JP3757949B2 - Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system - Google Patents

Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system Download PDF

Info

Publication number
JP3757949B2
JP3757949B2 JP2003103334A JP2003103334A JP3757949B2 JP 3757949 B2 JP3757949 B2 JP 3757949B2 JP 2003103334 A JP2003103334 A JP 2003103334A JP 2003103334 A JP2003103334 A JP 2003103334A JP 3757949 B2 JP3757949 B2 JP 3757949B2
Authority
JP
Japan
Prior art keywords
light
optical
wireless transmission
optical wireless
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003103334A
Other languages
Japanese (ja)
Other versions
JP2004312390A (en
Inventor
桐子 山田
雅久 境
学 坂根
剛良 笹生
岩本  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003103334A priority Critical patent/JP3757949B2/en
Publication of JP2004312390A publication Critical patent/JP2004312390A/en
Application granted granted Critical
Publication of JP3757949B2 publication Critical patent/JP3757949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、データ信号等により変調された光を送信・受信することによりデータ伝送を行う光無線伝送装置、光無線伝送装置の光軸調整方法、光無線通信方法、及び光無線伝送システムに関する。
【0002】
【従来の技術】
一般に、光無線を介して信号を伝送する場合、送信側の発光素子としてLED(発光ダイオード)やレーザダイオードが用いられている。このうち、LEDにより信号を送信する装置では、指向性の広いLED光のビーム径を集束レンズで絞らなければならないが、この絞りに限界があるために長距離を伝送するとビーム径が広がり、受信されるパワーが減少する。この様にビーム径が広がると、複数の装置をパラレルで用いた場合に干渉が発生するという問題点がある。
【0003】
これを解決するため、例えば図22に示すような屋内光無線伝送装置が提案されている。この光無線伝送装置では、一方の装置(親機21)にデータ信号送信のための発光部22とは別に発光手段23を設け、この発光手段23から光軸調整用のパイロット光23Aを送信し、他方の光無線伝送装置(子機24)では、その光軸方向を変位させて受光装置24Aによりパイロット光23Aを受信し、このパイロット光23Aの受光レベルに基づいて光軸合わせを行うように構成されている。本装置は、LED光をパラボラリフレクタにより平行化してビーム径を絞るようにしたもので、指向性の狭いビーム光を送信する受光装置24Aをステッピングモータ等により回転させることにより、水平・垂直方向に走査して、2次元座標において最大の受光レベルが得られる点をサーチするという形態で具体化されている(例えば、特許文献1参照)。
【0004】
一方、レーザダイオードを用いた屋外光無線伝送装置においては、ミラーとビームスプリッタによる光軸調整方法が採用されている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特許第3059870号
【0006】
【特許文献2】
特開平6−152541号
【0007】
【発明が解決しようとする課題】
上記の屋内光無線伝送装置で光軸調整を行うには、受光素子、及びその光学系を含む受光装置と、発光素子及びその光学系を含む発光装置とを同時に回転させる必要があるため、屋内で使用するには装置が大型なものとなる。
【0008】
また、より高速な伝送を行うためには、受信側で、相手装置からの送信光を高効率に受光する必要があり、送信光は指向角数度[deg]程度の非常に狭い指向角のビームにしなければならない。双方向通信を行う場合は、同一装置内に配置された発光装置と受光装置の光軸とを一致させる必要があるが、送信光の指向性が非常に狭い場合、本装置のように上下に配置された発光装置と受光装置の光軸合わせを高精度且つ高速に行うことは困難であった。
【0009】
さらに、送信と受信の光軸とを一致させる光軸調整方法として、上記の屋外光無線伝送装置の調整方法が考えられるが、本装置は多数の光学素子が用いられた大規模なものであるために装置が大型なものとなり、また、ある程度光軸調整を行った後の微調整に用いられているため、相手装置をサーチ可能な範囲が数度程度と狭く、屋内の様々な場所に移動して使用される装置には適さないものとなっている。
【0010】
本発明の目的は、装置の小型化を図ると共に、光軸合わせを高精度且つ高速に行うことが可能であり、屋内使用にも適した光無線伝送装置、光無線伝送装置の光軸調整方法、光無線通信方法、及び光無線伝送システムを提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、データ信号により変調された光又は光軸調整用のパイロット光を出射する発光素子、前記発光素子から出射された光を平行光に近いビーム光に成形する第1光学素子、入射光の一部を反射し、残りを透過する光制御素子、入射光を反射し且つ当該入射光の光軸に対する偏向角を制御するための駆動手段を有する反射光学系、相手装置から送信されたパイロット光を集光する第2光学素子、前記第2光学素子で集光されたパイロット光を受光する第1受光素子を有し、前記発光素子から出射された光は前記第1光学素子で平行光に近いビーム光に成形され、前記光制御素子を透過し、前記反射光学系で所定方向に反射して前記相手装置に送信され、前記相手装置から入射したパイロット光は前記反射光学系で反射され、一部の光は前記光制御素子で反射された後、前記第2光学素子を経て前記第1受光素子で受光されるように構成された受発光部と、前記相手装置から送信された光を集光する第3光学素子、当該第3光学素子で集光された光を受光する第2受光素子を有し、前記相手装置から送信された光を前記第3光学素子で集光して前記第2受光素子でデータ信号として受光するデータ受信部と、前記第2受光素子で受光したパイロット光に基づいて前記反射光学系の偏向角を制御するための偏向角制御信号を演算し、当該偏向角制御信号に基づいて前記反射光学系の駆動手段を制御する偏向角制御信号供給部とを備え、前記受発光部と前記データ受信部の各光軸が略平行となるように配置され、前記第1受光素子で受光した前記パイロット光に基づいて前記反射光学系の偏向角を制御することにより、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行うことを特徴とする光無線伝送装置である。
【0012】
請求項2の発明は、データ信号により変調された光又は光軸調整用のパイロット光を出射する発光素子、前記発光素子から出射された光を平行光に近いビーム光に成形する第1光学素子、入射光の一部を反射し、残りを透過する光制御素子、入射光を反射し且つ当該入射光の光軸に対する偏向角を制御するための駆動手段を有する反射光学系、相手装置から送信されたパイロット光を集光する第2光学素子、前記第2光学素子で集光されたパイロット光を受光する第1受光素子を有し、前記発光素子から出射された光は前記第1光学素子で平行光に近いビーム光に成形され、前記光制御素子で反射された後、前記反射光学系で所定方向に反射して前記相手装置に送信され、また相手装置から入射したパイロット光は前記反射光学系で反射され、前記光制御素子を透過し、前記第2光学素子を経て前記第1受光素子で受光するように構成された受発光部と、前記相手装置から送信された送を集光する第3光学素子、当該第3光学素子で集光された光を受光する第2受光素子を有し、前記相手装置から送信された光を前記第3光学素子で集光して前記第2受光素子でデータ信号として受光するデータ受信部と、前記第2受光素子で受光したパイロット光に基づいて前記反射光学系の偏向角を制御するための偏向角制御信号を算出し、当該偏向角制御信号に基づいて前記反射光学系の駆動手段を制御する偏向角制御信号供給部とを備え、前記受発光部と前記データ受信部の各光軸とが略平行になるよう配置され、前記第1受光素子で受光した前記パイロット光に基づいて前記反射光学系の偏向角を制御することにより、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行うことを特徴とする光無線伝送装置である。
【0013】
請求項3の発明は、前記請求項2に記載の光無線伝送装置において、前記光制御素子の反射面は、前記反射光学系で反射される光の面積よりも小さいことを特徴とする。
【0014】
請求項4の発明は、前記請求項1乃至3のいずれか一項に記載の光無線伝送装置において、前記第1受光素子は、多分割された受光素子により構成され、前記偏向角制御信号供給部は、前記受光素子の各分割領域での受光量に基づいて前記反射光学系の移動方向と移動量を演算して偏向角制御信号を得る演算手段と、前記演算手段で演算された偏向角制御信号に基づいて前記反射光学系の駆動手段を水平方向又は垂直方向に駆動して、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行う制御手段とを備えることを特徴とする。
【0015】
請求項5の発明は、前記請求項1乃至4のいずれか一項に記載の光無線伝送装置において、前記受発光部及び前記データ受信部を同一基板上に一体に配置したことを特徴とする。
【0016】
請求項6の発明は、前記請求項1乃至5のいずれか一項に記載の光無線伝送装置の光軸調整方法において、前記相手装置から入射する光を前記第1受光素子で受光し、当該第1受光素子を構成する前記各受光素子における受光量に基づいて前記反射光学系の移動方向と移動量を演算して偏向角制御信号を得ると共に、当該偏向角制御信号に基づいて前記反射光学系の駆動手段を水平方向又は垂直方向に駆動することにより、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行うことを特徴とする。
【0017】
請求項7の発明は、前記請求項1乃至5のいずれか一項に記載の光無線伝送装置を第1、第2の光無線伝送装置として所定間隔で対向配置し、前記第1、第2の光無線伝送装置について前記請求項6に記載の光無線伝送装置の光軸調整方法により光軸合わせを行った後、前記第1、第2の光無線伝送装置を用いて双方向通信を行うことを特徴とする光無線通信方法である。
【0018】
請求項8の発明は、前記請求項7に記載の光無線通信方法において、前記第1、第2の光無線伝送装置について前記請求項6に記載の光無線伝送装置の光軸調整方法により光軸合わせを行った後、前記第1、第2の光無線伝送装置の送信光を一定量シフトさせ、それぞれの送信光が互いに相手装置のデータ受信部に照射されるように制御した後、前記第1、第2の光無線伝送装置を用いて双方向通信を行うことを特徴とする光無線通信方法である。
【0019】
請求項9の発明は、前記請求項1乃至5のいずれか一項に記載の光無線伝送装置を第1、第2の光無線伝送装置として所定間隔で対向配置した光無線伝送システムであって、前記第1、第2の光無線伝送装置について前記請求項6に記載の光無線伝送装置の光軸調整方法により光軸合わせを行った後、前記第1、第2の光無線伝送装置を用いて双方向通信を行うことを特徴とする。
【0020】
【発明の実施の形態】
以下、本発明に係わる光無線伝送装置、光無線伝送装置の光軸調整方法、光無線通信方法、及び光無線伝送システムの実施の形態について説明する。
【0021】
以下の説明においては、データ信号により変調された光又は光軸調整用のパイロット光を適宜に光という。このうち、データ信号により変調された光を適宜にデータ信号の光と表記する。また、相手装置へ送信する光を送信光、出射光又は出射する光といい、相手装置から受信する光を受信光、入射光又は入射する光という。さらに、これらの光を発することを送信といい、受けることを受光又は受信という。
【0022】
[実施の形態1]
まず図1、2を参照して、実施の形態1に係わる光無線伝送装置の構成と、本装置を組み合わせた屋内光無線伝送システムについて説明する。
【0023】
図1は、実施の形態1に係わる光無線伝送装置の概略構成図である。
【0024】
受発光部9は、データ信号により変調された光又は光軸調整用のパイロット光を出射する発光素子1と、コリメータレンズなどのレンズ2と、入射光の一部を反射し、残りを透過する光制御素子3と、入射光を反射し且つ当該入出射光の光軸に対する偏向角を制御する図示しない駆動手段を有する反射光学系4と、同一構成の図示しない相手装置から送信されたパイロット光を集光するレンズ5と、このレンズ5で集光されたパイロット光を受光するフォトダイオード(以下、適宜にPDという)などの第1受光素子6とを備えている。
【0025】
発光素子1とレンズ2は、発光素子1からレンズ2を経て発せられた出射光が、光制御素子3を透過(一部は反射、以下同様)し、反射光学系4で反射されて送信光として送信されるように配置されている。発光素子1はデータ供給部7、外部インターフェース7Aと接続されている。また、レンズ5と第1受光素子6は、相手装置から入射した光が反射光学系4で反射され、光制御素子3で反射(一部は透過、以下同様)された後、レンズ5を経て第1受光素子6で受光されるように配置されている。第1受光素子6及び反射光学系4は偏向角制御信号供給部8と接続されている。
【0026】
受発光部9において、相手装置との光軸合わせを行う場合には、光軸調整用のパイロット光が発光素子1から出射される。一方、相手装置との間で双方向通信を行う場合には、外部インターフェース7Aからデータ信号が供給されたデータ供給部7によって、データ信号に応じて強度変調された光が発光素子1から出射される。これらの光はレンズ2により平行光に近いビーム光に成形され、光制御素子3を通過した後、反射光学系4で反射されて送信光として送信される。また、光軸合わせにおいて、相手装置から送信されたパイロット光は、反射光学系4で反射されて光制御素子3で反射された後、レンズ5で集光されて第1受光素子6で受光される。第1受光素子6では、受光したパイロット光が光−電気変換され、相手装置の位置情報として偏向角制御信号供給部8へ出力される。
【0027】
データ受信部39は、相手装置から送信された光を集光するレンズ37と、レンズ37で集光された光を受光するフォトダイオードなどの第2受光素子36とを備えている。第2受光素子36は、受信信号処理部38、外部インターフェース38Aと接続されている。
【0028】
データ受信部39では、双方向通信を行う場合、相手装置からの光はレンズ37により集光されて第2受光素子36で受光される。第2受光素子36では、受光した送信光が光−電気変換され、データ信号として受信信号処理部38に供給される。
【0029】
図2は、上記光無線伝送装置を2つ組み合わせて屋内光無線伝送システムとして構成した場合の概略構成図である(図1と同等部分を同一符号で示す)。受発光部9から送信される送信光がある程度の指向性を有し、且つ本実施の形態のように受発光部9の近傍にデータ受信部39を配置した場合は、上記のような光軸合わせを行うことにより、データ受信部39においても、自装置の受発光部9に向けて送信された相手装置からの送信光を受光することができ、また自装置のデータ供給部7からのデータ信号を、相手装置の受信信号処理部38に双方向で伝送することが可能となる。
【0030】
次に、図3〜図9を参照して、受発光部9及びデータ受信部39を構成する各部について更に詳細に説明する。
【0031】
発光素子1としては、レーザダイオードを用いることができる。レーザダイオードは出射光のビームが細く、それを更にレンズ2によって平行に近いビーム光にすることによって、出射光を高効率で光制御素子3及び反射光学系4に照射することができる。レーザの波長は近赤外に限らず、長波長のものでもよい。
【0032】
また、送信光の指向性が狭い場合、図1のように受発光部9の近傍にデータ受信部39を設置する構造では、データ受信部39で十分な受光量を得られない可能性がある。この様な場合、データ受信部39の光軸と受発光部9の光軸とが略平行になるような配置とせず、図3に示すように、反射光学系4の下方にミラー40を設け、このミラー40に照射される光の漏れ光を90度反射させ、第2受光素子36へ照射するように構成する。これにより、送信光の指向性が狭い場合でも、データ受信部39において充分に送信光を受光することが可能となる。
【0033】
図4は、データ供給部7の構成を示すブロック図である。データ供給部7は、外部インターフェース7Aからのデータ信号を、光によって伝送可能な信号に変換する信号処理部11と、信号処理された信号によって、光が点滅する様に発光素子1を駆動する発光駆動部10から成る。
【0034】
図2のような屋内光無線伝送システムのアプリケーションとしてLANを考え、外部インターフェース7Aから入力される信号が100Base−FXである場合、データ供給部7内の信号処理部11では、図5のブロック図に示すように、4B/5Bエンコーダ101によりクロック自己再生のための4B/5B符号化を行い、デスクランブル/スクランブル部102によりデータをスクランブル化し、パラレル/シリアル変換部103によりパラレルデータをシリアルデータに変換し、更にNRZ/NRZI変換部104(及びPLL105)により、DC成分を持たない信号にするためにNRZ/NRZI変換を行う、という信号処理がなされ、データ信号として発光駆動部10に入力される。
【0035】
図6は、偏向角制御信号供給部8の構成を示すブロック図である。受発光部9の第1受光素子6は、相手装置からのパイロット光を光−電気変換し、受信光の有無、または受光量、受光方向などの位置情報信号を偏向角制御信号供給部8へ供給する。偏向角制御信号供給部8は、受発光部9から得られた位置情報信号に基づいて、相手装置からの光に自身の受信の光軸を合わせるように、反射光学系4を動かす移動方向及び移動量を演算して偏向角制御信号を得る演算部13と、反射光学系4の図示しない駆動手段を前記偏向角制御信号に基づいて水平方向又は垂直方向に駆動する制御部12から成る。
【0036】
受信信号処理部38は、データ受信部39で得られたデータ信号をアプリケーションに適した信号に変換する。屋内光無線伝送システムのアプリケーションとしてLANを考え、外部インターフェース38Aへ出力する信号が100Base−FXである場合、受信信号処理部38では、図7のブロック図に示すように、受信した信号をNRZI/NRZ変換部111(及びPLL112)によりNRZI/NRZ変換を行い、シリアル/パラレル変換部113によりシリアルデータをパラレルデータに変換し、続いてスクランブル/デスクランブル部114によりスクランブル化された信号をデスクランブルし、更に4B/5Bデコーダ115により4B/5B符号化された信号のデコードを行う、という信号処理がなされ、データ信号として外部インターフェース38Aに入力される。なお、クロック再生回路116では、データ信号に含まれるクロックのタイミング間隔を再生している。
【0037】
図8は、反射光学系4の駆動手段として、ピエゾアクチュエータを用いた場合の構成図である。ピエゾアクチュエータは、ピエゾ素子の圧電効果を応用したもので、図8(a)のように反射光学系4の反射部18の裏側の4箇所にピエゾアクチュエータ19を設けている(図8ではそのうちの2つを示す)。各ピエゾアクチュエータ19は、図8(b)、(c)に示すように、電極20に加えた電圧によって伸張する。したがって、4つのピエゾアクチュエータ19に異なる電圧を印加して反射光学系を3次元で偏向させることにより、光軸に対する偏向角を制御することができる。
【0038】
なお、本発明における駆動手段はピエゾアクチュエータに限定されるものではなく、電流又は電圧等により制御可能なアクチュエータを適宜に用いることができる。また、反射光学系4の反射部18が曲面を有し、その曲面が凹凸に駆動されることによって、光軸に対する偏向角を制御するような構造としてもよい。
【0039】
反射光学系4の反射部18としては、光学樹脂へAu(金)を蒸着することにより生成されたミラーを用いることができる。Au膜の反射率分光特性を図9に示す。また、特定の波長のみ反射するような薄膜を蒸着した場合、受信光における外来光成分をカットするフィルタの機能も果たすことにもなる。
【0040】
光制御素子3としては、無偏光ビームスプリッタ(以下、単にビームスプリッタという)を用いることができる。また、特定の波長のみを通過(反射)するようなビームスプリッタを用いることも可能であり、その場合は、受信光における外来光成分をカットするフィルタの機能も果たすことにもなる。
【0041】
次に、図10〜図12を参照して、偏向角制御信号供給部8において、受発光部9から得られた情報に基づいて光軸に対する偏向角を制御する場合の動作について説明する。
【0042】
図10は、偏向角制御信号供給部8による反射光学系4の制御手順を示すフローチャート。図11は、4分割PDで構成された第1受光素子6上で受光したパイロット光の受光スポットが段階的に移動する様子を示す説明図。図12は、偏向角制御信号供給部8において図10の制御手順を実現するための構成を示すブロック図である。
【0043】
ここでは、図12に示すように、第1受光素子6が4分割されたフォトダイオード(PD_A、_B、_C、_D)により構成され、且つ、反射光学系4が3次元に制御可能な場合を例とする。以下、図10のフローチャートに従って、適宜に図11、12を参照しながら説明する。
【0044】
相手装置からのパイロット光は、ある周波数を有する光信号であり、受発光部9では、4分割されたPD(第1受光素子6)のそれぞれのPD(PD_A、B、C、D)での受光量が光−電気変換され、受光量に応じた振幅を有する電気信号(SIG_A、B、C、D)として、偏向角制御信号供給部8に送られる(ステップS1)。偏向角制御信号供給部8内の演算部13では、それぞれの信号振幅をアンプ21、22、23、24によって増幅し(ステップS2)、A/Dコンバータ25、26、27、28によってその振幅値をA/D変換することによって、信号レベル、すなわち各PDでの受光量をDC値として得る(ステップS3)。続いて、マイコン・DSPなどのマイクロプロセッサ29によって、水平方向(Pan)・垂直方向(Tilt)に対向するPD同士の受光レベルの差を演算し(ステップS4)、その受光レベル差を0とするための、反射光学系4の移動方向・及び移動量を演算して、制御部12に送る(ステップS5→S6、ステップS9→S10)。制御部12は、与えられた値をD/Aコンバータ30、31によりD/A変換し、偏向角制御信号としてドライバ32、33に与え、ドライバ32、33によって反射光学系4を水平・垂直方向に駆動する(ステップS7→S8、ステップS11→S12)。
【0045】
次に、4分割PD上での受光スポットの動きを図11により説明する。図中、符号6Aはパイロット光が照射したときの4分割PD上での受光スポットを示す。
【0046】
図11において、▲1▼のステップでは、まず垂直方向に対向するA、BそれぞれのPDの受光量の差を演算し、差を0にする方向(図11では下方向)に光が照射されるように、反射光学系4を垂直方向に動かす。次いで、▲2▼のステップでは、水平方向に対向するC、DのそれぞれのPDの受光量の差を演算し、差を0にする方向(図11では右方向)に光が照射されるように、反射光学系4を水平方向に動かす。
【0047】
このように、受発光部9においては、送信光と受信光とが光制御素子3により同軸で制御可能であるため、図2のように同一構成の相手装置から送信される光と本装置で受信する光軸とを合わせることによって、本装置の送信光を相手装置に照射することになる。また、相手装置も同様に光軸合わせを行い、本装置からの送信光が照射されることになり、2つの装置のそれぞれの受発光部9の光軸が一致することになる。
【0048】
なお、本実施の形態では、第1受光素子6を4分割PDで構成した例について示したが、第1受光素子6の分割数は3分割でもよいし、或いは5分割、8分割…というように更に分割数を多くしたものであってもよい。また、本実施の形態では、PDでの受光量の差がゼロになるように反射光学系4の移動方向と移動量を演算する例について示したが、他のアルゴリズムにより移動方向と移動量を演算するようにしてもよい。
【0049】
上記実施の形態1に係わる光無線伝送装置では、第1受光素子6で受光した光軸調整用のパイロット光に基づいて反射光学系4の偏向角を制御することにより、送信光と受信光の光軸合わせを同軸で行うように構成されているため、受光装置と発光装置を同時に回転させる従来装置に比べて可動部分や光学素子が少なくなり、装置の小型化を図ることができる。特定の従来装置との比較では、少なくとも体積比で1/2以下を達成している。
【0050】
また、実施の形態1に係わる光無線伝送装置の光軸調整方法により光軸合わせを実施したところ、従来のモータを用いた屋内光無線伝送装置のサーチ精度が0.2[deg]程度、サーチ速度が100〜300[rad/sec]程度であったのに対し、本実施の形態の装置ではサーチ精度は0.001[deg]以下、サーチ速度は500[rad/sec]以上となり、高精度且つ高速な光軸合わせを実現している。このように、互いに相手装置から送信されるパイロット光と自装置で受信する光軸とを一致させる構成とすることによって、屋内光無線伝送システムとして送信光に狭い指向角のビームを用いた場合でも、高精度な双方向通信を行うことが可能となる。
【0051】
さらに、相手装置をサーチ可能な範囲が広いため、屋内使用において様々な場所に移動させて使用することができる。
【0052】
図13は、実施の形態1に係わる光無線伝送装置の他の構成例を示す概略構成図である。図13に示すように、データ受信部39において、レンズ37を広指向のもの(魚眼レンズ等)とした場合、又はレンズ37の上方に広指向型のレンズ41を設けた場合、広い範囲で送信光を受信することが可能となる。
【0053】
次に、図14、図15を参照して、光軸調整後に送信光を一定量シフトする場合について説明する。
【0054】
実施の形態1において、発光素子1としてレーザダイオードを用い、送信光の指向性が狭い場合、上記制御手順による光軸調整終了後、二つの装置の送信光は、それぞれ相手装置の反射光学系4に照射されることになるため、データ受信部39で相手装置からのデータ信号を受信できなくなる。そこで、図14に示すように、光軸調整後、それぞれの装置で送信光を一定量(θ分)シフトさせて、相手装置のデータ受信部39の位置に照射させることにより、双方向通信が可能となる。
【0055】
図15は、光軸調整後に送信光を一定量シフトする場合の制御手順を示すフローチャートである。偏向角制御信号供給部8では、図10の制御手順により光軸調整を行った後(ステップS101)、反射光学系4を駆動して送信号を一定量シフトさせ、送信号が相手装置のデータ受信部39へ照射するように制御し、双方向通信を行う(ステップS102→S103)。通信中、受発光部9の第1受光素子6では相手装置からの送信光は受光しないため、偏向角制御信号供給部8では制御のための情報が得られない。このため、データ受信部39から受信光の有無の情報が偏向角制御信号供給部8へ供給される。偏向角制御信号供給部8では、装置の移動等により、相手装置からの送信光をデータ受信部39で受光できなかった場合は、再び図10の制御手順により光軸調整を行うルーチンに戻る(ステップS104→S101)。
【0056】
上記実施の形態によれば、送信光の指向性が狭い場合においても、データ受信部39では常に相手装置からのデータ信号を受信することができるため、より高精度な双方向通信を行うことが可能となる。
【0057】
[実施の形態2]
次に、図16〜18を参照して、実施の形態2に係わる光無線伝送装置の構成について説明する。いずれの図も図1と同等部分を同一符号で示す。
【0058】
図16は、実施の形態2に係わる光無線伝送装置の概略構成図である。図1と同等部分を同一符号で示している。
【0059】
実施の形態2では、発光素子1とレンズ2、及びレンズ5と第1受光素子6が図1と逆に配置されている。すなわち、発光素子1とレンズ2は、発光素子1からレンズ2を経て発せられた出射光が、光制御素子3で反射された後、反射光学系4で反射されて送信光として送信されるように配置されている。また、レンズ5と第1受光素子6は、相手装置から入射したパイロット光が反射光学系4で反射され、光制御素子3を透過し、レンズ5で集光されて第1受光素子6で受光されるように配置されている。
【0060】
本実施の形態のように、図1における発光素子1とレンズ2、及びレンズ5と第1受光素子6の配置を入れ替えた構成とした場合でも、実施の形態1と同様の効果を得ることができる。
【0061】
ところで、光軸調整の際に相手装置からの光の情報をより多く得るためには、受発光部9の第1受光素子6に対し光を効率よく照射する必要がある。そのため実施の形態1に示す光無線伝送装置の構成(図1)では、光制御素子3の反射面を、反射光学系4で反射される光の面積と同等、もしくは大きくする必要がある。
【0062】
実施の形態2の他の構成例としては、図17に示すように、発光素子1とレンズ2、及びレンズ5と第1受光素子6の配置を入れ替えると共に、光制御素子3の反射面3Aが、反射光学系4で反射される光の面積Sより小さくなるように、図16よりもサイズの小さい光制御素子3を配置している。
【0063】
図17の構成において、第1受光素子6に照射される光は光制御素子3の透過光であるため、光制御素子3が小さく、反射面3Aが反射光学系4で反射される光の面積Sより小さい場合でも、光制御素子3に照射されない光は、直接に第1受光素子6に照射される。このため、図16に示すように光制御素子3の反射面が大きい場合と同等、もしくはそれ以上の受光量を得ることが出来る。発光素子1がレーザダイオードなどの場合、送信光の指向性は狭いため、光制御素子3の反射面は小さくてもよい。
【0064】
また、本実施の形態においては、光制御素子3を小型化にすることにより、図18に示すように、反射光学系4を光制御素子3に近づけることができるため、受発光部9全体を小型化することが可能となり、受発光部9の設計にも柔軟性をもたせることができる。
【0065】
[実施の形態3]
図19は、実施の形態3に係わる光無線送伝送装置の構成例を示す説明図である。実施の形態1〜3における受発光部9及びデータ受信部39の光学部材を同一の基板34上に配置することによって、光無線伝送装置を小型のモジュール35として構成することができる。例えば、ホログラムピックアップの組み立て技術などを応用し、5mm角〜30mm角程度の大きさのモジュールとした場合、図20のようにパソコン42などの機器に組み込むことも可能である。
【0066】
本実施の形態に示すように、受発光部9とデータ受信部39を同一基板上に一体に配置した場合は、装置の小型化が可能となるだけでなく、それに伴う低コスト化、サーチ時間の短縮などの効果が得られる。また、一体構造とする際に、現在のICの微細加工技術、及びホログラムピックアップの組み立て技術などを応用することができるため、高精細な配置が可能となり、送信と受信の光軸調整もさらに容易なものとなる。
【0067】
[実施の形態4]
次に、入射光の一部を反射し、残りを透過する機能を備えた光制御素子3の他の構成例について説明する。
【0068】
光制御素子3としては、上記各実施の形態に示すビームスプリッタ以外に、一部領域に入射した光を透過し、他の領域に入射した光を反射する光制御素子を用いることができる。
【0069】
実施の形態1において、発光素子1がレーザダイオードなどの場合、送信光の指向性が狭いため、光制御素子3の透過面は小さくてもよい。この場合は、図21(a)に示すように、発光素子1からの出射光が透過する中心部分を透過領域52、残りの部分(裏面)すべてを反射面53とする光制御素子51を用いることができる。この光制御素子51は、ベースとなる透過光学素子の中心部分を除いた領域に反射材を蒸着することにより製作することができる。光制御素子51において、発光素子1からの出射光は透過領域52を透過し、相手装置から受信した光は反射面53で反射されて第1受光素子6に導かれることになる。なお、光制御素子51の透過領域52は開口部であってもよい。この場合は、ベースとなる透過光学素子の中心部分の除去することにより製作することができる。
【0070】
また、実施の形態2のように、発光素子1からの出射光が光制御素子3で反射される構成とした場合は、図21(b)に示すように、発光素子1からの出射光が反射する中心部分を反射面62、残りの部分すべてを透過面63とする光制御素子61を用いることができる。この光制御素子61は、ベースとなる透過光学素子の中心部分を除く残りの部分すべてをマスキングし、反射面が形成される面上に反射材料を蒸着することにより製作することができる。光制御素子61において、発光素子1からの出射光は反射面62で反射し、また相手装置から受信した光は透過面63を透過し、レンズ5を経て第1受光素子6に導かれることになる。
【0071】
[実施の形態5]
次に、上記各実施の形態におけるレーザ出力について説明する。
【0072】
光無線伝送装置において、装置から送信される光は安全基準によって制限される。例えば、レーザダイオードの場合、IEC60825−1(日本ではJISC6802:レーザ製品の放射安全基準)によって、その放射強度などが定められている。この基準は、装置から出力される光を制限するものであり、上記各実施の形態に示す光無線伝送装置において、発光素子1をレーザダイオードとした場合、装置からの出力を基準内とするためのレーザ出力は、実際にレーザダイオードが出力可能なレベルに比べ十分小さい。そのため、実施の形態1の場合には、光制御素子3の透過・反射の比率を変え、透過率を低く、反射率を高くすることによって、送信光を安全な出力レベルで送信し、且つ、受信光を高効率で第1受光素子6に集光することが可能となる。例えば、装置から送信可能な出力のレベルに対して、レーザダイオードが出力可能なレベルが10倍とすると、光制御素子3の透過率を10%、反射率を90%とする。
【0073】
また、上記各実施の形態に示す発光素子1において、その出力レベルを減衰可能なものとし、光制御素子3を透過し、反射光学系4によって反射されて装置外に送信される送信光が安全基準によって制限されたレベル以下になるよう、調整可能なものとすることによって、目に安全なレベルの強度で高速な双方向通信が可能となる。
【0074】
なお、上述した各実施の形態においては、光軸調整用のパイロット光を発光素子1から発するように構成しているが、パイロット光は受発光部9の内部又は外部に配置した別の発光素子から出射するように構成してもよい。この発光素子の光軸は受発光部9の光軸と同軸又は略並行となるように配置される。また、発光素子1から出射するデータ信号の光をパイロット光として使用することもできる。
【0075】
【発明の効果】
以上説明したように、本発明においては、反射光学系の偏向角を制御することにより、送信光と受信光の光軸合わせを同軸で制御することができるため、受光装置と発光装置とを同時に回転させる従来装置に比べて可動部分が少なくなり、装置を小型化することができる。また、送信光に狭い指向角のビームを用いた場合でも、高精度且つ高速な光軸合わせが可能となる。さらに、相手装置をサーチ可能な範囲が広いため、屋内使用において様々な場所に移動させて使用することができる。
【0076】
したがって、本発明に係わる光無線伝送装置、光無線伝送装置の光軸調整方法、光無線通信方法、及び光無線伝送システムを屋内光無線伝送システムに適用した場合は、高精度な双方向通信を行うことが可能となる。
【図面の簡単な説明】
【図1】実施の形態1に係わる光無線伝送装置の概略構成図。
【図2】光無線伝送装置を2つ組み合わせて屋内光無線伝送システムとして構成した場合の概略構成図。
【図3】実施の形態1において反射光学系の下方にミラーを設けた場合の概略構成図。
【図4】データ供給部の構成を示すブロック図。
【図5】信号処理部の構成を示すブロック図。
【図6】偏向角制御信号供給部の構成を示すブロック図。
【図7】受信信号処理部の構成を示すブロック図。
【図8】(a)は反射光学系の駆動手段としてピエゾアクチュエータを用いた場合の構成図。(b)、(c)はピエゾアクチュエータを伸張させた場合の説明図。
【図9】Au膜の反射率分光特性を示す説明図。
【図10】偏向角制御信号供給部による反射光学系の制御手順を示すフローチャート。
【図11】4分割PDで構成された受光素子で受光したパイロット光の受光スポットが段階的に移動する様子を示す説明図。
【図12】偏向角制御信号供給部おいて図10の制御手順を実現するための構成を示すブロック図。
【図13】実施の形態1に係わる光無線伝送装置の他の構成例を示す概略構成図。
【図14】双方向通信において光軸調整後に送信光を一定量シフトする場合の説明図。
【図15】光軸調整後に送信光を一定量シフトする場合の制御手順を示すフローチャート。
【図16】実施の形態2に係わる光無線伝送装置の概略構成図。
【図17】図16において光制御素子を小さくした場合の概略構成図。
【図18】図17において反射光学系を光制御素子に近づけた場合の概略構成図。
【図19】実施の形態3に係わる光無線伝送装置の構成例を示す説明図。
【図20】実施の形態3に係わる光無線伝送装置をパソコンに搭載した場合の説明図。
【図21】光制御素子の他の構成例を示す説明図。(a)は出射光が透過する中心部分を透過領域、残りの部分すべてを反射面とした場合の説明図。(b)は出射光が反射する中心部分を反射面、残りの部分すべてを透過面とした場合の説明図。
【図22】従来の屋内光無線伝送装置の概略構成図。
【符号の説明】
1…発光素子
2…レンズ(第1光学素子)
3…光制御素子
3…光学素子
3A…透過領域
4…反射光学系
4A…実反射領域
5…レンズ(第2光学素子)
6…第1受光素子
7…データ供給部
7A…外部インターフェース
8…偏向角制御信号供給部
9…受発光部
10…発光駆動部
11…信号処理部
12…制御部
13…演算部
18…反射部
19…ピエゾアクチュエータ
20…電極
21…アンプ
21…親機
22…発光部
23…発光手段
23A…パイロット光
24…子機
24A…受光装置
25…コンバータ
29…マイクロプロセッサ
30…コンバータ
32…ドライバ
34…基板
35…モジュール
36…第2受光素子
37…レンズ(第3光学素子)
38…受信信号処理部
38A…外部インターフェース
39…データ受信部
40…ミラー
41…レンズ
42…パソコン
101…4B/5Bエンコーダ
102…デスクランブル/スクランブル部
103…パラレル/シリアル変換部
104…NRZ/NRZI変換部
105,112…PLL
111…NRZI/NRZ変換部
113…シリアル/パラレル変換部
114…スクランブル/デスクランブル部
115…4B/5Bデコーダ
116…クロック再生回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical wireless transmission apparatus that transmits and receives light modulated by a data signal or the like, an optical axis adjustment method of the optical wireless transmission apparatus, an optical wireless communication method, and an optical wireless transmission system.
[0002]
[Prior art]
In general, when transmitting a signal via optical radio, an LED (light emitting diode) or a laser diode is used as a light emitting element on the transmission side. Of these, in devices that transmit signals using LEDs, the beam diameter of LED light with a wide directivity must be narrowed by a focusing lens. However, because this diaphragm has a limit, the beam diameter widens when it is transmitted over long distances. Power is reduced. When the beam diameter is increased in this way, there is a problem that interference occurs when a plurality of devices are used in parallel.
[0003]
In order to solve this, for example, an indoor optical wireless transmission device as shown in FIG. 22 has been proposed. In this optical wireless transmission device, a light emitting means 23 is provided in one device (master unit 21) separately from the light emitting unit 22 for data signal transmission, and pilot light 23A for adjusting the optical axis is transmitted from the light emitting means 23. In the other optical wireless transmission device (slave unit 24), the optical axis direction is displaced, the pilot light 23A is received by the light receiving device 24A, and the optical axis is aligned based on the received light level of the pilot light 23A. It is configured. This device collimates the LED light with a parabolic reflector so as to reduce the beam diameter. By rotating a light receiving device 24A that transmits a beam with narrow directivity by a stepping motor or the like, the horizontal and vertical directions are obtained. This is embodied in the form of scanning and searching for a point where the maximum light receiving level is obtained in two-dimensional coordinates (see, for example, Patent Document 1).
[0004]
On the other hand, in an outdoor optical wireless transmission device using a laser diode, an optical axis adjustment method using a mirror and a beam splitter is employed (for example, see Patent Document 2).
[0005]
[Patent Document 1]
Patent No. 3059870
[0006]
[Patent Document 2]
JP-A-6-152541
[0007]
[Problems to be solved by the invention]
In order to perform optical axis adjustment with the indoor optical wireless transmission device, it is necessary to rotate the light receiving device including the light receiving element and its optical system and the light emitting device including the light emitting element and the optical system at the same time. The device becomes large to be used in.
[0008]
Further, in order to perform higher-speed transmission, it is necessary for the receiving side to receive the transmission light from the partner apparatus with high efficiency, and the transmission light has a very narrow directivity angle of about several degrees [deg]. Must be a beam. When performing two-way communication, it is necessary to match the optical axes of the light emitting device and the light receiving device arranged in the same device, but when the directivity of the transmitted light is very narrow, it is up and down like this device. It was difficult to align the optical axes of the arranged light emitting device and light receiving device with high accuracy and high speed.
[0009]
Furthermore, as an optical axis adjustment method for matching the optical axes of transmission and reception, the adjustment method of the outdoor optical wireless transmission device can be considered, but this device is a large-scale device using a large number of optical elements. Therefore, the device becomes large and is used for fine adjustment after adjusting the optical axis to some extent, so the searchable range of the partner device is as narrow as several degrees, and it can be moved to various indoor locations. Therefore, it is not suitable for the device used.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to reduce the size of an apparatus and to perform optical axis alignment with high accuracy and at high speed, and is suitable for indoor use, and an optical axis adjustment method for an optical wireless transmission apparatus An optical wireless communication method and an optical wireless transmission system are provided.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is a light emitting element that emits light modulated by a data signal or pilot light for optical axis adjustment, and light emitted from the light emitting element is a beam light that is close to parallel light. A first optical element to be molded, a light control element that reflects part of the incident light and transmits the remainder, and a reflection means that reflects the incident light and has a driving means for controlling the deflection angle of the incident light with respect to the optical axis An optical system, a second optical element that condenses pilot light transmitted from the counterpart device, and a first light receiving element that receives pilot light condensed by the second optical element, and is emitted from the light emitting element Light is shaped into beam light close to parallel light by the first optical element, passes through the light control element, is reflected in a predetermined direction by the reflection optical system, is transmitted to the counterpart device, and is incident from the counterpart device. The pilot light is A light receiving / emitting unit configured to be reflected by an optical system and reflected by the light control element and then received by the first light receiving element through the second optical element; and the counterpart device A third optical element for condensing the light transmitted from the second optical element and a second light receiving element for receiving the light condensed by the third optical element, and the third optical element for transmitting the light transmitted from the counterpart device And a data receiving unit that receives the light as a data signal by the second light receiving element, and a deflection angle control signal for controlling the deflection angle of the reflection optical system based on the pilot light received by the second light receiving element. And a deflection angle control signal supply unit for controlling the driving means of the reflection optical system based on the deflection angle control signal, and the optical axes of the light emitting / receiving unit and the data receiving unit are substantially parallel to each other. Arranged so that the light received by the first light receiving element is An optical wireless transmission device that performs optical axis alignment of light emitted from the light emitting element and light incident from the counterpart device by controlling a deflection angle of the reflection optical system based on lot light .
[0012]
According to a second aspect of the present invention, there is provided a light emitting element for emitting light modulated by a data signal or pilot light for adjusting an optical axis, and a first optical element for shaping light emitted from the light emitting element into beam light close to parallel light , A light control element that reflects a part of incident light and transmits the rest, a reflection optical system that has a drive means for reflecting the incident light and controlling the deflection angle of the incident light with respect to the optical axis, and transmitting from the counterpart device A second optical element that collects the pilot light that has been collected; a first light receiving element that receives the pilot light that has been collected by the second optical element; and the light emitted from the light emitting element is the first optical element After being shaped into a beam light that is close to parallel light and reflected by the light control element, it is reflected by the reflective optical system in a predetermined direction and transmitted to the counterpart device, and pilot light incident from the counterpart device is reflected by the reflection device. Reflected by the optical system A light receiving / emitting unit configured to pass through the light control element and receive light by the first light receiving element through the second optical element, and a third optical element for collecting the transmission transmitted from the counterpart device, A second light receiving element that receives the light collected by the third optical element; condenses the light transmitted from the counterpart device by the third optical element and generates a data signal by the second light receiving element; A deflection angle control signal for controlling the deflection angle of the reflection optical system is calculated based on the pilot light received by the data receiving unit that receives light and the second light receiving element, and the reflection is performed based on the deflection angle control signal. A deflection angle control signal supply unit for controlling the driving means of the optical system, and is arranged so that the optical axes of the light emitting / receiving unit and the data receiving unit are substantially parallel and received by the first light receiving element. Based on the pilot light, the reflection optical system By controlling the direction angle, an optical wireless transmission apparatus and performing optical axis alignment of the light incident from the light and the counterpart device emitted from the light emitting element.
[0013]
According to a third aspect of the present invention, in the optical wireless transmission device according to the second aspect, a reflection surface of the light control element is smaller than an area of light reflected by the reflection optical system.
[0014]
According to a fourth aspect of the present invention, in the optical wireless transmission device according to any one of the first to third aspects, the first light receiving element is configured by a multi-divided light receiving element, and the deflection angle control signal supply is provided. A calculating unit that calculates a moving direction and a moving amount of the reflective optical system based on a received light amount in each divided region of the light receiving element to obtain a deflection angle control signal; and a deflection angle calculated by the calculating unit. Control means for driving the reflecting optical system driving means in a horizontal direction or a vertical direction based on a control signal to align the optical axes of the light emitted from the light emitting element and the light incident from the counterpart device. It is characterized by.
[0015]
According to a fifth aspect of the present invention, in the optical wireless transmission device according to any one of the first to fourth aspects, the light emitting / receiving unit and the data receiving unit are integrally arranged on the same substrate. .
[0016]
The invention of claim 6 is the optical axis adjustment method for an optical wireless transmission device according to any one of claims 1 to 5, wherein light incident from the counterpart device is received by the first light receiving element, A deflection angle control signal is obtained by calculating a movement direction and a movement amount of the reflection optical system based on the amount of light received by each of the light receiving elements constituting the first light receiving element, and the reflection optics based on the deflection angle control signal. By driving the driving means of the system in the horizontal direction or the vertical direction, the optical axis of the light emitted from the light emitting element and the light incident from the counterpart device is aligned.
[0017]
According to a seventh aspect of the present invention, the optical wireless transmission device according to any one of the first to fifth aspects is disposed as a first and a second optical wireless transmission device facing each other at a predetermined interval, and the first and second optical wireless transmission devices are arranged opposite to each other. The optical wireless transmission apparatus according to claim 6, after optical axis alignment is performed by the optical axis adjustment method of the optical wireless transmission apparatus according to claim 6, bidirectional communication is performed using the first and second optical wireless transmission apparatuses. This is an optical wireless communication method.
[0018]
According to an eighth aspect of the present invention, in the optical wireless communication method according to the seventh aspect, the first and second optical wireless transmission devices are optically controlled by the optical axis adjustment method of the optical wireless transmission device according to the sixth aspect. After performing the axis alignment, the transmission light of the first and second optical wireless transmission devices is shifted by a certain amount, and each transmission light is controlled to irradiate the data receiving unit of the counterpart device, An optical wireless communication method that performs bidirectional communication using first and second optical wireless transmission apparatuses.
[0019]
A ninth aspect of the present invention is an optical wireless transmission system in which the optical wireless transmission device according to any one of the first to fifth aspects is disposed as a first optical wireless transmission device and a second optical wireless transmission device so as to face each other at a predetermined interval. The first and second optical wireless transmission apparatuses are aligned with each other by the optical axis adjustment method of the optical wireless transmission apparatus according to claim 6, and then the first and second optical wireless transmission apparatuses are It is characterized by using it for bidirectional communication.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an optical wireless transmission device, an optical axis adjustment method of the optical wireless transmission device, an optical wireless communication method, and an optical wireless transmission system according to the present invention will be described below.
[0021]
In the following description, light modulated by a data signal or pilot light for optical axis adjustment is appropriately referred to as light. Among these, the light modulated by the data signal is appropriately described as the light of the data signal. Further, light transmitted to the counterpart device is referred to as transmission light, outgoing light, or outgoing light, and light received from the counterpart device is referred to as reception light, incident light, or incident light. Furthermore, emitting these lights is called transmission, and receiving is called light reception or reception.
[0022]
[Embodiment 1]
First, the configuration of the optical wireless transmission apparatus according to the first embodiment and an indoor optical wireless transmission system combining this apparatus will be described with reference to FIGS.
[0023]
FIG. 1 is a schematic configuration diagram of an optical wireless transmission apparatus according to the first embodiment.
[0024]
The light emitting / receiving unit 9 reflects light that is modulated by a data signal or pilot light for adjusting an optical axis, a lens 2 such as a collimator lens, and a part of incident light and transmits the rest. Pilot light transmitted from a light control element 3, a reflection optical system 4 having a drive means (not shown) that reflects incident light and controls a deflection angle of the incident / exit light with respect to the optical axis, and a partner device (not shown) having the same configuration A condensing lens 5 and a first light receiving element 6 such as a photodiode (hereinafter appropriately referred to as PD) for receiving pilot light collected by the lens 5 are provided.
[0025]
In the light emitting element 1 and the lens 2, the emitted light emitted from the light emitting element 1 through the lens 2 is transmitted through the light control element 3 (partly reflected, the same applies hereinafter), reflected by the reflective optical system 4, and transmitted light. Arranged to be transmitted as. The light emitting element 1 is connected to the data supply unit 7 and the external interface 7A. Further, the lens 5 and the first light receiving element 6 are configured such that light incident from the counterpart device is reflected by the reflection optical system 4 and reflected by the light control element 3 (partially transmitted, the same applies hereinafter), and then passes through the lens 5. The first light receiving element 6 is disposed so as to receive light. The first light receiving element 6 and the reflection optical system 4 are connected to a deflection angle control signal supply unit 8.
[0026]
When the light receiving / emitting unit 9 performs optical axis alignment with the counterpart device, pilot light for adjusting the optical axis is emitted from the light emitting element 1. On the other hand, when two-way communication is performed with the counterpart device, light that is intensity-modulated according to the data signal is emitted from the light emitting element 1 by the data supply unit 7 to which the data signal is supplied from the external interface 7A. The These lights are shaped into beam light close to parallel light by the lens 2, pass through the light control element 3, are reflected by the reflection optical system 4, and are transmitted as transmission light. In the optical axis alignment, the pilot light transmitted from the counterpart device is reflected by the reflection optical system 4 and reflected by the light control element 3, then condensed by the lens 5 and received by the first light receiving element 6. The In the first light receiving element 6, the received pilot light is photoelectrically converted and output to the deflection angle control signal supply unit 8 as position information of the counterpart device.
[0027]
The data receiving unit 39 includes a lens 37 that collects light transmitted from the counterpart device, and a second light receiving element 36 such as a photodiode that receives the light collected by the lens 37. The second light receiving element 36 is connected to the reception signal processing unit 38 and the external interface 38A.
[0028]
In the data receiver 39, when performing bidirectional communication, light from the counterpart device is collected by the lens 37 and received by the second light receiving element 36. In the second light receiving element 36, the received transmission light is photoelectrically converted and supplied to the reception signal processing unit 38 as a data signal.
[0029]
FIG. 2 is a schematic configuration diagram in the case where two optical wireless transmission devices are combined to form an indoor optical wireless transmission system (the same parts as those in FIG. 1 are denoted by the same reference numerals). When the transmission light transmitted from the light emitting / receiving unit 9 has a certain degree of directivity and the data receiving unit 39 is arranged in the vicinity of the light emitting / receiving unit 9 as in the present embodiment, the optical axis as described above. By performing the matching, the data receiving unit 39 can also receive the transmission light from the counterpart device transmitted toward the light emitting / receiving unit 9 of the own device, and the data from the data supply unit 7 of the own device. The signal can be transmitted bidirectionally to the reception signal processing unit 38 of the counterpart device.
[0030]
Next, with reference to FIGS. 3 to 9, each part constituting the light emitting / receiving unit 9 and the data receiving unit 39 will be described in more detail.
[0031]
As the light emitting element 1, a laser diode can be used. The laser diode has a narrow beam of emitted light, which is further converted into a nearly parallel beam by the lens 2, so that the emitted light can be irradiated to the light control element 3 and the reflection optical system 4 with high efficiency. The wavelength of the laser is not limited to the near infrared, but may be a long wavelength.
[0032]
Further, when the directivity of the transmission light is narrow, in the structure in which the data receiving unit 39 is installed in the vicinity of the light emitting / receiving unit 9 as shown in FIG. . In such a case, the optical axis of the data receiving unit 39 and the optical axis of the light emitting / receiving unit 9 are not arranged so as to be substantially parallel, and a mirror 40 is provided below the reflecting optical system 4 as shown in FIG. The configuration is such that the leakage light of the light applied to the mirror 40 is reflected by 90 degrees and applied to the second light receiving element 36. Thereby, even when the directivity of the transmission light is narrow, the data reception unit 39 can sufficiently receive the transmission light.
[0033]
FIG. 4 is a block diagram showing a configuration of the data supply unit 7. The data supply unit 7 converts the data signal from the external interface 7A into a signal that can be transmitted by light, and light emission that drives the light emitting element 1 so that the light blinks by the signal processed signal. It comprises a drive unit 10.
[0034]
When the LAN is considered as an application of the indoor optical wireless transmission system as shown in FIG. 2 and the signal input from the external interface 7A is 100Base-FX, the signal processing unit 11 in the data supply unit 7 is shown in the block diagram of FIG. As shown in FIG. 4, the 4B / 5B encoder 101 performs 4B / 5B encoding for clock self-regeneration, the descramble / scramble unit 102 scrambles the data, and the parallel / serial converter 103 converts the parallel data into serial data. Then, the signal is processed by the NRZ / NRZI converter 104 (and the PLL 105) to perform NRZ / NRZI conversion in order to obtain a signal having no DC component, and is input to the light emission driver 10 as a data signal. .
[0035]
FIG. 6 is a block diagram showing a configuration of the deflection angle control signal supply unit 8. The first light receiving element 6 of the light receiving / emitting unit 9 photoelectrically converts the pilot light from the counterpart device, and sends position information signals such as the presence / absence of received light, the amount of received light, and the light receiving direction to the deflection angle control signal supply unit 8. Supply. Based on the position information signal obtained from the light emitting / receiving unit 9, the deflection angle control signal supply unit 8 moves the reflection optical system 4 so as to align the optical axis of reception with the light from the counterpart device, and The calculation unit 13 obtains a deflection angle control signal by calculating the amount of movement, and the control unit 12 drives a driving means (not shown) of the reflection optical system 4 in the horizontal direction or the vertical direction based on the deflection angle control signal.
[0036]
The reception signal processing unit 38 converts the data signal obtained by the data reception unit 39 into a signal suitable for the application. When the LAN is considered as an application of the indoor optical wireless transmission system and the signal output to the external interface 38A is 100Base-FX, the received signal processing unit 38 converts the received signal into the NRZI / RF as shown in the block diagram of FIG. NRZI / NRZ conversion is performed by the NRZ conversion unit 111 (and PLL 112), serial data is converted into parallel data by the serial / parallel conversion unit 113, and then the scrambled signal is descrambled by the scramble / descramble unit 114. Further, the 4B / 5B decoder 115 performs signal processing of decoding the 4B / 5B-encoded signal and inputs the data signal to the external interface 38A as a data signal. Note that the clock recovery circuit 116 recovers the timing interval of the clock included in the data signal.
[0037]
FIG. 8 is a configuration diagram in the case where a piezo actuator is used as a driving unit of the reflection optical system 4. The piezo actuator is an application of the piezoelectric effect of a piezo element. As shown in FIG. 8A, piezo actuators 19 are provided at four locations on the back side of the reflecting portion 18 of the reflecting optical system 4 (in FIG. Two are shown). Each piezo actuator 19 is expanded by a voltage applied to the electrode 20 as shown in FIGS. Therefore, the deflection angle with respect to the optical axis can be controlled by applying different voltages to the four piezoelectric actuators 19 to deflect the reflection optical system in three dimensions.
[0038]
The driving means in the present invention is not limited to a piezo actuator, and an actuator that can be controlled by current or voltage can be used as appropriate. Further, the reflection unit 18 of the reflection optical system 4 may have a curved surface, and the curved surface is driven to be uneven so that the deflection angle with respect to the optical axis is controlled.
[0039]
As the reflecting portion 18 of the reflecting optical system 4, a mirror generated by vapor-depositing Au (gold) on an optical resin can be used. The reflectance spectral characteristics of the Au film are shown in FIG. In addition, when a thin film that reflects only a specific wavelength is deposited, it also serves as a filter that cuts off extraneous light components in the received light.
[0040]
As the light control element 3, a non-polarizing beam splitter (hereinafter simply referred to as a beam splitter) can be used. It is also possible to use a beam splitter that passes (reflects) only a specific wavelength, and in that case, it also serves as a filter that cuts off extraneous light components in the received light.
[0041]
Next, with reference to FIGS. 10 to 12, an operation when the deflection angle control signal supply unit 8 controls the deflection angle with respect to the optical axis based on the information obtained from the light emitting / receiving unit 9 will be described.
[0042]
FIG. 10 is a flowchart showing a control procedure of the reflection optical system 4 by the deflection angle control signal supply unit 8. FIG. 11 is an explanatory diagram showing a state in which a light reception spot of pilot light received on the first light receiving element 6 configured by a four-part PD moves in a stepwise manner. FIG. 12 is a block diagram showing a configuration for realizing the control procedure of FIG. 10 in the deflection angle control signal supply unit 8.
[0043]
Here, as shown in FIG. 12, the case where the first light receiving element 6 is composed of photodiodes (PD_A, _B, _C, _D) divided into four and the reflection optical system 4 can be controlled three-dimensionally. Take an example. Hereinafter, description will be made with reference to FIGS.
[0044]
The pilot light from the counterpart device is an optical signal having a certain frequency. In the light receiving and emitting unit 9, the PD (PD_A, B, C, D) of each of the four divided PDs (first light receiving elements 6) is obtained. The received light amount is photoelectrically converted and sent to the deflection angle control signal supply unit 8 as an electrical signal (SIG_A, B, C, D) having an amplitude corresponding to the received light amount (step S1). In the calculation unit 13 in the deflection angle control signal supply unit 8, the respective signal amplitudes are amplified by the amplifiers 21, 22, 23, and 24 (Step S 2), and the amplitude values are obtained by the A / D converters 25, 26, 27, and 28. A / D conversion is performed to obtain the signal level, that is, the amount of light received at each PD as a DC value (step S3). Subsequently, the difference in the light reception level between the PDs facing each other in the horizontal direction (Pan) and the vertical direction (Tilt) is calculated by a microprocessor 29 such as a microcomputer / DSP (step S4), and the light reception level difference is set to zero. Therefore, the movement direction and the movement amount of the reflection optical system 4 are calculated and sent to the control unit 12 (step S5 → S6, step S9 → S10). The control unit 12 performs D / A conversion on the given value by the D / A converters 30 and 31 and gives the value to the drivers 32 and 33 as a deflection angle control signal. The drivers 32 and 33 cause the reflective optical system 4 to move in the horizontal and vertical directions. (Step S7 → S8, Step S11 → S12).
[0045]
Next, the movement of the light receiving spot on the quadrant PD will be described with reference to FIG. In the figure, reference numeral 6A denotes a light receiving spot on the quadrant PD when the pilot light is irradiated.
[0046]
In FIG. 11, in step (1), first, the difference between the received light amounts of the PDs A and B facing each other in the vertical direction is calculated, and light is irradiated in the direction in which the difference is zero (downward in FIG. 11). Thus, the reflecting optical system 4 is moved in the vertical direction. Next, in step (2), the difference between the received light amounts of the C and D PDs facing each other in the horizontal direction is calculated, and light is emitted in the direction in which the difference is zero (right direction in FIG. 11). Next, the reflecting optical system 4 is moved in the horizontal direction.
[0047]
In this way, in the light emitting / receiving unit 9, since the transmission light and the reception light can be controlled coaxially by the light control element 3, the light transmitted from the counterpart device having the same configuration as shown in FIG. By matching the optical axis to be received, the transmission light of this apparatus is irradiated to the counterpart apparatus. Similarly, the counterpart device also performs optical axis alignment, and the transmission light from this device is irradiated, so that the optical axes of the light receiving and emitting units 9 of the two devices coincide.
[0048]
In the present embodiment, an example in which the first light receiving element 6 is configured by a four-divided PD is shown, but the number of divisions of the first light receiving element 6 may be three, or five, eight, etc. Further, the number of divisions may be further increased. In the present embodiment, an example in which the movement direction and the movement amount of the reflective optical system 4 are calculated so that the difference in the amount of received light at the PD becomes zero has been described. However, the movement direction and the movement amount are calculated by other algorithms. You may make it calculate.
[0049]
In the optical wireless transmission apparatus according to the first embodiment, the deflection angle of the reflection optical system 4 is controlled based on the pilot light for optical axis adjustment received by the first light receiving element 6, so that the transmission light and the reception light are transmitted. Since the optical axis alignment is performed on the same axis, there are fewer movable parts and optical elements than in the conventional device that rotates the light receiving device and the light emitting device at the same time, and the size of the device can be reduced. In comparison with a specific conventional apparatus, at least a volume ratio of 1/2 or less is achieved.
[0050]
Further, when the optical axis alignment is performed by the optical axis adjustment method of the optical wireless transmission apparatus according to the first embodiment, the search accuracy of the indoor optical wireless transmission apparatus using the conventional motor is about 0.2 [deg]. Whereas the speed is about 100 to 300 [rad / sec], in the apparatus according to the present embodiment, the search accuracy is 0.001 [deg] or less and the search speed is 500 [rad / sec] or more. In addition, high-speed optical axis alignment is realized. In this way, by using a configuration in which the pilot light transmitted from the partner device and the optical axis received by the own device coincide with each other, even when a beam having a narrow directivity angle is used for the transmitted light as an indoor optical wireless transmission system High-precision bidirectional communication can be performed.
[0051]
Furthermore, since the range in which the counterpart device can be searched is wide, it can be moved to various locations for indoor use.
[0052]
FIG. 13 is a schematic configuration diagram illustrating another configuration example of the optical wireless transmission apparatus according to the first embodiment. As shown in FIG. 13, in the data receiving unit 39, when the lens 37 is of a wide directivity (fisheye lens or the like), or when a wide directivity type lens 41 is provided above the lens 37, the transmitted light in a wide range. Can be received.
[0053]
Next, a case where the transmission light is shifted by a certain amount after the optical axis adjustment will be described with reference to FIGS.
[0054]
In Embodiment 1, when a laser diode is used as the light emitting element 1 and the directivity of the transmitted light is narrow, the transmitted light of the two devices is reflected by the reflecting optical system 4 of the counterpart device after the optical axis adjustment by the control procedure is completed. Therefore, the data receiving unit 39 cannot receive the data signal from the counterpart device. Therefore, as shown in FIG. 14, after adjusting the optical axis, each apparatus shifts the transmission light by a fixed amount (θ) and irradiates the position of the data receiving unit 39 of the counterpart apparatus, thereby enabling bidirectional communication. It becomes possible.
[0055]
FIG. 15 is a flowchart showing a control procedure when the transmission light is shifted by a certain amount after the optical axis adjustment. In the deflection angle control signal supply unit 8, after adjusting the optical axis according to the control procedure of FIG. 10 (step S101), the reflection optical system 4 is driven to shift the transmission signal by a certain amount. Control is performed so as to irradiate the receiver 39, and bidirectional communication is performed (steps S102 → S103). During communication, the first light receiving element 6 of the light emitting / receiving unit 9 does not receive the transmitted light from the counterpart device, so the deflection angle control signal supply unit 8 cannot obtain information for control. Therefore, information on the presence / absence of received light is supplied from the data receiving unit 39 to the deflection angle control signal supplying unit 8. The deflection angle control signal supply unit 8 returns to the routine for adjusting the optical axis according to the control procedure of FIG. 10 again when the transmission light from the counterpart device cannot be received by the data reception unit 39 due to movement of the device or the like ( Step S104 → S101).
[0056]
According to the above embodiment, even when the directivity of the transmission light is narrow, the data reception unit 39 can always receive the data signal from the counterpart device, so that more accurate bidirectional communication can be performed. It becomes possible.
[0057]
[Embodiment 2]
Next, the configuration of the optical wireless transmission apparatus according to the second embodiment will be described with reference to FIGS. In all the drawings, the same parts as those in FIG.
[0058]
FIG. 16 is a schematic configuration diagram of an optical wireless transmission apparatus according to the second embodiment. Parts equivalent to those in FIG. 1 are denoted by the same reference numerals.
[0059]
In the second embodiment, the light emitting element 1 and the lens 2, and the lens 5 and the first light receiving element 6 are arranged opposite to those in FIG. 1. That is, the light emitting element 1 and the lens 2 are configured such that the emitted light emitted from the light emitting element 1 through the lens 2 is reflected by the light control element 3 and then reflected by the reflection optical system 4 and transmitted as transmission light. Is arranged. The lens 5 and the first light receiving element 6 receive the pilot light incident from the counterpart device by the reflection optical system 4, pass through the light control element 3, collect by the lens 5, and receive the light by the first light receiving element 6. Are arranged to be.
[0060]
Even when the arrangement of the light emitting element 1 and the lens 2 and the arrangement of the lens 5 and the first light receiving element 6 in FIG. 1 is changed as in the present embodiment, the same effect as in the first embodiment can be obtained. it can.
[0061]
By the way, in order to obtain more information of light from the counterpart device during the optical axis adjustment, it is necessary to efficiently irradiate the first light receiving element 6 of the light receiving and emitting unit 9 with light. Therefore, in the configuration of the optical wireless transmission apparatus shown in Embodiment 1 (FIG. 1), the reflection surface of the light control element 3 needs to be equal to or larger than the area of the light reflected by the reflection optical system 4.
[0062]
As another configuration example of the second embodiment, as shown in FIG. 17, the arrangement of the light emitting element 1 and the lens 2 and the lens 5 and the first light receiving element 6 is changed, and the reflection surface 3A of the light control element 3 is provided. The light control element 3 having a size smaller than that of FIG. 16 is arranged so as to be smaller than the area S of the light reflected by the reflection optical system 4.
[0063]
In the configuration of FIG. 17, since the light irradiated to the first light receiving element 6 is transmitted light of the light control element 3, the light control element 3 is small and the reflection surface 3 </ b> A is an area of light reflected by the reflection optical system 4. Even if it is smaller than S, the light that is not irradiated to the light control element 3 is directly irradiated to the first light receiving element 6. For this reason, as shown in FIG. 16, it is possible to obtain a received light amount equal to or greater than that when the reflection surface of the light control element 3 is large. When the light emitting element 1 is a laser diode or the like, the directivity of the transmitted light is narrow, so the reflection surface of the light control element 3 may be small.
[0064]
Further, in the present embodiment, by reducing the size of the light control element 3, the reflection optical system 4 can be brought closer to the light control element 3 as shown in FIG. The size can be reduced, and the design of the light emitting / receiving unit 9 can be made flexible.
[0065]
[Embodiment 3]
FIG. 19 is an explanatory diagram of a configuration example of the optical wireless transmission / reception apparatus according to the third embodiment. By arranging the optical members of the light emitting / receiving unit 9 and the data receiving unit 39 in the first to third embodiments on the same substrate 34, the optical wireless transmission device can be configured as a small module 35. For example, when a module having a size of about 5 mm square to 30 mm square is applied by applying a hologram pickup assembly technique or the like, it can be incorporated into a device such as a personal computer 42 as shown in FIG.
[0066]
As shown in the present embodiment, when the light emitting / receiving unit 9 and the data receiving unit 39 are integrally disposed on the same substrate, not only the apparatus can be miniaturized, but also the cost reduction and search time associated therewith are reduced. The effect such as shortening can be obtained. In addition, when using an integrated structure, the current IC microfabrication technology and hologram pickup assembly technology can be applied, enabling high-definition placement and easier adjustment of the transmission and reception optical axes. It will be something.
[0067]
[Embodiment 4]
Next, another configuration example of the light control element 3 having a function of reflecting a part of incident light and transmitting the remaining light will be described.
[0068]
As the light control element 3, other than the beam splitters shown in the above embodiments, a light control element that transmits light incident on a part of the region and reflects light incident on the other region can be used.
[0069]
In the first embodiment, when the light-emitting element 1 is a laser diode or the like, the transmission surface of the light control element 3 may be small because the directivity of transmission light is narrow. In this case, as shown in FIG. 21A, a light control element 51 is used in which the central portion through which light emitted from the light emitting element 1 is transmitted is a transmission region 52 and the remaining portion (back surface) is the reflection surface 53. be able to. The light control element 51 can be manufactured by vapor-depositing a reflective material in a region excluding the central portion of the transmission optical element serving as a base. In the light control element 51, the emitted light from the light emitting element 1 is transmitted through the transmission region 52, and the light received from the counterpart device is reflected by the reflecting surface 53 and guided to the first light receiving element 6. The transmission region 52 of the light control element 51 may be an opening. In this case, it can be manufactured by removing the central portion of the transmissive optical element as a base.
[0070]
Further, when the light emitted from the light emitting element 1 is reflected by the light control element 3 as in the second embodiment, the light emitted from the light emitting element 1 is reflected as shown in FIG. It is possible to use a light control element 61 in which the central portion to be reflected is the reflection surface 62 and the remaining portion is the transmission surface 63. The light control element 61 can be manufactured by masking all the remaining parts except the central part of the transmissive optical element as a base, and depositing a reflective material on the surface on which the reflective surface is formed. In the light control element 61, the light emitted from the light emitting element 1 is reflected by the reflection surface 62, and the light received from the counterpart device is transmitted through the transmission surface 63 and guided to the first light receiving element 6 through the lens 5. Become.
[0071]
[Embodiment 5]
Next, laser output in each of the above embodiments will be described.
[0072]
In an optical wireless transmission device, light transmitted from the device is limited by safety standards. For example, in the case of a laser diode, its radiation intensity is defined by IEC 60825-1 (in Japan, JIS C6802: radiation safety standard for laser products). This reference limits the light output from the device. In the optical wireless transmission device shown in each of the above embodiments, when the light emitting element 1 is a laser diode, the output from the device is within the reference. The laser output of is sufficiently smaller than the level at which the laser diode can actually output. Therefore, in the case of the first embodiment, the transmission light is transmitted at a safe output level by changing the transmission / reflection ratio of the light control element 3, reducing the transmittance, and increasing the reflectance, and The received light can be condensed on the first light receiving element 6 with high efficiency. For example, if the level at which the laser diode can be output is 10 times the level of output that can be transmitted from the apparatus, the transmittance of the light control element 3 is 10% and the reflectance is 90%.
[0073]
In the light-emitting element 1 shown in each of the above embodiments, the output level can be attenuated, and the transmitted light transmitted through the light control element 3 and reflected by the reflection optical system 4 and transmitted outside the apparatus is safe. By making it adjustable so that it is below the level limited by the standard, high-speed bi-directional communication is possible at a level that is safe for the eyes.
[0074]
In each of the embodiments described above, the pilot light for adjusting the optical axis is configured to be emitted from the light emitting element 1, but the pilot light is another light emitting element disposed inside or outside the light emitting / receiving unit 9. You may comprise so that it may radiate | emit from. The optical axis of the light emitting element is arranged so as to be coaxial or substantially parallel to the optical axis of the light emitting / receiving unit 9. Further, the light of the data signal emitted from the light emitting element 1 can be used as pilot light.
[0075]
【The invention's effect】
As described above, in the present invention, the optical axis alignment of the transmission light and the reception light can be controlled coaxially by controlling the deflection angle of the reflection optical system. Compared to the conventional device that rotates, there are fewer movable parts, and the device can be made smaller. Further, even when a beam having a narrow directivity angle is used for the transmission light, it is possible to perform optical axis alignment with high accuracy and high speed. Furthermore, since the range in which the counterpart device can be searched is wide, it can be moved to various locations for indoor use.
[0076]
Therefore, when the optical wireless transmission device, the optical axis adjustment method of the optical wireless transmission device, the optical wireless communication method, and the optical wireless transmission system according to the present invention are applied to an indoor optical wireless transmission system, high-accuracy bidirectional communication is performed. Can be done.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an optical wireless transmission apparatus according to a first embodiment.
FIG. 2 is a schematic configuration diagram when two optical wireless transmission devices are combined to form an indoor optical wireless transmission system.
3 is a schematic configuration diagram in the case where a mirror is provided below the reflecting optical system in Embodiment 1. FIG.
FIG. 4 is a block diagram showing a configuration of a data supply unit.
FIG. 5 is a block diagram showing a configuration of a signal processing unit.
FIG. 6 is a block diagram showing a configuration of a deflection angle control signal supply unit.
FIG. 7 is a block diagram showing a configuration of a received signal processing unit.
FIG. 8A is a configuration diagram in the case where a piezo actuator is used as a driving unit of the reflection optical system. (B), (c) is explanatory drawing at the time of extending a piezo actuator.
FIG. 9 is an explanatory diagram showing reflectance spectral characteristics of an Au film.
FIG. 10 is a flowchart showing a control procedure of the reflection optical system by a deflection angle control signal supply unit.
FIG. 11 is an explanatory diagram showing a state in which a light receiving spot of pilot light received by a light receiving element configured by a four-part PD moves in a stepwise manner.
12 is a block diagram showing a configuration for realizing the control procedure of FIG. 10 in the deflection angle control signal supply unit.
13 is a schematic configuration diagram showing another configuration example of the optical wireless transmission apparatus according to the first embodiment. FIG.
FIG. 14 is an explanatory diagram when transmitting light is shifted by a certain amount after optical axis adjustment in bidirectional communication.
FIG. 15 is a flowchart showing a control procedure when transmitting light is shifted by a certain amount after optical axis adjustment;
FIG. 16 is a schematic configuration diagram of an optical wireless transmission apparatus according to the second embodiment.
17 is a schematic configuration diagram when the light control element is reduced in FIG.
FIG. 18 is a schematic configuration diagram when the reflection optical system is brought close to the light control element in FIG. 17;
FIG. 19 is an explanatory diagram showing a configuration example of an optical wireless transmission apparatus according to the third embodiment.
FIG. 20 is an explanatory diagram when the optical wireless transmission apparatus according to the third embodiment is mounted on a personal computer.
FIG. 21 is an explanatory diagram showing another configuration example of the light control element. (A) is explanatory drawing at the time of making the central part which an emitted light permeate | transmits into a transmissive area | region, and making all the remaining parts into a reflective surface. (B) is explanatory drawing at the time of making the central part which an emitted light reflects into a reflective surface, and making all the remaining parts into a transmissive surface.
FIG. 22 is a schematic configuration diagram of a conventional indoor optical wireless transmission device.
[Explanation of symbols]
1. Light emitting element
2 ... Lens (first optical element)
3. Light control element
3. Optical element
3A: Transmission region
4 ... Reflective optical system
4A ... Real reflection area
5 ... Lens (second optical element)
6 ... 1st light receiving element
7 ... Data supply section
7A ... External interface
8: Deflection angle control signal supply unit
9 ... Light emitting / receiving section
10: Light emission drive unit
11: Signal processor
12 ... Control unit
13. Calculation unit
18 ... Reflecting part
19 ... Piezo actuator
20 ... Electrode
21 ... Amplifier
21 ... Master unit
22 ... Light emitting part
23. Light emitting means
23A ... Pilot light
24 ... handset
24A ... Light receiving device
25 ... Converter
29 ... Microprocessor
30 ... Converter
32 ... Driver
34 ... Board
35 ... Module
36: Second light receiving element
37. Lens (third optical element)
38. Reception signal processing section
38A ... External interface
39: Data receiver
40 ... Mirror
41 ... Lens
42 ... PC
101 ... 4B / 5B encoder
102 ... descrambling / scramble part
103 ... Parallel / serial converter
104 ... NRZ / NRZI converter
105, 112 ... PLL
111... NRZI / NRZ converter
113 ... Serial / parallel converter
114 ... Scramble / descramble part
115 ... 4B / 5B decoder
116: Clock recovery circuit

Claims (9)

データ信号により変調された光又は光軸調整用のパイロット光を出射する発光素子、前記発光素子から出射された光を平行光に近いビーム光に成形する第1光学素子、入射光の一部を反射し、残りを透過する光制御素子、入射光を反射する反射部と当該反射部の前記入射光の光軸に対する偏向角を制御するための駆動手段を有する反射光学系、相手装置から送信されたパイロット光を集光する第2光学素子、前記第2光学素子で集光されたパイロット光を受光する第1受光素子を有し、前記発光素子から出射された光は前記第1光学素子で平行光に近いビーム光に成形され、前記光制御素子を透過し、前記反射光学系で所定方向に反射して前記相手装置に送信され、前記相手装置から入射したパイロット光は前記反射光学系で反射され前記光制御素子で反射された後、前記第2光学素子を経て前記第1受光素子で受光されるように構成された受発光部と、
前記相手装置から送信された光を集光する第3光学素子、当該第3光学素子で集光された光を受光する第2受光素子を有し、前記相手装置から送信された光を前記第3光学素子で集光して前記第2受光素子でデータ信号として受光するデータ受信部と、
前記第1受光素子で受光したパイロット光に基づいて前記反射光学系の偏向角を制御するための偏向角制御信号を演算し、当該偏向角制御信号に基づいて前記反射光学系の駆動手段を制御する偏向角制御信号供給部と、
を備え、
前記受発光部と前記データ受信部の各光軸が略平行となり、且つ前記データ受信部の前記第2受光素子が、前記受発光部の前記光制御素子および前記反射光学系の反射部にて反射されず、前記反射光学系の近傍を通過する前記相手装置から送信された光を、前記第3光学素子で集光して前記第2受光素子でデータ信号として受光するように配置され、前記第1受光素子で受光した前記パイロット光に基づいて前記反射光学系の偏向角を制御することにより、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行うことを特徴とする光無線伝送装置。
A light emitting element that emits light modulated by a data signal or pilot light for adjusting the optical axis, a first optical element that shapes light emitted from the light emitting element into beam light that is close to parallel light, and a part of incident light A light control element that reflects and transmits the rest, a reflection unit that reflects incident light, and a reflection optical system that has a drive unit for controlling the deflection angle of the reflection unit with respect to the optical axis of the incident light, transmitted from the counterpart device A second optical element for condensing the pilot light and a first light receiving element for receiving the pilot light condensed by the second optical element, and the light emitted from the light emitting element is transmitted by the first optical element. Shaped into beam light close to parallel light, transmitted through the light control element, reflected in a predetermined direction by the reflective optical system, transmitted to the counterpart device, and pilot light incident from the counterpart device is transmitted by the reflective optical system. is reflected, the After being reflected by the control device, and a light receiving and emitting unit configured to be received by the first light receiving element through said second optical element,
A third optical element that condenses the light transmitted from the counterpart device, and a second light receiving element that receives the light collected by the third optical element, and transmits the light transmitted from the counterpart device to the first optical element. A data receiving unit that condenses light by three optical elements and receives light as a data signal by the second light receiving element;
A deflection angle control signal for controlling the deflection angle of the reflection optical system is calculated based on the pilot light received by the first light receiving element, and the drive means of the reflection optical system is controlled based on the deflection angle control signal. A deflection angle control signal supply unit,
With
The optical axes of the light receiving / emitting section and the data receiving section are substantially parallel, and the second light receiving element of the data receiving section is the light control element of the light receiving / emitting section and the reflecting section of the reflective optical system. The light transmitted from the counterpart device that is not reflected and passes through the vicinity of the reflective optical system is disposed so as to be collected by the third optical element and received as a data signal by the second light receiving element, The optical axis alignment of the light emitted from the light emitting element and the light incident from the counterpart device is performed by controlling the deflection angle of the reflection optical system based on the pilot light received by the first light receiving element. An optical wireless transmission device.
データ信号により変調された光又は光軸調整用のパイロット光を出射する発光素子、前記発光素子から出射された光を平行光に近いビーム光に成形する第1光学素子、入射光の一部を反射し、残りを透過する光制御素子、入射光を反射する反射部と当該反射部の前記入射光の光軸に対する偏向角を制御するための駆動手段を有する反射光学系、相手装置から送信されたパイロット光を集光する第2光学素子、前記第2光学素子で集光されたパイロット光を受光する第1受光素子を有し、前記発光素子から出射された光は前記第1光学素子で平行光に近いビーム光に成形され、前記光制御素子で反射された後、前記反射光学系で所定方向に反射して前記相手装置に送信され、前記相手装置から入射したパイロット光は前記反射光学系で反射され、前記光制御素子を透過し、前記第2光学素子を経て前記第1受光素子で受光するように構成された受発光部と、
前記相手装置から送信されたを集光する第3光学素子、当該第3光学素子で集光された光を受光する第2受光素子を有し、前記相手装置から送信された光を前記第3光学素子で集光して前記第2受光素子でデータ信号として受光するデータ受信部と、
前記第1受光素子で受光したパイロット光に基づいて前記反射光学系の偏向角を制御するための偏向角制御信号を算出し、当該偏向角制御信号に基づいて前記反射光学系の駆動手段を制御する偏向角制御信号供給部と、
を備え、
前記受発光部と前記データ受信部の各光軸が略平行となり、且つ前記データ受信部の前記第2受光素子が、前記受発光部の前記光制御素子および前記反射光学系の反射部にて反射されず、前記反射光学系の近傍を通過する前記相手装置から送信された光を、前記第3光学素子で集光して前記第2受光素子でデータ信号として受光するように配置され、前記第1受光素子で受光した前記パイロット光に基づいて前記反射光学系の偏向角を制御することにより、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行うことを特徴とする光無線伝送装置。
A light emitting element that emits light modulated by a data signal or pilot light for adjusting the optical axis, a first optical element that shapes light emitted from the light emitting element into beam light that is close to parallel light, and a part of incident light A light control element that reflects and transmits the rest, a reflection unit that reflects incident light, and a reflection optical system that has a drive unit for controlling the deflection angle of the reflection unit with respect to the optical axis of the incident light, transmitted from the counterpart device A second optical element for condensing the pilot light and a first light receiving element for receiving the pilot light condensed by the second optical element, and the light emitted from the light emitting element is transmitted by the first optical element. is shaped into the beam light close to parallel light, after being reflected by the light control element, the reflection is reflected in a predetermined direction by the optical system is transmitted to the partner apparatus, wherein the reflective optical pilot light incident from the counterpart device Reflected by the system A light receiving and emitting unit that is configured to receive a transmission, and the first light receiving element through said second optical element said light control element,
A third optical element that condenses the light transmitted from the counterpart device, and a second light receiving element that receives the light collected by the third optical element, and transmits the light transmitted from the counterpart device to the first optical element. A data receiving unit that condenses light by three optical elements and receives light as a data signal by the second light receiving element;
A deflection angle control signal for controlling the deflection angle of the reflection optical system is calculated based on the pilot light received by the first light receiving element, and the driving unit of the reflection optical system is controlled based on the deflection angle control signal. A deflection angle control signal supply unit,
With
The optical axes of the light receiving / emitting section and the data receiving section are substantially parallel, and the second light receiving element of the data receiving section is the light control element of the light receiving / emitting section and the reflecting section of the reflective optical system. The light transmitted from the counterpart device that is not reflected and passes through the vicinity of the reflective optical system is disposed so as to be collected by the third optical element and received as a data signal by the second light receiving element, The optical axis alignment of the light emitted from the light emitting element and the light incident from the counterpart device is performed by controlling the deflection angle of the reflection optical system based on the pilot light received by the first light receiving element. An optical wireless transmission device.
前記請求項2に記載の光無線伝送装置において、
前記光制御素子の反射面は、前記反射光学系で反射される光の面積よりも小さいことを特徴とする光無線伝送装置。
In the optical wireless transmission device according to claim 2,
An optical wireless transmission apparatus, wherein a reflection surface of the light control element is smaller than an area of light reflected by the reflection optical system.
前記請求項1乃至3のいずれか一項に記載の光無線伝送装置において、
前記第1受光素子は、多分割された受光素子により構成され、
前記偏向角制御信号供給部は、前記受光素子の各分割領域での受光量に基づいて前記反射光学系の移動方向と移動量を演算して偏向角制御信号を得る演算手段と、前記演算手段で演算された偏向角制御信号に基づいて前記反射光学系の駆動手段を水平方向又は垂直方向に駆動して、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行う制御手段と、
を備えることを特徴とする光無線伝送装置。
In the optical wireless transmission device according to any one of claims 1 to 3,
The first light receiving element is constituted by a multi-divided light receiving element,
The deflection angle control signal supply unit calculates a movement direction and a movement amount of the reflection optical system based on a light reception amount in each divided region of the light receiving element, and obtains a deflection angle control signal; Based on the deflection angle control signal calculated in step 1, the driving means of the reflection optical system is driven in the horizontal direction or the vertical direction to align the optical axes of the light emitted from the light emitting element and the light incident from the counterpart device. Control means;
An optical wireless transmission device comprising:
前記請求項1乃至4のいずれか一項に記載の光無線伝送装置において、
前記受発光部及び前記データ受信部を同一基板上に一体に配置したことを特徴とする光無線伝送装置。
In the optical wireless transmission device according to any one of claims 1 to 4,
An optical wireless transmission apparatus, wherein the light emitting / receiving unit and the data receiving unit are integrally arranged on the same substrate.
前記請求項1乃至5のいずれか一項に記載の光無線伝送装置の光軸調整方法において、
前記相手装置から入射する光を前記第1受光素子で受光し、当該第1受光素子を構成する前記各受光素子における受光量に基づいて前記反射光学系の移動方向と移動量を演算して偏向角制御信号を得ると共に、当該偏向角制御信号に基づいて前記反射光学系の駆動手段を水平方向又は垂直方向に駆動することにより、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行うことを特徴とする光無線伝送装置の光軸調整方法。
In the optical axis adjustment method of the optical wireless transmission device according to any one of claims 1 to 5,
Light incident from the counterpart device is received by the first light receiving element, and deflected by calculating the moving direction and moving amount of the reflective optical system based on the amount of light received by each of the light receiving elements constituting the first light receiving element. An angle control signal is obtained, and the driving means of the reflection optical system is driven in the horizontal direction or the vertical direction based on the deflection angle control signal, so that the light emitted from the light emitting element and the light incident from the counterpart device are An optical axis adjustment method for an optical wireless transmission apparatus, characterized in that optical axis alignment is performed.
前記請求項6に記載の光軸調整方法により光軸調整を行う光無線伝送装置を第1、第2の光無線伝送装置として所定間隔で対向配置し、前記第1、第2の光無線伝送装置について前記請求項6に記載の光無線伝送装置の光軸調整方法により光軸合わせを行った後、前記第1、第2の光無線伝送装置を用いて双方向通信を行うことを特徴とする光無線通信方法。 An optical wireless transmission device that performs optical axis adjustment by the optical axis adjustment method according to claim 6 is disposed as a first and a second optical wireless transmission device facing each other at a predetermined interval, and the first and second optical wireless transmissions are arranged. The apparatus performs two-way communication using the first and second optical wireless transmission apparatuses after performing optical axis alignment by the optical axis adjustment method of the optical wireless transmission apparatus according to claim 6. Optical wireless communication method. 前記請求項7に記載の光無線通信方法において、
前記第1、第2の光無線伝送装置について前記請求項6に記載の光無線伝送装置の光軸調整方法により光軸合わせを行った後、前記第1、第2の光無線伝送装置の送信光を一定量シフトさせ、それぞれの送信光が互いに相手装置のデータ受信部に照射されるように制御した後、前記第1、第2の光無線伝送装置を用いて双方向通信を行うことを特徴とする光無線通信方法。
In the optical wireless communication method according to claim 7,
7. After the optical axes are aligned by the optical axis adjusting method of the optical wireless transmission apparatus according to claim 6, the first and second optical wireless transmission apparatuses are transmitted by the first and second optical wireless transmission apparatuses. After the light is shifted by a certain amount and controlled so that each transmitted light is irradiated to the data receiving unit of the partner device, bidirectional communication is performed using the first and second optical wireless transmission devices. An optical wireless communication method.
前記請求項6に記載の光軸調整方法により光軸調整を行う光無線伝送装置を第1、第2の光無線伝送装置として所定間隔で対向配置した光無線伝送システムであって、
前記第1、第2の光無線伝送装置について前記請求項6に記載の光無線伝送装置の光軸調整方法により光軸合わせを行った後、前記第1、第2の光無線伝送装置を用いて双方向通信を行うことを特徴とする光無線伝送システム。
An optical wireless transmission system in which an optical wireless transmission device that performs optical axis adjustment by the optical axis adjustment method according to claim 6 is arranged to face each other as a first optical wireless transmission device at a predetermined interval,
The first and second optical wireless transmission apparatuses use the first and second optical wireless transmission apparatuses after optical axis alignment is performed by the optical axis adjustment method of the optical wireless transmission apparatus according to claim 6. An optical wireless transmission system that performs two-way communication.
JP2003103334A 2003-04-07 2003-04-07 Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system Expired - Fee Related JP3757949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103334A JP3757949B2 (en) 2003-04-07 2003-04-07 Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103334A JP3757949B2 (en) 2003-04-07 2003-04-07 Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005299774A Division JP4251294B2 (en) 2005-10-14 2005-10-14 Optical wireless communication apparatus, optical axis adjustment method of optical wireless communication apparatus, optical wireless communication method, and optical wireless communication system

Publications (2)

Publication Number Publication Date
JP2004312390A JP2004312390A (en) 2004-11-04
JP3757949B2 true JP3757949B2 (en) 2006-03-22

Family

ID=33466504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103334A Expired - Fee Related JP3757949B2 (en) 2003-04-07 2003-04-07 Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system

Country Status (1)

Country Link
JP (1) JP3757949B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5255508B2 (en) * 2009-04-22 2013-08-07 浜松ホトニクス株式会社 Optical space transmission system
CN112596173B (en) * 2020-12-25 2022-09-16 武汉邮电科学研究院有限公司 Optical signal transmitter

Also Published As

Publication number Publication date
JP2004312390A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
CN108141301B (en) Short wave coarse wave division multiplexing optical assembly
US20150377696A1 (en) Integrated optoelectronic modules
WO2010098363A1 (en) Optical axis adjusting apparatus, optical axis adjusting method, and projection type display apparatus
US10247812B2 (en) Multi-mirror scanning depth engine
KR100569616B1 (en) Spatial light transmission device and spatial light transmission method
US20080056723A1 (en) Multiple access free space laser communication method and apparatus
JP3804634B2 (en) Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system
JP4251294B2 (en) Optical wireless communication apparatus, optical axis adjustment method of optical wireless communication apparatus, optical wireless communication method, and optical wireless communication system
JP3757949B2 (en) Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system
JP3800195B2 (en) Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system
CN111092655B (en) High-speed modulation visible light communication system
CN102385162B (en) Light supply apparatus
US7099536B1 (en) Single lens system integrating both transmissive and reflective surfaces for light focusing to an optical fiber and light reflection back to a monitor photodetector
JP4273458B2 (en) Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system
CN112596173A (en) Optical signal transmitter
CN111130638B (en) Directional visible light communication system
CN114236714B (en) Wireless optical communication receiving device and method based on light beam correction
US6788842B1 (en) Method and apparatus for internal monitoring and control of reflectors in an optical switch
JP4281062B2 (en) Mirror tilt device
JP2004349797A (en) Optical radio transmission apparatus, and optical axis adjusting method thereof
JP7156364B2 (en) Photodetector and transmitter/receiver
US9952387B2 (en) Optical fiber transmission system with a laser beam splitting and combining device
JP4462134B2 (en) Optical signal transmission system
TW200407579A (en) Light transceiving module
JP2004080253A (en) Optical space transmission apparatus and optical space transmission system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R151 Written notification of patent or utility model registration

Ref document number: 3757949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees