 9, the transmitted light and the received light can be controlled coaxially by the light control element 3, so that the light transmitted from the partner device and the optical axis received by the present device are aligned. As a result, the transmission light of the present apparatus is irradiated to the partner apparatus.

なお、本実施の形態では、受光素子6を4分割PDで構成した例について示したが、受光素子6の分割数は3分割でもよいし、或いは5分割、8分割…というように更に分割数を多くしたものであってもよい。また、本実施の形態では、PDでの受光量の差がゼロになるように反射光学系4の移動方向と移動量を演算する例について示したが、他のアルゴリズムにより移動方向と移動量を演算するようにしてもよい。   In the present embodiment, an example has been described in which the light receiving element 6 is configured by a four-division PD, but the number of divisions of the light receiving element 6 may be three or five, eight,. May be increased. Further, in the present embodiment, an example has been described in which the moving direction and the moving amount of the reflective optical system 4 are calculated so that the difference in the amount of light received by the PD becomes zero, but the moving direction and the moving amount are calculated by another algorithm. The calculation may be performed.

上記実施の形態1に係わる光無線伝送装置では、受光素子6で受光した光に基づいて反射光学系4の偏向角を制御することにより、送信光とパイロット光の光軸合わせを行うように構成されているため、受光装置と発光装置を同時に回転させる従来装置に比べて装置の小型化を図ることができる。特定の従来装置との比較では、少なくとも体積比で1/2以下を達成している。   In the optical wireless transmission device according to the first embodiment, the optical axes of the transmission light and the pilot light are aligned by controlling the deflection angle of the reflection optical system 4 based on the light received by the light receiving element 6. Therefore, the size of the device can be reduced as compared with a conventional device in which the light receiving device and the light emitting device are simultaneously rotated. In comparison with a specific conventional device, at least a volume ratio of 1/2 or less is achieved.

また、実施の形態1に関わる光無線伝送装置の光軸調整方法により光軸合わせを実施したところ、従来のモータを用いた屋内光無線伝送装置のサーチ精度が0.2[deg]程度、サーチ速度が100〜300[rad/sec]程度であったのに対し、本実施の形態の装置ではサーチ精度は0.001[deg]以下、サーチ速度は500[rad/sec]以上となり、高精度且つ高速な光軸合わせを実現している。このように相手装置から送出されるパイロット光と自装置で受信する光軸とを一致させる構成とすることによって、屋内光無線伝送システムとして送信光に狭い指向性のビームを用いた場合でも、高精度なデータ伝送を行うことが可能となる。   Further, when the optical axis alignment was performed by the optical axis adjustment method of the optical wireless transmission apparatus according to Embodiment 1, the search accuracy of the indoor optical wireless transmission apparatus using the conventional motor was about 0.2 [deg], and the search accuracy was about 0.2 [deg]. While the speed is about 100 to 300 [rad / sec], the apparatus of the present embodiment has a search accuracy of 0.001 [deg] or less, a search speed of 500 [rad / sec] or more, and high accuracy. In addition, high-speed optical axis alignment is realized. By adopting a configuration in which the pilot light transmitted from the partner device and the optical axis received by the own device match in this manner, even when a narrow directional beam is used for the transmission light as an indoor optical wireless transmission system, a high level is achieved. Accurate data transmission can be performed.

さらに、相手装置をサーチ可能な範囲が広いため、屋内使用において様々な場所に移動させて使用することができる。   Further, since the searchable range of the partner device is wide, it can be moved to various places for indoor use.

[実施の形態2]
次に図10〜12を参照して、実施の形態2に関わる光無線伝送装置の構成について説明する。図10は、実施の形態2に係わる光無線伝送装置の概略構成図である。図1と同等部分を同一符号で示す。
実施の形態2では、図1における発光素子1、レンズ2と、レンズ5、受光素子6の配置を入れ替えた構成を示している。これによると、発光素子1から出射された光はレンズ2より平行光に近いビーム光に成形され、光制御素子3で反射された後、反射光学系4で反射されて送信光として送出される。また、図示しない相手装置から送出されたパイロット光は、反射光学系4で反射され、光制御素子3を透過した後、レンズ5で集光されて受光素子6で受光される。
[Embodiment 2]
Next, a configuration of the optical wireless transmission apparatus according to the second embodiment will be described with reference to FIGS. FIG. 10 is a schematic configuration diagram of the optical wireless transmission device according to the second embodiment. 1 are denoted by the same reference numerals.
The second embodiment shows a configuration in which the arrangement of the light emitting element 1 and the lens 2 and the arrangement of the lens 5 and the light receiving element 6 in FIG. According to this, the light emitted from the light emitting element 1 is shaped into a beam light closer to parallel light than the lens 2, reflected by the light control element 3, reflected by the reflection optical system 4, and transmitted as transmission light. . Further, pilot light transmitted from a partner device (not shown) is reflected by the reflection optical system 4, passes through the light control element 3, is condensed by the lens 5, and is received by the light receiving element 6.

本実施の形態のように、実施の形態1の発光素子1、レンズ2とレンズ5、受光素子6を入れ替えた構成とした場合でも、実施の形態1と同様の効果を得ることができる。   Even when the light emitting element 1, the lens 2, the lens 5, and the light receiving element 6 of the first embodiment are interchanged as in the present embodiment, the same effects as in the first embodiment can be obtained.

光無線伝送装置において、光軸調整の際に相手装置からの光の情報をより多く得るためには、受発光部9の受光素子6に対し、入射した光を効率よく照射する必要がある。そのため実施の形態1に示す光無線伝送装置の構成(図1)では、光制御素子3の反射面を、反射光学系4によって反射される光の面積と同等、もしくは大きくする必要がある。   In the optical wireless transmission device, it is necessary to efficiently irradiate the incident light to the light receiving element 6 of the light emitting / receiving unit 9 in order to obtain more information of light from the partner device at the time of optical axis adjustment. Therefore, in the configuration of the optical wireless transmission device shown in the first embodiment (FIG. 1), the reflection surface of the light control element 3 needs to be equal to or larger than the area of the light reflected by the reflection optical system 4.

図11は、実施の形態2に係わる光無線伝送装置の他の構成例を示す概略構成図である。本実施の形態では、図10と同じく発光素子1と受光素子6を入れ替えると共に、更に光制御素子3の反射面3Aが、反射光学系4によって反射される光の面積S1よりサイズの小さい光制御素子3を配置する。   FIG. 11 is a schematic configuration diagram illustrating another configuration example of the optical wireless transmission device according to the second embodiment. In the present embodiment, the light-emitting element 1 and the light-receiving element 6 are interchanged as in FIG. 10, and the reflection surface 3A of the light control element 3 further has a light control element having a size smaller than the area S1 of the light reflected by the reflection optical system 4. The element 3 is arranged.

図11の構成において、受光素子6に照射される光は光制御素子3の透過光であるため、光制御素子3が小さく、反射面3Aが反射光学系4によって反射される光の面積S1よりも小さい場合でも、光制御素子3に照射されない光は直接受光素子36に照射される。このため、図10に示すように光制御素子3の反射面が大きい場合と同等、もしくはそれ以上の受光量を得ることが出来る。発光素子1がレーザダイオードなどの場合、送信光の指向性は狭いため、光制御素子3の反射面は小さくてもよい。   In the configuration of FIG. 11, since the light irradiated on the light receiving element 6 is the transmitted light of the light control element 3, the light control element 3 is small, and the reflection surface 3 </ b> A is smaller than the area S 1 of the light reflected by the reflection optical system 4. Even when the light control element 3 is smaller, the light not irradiated to the light control element 3 is directly irradiated to the light receiving element 36. For this reason, it is possible to obtain a light receiving amount equal to or greater than the case where the reflection surface of the light control element 3 is large as shown in FIG. When the light emitting element 1 is a laser diode or the like, the directivity of the transmission light is narrow, so that the reflection surface of the light control element 3 may be small.

また、本実施の形態においては、光制御素子3を小型化にすることにより、図12に示すように、反射光学系4を光制御素子3に近づけることができるため、受発光部9全体を小型化することが可能となり、受発光部9の設計にも柔軟性をもたせることができる。   In the present embodiment, by reducing the size of the light control element 3, the reflection optical system 4 can be brought close to the light control element 3 as shown in FIG. The size can be reduced, and the design of the light emitting / receiving unit 9 can be given flexibility.

[実施の形態3]
図13は、実施の形態3に係る光無線伝送装置の構成例を示す説明図である。
実施の形態1・2における受発光部9の光学部材を同一基板34上に配置することによって、光無線伝送装置を小型モジュール35として構成することができる。例えば、ホログラムピックアップの組み立て技術などを応用し、5mm角〜30mm角程度の大きさのモジュールとした場合、図14のようにパソコン35などの機器に組み込むことも可能である。
[Embodiment 3]
FIG. 13 is an explanatory diagram illustrating a configuration example of the optical wireless transmission device according to the third embodiment.
By arranging the optical members of the light receiving / emitting unit 9 in the first and second embodiments on the same substrate 34, the optical wireless transmission device can be configured as a small module 35. For example, when a module having a size of about 5 mm square to 30 mm square is applied by applying a hologram pickup assembling technique or the like, the module can be incorporated in a device such as a personal computer 35 as shown in FIG.

本実施の形態が示すように、受発光部9を同一基板上に一帯に配置した場合には、装置の小型化が可能となるだけでなく、それに伴う低コスト化、サーチ時間の短縮などの効果が得られる。また、一体構造とする際、現在のICの微細加工技術、及びホログラムピックアップの組み立て技術などを応用することができるため、高精細な配置が可能となり、送信と受信の光軸の調整もさらに容易なものとなる。   As shown in the present embodiment, when the light emitting and receiving units 9 are arranged over the same substrate, not only the size of the device can be reduced, but also the cost and the search time can be reduced. The effect is obtained. In addition, when forming an integrated structure, the current microfabrication technology for ICs and the technology for assembling hologram pickups can be applied, so that high-definition arrangement is possible, and adjustment of the optical axis for transmission and reception is even easier. It becomes something.

次に、上記各実施の形態におけるレーザ出力について説明する。   Next, the laser output in each of the above embodiments will be described.

光無線伝送装置において、装置から送出される光は安全基準によって制限される。例えば、レーザダイオードの場合、IEC60825-1(日本ではJIS C6802:レーザ製品の放射安全基準)によって、その放射強度などが定められている。この基準は、装置から出力される光を制限するものであり、上記各実施の形態に示す光無線伝送装置において、発光素子1をレーザダイオードとし場合、装置からの出力を基準内するためのレーザ出力は、実際にレーザダイオードが出力可能なレベルに比べ十分小さい。そのため、光制御素子3の透過・反射の比率を変え、実施の形態1の場合であれば、透過率を低く、反射率高くすることによって、送信光を安全な出力レベルで送出し、且つ、受信光を高効率で受光素子6に集光することが可能となる。例えば、装置から送出可能な出力のレベルに対して、レーザダイオードが出力可能なレベルが10倍とすると、光学素子3の透過率を10%、反射率を90%とする。   In an optical wireless transmission device, light transmitted from the device is limited by safety standards. For example, in the case of a laser diode, its emission intensity and the like are determined by IEC60825-1 (JIS C6802: radiation safety standards for laser products in Japan). This criterion is to limit the light output from the device, and in the optical wireless transmission device described in each of the above embodiments, when the light emitting element 1 is a laser diode, a laser for keeping the output from the device within the criterion. The output is sufficiently smaller than the level that the laser diode can actually output. Therefore, in the case of the first embodiment, the transmission light is transmitted at a safe output level by changing the transmission / reflection ratio of the light control element 3 and increasing the transmittance in the case of the first embodiment. The received light can be collected on the light receiving element 6 with high efficiency. For example, if the output level of the laser diode is 10 times the output level that can be transmitted from the device, the transmittance of the optical element 3 is set to 10% and the reflectance is set to 90%.

また、上記各実施の形態に示す発光素子1において、その出力レベルを減衰可能なものとし、光制御素子3を透過し、反射光学系4によって反射されて装置外に送出される送信光が、安全基準によって制限されたレベル以下になるよう、調整可能なものとすることによって、送信光を安全なレベルで出力することが可能となる。   Further, in the light emitting element 1 shown in each of the above embodiments, the output level can be attenuated, and the transmission light transmitted through the light control element 3 and reflected by the reflection optical system 4 and sent out of the device is: The transmission light can be output at a safe level by making it adjustable so that it is equal to or lower than the level limited by the safety standard.

実施の形態1に係る光無線伝送装置の概略構成図である。FIG. 2 is a schematic configuration diagram of an optical wireless transmission device according to Embodiment 1. データの供給部の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a data supply unit. 信号処理部の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a signal processing unit. 偏向角制御信号供給部の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a deflection angle control signal supply unit. 反射光学系の駆動手段として、ピエゾ素子を用いた例を示したものである。This shows an example in which a piezo element is used as a driving unit of the reflection optical system. Au膜の反射率分光特性を示す説明図である。FIG. 4 is an explanatory diagram illustrating reflectance spectral characteristics of an Au film. 偏向角制御信号供給部による反射光学系の制御手順を示したフローチャートの一例である。6 is an example of a flowchart showing a control procedure of a reflection optical system by a deflection angle control signal supply unit. 4分割PDで構成された第1受光素子で受光スポットが段階的に移動する様子を説明する図である。FIG. 4 is a diagram illustrating a state where a light receiving spot moves stepwise in a first light receiving element configured by a four-division PD. 偏向角制御信号供給部において、図7の制御手順を実現するための構成を示すブロック図である。FIG. 8 is a block diagram showing a configuration for realizing the control procedure of FIG. 7 in a deflection angle control signal supply unit. 実施の形態2に係る光無線伝送装置の概略構成図である。FIG. 7 is a schematic configuration diagram of an optical wireless transmission device according to a second embodiment. 実施の形態2に係る光無線伝送装置の他の構成例を示す概略構成図である。FIG. 9 is a schematic configuration diagram illustrating another configuration example of the optical wireless transmission device according to the second embodiment. 実施の形態2に係る光無線伝送装置の他の構成例を示す概略構成図である。FIG. 9 is a schematic configuration diagram illustrating another configuration example of the optical wireless transmission device according to the second embodiment. 実施の形態3に係る光無線伝送装置の概略構成図である。FIG. 9 is a schematic configuration diagram of an optical wireless transmission device according to a third embodiment. 実施の形態3に係る光無線伝送装置をパソコンに搭載した場合の説明図である。FIG. 13 is an explanatory diagram in the case where the optical wireless transmission device according to the third embodiment is mounted on a personal computer. 従来の屋内無線伝送装置の概略構成図である。It is a schematic block diagram of the conventional indoor wireless transmission apparatus.

符号の説明Explanation of reference numerals

1 発光素子
2 コリメート光学系
3 光制御素子
4 反射光学系
5 集光光学系
6 受光素子
6A 受光スポット
7 データ供給部
8 偏向制御信号供給部
9 受発光部
10 発光駆動部
11 信号処理部
12 制御部
13 演算部
14 光無線伝送装置(親機)
15 データ信号発光部
16 パイロット光発光部
16A パイロット光
17 光無線伝送装置(子機)
18 反射光学系反射面
19 ピエゾアクチュエータ
20 電極
21、22、23、24 アンプ
25、26,27、28 A/Dコンバータ
29 マイクロプロセッサ
30、31 D/Aコンバータ
32、33 ドライバ

REFERENCE SIGNS LIST 1 light emitting element 2 collimating optical system 3 light control element 4 reflecting optical system 5 light collecting optical system 6 light receiving element 6 A light receiving spot 7 data supply section 8 deflection control signal supply section 9 light receiving / emitting section 10 light emission drive section 11 signal processing section 12 control Unit 13 Operation unit 14 Optical wireless transmission device (base unit)
15 Data signal light emitting part 16 Pilot light emitting part 16A Pilot light 17 Optical wireless transmission device (child unit)
Reference Signs List 18 Reflecting optical system reflecting surface 19 Piezo actuator 20 Electrode 21, 22, 23, 24 Amplifier 25, 26, 27, 28 A / D converter 29 Microprocessor 30, 31 D / A converter 32, 33 Driver

Claims (8)

相手装置から送出されたパイロット光を反射する反射板と、
前記反射板の偏向角を可変するための駆動手段と、
前記反射板により反射されたパイロット光を偏向して出射する光制御素子と、
前記出射されたパイロット光を集光させるための第1の光学素子と、
前記集光されて出射されたパイロット光を受光するための受光素子と、
前記受光したパイロット光に基づいて前記相手装置との光軸を合わせるために前記反射板の偏向角を制御するための偏向角制御信号を生成し、この制御信号に基づいて前記反射板の駆動手段を制御するための偏向角制御部と、
入来するデータ信号に応じて変調された光信号を出射する発光素子と、
前記発光素子から出射された光信号を平行光に近いビーム光に成形する第2の光学素子と、
を有し、
前記第2の光学素子から出射された出射光を前記光制御素子において前記パイロット光の入来方向とは逆経路をたどって前記反射板方向に透過させ、この透過入来光を前記反射板より前記光軸合わせされた光軸上をたどって前記相手装置に送出するようにしたことを特徴とする光無線伝送装置。
A reflector for reflecting the pilot light transmitted from the partner device,
Driving means for changing the deflection angle of the reflection plate,
A light control element that deflects and emits the pilot light reflected by the reflector,
A first optical element for condensing the emitted pilot light,
A light receiving element for receiving the condensed and emitted pilot light,
Generating a deflection angle control signal for controlling a deflection angle of the reflection plate to align an optical axis with the counterpart device based on the received pilot light; and driving the reflection plate based on the control signal. Deflection angle control unit for controlling the
A light-emitting element that emits an optical signal modulated according to an incoming data signal;
A second optical element for shaping an optical signal emitted from the light emitting element into a light beam close to a parallel light;
Has,
The outgoing light emitted from the second optical element is transmitted in the light control element in the direction of the reflector by following a path reverse to the incoming direction of the pilot light, and the transmitted incoming light is transmitted from the reflector. An optical wireless transmission device characterized in that the optical wireless transmission device is adapted to follow the optical axis aligned with the optical axis and to transmit to the partner device.
相手装置から送出されたパイロット光を反射する反射板と、
前記反射板の偏向角を可変するための駆動手段と、
前記反射板により反射されたパイロット光を透過して出射する光制御素子と、
前記出射されたパイロット光を集光させるための第1の光学素子と、
前記集光されて出射されたパイロット光を受光するための受光素子と、
前記受光したパイロット光に基づいて前記相手装置との光軸を合わせるために前記反射板の偏向角を制御するための偏向角制御信号を生成し、この制御信号に基づいて前記反射板の駆動手段を制御するための偏向角制御部と、
入来するデータ信号に応じて変調された光信号を出射する発光素子と、
前記発光素子から出射された光信号を平行光に近いビーム光に成形する第2の光学素子と、
を有し、
前記第2の光学素子から出射された出射光を前記光制御素子において前記パイロット光の入来方向とは逆経路をたどって前記反射板方向に偏向して出射させ、この出射入来光を前記反射板より前記光軸合わせされた光軸上をたどって前記相手装置に送出するようにしたことを特徴とする光無線伝送装置。
A reflector for reflecting the pilot light transmitted from the partner device,
Driving means for changing the deflection angle of the reflection plate,
A light control element that transmits and emits the pilot light reflected by the reflection plate,
A first optical element for condensing the emitted pilot light,
A light receiving element for receiving the condensed and emitted pilot light,
Generating a deflection angle control signal for controlling a deflection angle of the reflection plate to align an optical axis with the counterpart device based on the received pilot light; and driving the reflection plate based on the control signal. Deflection angle control unit for controlling the
A light-emitting element that emits an optical signal modulated according to an incoming data signal;
A second optical element for shaping an optical signal emitted from the light emitting element into a light beam close to a parallel light;
Has,
The outgoing light emitted from the second optical element is deflected in the light control element in the direction of the reflecting plate by following a path reverse to the incoming direction of the pilot light and emitted, and the emitted incoming light is emitted. An optical wireless transmission apparatus characterized in that the light is transmitted to the partner apparatus by following the optical axis aligned with the optical axis from the reflection plate.
前記請求項2記載の光無線伝送装置において、
前記光制御素子の反射面は、前記反射光学系で反射される光の面積よりも小さいことを特長とする光無線伝送装置。
The optical wireless transmission device according to claim 2,
An optical wireless transmission device, wherein a reflection surface of the light control element is smaller than an area of light reflected by the reflection optical system.
前記請求項1乃至3のいずれか一項に記載の光無線伝送装置において、
前記受光素子は多分割された受光素子により構成され、
前記偏向角制御部は、前記受光素子の各分割領域での受光量に基づいて前記反射光学系の移動方向と移動量を演算して偏向角制御信号を得る演算手段と、前記演算手段で演算された偏向角制御信号に基づいて前記反射光学系の駆動手段を水平方向又は垂直方向に駆動して、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行う制御手段と、
を備えることを特徴とする光無線伝送装置。
The optical wireless transmission device according to any one of claims 1 to 3,
The light receiving element is configured by a multi-divided light receiving element,
The deflection angle control unit calculates a moving direction and a moving amount of the reflection optical system based on a light receiving amount in each divided area of the light receiving element to obtain a deflection angle control signal. Control means for driving the driving means of the reflection optical system in the horizontal direction or the vertical direction based on the deflection angle control signal thus obtained, so as to align the optical axes of the light emitted from the light emitting element and the light incident from the partner device. When,
An optical wireless transmission device comprising:
前記請求項1乃至4のいずれか一項に記載の光無線伝送装置において、
前記受発光部を同一基板上に一体に配置したことを特徴とする光無線伝送装置。
The optical wireless transmission device according to any one of claims 1 to 4,
An optical wireless transmission device, wherein the light emitting and receiving unit is integrally disposed on the same substrate.
前記請求項1乃至5のいずれか一項に記載の光無線伝送装置の光軸調整方法において、
前記相手装置から入射するパイロット光を前記受光素子で受光し、当該受光素子、または前記受光素子を構成する各受光素子における受光量に基づいて前記反射光学系の移動方向と移動量を演算して偏向角制御信号を得ると共に、当該偏向角制御信号に基づいて前記反射光学系の駆動手段を水平方向または垂直方向に駆動することにより、前記発光素子から出射する光と前記相手装置から入射するパイロット光の光軸合わせを行うことを特徴とする光無線伝送装置の光軸調整方法。
The optical axis adjusting method for an optical wireless transmission device according to claim 1, wherein
Pilot light incident from the partner device is received by the light receiving element, and the moving direction and the moving amount of the reflection optical system are calculated based on the light receiving amount of the light receiving element or each light receiving element constituting the light receiving element. A deflection angle control signal is obtained, and a driving unit of the reflection optical system is driven in a horizontal direction or a vertical direction based on the deflection angle control signal, so that light emitted from the light emitting element and a pilot incident from the partner device are emitted. An optical axis adjustment method for an optical wireless transmission device, comprising: performing optical axis alignment of light.
前記請求項1乃至5のいずれか一項に記載の光無線伝送装置において、前記請求項6に記載の光無線伝送装置の光軸調整方法により光軸合わせを行った後、通信を行う光無線通信方法。   6. The optical wireless transmission apparatus according to claim 1, wherein communication is performed after performing optical axis alignment by the optical axis adjustment method for the optical wireless transmission apparatus according to claim 6. Communication method. 前記請求項6記載の光軸調整方法により光軸調整を行うことを特徴とする、前記請求項1乃至5のいずれか一項に記載の光無線伝送装置を用いた光無線伝送システム。

An optical wireless transmission system using the optical wireless transmission device according to any one of claims 1 to 5, wherein the optical axis adjustment is performed by the optical axis adjustment method according to claim 6.

JP2004099760A 2003-03-31 2004-03-30 Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system Expired - Fee Related JP4273458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099760A JP4273458B2 (en) 2003-03-31 2004-03-30 Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003094010 2003-03-31
JP2004099760A JP4273458B2 (en) 2003-03-31 2004-03-30 Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system

Publications (2)

Publication Number Publication Date
JP2004320744A true JP2004320744A (en) 2004-11-11
JP4273458B2 JP4273458B2 (en) 2009-06-03

Family

ID=33478631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099760A Expired - Fee Related JP4273458B2 (en) 2003-03-31 2004-03-30 Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system

Country Status (1)

Country Link
JP (1) JP4273458B2 (en)

Also Published As

Publication number Publication date
JP4273458B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
KR100569616B1 (en) Spatial light transmission device and spatial light transmission method
US7460294B2 (en) Optically addressed MEMS
WO2020114229A1 (en) Laser radar optical system and scanning method
JP2000502819A (en) Optoelectronics transmission module
JP2017163636A (en) Energy transmitter, energy receiver, energy transmitter receiver, and wireless power supply system with them
US20040146298A1 (en) Optical switch
KR101562354B1 (en) wireless energy transmission system using laser for moving object
EP1435535A3 (en) Optical fiber coupling system and manufacturing method thereof
CN108828559A (en) Laser radar apparatus and laser radar system
JP2004356890A (en) Optical wireless transmission device, optical axis adjusting method for optical wireless transmission device, optical wireless communication method, and optical wireless transmission system
JP4251294B2 (en) Optical wireless communication apparatus, optical axis adjustment method of optical wireless communication apparatus, optical wireless communication method, and optical wireless communication system
JP3800195B2 (en) Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system
JP3757949B2 (en) Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system
JP2004320744A (en) Optical radio transmission apparatus, optical axis adjustment method of the optical radio transmission apparatus, optical radio communication method, and optical radio transmission system
JP3823976B2 (en) Optical wireless transmission system and optical wireless transmission device
CN1277136C (en) Photoswitch and its control method
JP4281062B2 (en) Mirror tilt device
CN208596224U (en) Laser radar apparatus and laser radar system
CN112596173A (en) Optical signal transmitter
JP3849694B2 (en) Optical wireless communication device
JP2004349797A (en) Optical radio transmission apparatus, and optical axis adjusting method thereof
US6788842B1 (en) Method and apparatus for internal monitoring and control of reflectors in an optical switch
JP2005249919A (en) Optical communication apparatus
JP4462134B2 (en) Optical signal transmission system
JP2005064992A (en) Optical radio apparatus and optical radio system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090219

R151 Written notification of patent or utility model registration

Ref document number: 4273458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees