JP3800195B2 - Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system - Google Patents

Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system Download PDF

Info

Publication number
JP3800195B2
JP3800195B2 JP2003103771A JP2003103771A JP3800195B2 JP 3800195 B2 JP3800195 B2 JP 3800195B2 JP 2003103771 A JP2003103771 A JP 2003103771A JP 2003103771 A JP2003103771 A JP 2003103771A JP 3800195 B2 JP3800195 B2 JP 3800195B2
Authority
JP
Japan
Prior art keywords
light
optical
wireless transmission
control element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003103771A
Other languages
Japanese (ja)
Other versions
JP2004312417A (en
Inventor
桐子 山田
雅久 境
剛良 笹生
学 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2003103771A priority Critical patent/JP3800195B2/en
Publication of JP2004312417A publication Critical patent/JP2004312417A/en
Application granted granted Critical
Publication of JP3800195B2 publication Critical patent/JP3800195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、データ信号等により変調された光を送信・受信することによりデータ伝送を行う光無線伝送装置、光無線伝送装置の光軸調整方法、光無線通信方法、及び光無線伝送システムに関する。
【0002】
【従来の技術】
一般に、光無線を介して信号を伝送する場合、送信側の発光素子としてLED(発光ダイオード)やレーザダイオードが用いられている。このうち、LEDにより信号を送信する装置では、指向性の広いLED光のビーム径を集束レンズで絞らなければならないが、この絞りに限界があるために長距離を伝送するとビーム径が広がり、受信されるパワーが減少する。この様にビーム径が広がると、複数の装置をパラレルで用いた場合に干渉が発生するという問題点がある。
【0003】
これを解決するため、例えば図23に示すような屋内光無線伝送装置が提案されている。この光無線伝送装置では、一方の装置(親機21)にデータ信号送信のための発光部22とは別に発光手段23を設け、この発光手段23から光軸調整用のパイロット光23Aを送信し、他方の光無線伝送装置(子機24)では、その光軸方向を変位させて受光装置24Aによりパイロット光23Aを受信し、このパイロット光23Aの受光レベルに基づいて光軸合わせを行うように構成されている。本装置は、LED光をパラボラリフレクタにより平行化してビーム径を絞るようにしたもので、指向性の狭いビーム光を受信する受光装置24Aをステッピングモータ等により回転させることにより、水平・垂直方向に走査して、2次元座標において最大の受光レベルが得られる点をサーチするという形態で具体化されている(例えば、特許文献1参照)。
【0004】
一方、レーザダイオードを用いた屋外光無線伝送装置においては、ミラーとビームスプリッタによる光軸調整方法が採用されている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特許第3059870号
【0006】
【特許文献2】
特開平6−152541号
【0007】
【発明が解決しようとする課題】
上記の屋内光無線伝送装置で光軸調整を行うには、受光素子、及びその光学系を含む受光装置と、発光素子及びその光学系を含む発光装置とを同時に回転させる必要があるため、屋内で使用するには装置が大型なものとなる。
【0008】
また、より高速な伝送を行うためには、受信側で、相手装置からの送信光を高効率に受光する必要があり、送信光は指向角数度[deg]程度の非常に狭い指向角のビームにしなければならない。双方向通信を行う場合は、同一装置内に配置された発光装置と受光装置の光軸とを一致させる必要があるが、送信光の指向性が非常に狭い場合、本装置のように上下に配置された発光装置と受光装置の光軸合わせを高精度且つ高速に行うことは困難であった。
【0009】
さらに、送信と受信の光軸とを一致させる光軸調整方法として、上記の屋外光無線伝送装置の調整方法が考えられるが、本装置は多数の光学素子が用いられた大規模なものであるために装置が大型なものとなり、また、ある程度光軸調整を行った後の微調整に用いられているため、相手装置をサーチ可能な範囲が数度程度と狭く、屋内の様々な場所に移動して使用される装置には適さないものとなっている。
【0010】
本発明の目的は、装置の小型化を図ると共に、光軸合わせを高精度且つ高速に行うことが可能であり、屋内使用にも適した光無線伝送装置、光無線伝送装置の光軸調整方法、光無線通信方法、及び光無線伝送システムを提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、データ信号により変調された光又は光軸調整用のパイロット光を出射する発光素子、前記発光素子から出射された光を平行光に近いビーム光に成形する第1光学素子、入射光の一部を反射し、残りを透過する第1、第2光制御素子、入射光を反射し且つ当該入射光の光軸に対する偏向角を制御するための駆動手段を有する反射光学系、相手装置から送信された光を集光する第2光学素子、前記第2光学素子で集光された光を受光する第1受光素子、前記相手装置から送信された光を集光する第3光学素子、前記第3光学素子で集光された光を受光する第2受光素子を有し、前記第1光制御素子を通過する光の光軸方向に対する照射面積が、前記第2光制御素子に入射される光の光軸方向に対する照射面積よりも大きくなるように前記第1、第2光制御素子を構成すると共に、前記発光素子から出射された光は前記第1光学素子で平行光に近いビーム光に成形され、前記第2光制御素子で反射された後、前記第1光制御素子を透過し、前記反射光学系で所定方向へ反射されて送信光として送信され、前記相手装置から入射した光は前記反射光学系で反射され、一部の光は前記第1光制御素子で反射された後、前記第2光学素子を経て前記第1受光素子で受光され、残りの光は前記第1光制御素子を透過し、前記第2光制御素子を透過及び前記第2光制御素子の周囲を通過して、前記第3光学素子を経て前記第2受光素子で受光されるように構成された受発光部と、前記第1受光素子で受光したパイロット光に基づいて前記反射光学系の偏向角を制御するための偏向角制御信号を演算し、当該偏向角制御信号に基づいて前記反射光学系の駆動手段を制御する偏向角制御信号供給部とを備え、前記第2受光素子において前記相手装置からの光をデータ信号として受光し、前記第1受光素子において受光した前記パイロット光に基づいて前記反射光学系の偏向角を制御することにより、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行うことを特徴とする光無線伝送装置である。
【0012】
請求項2の発明は、前記請求項1に記載の光無線伝送装置において、前記受発光部は、前記発光素子から出射された光は前記第1光学素子で平行光に近いビーム光に成形され、前記第2光制御素子で反射された後、前記第1光制御素子を透過し、前記反射光学系で所定方向へ反射されて前記相手装置に送信され、前記相手装置から入射した光は前記反射光学系で反射され、一部の光は前記第1光制御素子で反射された後、前記第3光学素子を経て前記第2受光素子で受光され、残りの光は前記第1光制御素子を透過し、前記第2光制御素子を透過及び前記第2光制御素子の周囲を通過し、前記第2光学素子を経て前記第1受光素子で受光されるように構成されたものであることを特徴とする。
【0013】
請求項3の発明は、データ信号により変調された光又は光軸調整用のパイロット光を出射する発光素子、前記発光素子から出射された光を平行光に近いビーム光に成形する第1光学素子、入射光の一部を反射し、残りを透過する第1、第2光制御素子、入射光を反射し且つ当該入射光の光軸に対する偏向角を制御するための駆動手段を有する反射光学系、相手装置から送信された光を集光する第2光学素子、前記第2光学素子で集光された光を受光する第1受光素子、前記相手装置から送信された光を集光する第3光学素子、前記第3光学素子で集光された光を受光する第2受光素子を有し、前記第1光制御素子を通過する光の光軸方向に対する照射面積が、前記第2光制御素子に入射される光の光軸方向に対する照射面積よりも小さくなるように前記第1、第2光制御素子を構成すると共に、前記発光素子から出射された光は前記第1光学素子で平行光に近いビーム光に成形され、前記第1光制御素子で反射された後、前記反射光学系で所定方向に反射されて前記相手装置に送信され、前記相手装置から入射した光は前記反射光学系で反射され、前記第1光制御素子を透過及び前記第1光制御素子の周囲を通過し、一部の光は前記第2光制御素子で反射された後、前記第2光学素子を経て前記第1受光素子で受光され、残りの光は前記第1、第2光制御素子を透過して、前記第3光学素子を経て前記第2受光素子で受光されるように構成された受発光部と、前記第1受光素子で受光したパイロット光に基づいて前記反射光学系の偏向角を制御するための偏向角制御信号を演算し、当該偏向角制御信号に基づいて前記反射光学系の駆動手段を制御する偏向角制御信号供給部とを備え、前記第2受光素子において前記相手装置からの光をデータ信号として受光し、前記第1受光素子において受光した前記パイロット光に基づいて前記反射光学系の偏向角を制御することにより、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行うことを特徴とする光無線伝送装置である。
【0014】
請求項4の発明は、前記請求項3に記載の光無線伝送装置において、前記受発光部は、前記発光素子から出射された光は前記第1光学素子で平行光に近いビーム光に成形され、前記第1光制御素子で反射された後、前記反射光学系で所定方向へ反射されて前記相手装置に送信され、前記相手装置から入射した光は前記反射光学系で反射され、前記第1光制御素子を透過及び前記第1光制御素子の周囲を通過し、一部の光は前記第2光制御素子で反射された後、前記第3光学素子を経て前記第2受光素子で受光され、残りの光は前記第2光制御素子を透過し、前記第2光学素子を経て前記第1受光素子で受光されるように構成されたものであることを特徴とする。
【0015】
請求項5の発明は、前記請求項1乃至4のいずれか一項に記載の光無線伝送装置において、前記第1受光素子は、多分割された受光素子により構成され、前記偏向角制御信号供給部は、前記受光素子の各分割領域での受光量に基づいて前記反射光学系の移動方向と移動量を演算する演算手段と、前記演算手段で演算された移動方向と移動量に基づいて前記反射光学系の駆動手段を水平方向又は垂直方向に駆動して、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行う制御手段とを備えることを特徴とする。
【0016】
請求項6の発明は、前記請求項1乃至5のいずれか一項に記載の光無線伝送装置において、前記受発光部の構成部材を同一基板上に一体に配置したことを特徴とする。
【0017】
請求項7の発明は、前記請求項5に記載の光無線伝送装置の光軸調整方法において、前記相手装置から入射する光を前記第1受光素子で受光し、当該第1受光素子を構成する前記各受光素子における受光量に基づいて前記反射光学系の移動方向と移動量を演算すると共に、当該移動方向と移動量に基づいて前記反射光学系の駆動手段を水平方向又は垂直方向に駆動することにより、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行うことを特徴とする。
【0018】
請求項8の発明は、前記請求項1乃至6のいずれか一項に記載の光無線伝送装置が第1、第2の光無線伝送装置として所定間隔で対向配置されると共に、請求項7に記載の光無線伝送装置の光軸調整方法により光軸合わせがされた後、前記第1、第2の光無線伝送装置の間で双方向通信を行うことを特徴とする光無線通信方法である。
【0019】
請求項9の発明は、前記請求項1乃至6のいずれか一項に記載の光無線伝送装置を第1、第2の光無線伝送装置として所定間隔で対向配置した光無線伝送システムであって、前記第1、第2の光無線伝送装置について請求項7に記載の光無線伝送装置の光軸調整方法により光軸合わせがされた後、前記第1、第2の光無線伝送装置の間で双方向通信を行うことを特徴とする。
【0024】
【発明の実施の形態】
以下、本発明に係わる光無線伝送装置、光無線伝送装置の光軸調整方法、光無線通信方法、及び光無線伝送システムの実施の形態について説明する。
【0025】
以下の説明においては、データ信号により変調された光又は光軸調整用のパイロット光を適宜に光という。このうち、データ信号により変調された光を適宜にデータ信号の光と表記する。また、相手装置へ送信する光を送信光、出射光又は出射する光といい、相手装置から受信する光を受信光、入射光又は入射する光という。さらに、光を発することを送信といい、受けることを受光又は受信という。
【0026】
[実施の形態1]
まず図1を参照して、実施の形態1に係わる光無線伝送装置の構成について説明する。
【0027】
図1は、実施の形態1に係わる光無線伝送装置の概略構成図である。
【0028】
受発光部9は、データ信号により変調された光又はパイロット光を出射する発光素子1と、コリメータレンズなどのレンズ2と、入射光の一部を反射し、残りを透過する第1光制御素子3A及び第2光制御素子3Bと、入射光を反射し且つ当該入射光の光軸に対する偏向角を制御する図示しない駆動手段を有する反射光学系4と、図示しない相手装置から送信されたパイロット光を集光するレンズ5と、このレンズ5で集光された光を受光するフォトダイオード(以下、適宜にPDという)などの第1受光素子6と、前記相手装置から送信されたデータ信号の光を集光するレンズ37と、レンズ37で集光された光を受光するフォトダイオードなどの第2受光素子36とを備えている。
【0029】
発光素子1とレンズ2は発光部41を構成し、発光素子1からレンズ2を経て発せられた出射光が、第1光制御素子3A及び第2光制御素子3Bを透過(一部は反射、以下同様)し、反射光学系4で反射されて送信光として送信されるように配置されている。また、レンズ5と第1受光素子6は第1受光部40を構成し、相手装置から入射したパイロット光が反射光学系4で反射され、第1光制御素子3Aで反射(一部は透過、以下同様)された後、レンズ5を経て第1受光素子6で受光されるように配置されている。さらに、レンズ37と第2受光素子36は第2受光部39を構成し、相手装置から入射した光が反射光学系4で反射され、第1光制御素子3Aを透過し、第2光制御素子3Bで反射(一部は透過、以下同様)された後、レンズ37を経て第2受光素子36でデータ信号として受光されるように配置されている。
【0030】
上記構成において、発光部41はデータ供給部7、外部インターフェース7Aと接続されている。また、第1受光部40は偏向角制御信号供給部8と接続され、第2受光部39は受信信号処理部38、外部インターフェース38Aと接続されている。
【0031】
受発光部9では、外部インターフェース7Aからデータ信号が供給されたデータ供給部7によって、データ信号に応じて強度変調された光が発光素子1から出射される。この光はレンズ2により平行光に近いビーム光に成形され、第2光制御素子3B、第1光制御素子3Aを透過した後、反射光学系4で反射されて送信光として送信される。
【0032】
また、同一構成の図示しない相手装置から送信されたパイロット光は、反射光学系4で反射されて第1光制御素子3Aで反射された後、レンズ5で集光されて第1受光素子6で受光される。第1受光素子6では、受光した光が光−電気変換され、相手装置の位置情報信号として偏向角制御信号供給部8へ出力される。
【0033】
さらに、同一構成の図示しない相手装置から送信されたデータ信号の光は、反射光学系4で反射されて第1光制御素子3Aを透過し、第2光制御素子3Bで反射された後、レンズ37により集光されて第2受光素子36で受光される。第2受光素子36では、受光した送信光が光−電気変換され、データ信号として受信信号処理部38に供給される。
【0034】
次に、図2〜図7を参照して、受発光部9を構成する各部について更に詳細に説明する。
【0035】
発光素子1としては、レーザダイオードを用いることができる。レーザダイオードは出射光のビームが細く、それを更にレンズ2によって平行に近いビーム光にすることによって、出射光を高効率で第1光制御素子3A、第2光制御素子3B及び反射光学系4に照射することができる。レーザの波長は近赤外に限らず、長波長のものでもよい。
【0036】
図2は、データ供給部7の構成を示すブロック図である。データ供給部7は、外部インターフェース7Aからのデータ信号を、光によって伝送可能な信号に変換する信号処理部11と、信号処理された信号によって、光が点滅する様に発光素子1を駆動する発光駆動部10から成る。
【0037】
本装置を所定間隔で対向配置して屋内光無線伝送システムを構築し、そのアプリケーションとしてLANを考え、外部インターフェース7Aから入力される信号が100Base−FXである場合、データ供給部7内の信号処理部11では、図4のブロック図に示すように、4B/5Bエンコーダ101によりクロック自己再生のための4B/5B符号化を行い、デスクランブル/スクランブル部102によりデータをスクランブル化し、パラレル/シリアル変換部103によりパラレルデータをシリアルデータに変換し、更にNRZ/NRZI変換部104(及びPLL105)により、DC成分を持たない信号にするためにNRZ/NRZI変換を行う、という信号処理がなされ、データ信号として発光駆動部10に入力される。
【0038】
図3は、偏向角制御信号供給部8の構成を示すブロック図である。受発光部9の第1受光素子6は、相手装置からのパイロット光を光−電気変換し、受信光の有無、または受光量、受光方向などの位置情報信号を偏向角制御信号供給部8へ供給する。偏向角制御信号供給部8は、受発光部9から得られた位置情報信号に基づいて、相手装置からの光に自身の受信の光軸を合わせるように、反射光学系4を動かす移動方向及び移動量を演算して偏向角制御信号を得る演算部13と、反射光学系4の図示しない駆動手段を前記偏向角制御信号に基づいて水平方向又は垂直方向に駆動する制御部12から成る。
【0039】
受信信号処理部38は、第2受光部39で得られたデータ信号の光をアプリケーションに適した信号に変換する。上述した屋内光無線伝送システムのアプリケーションとしてLANを考え、外部インターフェース38Aへ出力する信号が100Base−FXである場合、受信信号処理部38では、図5のブロック図に示すように、第2受光部39から受信した信号をNRZI/NRZ変換部111(及びPLL112)によりNRZI/NRZ変換を行い、シリアル/パラレル変換部113によりシリアルデータをパラレルデータに変換し、続いてスクランブル/デスクランブル部114によりスクランブル化された信号をデスクランブルし、更に4B/5Bデコーダ115により4B/5B符号化された信号のデコードを行う、という信号処理がなされ、データ信号として外部インターフェース38Aに入力される。なお、クロック再生回路116では、データ信号に含まれるクロックのタイミング間隔を再生している。
【0040】
図6は、反射光学系4の駆動手段として、ピエゾアクチュエータを用いた場合の構成図である。ピエゾアクチュエータは、ピエゾ素子の圧電効果を応用したもので、図6(a)のように反射光学系4の反射部18の裏側の4箇所にピエゾアクチュエータ19が設けられている(図6ではそのうちの2つを示す)。各ピエゾアクチュエータ19は、図6(b)、(c)に示すように、電極20に加えた電圧によって伸張する。したがって、4つのピエゾアクチュエータ19に異なる電圧を印加して反射光学系を水平・垂直方向に駆動することにより、光軸に対する偏向角を制御することができる。
【0041】
なお、本発明における駆動手段はピエゾアクチュエータに限定されるものではなく、電流又は電圧等により制御可能なアクチュエータを適宜に用いることができる。また、反射光学系4の反射部18が曲面を有し、その曲面が凹凸に駆動されることによって、光軸に対する偏向角を制御するような構造としてもよい。
【0042】
反射光学系4の反射部18としては、光学樹脂へAu(金)を蒸着することにより生成されたミラーを用いることができる。Au膜の反射率分光特性を図7に示す。また、特定の波長のみ反射するような薄膜を蒸着した場合、受信光における外来光成分をカットするフィルタの機能も果たすことにもなる。
【0043】
第1光制御素子3A、第2光制御素子3Bとしては、例えば無偏光ビームスプリッタ(以下、単にビームスプリッタという)を用いることができる。また、特定の波長のみを透過(反射)するようなビームスプリッタを用いることも可能であり、その場合は、受信光における外来光成分をカットするフィルタの機能も果たすことにもなる。
【0044】
次に、図8〜図10を参照して、偏向角制御信号供給部8において、受発光部9から得られた情報に基づいて光軸に対する偏向角を制御する場合の動作について説明する。
【0045】
図8は、偏向角制御信号供給部8による反射光学系4の制御手順を示すフローチャート。図9は、4分割PDで構成された第1受光素子6上で受光したパイロット光の受光スポットが段階的に移動する様子を示す説明図。図10は、偏向角制御信号供給部8において図8の制御手順を実現するための構成を示すブロック図である。
【0046】
ここでは、図9に示すように、第1受光素子6が4分割されたフォトダイオード(PD_A、_B、_C、_D)により構成され、且つ、反射光学系4が3次元に制御可能な場合を例とする。以下、図8のフローチャートに従って、適宜に図9、10を参照しながら説明する。
【0047】
相手装置からのパイロット光は、ある周波数を有する光信号であり、受発光部9では、4分割されたPD(第1受光素子6)のそれぞれのPD(PD_A、B、C、D)での受光量が光−電気変換され、受光量に応じた振幅を有する電気信号(SIG_A、B、C、D)として、偏向角制御信号供給部8に送られる(ステップS1)。偏向角制御信号供給部8内の演算部13では、それぞれの信号振幅をアンプ21、22、23、24によって増幅し(ステップS2)、A/Dコンバータ25、26、27、28によってその振幅値をA/D変換することによって、信号レベル、すなわち各PDでの受光量をDC値として得る(ステップS3)。続いて、マイコン・DSPなどのマイクロプロセッサ29によって、水平方向(Pan)・垂直方向(Tilt)に対向するPD同士の受光レベルの差を演算し(ステップS4)、その受光レベル差を0とするための、反射光学系4の移動方向・及び移動量を演算して、制御部12に送る(ステップS5→S6、ステップS9→S10)。制御部12は、D/Aコンバータ30、31によって与えられた値をD/A変換し、偏向角制御信号としてドライバ32、33に与え、ドライバ32、33によって反射光学系4を水平・垂直方向に駆動する(ステップS7→S8、ステップS11→S12)。
【0048】
次に、4分割PD上での受光スポットの動きを図9を用いて説明する。図中、符号6Aはパイロット光が照射したときの4分割PD上での受光スポットを示す。
【0049】
図9において、▲1▼のステップでは、まず垂直方向に対向するA、BそれぞれのPDの受光量の差を演算し、差を0にする方向(図9では下方向)に光が照射されるように、反射光学系4を垂直方向に動かす。次いで、▲2▼のステップでは、水平方向に対向するC、DのそれぞれのPDの受光量の差を演算し、差を0にする方向(図9では右方向)に光が照射されるように、反射光学系4を水平方向に動かす。
【0050】
このように、受発光部9においては、送信光と受信光とは第1光制御素子3A、第2光制御素子3Bにより同軸で制御可能であるため、同一構成の相手装置から送信される光と本装置で受信する光軸とを合わせることによって、本装置の送信光が相手装置に照射されることになる。また、相手装置も同様に光軸合わせを行うことにより、相手装置からの送信光が本装置に照射されることになり、2つの装置のそれぞれの受発光部9の光軸が一致することになる。
【0051】
なお、本実施の形態では、第1受光素子6を4分割PDで構成した例について示したが、第1受光素子6の分割数は3分割でもよいし、或いは5分割、8分割…というように更に分割数を多くしたものであってもよい。また、本実施の形態では、PDでの受光量の差がゼロになるように反射光学系4の移動方向と移動量を演算する例について示したが、他のアルゴリズムにより移動方向と移動量を演算するようにしてもよい。
【0052】
上記実施の形態1に係わる光無線伝送装置では、光軸調整用の第1受光素子6で受光した光に基づいて反射光学系4の偏向角を制御することにより、送信光と受信光の光軸合わせを同軸で行うように構成されているため、受光装置と発光装置を同時に回転させる従来装置に比べて可動部分や光学素子が少なくなり、装置の小型化を図ることができる。特定の従来装置との比較では、少なくとも体積比で1/2以下を達成している。
【0053】
また、実施の形態1に係わる光無線伝送装置の光軸調整方法により光軸合わせを実施したところ、従来のモータを用いた屋内光無線伝送装置のサーチ精度が0.2[deg]程度、サーチ速度が100〜300[rad/sec]程度であったのに対し、本実施の形態の装置ではサーチ精度は0.001[deg]以下、サーチ速度は500[rad/sec]以上となり、高精度且つ高速な光軸合わせを実現している。このように、互いに相手装置から送信される光と自装置で受信する光軸とを一致させる構成とすることによって、屋内光無線伝送システムとして送信光に狭い指向角のビームを用いた場合でも、高精度な双方向通信を行うことが可能となる。
【0054】
さらに、相手装置をサーチ可能な範囲が広いため、屋内使用において様々な場所に移動させて使用することができる。
【0055】
図11は、実施の形態1に係わる光無線伝送装置の他の構成を示す概略構成図であり、図1と同等部分を同一符号で示している。
【0056】
本実施の形態は、図1における第1受光部40と第2受光部39の配置を入れ替えた構成を示している。すなわち、第2受光部39は、相手装置から入射したデータ信号の光が反射光学系4で反射され、第1光制御素子3Aを反射された後、レンズ37を経て第2受光素子36で受光される位置に配置されている。また第1受光部40は、相手装置から入射したパイロット光が反射光学系4で反射され、第1光制御素子3Aを透過し、第2光制御素子3Bで反射された後、レンズ5を経て第1受光素子6で受光される位置に配置されている。
【0057】
本実施の形態のように、第1受光部40と第2受光部39の配置を入れ替えた構成とした場合でも、図1のように構成された受発光部9と同等の効果を得ることができる。
【0058】
[実施の形態2]
次に、図12、13を参照して、実施の形態2に係わる光無線伝送装置の構成について説明する。
【0059】
図12は、実施の形態2に係わる光無線伝送装置の概略構成図である。図1と同等部分を同一符号で示している。
【0060】
本実施の形態は、図1における第2受光部39と発光部41の配置を入れ替えた構成を示している。すなわち、発光部41は、発光素子1からレンズ2を経て発せられた出射光が、第2光制御素子3Bで反射された後、第1光制御素子3Aを透過し、反射光学系4で反射されて送信光として送信されるように配置されている。また、第1受光部40は、相手装置から入射したパイロット光が反射光学系4で反射され、第1光制御素子3Aで反射された後、レンズ5を経て第1受光素子6で受光されるように配置されている。さらに、第2受光部39は、相手装置から入射したデータ信号の光が反射光学系4で反射され、第1光制御素子3A及び第2光制御素子3Bを透過し、レンズ37を経て第2受光素子36で受光されるように配置されている。
【0061】
本実施の形態のように、図1における第2受光部39と発光部41の配置を入れ替えた構成とした場合でも、図1のように構成された受発光部9と同等の効果を得ることができる。
【0062】
次に、実施の形態2に係わる光無線伝送装置の他の構成例について説明する。光無線伝送装置では、第2受光部39の第2受光素子36でデータ信号の光を高効率に受光することによって、より高速、長距離のデータ伝送が可能となる。そのため、図1(実施の形態1)に示す光無線伝送装置の構成では、第2光制御素子3Bの反射面を、第1光制御素子3Aを透過する光の面積と同等、もしくは大きくする必要がある。
【0063】
図13は、実施の形態2に係わる光無線伝送装置の他の構成例を示す概略構成図である。本実施の形態では、図12と同じく第2受光部39と発光部41の配置を入れ替えると共に、更に、第2光制御素子3Bの反射面3B−1が、第1光制御素子3Aを透過する光の面積S1より小さくなるように、図12よりもサイズの小さい第2光制御素子3Bを配置している。
【0064】
図13の構成において、第2受光素子36に照射される光は第2光制御素子3Bの透過光であるため、第2光制御素子3Bが小さく、反射面3B−1が第1光制御素子3Aを透過する光の面積S1よりも小さい場合でも、第2光制御素子3Bに照射されない光は直接に第2受光素子36に照射される。このため、図12に示すように第2光制御素子3Bの反射面が大きい場合と同等、もしくはそれ以上の受光量を得ることが出来る。発光素子1がレーザダイオードなどの場合、送信光の指向性は狭いため、第2光制御素子3Bの反射面は小さくてもよい。
【0065】
また、本実施の形態においては、第2光制御素子3Bを小型化にすることにより、図13に示すように、第1光制御素子3Aを第2光制御素子3Bに近づけることができるため、受発光部9全体を小型化することが可能となり、受発光部9の設計にも柔軟性をもたせることができる。
【0066】
[実施の形態3]
次に、図14、15を参照して、実施の形態3に係わる光無線伝送装置の構成について説明する。
【0067】
図14は、実施の形態3に係わる光無線伝送装置の概略構成図である。図1と同等部分を同一符号で示している。
【0068】
本実施の形態は、図12(実施の形態2)における第1受光部40と第2受光部39の配置を入れ替えた構成を示している。すなわち、発光部41は、発光素子1からレンズ2を経て発せられた出射光が、第2光制御素子3Bで反射された後、第1光制御素子3Aを透過し、反射光学系4で反射されて送信光として送信されるように配置されている。また、第1受光部40は、相手装置から入射したパイロット光が反射光学系4で反射され、第1光制御素子3A及び第2光制御素子3Bを透過し、レンズ5を経て第1受光素子6で受光されるように配置されている。さらに、第2受光部39は、相手装置から入射したデータ信号の光が反射光学系4で反射され、第1光制御素子3Aで反射された後、レンズ37を経て第2受光素子36で受光されるように配置されている。
【0069】
本実施の形態のように、図12における第1受光部40と第2受光部39の配置を入れ替えた構成とした場合でも、図12のように構成された受発光部9と同等の効果を得ることができる。
【0070】
次に、実施の形態3に係わる光無線伝送装置の他の構成例について説明する。光無線伝送装置において、光軸調整の際に相手装置からの光の情報をより多く得るためには、第1受光素子6に対し光を効率よく照射する必要がある。そのため、図11(実施の形態1)に示す光無線伝送装置の構成では、第2光制御素子3Bの反射面を、第1光制御素子3Aを透過する光の面積と同等、もしくは大きくする必要がある。
【0071】
図15は、実施の形態3に係わる光無線伝送装置の他の構成例を示す概略構成図である。本実施の形態では、図14と同じく第1受光素子40と第2受光素子39の配置を入れ替えると共に、更に、第2光制御素子3Bの反射面3B−1が、第1光制御素子3Aを透過する光の面積S1より小さくなるように、図14よりもサイズの小さい第2光制御素子3Bを配置している。
【0072】
図15の構成において、第1受光素子6に照射される光は第2光制御素子3Bの透過光であるため、第2光制御素子3Bが小さく、反射面3B−1が第1光制御素子3Aを透過する光の面積S1よりも小さい場合でも、第2光制御素子3Bに照射されない光は直接に第1受光素子6に照射される。このため、図14に示すように第2光制御素子3Bの反射面が大きい場合と同等、もしくはそれ以上の受光量を得ることが出来る。発光素子1がレーザダイオードなどの場合、送信光の指向性は狭いため、第2光制御素子3Bの反射面は小さくてもよい。
【0073】
また、本実施の形態においては、第2光制御素子3Bを小型化にすることにより、図15に示すように、第1光制御素子3Aを第2光制御素子3Bに近づけることができるため、受発光部9全体を小型化することが可能となり、受発光部9の設計にも柔軟性をもたせることができる。
【0074】
[実施の形態4]
次に、図16、17を参照して、実施の形態4に係わる光無線伝送装置の構成について説明する。
【0075】
図16は、実施の形態4に係わる光無線伝送装置の概略構成図である。図1と同等部分を同一符号で示している。
【0076】
本実施の形態は、図12(実施の形態2)の構成における第1受光部40と発光部41の配置を入れ替えた構成を示している。すなわち、発光部41は、発光素子1からレンズ2を経て発せられた出射光が、第1光制御素子3Aで反射された後、反射光学系4で反射されて送信光として送信されるように配置されている。また、第1受光部40は、相手装置から入射したパイロット光が反射光学系4で反射され、第1光制御素子3Aを透過し、第2光制御素子3Bで反射された後、レンズ5を経て第1受光素子6で受光されるように配置されている。さらに、第2受光部39は、相手装置から入射したデータ信号の光が反射光学系4で反射され、第1光制御素子3A、第2光制御素子3Bを透過し、レンズ37を経て第2受光素子36で受光されるように配置されている。
【0077】
本実施の形態のように、図12における第1受光部40と発光部41の配置を入れ替えた構成とした場合でも、図12のように構成された受発光部9と同等の効果を得ることができる。
【0078】
次に、実施の形態4に係わる光無線伝送装置の他の構成例について説明する。光無線伝送装置では、第2受光部39の第2受光素子36でデータ信号の光を高効率に受光することによって、より高速、長距離のデータ伝送が可能となる。また、光軸調整の際に相手装置からの光の情報をより多く得るためには、第1受光素子6に対し光を効率よく照射する必要がある。そのため、図11(実施の形態1)に示す光無線伝送装置の構成では、第1光制御素子3Aの反射面を、反射光学系4で反射される光の面積と同等、もしくは大きくする必要がある。
【0079】
図17は、実施の形態4に係わる光無線伝送装置の他の構成例を示す概略構成図である。本実施の形態では、図16と同じく第1受光部40と発光部41の配置を入れ替えると共に、更に、第1光制御素子3Aの反射面3A−1が、反射光学系4で反射される光の面積S2より小さくなるように、図16よりもサイズの小さい第1光制御素子3Aを配置している。
【0080】
図17の構成において、第1受光素子6又は第2受光素子36に照射される光は、第1光制御素子3Aを透過して、第2光制御素子3Bで透過光・反射光に分離された光であるため、第1光制御素子3Aが小さく、反射面3A−1が反射光学系4で反射される光の面積S2よりも小さい場合でも、第1光制御素子3Aに照射されない光は直接に第2光制御素子3Bに照射される。このため、図16に示すように第1光制御素子3Aの反射面が大きい場合と同等、もしくはそれ以上の受光量を得ることが出来る。発光素子1がレーザダイオードなどの場合、送信光の指向性は狭いため、第1光制御素子3Aの反射面は小さくてもよい。
【0081】
また、本実施の形態においては、第1光制御素子3Aを小型化にすることにより、図17に示すように、第1光制御素子3Aを第2光制御素子3Bに近づけることができるため、受発光部9全体を小型化することが可能となり、受発光部9の設計にも柔軟性をもたせることができる。
【0082】
[実施の形態5]
次に、図18、19を参照して、実施の形態5に係わる光無線伝送装置の構成について説明する。
【0083】
図18は、実施の形態5に係わる光無線伝送装置の概略構成図である。図1と同等部分を同一符号で示している。
【0084】
本実施の形態は、図16(実施の形態4)の構成における第1受光部40と第2受光部39の配置を入れ替えた構成を示している。すなわち、発光部41は、発光素子1からレンズ2を経て発せられた出射光が、第1光制御素子3Aで反射された後、反射光学系4で反射されて送信光として送信されるように配置されている。また、第1受光部40は、相手装置から入射したパイロット光が反射光学系4で反射され、第1光制御素子3A、第2光制御素子3Bを透過し、レンズ5を経て第1受光素子6で受光されるように配置されている。さらに、第2受光部39は、相手装置から入射したデータ信号の光が反射光学系4で反射され、第1光制御素子3Aを透過し、第2光制御素子3Bで反射された後、レンズ37を経て第2受光素子36で受光されるように配置されている。
【0085】
本実施の形態のように、図16における第1受光部40と第2受光部39の配置を入れ替えた構成とした場合でも、図16のように構成された受発光部9と同等の効果を得ることができる。
【0086】
次に、実施の形態5に係わる光無線伝送装置の他の構成例について説明する。光無線伝送装置では、第2受光部39の第2受光素子36でデータ信号の光を高効率に受光することによって、より高速、長距離のデータ伝送が可能となる。また、光軸調整の際に相手装置からの光の情報をより多く得るためには、第1受光素子6に対し光を効率よく照射する必要がある。そのため、図11(実施の形態1)に示す光無線伝送装置の構成では、第1光制御素子3Aの反射面を、反射光学系4で反射される光の面積と同等、もしくは大きくする必要がある。
【0087】
図19は、実施の形態5に係わる光無線伝送装置の他の構成例を示す概略構成図である。本実施の形態では、図18と同じく第1受光部40と第2受光部39の配置を入れ替えると共に、更に、第1光制御素子3Aの反射面3A−1が、反射光学系4で反射される光の面積S2より小さくなるように、図18よりもサイズの小さい第1光制御素子3Aを配置している。
【0088】
図19の構成において、第1受光素子6又は第2受光素子36に照射される光は、第1光制御素子3Aを透過して、第2光制御素子3Bで透過光・反射光に分離された光であるため、第1光制御素子3Aが小さく、反射面3A−1が反射光学系4で反射される光の面積S2よりも小さい場合でも、第1光制御素子3Aに照射されない光は直接に第2光制御素子3Bに照射される。このため、図18に示すように第1光制御素子3Aの反射面が大きい場合と同等、もしくはそれ以上の受光量を得ることが出来る。発光素子1がレーザダイオードなどの場合、送信光の指向性は狭いため、第1光制御素子3Aの反射面は小さくてもよい。
【0089】
また、本実施の形態においては、第1光制御素子3Aを小型化にすることにより、図19に示すように、第1光制御素子3Aを第2光制御素子3Bに近づけることができるため、受発光部9全体を小型化することが可能となり、受発光部9の設計にも柔軟性をもたせることができる。
【0090】
[実施の形態6]
図20は、実施の形態6に係わる光無線送伝送装置の構成例を示す説明図である。実施の形態1乃至5における受発光部9の光学部材を同一の基板34上に配置することによって、光無線伝送装置を小型のモジュール35として構成することができる。例えば、ホログラムピックアップの組み立て技術などを応用し、5mm角〜30mm角程度の大きさのモジュールとした場合、例えば図21のようにパソコン42などの機器に組み込むことも可能である。
【0091】
本実施の形態に示すように、受発光部9の光学部材を同一基板上に一体に配置した場合は、装置の小型化が可能となるだけでなく、それに伴う低コスト化、サーチ時間の短縮などの効果が得られる。また、一体構造とする際に、現在のICの微細加工技術、及びホログラムピックアップの組み立て技術などを応用することができるため、高精細な配置が可能となり、送信と受信の光軸調整もさらに容易なものとなる。
【0092】
[実施の形態7]
次に、第1光制御素子3A、第2光制御素子3Bの他の構成例について説明する。
【0093】
第1光制御素子3A、第2光制御素子3Bとしては、上記各実施の形態に示すビームスプリッタ以外に、一部領域に入射した光を透過し、他の領域に入射した光を反射する光制御素子を用いることができる。
【0094】
実施の形態1において、発光素子1がレーザダイオードなどの場合、送信光の指向性が狭いため、第1光制御素子3A、第2光制御素子3Bの透過面は小さくてもよい。この場合は、図22(a)に示すように、発光素子1からの出射光が透過する中心部分を透過領域52、残りの部分(裏面)すべてを反射面53とする光制御素子51を用いることができる。この光制御素子51は、ベースとなる透過光学素子の中心部分を除いた領域に反射材を蒸着することにより製作することができる。光制御素子51において、発光素子1からの出射光は透過領域52を透過し、相手装置から受信した光は反射面53で反射されて第1受光素子6に導かれることになる。なお、光制御素子51の透過領域52は開口部であってもよい。この場合は、ベースとなる透過光学素子の中心部分を除去することにより製作することができる。図22(a)では、光制御素子51と第1受光部40とを対峙させた例を示しているが、第2受光部39についても同じである。
【0095】
また、実施の形態2のように、発光素子1からの出射光が、第2光制御素子3Bで反射される構成とした場合は、図22(b)に示すように、発光素子1からの出射光が反射する中心部分を反射面62、残りの部分すべてを透過面63とする光制御素子61を用いることができる。この光制御素子61は、ベースとなる透過光学素子の中心部分を除く残りの部分すべてをマスキングし、反射面が形成される面上に反射材料を蒸着することにより製作することができる。光制御素子61において、発光素子1からの出射光は反射面62で反射し、また相手装置から受信した光は透過面63を透過し、レンズ5を経て第1受光素子6に導かれることになる。図22(b)では、光制御素子61と第1受光部40とを対峙させた例を示しているが、第2受光部39についても同じである。
【0096】
[実施の形態8]
次に、上記各実施の形態におけるレーザ出力について説明する。
【0097】
光無線伝送装置において、装置から送信される光は安全基準によって制限される。例えば、レーザダイオードの場合、IEC60825−1(日本ではJISC6802:レーザ製品の放射安全基準)によって、その放射強度などが定められている。この基準は、装置から出力される光を制限するものであり、上記各実施の形態に示す光無線伝送装置において、発光素子1をレーザダイオードとした場合、装置からの出力を基準内とするためのレーザ出力は、実際にレーザダイオードが出力可能なレベルに比べ十分小さい。そのため、実施の形態1の場合には、第1光制御素子3A、第2光制御素子3Bの透過・反射の比率を変え、透過率を低く、反射率を高くすることによって、送信光を安全な出力レベルで送信し、且つ、受信光を高効率で第1受光素子6に集光することが可能となる。例えば、装置から送信可能な出力のレベルに対して、レーザダイオードが出力可能なレベルが10倍とすると、第2の光制御素子3Bの透過率を10%、反射率を90%とする。
【0098】
また、上記各実施の形態に示す発光素子1において、その出力レベルを減衰可能なものとし、反射光学系4によって反射されて装置外に送信される送信光が安全基準によって制限されたレベル以下になるよう、調整可能なものとすることによって、目に安全なレベルの強度で高速な双方向通信が可能となる。
【0099】
なお、上述した各実施の形態においては、光軸調整用のパイロット光を発光素子1から発するように構成しているが、パイロット光は受発光部9の内部又は外部に配置した別の発光素子から出射するように構成してもよい。この発光素子の光軸は受発光部9の光軸と同軸又は略並行となるように配置される。また、発光素子1から出射するデータ信号の光をパイロット光として使用することもできる。
【0100】
【発明の効果】
以上説明したように、本発明によれば、反射光学系の偏向角を制御することにより、送信光と受信光の光軸合わせを同軸で行うことができるため、受光装置と発光装置とを同時に回転させる従来装置に比べて可動部分が少なくなり、装置を小型化することができる。また、送信光に狭い指向角のビームを用いた場合でも、高精度且つ高速な光軸合わせが可能となる。さらに、相手装置をサーチ可能な範囲が広いため、屋内使用において様々な場所に移動させて使用することができる。
【0101】
したがって、本発明に係わる光無線伝送装置、光無線伝送装置の光軸調整方法、光無線通信方法、及び光無線伝送システムを屋内光無線伝送システムに適用した場合は、高精度な双方向通信を行うことが可能となる。
【図面の簡単な説明】
【図1】実施の形態1に係わる光無線伝送装置の概略構成図。
【図2】データ供給部の構成を示すブロック図。
【図3】偏向角制御信号供給部の構成を示すブロック図。
【図4】信号処理部の構成を示すブロック図。
【図5】受信信号処理部の構成を示すブロック図。
【図6】(a)は反射光学系の駆動手段としてピエゾアクチュエータを用いた場合の構成図。(b)、(c)はピエゾアクチュエータを伸張させた場合の説明図。
【図7】Au膜の反射率分光特性を示す説明図。
【図8】偏向角制御信号供給部による反射光学系の制御手順を示すフローチャート。
【図9】4分割PDで構成された第1受光素子で受光スポットが段階的に移動する様子を示す説明図。
【図10】偏向角制御信号供給部おいて図8の制御手順を実現するための構成を示すブロック図。
【図11】実施の形態1に係わる光無線伝送装置の他の構成例を示す概略構成図。
【図12】実施の形態2に係わる光無線伝送装置の概略構成図。
【図13】実施の形態2に係わる光無線伝送装置の他の構成例を示す概略構成図。
【図14】実施の形態3に係わる光無線伝送装置の概略構成図。
【図15】実施の形態3に係わる光無線伝送装置の他の構成例を示す概略構成図。
【図16】実施の形態4に係わる光無線伝送装置の概略構成図。
【図17】実施の形態4に係わる光無線伝送装置の他の構成例を示す概略構成図。
【図18】実施の形態5に係わる光無線伝送装置の概略構成図。
【図19】実施の形態5に係わる光無線伝送装置の他の構成例を示す概略構成図。
【図20】実施の形態6に係わる光無線送伝送装置の構成例を示す説明図。
【図21】実施の形態6に係わる光無線伝送装置をパソコンに搭載した場合の説明図。
【図22】第1、第2光制御素子の他の構成例を示す説明図。(a)は出射光が透過する中心部分を透過領域、残りの部分すべてを反射面とした場合の説明図。(b)は出射光が反射する中心部分を反射面、残りの部分すべてを透過面とした場合の説明図。
【図23】従来の屋内光無線伝送装置の概略構成図。
【符号の説明】
1…発光素子
2…レンズ(第1光学素子)
3A…第1光制御素子
3B…第2光制御素子
4…反射光学系
5…レンズ(第2光学素子)
6…第1受光素子
7…データ供給部
7A…外部インターフェース
8…偏向角制御信号供給部
9…受発光部
10…発光駆動部
11…信号処理部
12…制御部
13…演算部
18…反射部
19…ピエゾアクチュエータ
20…電極
21…アンプ
21…親機
22…発光部
23…発光手段
23A…パイロット光
24…子機
24A…受光装置
25〜28…A/Dコンバータ
29…マイクロプロセッサ
30、31…D/Aコンバータ
32、33…ドライバ
34…基板
35…モジュール
36…第2受光素子
37…レンズ(第3光学素子)
38…受信信号処理部
38A…外部インターフェース
39…第2受光部
40…第1受光部
41…発光部
42…パソコン
51、61…光制御素子
101…4B/5Bエンコーダ
102…デスクランブル/スクランブル部
103…パラレル/シリアル変換部
104…NRZ/NRZI変換部
105、112…PLL
111…NRZI/NRZ変換部
113…シリアル/パラレル変換部
114…スクランブル/デスクランブル部
115…4B/5Bデコーダ
116…クロック再生回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical wireless transmission apparatus that transmits and receives light modulated by a data signal or the like, an optical axis adjustment method of the optical wireless transmission apparatus, an optical wireless communication method, and an optical wireless transmission system.
[0002]
[Prior art]
In general, when transmitting a signal via optical radio, an LED (light emitting diode) or a laser diode is used as a light emitting element on the transmission side. Of these, in devices that transmit signals using LEDs, the beam diameter of LED light with a wide directivity must be narrowed by a focusing lens. However, because this diaphragm has a limit, the beam diameter widens when it is transmitted over long distances. Power is reduced. When the beam diameter is increased in this way, there is a problem that interference occurs when a plurality of devices are used in parallel.
[0003]
In order to solve this, for example, an indoor optical wireless transmission device as shown in FIG. 23 has been proposed. In this optical wireless transmission device, a light emitting means 23 is provided in one device (master unit 21) separately from the light emitting unit 22 for data signal transmission, and pilot light 23A for adjusting the optical axis is transmitted from the light emitting means 23. In the other optical wireless transmission device (slave unit 24), the optical axis direction is displaced, the pilot light 23A is received by the light receiving device 24A, and the optical axis is aligned based on the received light level of the pilot light 23A. It is configured. This device collimates the LED light with a parabolic reflector so as to reduce the beam diameter. By rotating the light receiving device 24A that receives beam light with a narrow directivity by a stepping motor or the like, the horizontal and vertical directions are obtained. This is embodied in the form of scanning and searching for a point where the maximum light receiving level is obtained in two-dimensional coordinates (see, for example, Patent Document 1).
[0004]
On the other hand, in an outdoor optical wireless transmission device using a laser diode, an optical axis adjustment method using a mirror and a beam splitter is employed (for example, see Patent Document 2).
[0005]
[Patent Document 1]
Patent No. 3059870
[0006]
[Patent Document 2]
JP-A-6-152541
[0007]
[Problems to be solved by the invention]
In order to perform optical axis adjustment with the indoor optical wireless transmission device, it is necessary to rotate the light receiving device including the light receiving element and its optical system and the light emitting device including the light emitting element and the optical system at the same time. The device becomes large to be used in.
[0008]
Further, in order to perform higher-speed transmission, it is necessary for the receiving side to receive the transmission light from the partner apparatus with high efficiency, and the transmission light has a very narrow directivity angle of about several degrees [deg]. Must be a beam. When performing two-way communication, it is necessary to match the optical axes of the light emitting device and the light receiving device arranged in the same device, but when the directivity of the transmitted light is very narrow, it is up and down like this device. It was difficult to align the optical axes of the arranged light emitting device and light receiving device with high accuracy and high speed.
[0009]
Furthermore, as an optical axis adjustment method for matching the optical axes of transmission and reception, the adjustment method of the outdoor optical wireless transmission device can be considered, but this device is a large-scale device using a large number of optical elements. Therefore, the device becomes large and is used for fine adjustment after adjusting the optical axis to some extent, so the searchable range of the partner device is as narrow as several degrees, and it can be moved to various indoor locations. Therefore, it is not suitable for the device used.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to reduce the size of an apparatus and to perform optical axis alignment with high accuracy and at high speed, and is suitable for indoor use, and an optical axis adjustment method for an optical wireless transmission apparatus An optical wireless communication method and an optical wireless transmission system are provided.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is a light emitting element that emits light modulated by a data signal or pilot light for optical axis adjustment, and light emitted from the light emitting element is a beam light that is close to parallel light. A first optical element to be molded, a first and second light control element that reflects part of the incident light and transmits the remainder, and reflects the incident light and controls the deflection angle of the incident light with respect to the optical axis Reflective optical system having a driving means, a second optical element for condensing light transmitted from the counterpart device, a first light receiving element for receiving light collected by the second optical element, and transmitted from the counterpart device A third optical element for condensing light; a second light receiving element for receiving the light collected by the third optical element; and an irradiation area with respect to an optical axis direction of light passing through the first light control element. , With respect to the optical axis direction of the light incident on the second light control element The first and second light control elements are configured to be larger than an irradiation area, and light emitted from the light emitting element is shaped into beam light close to parallel light by the first optical element, and the second After being reflected by the light control element, the light passes through the first light control element, is reflected in a predetermined direction by the reflection optical system, is transmitted as transmission light, and light incident from the counterpart device is reflected by the reflection optical system. A part of the light is reflected by the first light control element, then received by the first light receiving element through the second optical element, and the remaining light is transmitted through the first light control element, A light receiving / emitting section configured to transmit through the second light control element and pass through the periphery of the second light control element, and to be received by the second light receiving element through the third optical element; Based on the pilot light received by the light receiving element, the reflection optical system is deflected. A deflection angle control signal supply unit that calculates a deflection angle control signal for controlling the angle and controls the driving means of the reflection optical system based on the deflection angle control signal, and the second light receiving element includes the counterpart By receiving light from the device as a data signal and controlling the deflection angle of the reflective optical system based on the pilot light received by the first light receiving element, the light emitted from the light emitting element and the counterpart device An optical wireless transmission device that performs optical axis alignment of incident light.
[0012]
According to a second aspect of the present invention, in the optical wireless transmission device according to the first aspect, the light emitting / receiving unit forms the light emitted from the light emitting element into beam light close to parallel light by the first optical element. Then, after being reflected by the second light control element, transmitted through the first light control element, reflected by the reflective optical system in a predetermined direction, transmitted to the counterpart device, and light incident from the counterpart device is the Reflected by the reflecting optical system, a part of the light is reflected by the first light control element, then passes through the third optical element and is received by the second light receiving element, and the remaining light is received by the first light control element. Is transmitted through the second light control element, passes through the periphery of the second light control element, passes through the second optical element, and is received by the first light receiving element. It is characterized by.
[0013]
According to a third aspect of the present invention, there is provided a light emitting element for emitting light modulated by a data signal or pilot light for adjusting an optical axis, and a first optical element for shaping the light emitted from the light emitting element into beam light close to parallel light. Reflective optical system having first and second light control elements that reflect part of incident light and transmit the rest, and drive means for reflecting incident light and controlling the deflection angle of the incident light with respect to the optical axis A second optical element for condensing the light transmitted from the counterpart device, a first light receiving element for receiving the light collected by the second optical element, and a third for condensing the light transmitted from the counterpart device An optical element, a second light receiving element that receives the light collected by the third optical element, and an irradiation area with respect to an optical axis direction of light passing through the first light control element is the second light control element Smaller than the irradiation area with respect to the optical axis direction of the light incident on As described above, the first and second light control elements are configured, and the light emitted from the light emitting element is shaped into beam light close to parallel light by the first optical element and reflected by the first light control element. Then, the light reflected by the reflective optical system in a predetermined direction is transmitted to the counterpart device, and the light incident from the counterpart device is reflected by the reflective optical system, transmitted through the first light control element, and the first light control. After passing through the periphery of the element, a part of the light is reflected by the second light control element and then received by the first light receiving element through the second optical element, and the remaining light is received by the first and second light elements. A light receiving / emitting unit configured to pass through a light control element and be received by the second light receiving element through the third optical element, and the reflection optics based on pilot light received by the first light receiving element Calculate the deflection angle control signal to control the deflection angle of the system, A deflection angle control signal supply unit for controlling the driving means of the reflection optical system based on the deflection angle control signal, and the second light receiving element receives light from the counterpart device as a data signal, and The optical axis alignment of the light emitted from the light emitting element and the light incident from the counterpart device is performed by controlling a deflection angle of the reflection optical system based on the pilot light received by the light receiving element. An optical wireless transmission device.
[0014]
According to a fourth aspect of the present invention, in the optical wireless transmission apparatus according to the third aspect, the light emitting / receiving unit is configured such that the light emitted from the light emitting element is shaped into a beam light close to parallel light by the first optical element. Then, after being reflected by the first light control element, reflected by the reflective optical system in a predetermined direction and transmitted to the counterpart device, light incident from the counterpart device is reflected by the reflective optical system, After passing through the light control element and passing around the first light control element, a part of the light is reflected by the second light control element and then received by the second light receiving element through the third optical element. The remaining light passes through the second light control element and is received by the first light receiving element through the second optical element.
[0015]
According to a fifth aspect of the present invention, in the optical wireless transmission device according to any one of the first to fourth aspects, the first light receiving element is constituted by a multi-divided light receiving element, and the deflection angle control signal supply The unit is configured to calculate a moving direction and a moving amount of the reflective optical system based on a light receiving amount in each divided region of the light receiving element, and based on the moving direction and the moving amount calculated by the calculating unit. Control means for driving the reflecting optical system driving means in the horizontal direction or the vertical direction to align the optical axes of the light emitted from the light emitting element and the light incident from the counterpart device.
[0016]
According to a sixth aspect of the present invention, in the optical wireless transmission device according to any one of the first to fifth aspects, the constituent members of the light emitting / receiving section are integrally arranged on the same substrate.
[0017]
A seventh aspect of the invention is the optical axis adjustment method for an optical wireless transmission device according to the fifth aspect, wherein light incident from the counterpart device is received by the first light receiving element to constitute the first light receiving element. The movement direction and the movement amount of the reflection optical system are calculated based on the amount of light received by each light receiving element, and the driving means of the reflection optical system is driven in the horizontal direction or the vertical direction based on the movement direction and the movement amount. Thus, the optical axes of the light emitted from the light emitting element and the light incident from the counterpart device are aligned.
[0018]
According to an eighth aspect of the present invention, the optical wireless transmission device according to any one of the first to sixth aspects is disposed as a first optical wireless transmission device and a second optical wireless transmission device facing each other at a predetermined interval. An optical wireless communication method comprising performing two-way communication between the first and second optical wireless transmission devices after optical axis alignment is performed by the optical axis adjustment method of the optical wireless transmission device described .
[0019]
A ninth aspect of the invention is an optical wireless transmission system in which the optical wireless transmission device according to any one of the first to sixth aspects is disposed as a first optical wireless transmission device and a second optical wireless transmission device so as to face each other at a predetermined interval. The optical axis alignment of the first and second optical wireless transmission apparatuses is performed by the optical axis adjustment method of the optical wireless transmission apparatus according to claim 7, and then between the first and second optical wireless transmission apparatuses. And bi-directional communication.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an optical wireless transmission device, an optical axis adjustment method of the optical wireless transmission device, an optical wireless communication method, and an optical wireless transmission system according to the present invention will be described below.
[0025]
In the following description, light modulated by a data signal or pilot light for optical axis adjustment is appropriately referred to as light. Among these, the light modulated by the data signal is appropriately described as the light of the data signal. Further, light transmitted to the counterpart device is referred to as transmission light, outgoing light, or outgoing light, and light received from the counterpart device is referred to as reception light, incident light, or incident light. Furthermore, emitting light is referred to as transmission, and receiving is referred to as light reception or reception.
[0026]
[Embodiment 1]
First, the configuration of the optical wireless transmission apparatus according to the first embodiment will be described with reference to FIG.
[0027]
FIG. 1 is a schematic configuration diagram of an optical wireless transmission apparatus according to the first embodiment.
[0028]
The light receiving / emitting unit 9 includes a light emitting element 1 that emits light modulated by a data signal or pilot light, a lens 2 such as a collimator lens, and a first light control element that reflects part of incident light and transmits the rest. 3A and the second light control element 3B, the reflection optical system 4 having a driving means (not shown) that reflects incident light and controls the deflection angle of the incident light with respect to the optical axis, and pilot light transmitted from a counterpart apparatus (not shown) , A first light receiving element 6 such as a photodiode (hereinafter referred to as PD as appropriate) that receives light collected by the lens 5, and light of a data signal transmitted from the counterpart device And a second light receiving element 36 such as a photodiode for receiving the light collected by the lens 37.
[0029]
The light emitting element 1 and the lens 2 constitute a light emitting unit 41, and the emitted light emitted from the light emitting element 1 through the lens 2 is transmitted through the first light control element 3A and the second light control element 3B (partly reflected, The same applies hereinafter), and is arranged so as to be reflected by the reflection optical system 4 and transmitted as transmission light. The lens 5 and the first light receiving element 6 constitute a first light receiving unit 40, and the pilot light incident from the counterpart device is reflected by the reflection optical system 4 and reflected by the first light control element 3A (partially transmitted, After that, the first light receiving element 6 receives the light through the lens 5. Further, the lens 37 and the second light receiving element 36 constitute a second light receiving unit 39, and the light incident from the counterpart device is reflected by the reflection optical system 4, passes through the first light control element 3A, and the second light control element. After being reflected by 3B (partially transmitted, the same applies hereinafter), the light is received as a data signal by the second light receiving element 36 through the lens 37.
[0030]
In the above configuration, the light emitting unit 41 is connected to the data supply unit 7 and the external interface 7A. The first light receiving unit 40 is connected to the deflection angle control signal supply unit 8, and the second light receiving unit 39 is connected to the reception signal processing unit 38 and the external interface 38A.
[0031]
In the light emitting / receiving unit 9, light whose intensity is modulated in accordance with the data signal is emitted from the light emitting element 1 by the data supply unit 7 to which the data signal is supplied from the external interface 7 </ b> A. This light is shaped into beam light close to parallel light by the lens 2, passes through the second light control element 3 </ b> B and the first light control element 3 </ b> A, is reflected by the reflection optical system 4, and is transmitted as transmission light.
[0032]
In addition, pilot light transmitted from a partner apparatus (not shown) having the same configuration is reflected by the reflection optical system 4 and reflected by the first light control element 3A, and then condensed by the lens 5 and then by the first light receiving element 6. Received light. In the first light receiving element 6, the received light is photoelectrically converted and output to the deflection angle control signal supply unit 8 as a position information signal of the counterpart device.
[0033]
Furthermore, the light of the data signal transmitted from the other device (not shown) having the same configuration is reflected by the reflection optical system 4 and transmitted through the first light control element 3A, and then reflected by the second light control element 3B, and then the lens. The light is condensed by 37 and received by the second light receiving element 36. In the second light receiving element 36, the received transmission light is photoelectrically converted and supplied to the reception signal processing unit 38 as a data signal.
[0034]
Next, with reference to FIGS. 2 to 7, each part constituting the light emitting / receiving unit 9 will be described in more detail.
[0035]
As the light emitting element 1, a laser diode can be used. The laser diode has a narrow beam of emitted light, which is further converted into a nearly parallel beam by the lens 2 so that the emitted light can be efficiently converted into the first light control element 3A, the second light control element 3B, and the reflection optical system 4. Can be irradiated. The wavelength of the laser is not limited to the near infrared, but may be a long wavelength.
[0036]
FIG. 2 is a block diagram showing the configuration of the data supply unit 7. The data supply unit 7 converts the data signal from the external interface 7A into a signal that can be transmitted by light, and light emission that drives the light emitting element 1 so that the light blinks by the signal processed signal. It comprises a drive unit 10.
[0037]
When the indoor optical wireless transmission system is constructed by arranging this apparatus facing each other at a predetermined interval, the LAN is considered as the application, and the signal input from the external interface 7A is 100Base-FX, the signal processing in the data supply unit 7 In the unit 11, as shown in the block diagram of FIG. 4, the 4B / 5B encoder 101 performs 4B / 5B encoding for clock self-regeneration, the descramble / scramble unit 102 scrambles the data, and performs parallel / serial conversion. The signal processing that the parallel data is converted into serial data by the unit 103 and the NRZ / NRZI conversion unit 104 (and the PLL 105) performs NRZ / NRZI conversion to obtain a signal having no DC component is performed. Is input to the light emission drive unit 10.
[0038]
FIG. 3 is a block diagram showing a configuration of the deflection angle control signal supply unit 8. The first light receiving element 6 of the light receiving / emitting unit 9 photoelectrically converts the pilot light from the counterpart device, and sends position information signals such as the presence / absence of received light, the amount of received light, and the light receiving direction to the deflection angle control signal supply unit 8. Supply. Based on the position information signal obtained from the light emitting / receiving unit 9, the deflection angle control signal supply unit 8 moves the reflection optical system 4 so as to align the optical axis of reception with the light from the counterpart device, and The calculation unit 13 obtains a deflection angle control signal by calculating the amount of movement, and the control unit 12 drives a driving means (not shown) of the reflection optical system 4 in the horizontal direction or the vertical direction based on the deflection angle control signal.
[0039]
The reception signal processing unit 38 converts the light of the data signal obtained by the second light receiving unit 39 into a signal suitable for the application. When the LAN is considered as an application of the indoor optical wireless transmission system described above, and the signal output to the external interface 38A is 100Base-FX, the received signal processing unit 38, as shown in the block diagram of FIG. NRZI / NRZ converter 111 (and PLL 112) performs NRZI / NRZ conversion on the signal received from 39, serial data is converted into parallel data by serial / parallel converter 113, and then scrambled by descrambler / descrambler 114. The processed signal is descrambled and the 4B / 5B decoder 115 decodes the 4B / 5B-encoded signal, and is input to the external interface 38A as a data signal. Note that the clock recovery circuit 116 recovers the timing interval of the clock included in the data signal.
[0040]
FIG. 6 is a configuration diagram in the case where a piezo actuator is used as a driving unit of the reflection optical system 4. The piezo actuator is an application of the piezoelectric effect of a piezo element. As shown in FIG. 6A, piezo actuators 19 are provided at four locations on the back side of the reflecting portion 18 of the reflective optical system 4 (in FIG. 2 are shown). Each piezo actuator 19 is expanded by a voltage applied to the electrode 20 as shown in FIGS. Therefore, the deflection angle with respect to the optical axis can be controlled by applying different voltages to the four piezoelectric actuators 19 to drive the reflecting optical system in the horizontal and vertical directions.
[0041]
The driving means in the present invention is not limited to a piezo actuator, and an actuator that can be controlled by current or voltage can be used as appropriate. Further, the reflection unit 18 of the reflection optical system 4 may have a curved surface, and the curved surface is driven to be uneven so that the deflection angle with respect to the optical axis is controlled.
[0042]
As the reflecting portion 18 of the reflecting optical system 4, a mirror generated by vapor-depositing Au (gold) on an optical resin can be used. The reflectance spectral characteristic of the Au film is shown in FIG. In addition, when a thin film that reflects only a specific wavelength is deposited, it also serves as a filter that cuts off extraneous light components in the received light.
[0043]
As the first light control element 3A and the second light control element 3B, for example, a non-polarizing beam splitter (hereinafter simply referred to as a beam splitter) can be used. It is also possible to use a beam splitter that transmits (reflects) only a specific wavelength, and in that case, it also serves as a filter that cuts off external light components in the received light.
[0044]
Next, with reference to FIG. 8 to FIG. 10, an operation when the deflection angle control signal supply unit 8 controls the deflection angle with respect to the optical axis based on the information obtained from the light emitting / receiving unit 9 will be described.
[0045]
FIG. 8 is a flowchart showing a control procedure of the reflection optical system 4 by the deflection angle control signal supply unit 8. FIG. 9 is an explanatory diagram showing a state in which a light receiving spot of pilot light received on the first light receiving element 6 configured by four-part PD moves in a stepwise manner. FIG. 10 is a block diagram showing a configuration for realizing the control procedure of FIG. 8 in the deflection angle control signal supply unit 8.
[0046]
Here, as shown in FIG. 9, the case where the first light receiving element 6 is configured by four divided photodiodes (PD_A, _B, _C, _D) and the reflection optical system 4 can be controlled in three dimensions. Take an example. Hereinafter, description will be made with reference to FIGS.
[0047]
The pilot light from the counterpart device is an optical signal having a certain frequency. In the light receiving and emitting unit 9, the PD (PD_A, B, C, D) of each of the four divided PDs (first light receiving elements 6) is obtained. The received light amount is photoelectrically converted and sent to the deflection angle control signal supply unit 8 as an electrical signal (SIG_A, B, C, D) having an amplitude corresponding to the received light amount (step S1). In the calculation unit 13 in the deflection angle control signal supply unit 8, the respective signal amplitudes are amplified by the amplifiers 21, 22, 23, and 24 (Step S 2), and the amplitude values are obtained by the A / D converters 25, 26, 27, and 28. A / D conversion is performed to obtain the signal level, that is, the amount of light received at each PD as a DC value (step S3). Subsequently, the difference in the light reception level between the PDs facing each other in the horizontal direction (Pan) and the vertical direction (Tilt) is calculated by a microprocessor 29 such as a microcomputer / DSP (step S4), and the light reception level difference is set to zero. Therefore, the movement direction and the movement amount of the reflection optical system 4 are calculated and sent to the control unit 12 (step S5 → S6, step S9 → S10). The control unit 12 D / A converts the values given by the D / A converters 30 and 31 and gives them to the drivers 32 and 33 as deflection angle control signals. The drivers 32 and 33 move the reflection optical system 4 in the horizontal and vertical directions. (Step S7 → S8, Step S11 → S12).
[0048]
Next, the movement of the light receiving spot on the quadrant PD will be described with reference to FIG. In the figure, reference numeral 6A denotes a light receiving spot on the quadrant PD when the pilot light is irradiated.
[0049]
In FIG. 9, in the step (1), first, the difference between the received light amounts of the PDs A and B facing each other in the vertical direction is calculated, and light is irradiated in the direction in which the difference becomes 0 (downward in FIG. 9). Thus, the reflecting optical system 4 is moved in the vertical direction. Next, in step (2), the difference between the received light amounts of the C and D PDs facing each other in the horizontal direction is calculated, and light is emitted in a direction to make the difference zero (right direction in FIG. 9). Next, the reflecting optical system 4 is moved in the horizontal direction.
[0050]
As described above, in the light receiving / emitting unit 9, since the transmission light and the reception light can be controlled coaxially by the first light control element 3A and the second light control element 3B, the light transmitted from the counterpart device having the same configuration. Is matched with the optical axis received by the present apparatus, the transmitted light of the present apparatus is applied to the counterpart apparatus. Similarly, the counterpart device also performs optical axis alignment, so that the transmission light from the counterpart device is irradiated onto the device, and the optical axes of the light receiving and emitting units 9 of the two devices match. Become.
[0051]
In the present embodiment, an example in which the first light receiving element 6 is configured by a four-divided PD is shown, but the number of divisions of the first light receiving element 6 may be three, or five, eight, etc. Further, the number of divisions may be further increased. In the present embodiment, an example in which the movement direction and the movement amount of the reflective optical system 4 are calculated so that the difference in the amount of received light at the PD becomes zero has been described. However, the movement direction and the movement amount are calculated by other algorithms. You may make it calculate.
[0052]
In the optical wireless transmission apparatus according to the first embodiment, the light of the transmission light and the reception light is controlled by controlling the deflection angle of the reflection optical system 4 based on the light received by the first light receiving element 6 for adjusting the optical axis. Since the axial alignment is performed coaxially, there are fewer movable parts and optical elements than the conventional device that rotates the light receiving device and the light emitting device at the same time, and the size of the device can be reduced. In comparison with a specific conventional apparatus, at least a volume ratio of 1/2 or less is achieved.
[0053]
Further, when the optical axis alignment is performed by the optical axis adjustment method of the optical wireless transmission apparatus according to the first embodiment, the search accuracy of the indoor optical wireless transmission apparatus using the conventional motor is about 0.2 [deg]. Whereas the speed is about 100 to 300 [rad / sec], in the apparatus according to the present embodiment, the search accuracy is 0.001 [deg] or less and the search speed is 500 [rad / sec] or more. In addition, high-speed optical axis alignment is realized. In this way, by using a configuration in which the light transmitted from the partner device and the optical axis received by the own device coincide with each other, even when a beam with a narrow directivity angle is used for the transmitted light as an indoor optical wireless transmission system, High-precision bidirectional communication can be performed.
[0054]
Furthermore, since the range in which the counterpart device can be searched is wide, it can be moved to various locations for indoor use.
[0055]
FIG. 11 is a schematic configuration diagram showing another configuration of the optical wireless transmission apparatus according to the first embodiment, and the same parts as those in FIG. 1 are denoted by the same reference numerals.
[0056]
The present embodiment shows a configuration in which the arrangement of the first light receiving unit 40 and the second light receiving unit 39 in FIG. That is, in the second light receiving unit 39, the data signal light incident from the counterpart device is reflected by the reflection optical system 4, reflected by the first light control element 3 </ b> A, and then received by the second light receiving element 36 through the lens 37. It is arranged at the position. In the first light receiving unit 40, the pilot light incident from the counterpart device is reflected by the reflection optical system 4, passes through the first light control element 3A, is reflected by the second light control element 3B, and then passes through the lens 5. The first light receiving element 6 is disposed at a position where light is received.
[0057]
Even when the arrangement of the first light receiving unit 40 and the second light receiving unit 39 is changed as in the present embodiment, the same effect as the light receiving and emitting unit 9 configured as shown in FIG. 1 can be obtained. it can.
[0058]
[Embodiment 2]
Next, the configuration of the optical wireless transmission apparatus according to the second embodiment will be described with reference to FIGS.
[0059]
FIG. 12 is a schematic configuration diagram of an optical wireless transmission apparatus according to the second embodiment. Parts equivalent to those in FIG. 1 are denoted by the same reference numerals.
[0060]
The present embodiment shows a configuration in which the arrangement of the second light receiving unit 39 and the light emitting unit 41 in FIG. 1 is exchanged. That is, in the light emitting unit 41, the emitted light emitted from the light emitting element 1 through the lens 2 is reflected by the second light control element 3B, then passes through the first light control element 3A, and is reflected by the reflection optical system 4. And are arranged so as to be transmitted as transmission light. In the first light receiving unit 40, the pilot light incident from the counterpart device is reflected by the reflection optical system 4, reflected by the first light control element 3A, and then received by the first light receiving element 6 through the lens 5. Are arranged as follows. Further, in the second light receiving unit 39, the data signal light incident from the counterpart device is reflected by the reflection optical system 4, passes through the first light control element 3 </ b> A and the second light control element 3 </ b> B, passes through the lens 37, and is second. The light receiving element 36 is arranged to receive light.
[0061]
Even when the arrangement of the second light receiving unit 39 and the light emitting unit 41 in FIG. 1 is changed as in the present embodiment, the same effect as that of the light receiving / emitting unit 9 configured as in FIG. 1 is obtained. Can do.
[0062]
Next, another configuration example of the optical wireless transmission apparatus according to the second embodiment will be described. In the optical wireless transmission device, the second light receiving element 36 of the second light receiving unit 39 receives the data signal light with high efficiency, thereby enabling data transmission at higher speed and longer distance. Therefore, in the configuration of the optical wireless transmission apparatus shown in FIG. 1 (Embodiment 1), it is necessary to make the reflection surface of the second light control element 3B equal to or larger than the area of light transmitted through the first light control element 3A. There is.
[0063]
FIG. 13 is a schematic configuration diagram illustrating another configuration example of the optical wireless transmission apparatus according to the second embodiment. In the present embodiment, the arrangement of the second light receiving unit 39 and the light emitting unit 41 is switched as in FIG. 12, and the reflection surface 3B-1 of the second light control element 3B further transmits the first light control element 3A. The second light control element 3B having a size smaller than that of FIG. 12 is arranged so as to be smaller than the light area S1.
[0064]
In the configuration of FIG. 13, since the light irradiated to the second light receiving element 36 is transmitted light of the second light control element 3B, the second light control element 3B is small and the reflecting surface 3B-1 is the first light control element. Even if the area S1 of the light passing through 3A is smaller than the area S1, the light that is not irradiated to the second light control element 3B is directly irradiated to the second light receiving element 36. For this reason, as shown in FIG. 12, it is possible to obtain an amount of received light equal to or greater than that when the reflection surface of the second light control element 3B is large. When the light emitting element 1 is a laser diode or the like, the directivity of the transmitted light is narrow, so the reflection surface of the second light control element 3B may be small.
[0065]
Further, in the present embodiment, since the second light control element 3B is downsized, the first light control element 3A can be brought closer to the second light control element 3B as shown in FIG. The entire light emitting / receiving unit 9 can be downsized, and the design of the light receiving / emitting unit 9 can be flexible.
[0066]
[Embodiment 3]
Next, the configuration of the optical wireless transmission apparatus according to the third embodiment will be described with reference to FIGS.
[0067]
FIG. 14 is a schematic configuration diagram of an optical wireless transmission apparatus according to the third embodiment. Parts equivalent to those in FIG. 1 are denoted by the same reference numerals.
[0068]
This embodiment shows a configuration in which the arrangement of the first light receiving unit 40 and the second light receiving unit 39 in FIG. 12 (Embodiment 2) is interchanged. That is, in the light emitting unit 41, the emitted light emitted from the light emitting element 1 through the lens 2 is reflected by the second light control element 3B, then passes through the first light control element 3A, and is reflected by the reflection optical system 4. And are arranged so as to be transmitted as transmission light. In the first light receiving unit 40, the pilot light incident from the counterpart device is reflected by the reflection optical system 4, passes through the first light control element 3A and the second light control element 3B, passes through the lens 5, and passes through the first light receiving element. 6 to receive light. Further, the second light receiving unit 39 receives the light of the data signal incident from the counterpart device by the reflection optical system 4 and is reflected by the first light control element 3A, and then received by the second light receiving element 36 through the lens 37. Are arranged to be.
[0069]
Even when the arrangement of the first light receiving unit 40 and the second light receiving unit 39 in FIG. 12 is switched as in the present embodiment, the same effect as the light receiving and emitting unit 9 configured as in FIG. 12 is obtained. Obtainable.
[0070]
Next, another configuration example of the optical wireless transmission apparatus according to the third embodiment will be described. In the optical wireless transmission device, it is necessary to efficiently irradiate the first light receiving element 6 with light in order to obtain more light information from the counterpart device when adjusting the optical axis. Therefore, in the configuration of the optical wireless transmission apparatus shown in FIG. 11 (Embodiment 1), it is necessary to make the reflection surface of the second light control element 3B equal to or larger than the area of light transmitted through the first light control element 3A. There is.
[0071]
FIG. 15 is a schematic configuration diagram illustrating another configuration example of the optical wireless transmission apparatus according to the third embodiment. In the present embodiment, the arrangement of the first light receiving element 40 and the second light receiving element 39 is interchanged as in FIG. 14, and the reflection surface 3B-1 of the second light control element 3B further replaces the first light control element 3A. The second light control element 3B having a size smaller than that of FIG. 14 is disposed so as to be smaller than the area S1 of the transmitted light.
[0072]
In the configuration of FIG. 15, since the light irradiated to the first light receiving element 6 is transmitted light of the second light control element 3B, the second light control element 3B is small and the reflecting surface 3B-1 is the first light control element. Even if it is smaller than the area S1 of the light passing through 3A, the light that is not irradiated to the second light control element 3B is directly irradiated to the first light receiving element 6. For this reason, as shown in FIG. 14, it is possible to obtain a received light amount equal to or greater than that when the reflection surface of the second light control element 3B is large. When the light emitting element 1 is a laser diode or the like, the directivity of the transmitted light is narrow, so the reflection surface of the second light control element 3B may be small.
[0073]
Further, in the present embodiment, since the second light control element 3B can be downsized, the first light control element 3A can be brought closer to the second light control element 3B as shown in FIG. The entire light emitting / receiving unit 9 can be downsized, and the design of the light receiving / emitting unit 9 can be flexible.
[0074]
[Embodiment 4]
Next, the configuration of the optical wireless transmission apparatus according to the fourth embodiment will be described with reference to FIGS.
[0075]
FIG. 16 is a schematic configuration diagram of an optical wireless transmission apparatus according to the fourth embodiment. Parts equivalent to those in FIG. 1 are denoted by the same reference numerals.
[0076]
The present embodiment shows a configuration in which the arrangement of the first light receiving unit 40 and the light emitting unit 41 in the configuration of FIG. 12 (Embodiment 2) is interchanged. That is, the light emitting unit 41 is configured so that the emitted light emitted from the light emitting element 1 through the lens 2 is reflected by the first light control element 3A, then reflected by the reflective optical system 4 and transmitted as transmission light. Has been placed. In addition, the first light receiving unit 40 reflects the pilot light incident from the counterpart device by the reflection optical system 4, passes through the first light control element 3 </ b> A, and is reflected by the second light control element 3 </ b> B. Then, the first light receiving element 6 is disposed so as to receive light. Further, in the second light receiving unit 39, the data signal light incident from the counterpart device is reflected by the reflection optical system 4, passes through the first light control element 3 </ b> A and the second light control element 3 </ b> B, passes through the lens 37, and is second. The light receiving element 36 is arranged to receive light.
[0077]
Even when the arrangement of the first light receiving unit 40 and the light emitting unit 41 in FIG. 12 is changed as in the present embodiment, the same effect as that of the light receiving and emitting unit 9 configured as shown in FIG. 12 is obtained. Can do.
[0078]
Next, another configuration example of the optical wireless transmission apparatus according to the fourth embodiment will be described. In the optical wireless transmission device, the second light receiving element 36 of the second light receiving unit 39 receives the data signal light with high efficiency, thereby enabling data transmission at higher speed and longer distance. Further, in order to obtain more information on the light from the counterpart device during the optical axis adjustment, it is necessary to irradiate the first light receiving element 6 with light efficiently. Therefore, in the configuration of the optical wireless transmission apparatus shown in FIG. 11 (Embodiment 1), it is necessary to make the reflection surface of the first light control element 3A equal to or larger than the area of the light reflected by the reflection optical system 4. is there.
[0079]
FIG. 17 is a schematic configuration diagram illustrating another configuration example of the optical wireless transmission apparatus according to the fourth embodiment. In the present embodiment, the arrangement of the first light receiving unit 40 and the light emitting unit 41 is switched as in FIG. 16, and the reflection surface 3A-1 of the first light control element 3A is reflected by the reflection optical system 4. The first light control element 3A having a smaller size than that of FIG. 16 is disposed so as to be smaller than the area S2.
[0080]
In the configuration of FIG. 17, the light irradiated to the first light receiving element 6 or the second light receiving element 36 is transmitted through the first light control element 3A and separated into transmitted light and reflected light by the second light control element 3B. Even if the first light control element 3A is small and the reflection surface 3A-1 is smaller than the area S2 of the light reflected by the reflection optical system 4, the light that is not irradiated on the first light control element 3A is The second light control element 3B is directly irradiated. For this reason, as shown in FIG. 16, it is possible to obtain an amount of received light equal to or greater than that when the reflection surface of the first light control element 3A is large. When the light emitting element 1 is a laser diode or the like, the directivity of the transmitted light is narrow, so the reflection surface of the first light control element 3A may be small.
[0081]
In the present embodiment, the first light control element 3A can be made closer to the second light control element 3B as shown in FIG. 17 by downsizing the first light control element 3A. The entire light emitting / receiving unit 9 can be downsized, and the design of the light receiving / emitting unit 9 can be flexible.
[0082]
[Embodiment 5]
Next, the configuration of the optical wireless transmission apparatus according to the fifth embodiment will be described with reference to FIGS.
[0083]
FIG. 18 is a schematic configuration diagram of an optical wireless transmission apparatus according to the fifth embodiment. Parts equivalent to those in FIG. 1 are denoted by the same reference numerals.
[0084]
The present embodiment shows a configuration in which the arrangement of the first light receiving unit 40 and the second light receiving unit 39 in the configuration of FIG. 16 (Embodiment 4) is interchanged. That is, the light emitting unit 41 is configured so that the emitted light emitted from the light emitting element 1 through the lens 2 is reflected by the first light control element 3A, then reflected by the reflective optical system 4 and transmitted as transmission light. Has been placed. In the first light receiving unit 40, the pilot light incident from the counterpart device is reflected by the reflection optical system 4, passes through the first light control element 3A and the second light control element 3B, passes through the lens 5, and passes through the first light receiving element. 6 to receive light. Further, the second light receiving unit 39 reflects the data signal light incident from the counterpart device by the reflection optical system 4, passes through the first light control element 3A, and is reflected by the second light control element 3B. The second light receiving element 36 is arranged so as to receive light through 37.
[0085]
Even when the arrangement of the first light receiving unit 40 and the second light receiving unit 39 in FIG. 16 is changed as in the present embodiment, the same effect as that of the light receiving / emitting unit 9 configured as shown in FIG. Obtainable.
[0086]
Next, another configuration example of the optical wireless transmission apparatus according to the fifth embodiment will be described. In the optical wireless transmission device, the second light receiving element 36 of the second light receiving unit 39 receives the data signal light with high efficiency, thereby enabling data transmission at higher speed and longer distance. Further, in order to obtain more information on the light from the counterpart device during the optical axis adjustment, it is necessary to irradiate the first light receiving element 6 with light efficiently. Therefore, in the configuration of the optical wireless transmission apparatus shown in FIG. 11 (Embodiment 1), it is necessary to make the reflection surface of the first light control element 3A equal to or larger than the area of the light reflected by the reflection optical system 4. is there.
[0087]
FIG. 19 is a schematic configuration diagram illustrating another configuration example of the optical wireless transmission apparatus according to the fifth embodiment. In the present embodiment, the arrangement of the first light receiving unit 40 and the second light receiving unit 39 is interchanged as in FIG. 18, and the reflection surface 3A-1 of the first light control element 3A is further reflected by the reflection optical system 4. The first light control element 3A having a size smaller than that of FIG. 18 is arranged so as to be smaller than the light area S2.
[0088]
In the configuration of FIG. 19, the light irradiated to the first light receiving element 6 or the second light receiving element 36 is transmitted through the first light control element 3A and separated into transmitted light and reflected light by the second light control element 3B. Even if the first light control element 3A is small and the reflection surface 3A-1 is smaller than the area S2 of the light reflected by the reflection optical system 4, the light that is not irradiated on the first light control element 3A is The second light control element 3B is directly irradiated. For this reason, as shown in FIG. 18, it is possible to obtain an amount of received light equal to or greater than that when the first light control element 3A has a large reflecting surface. When the light emitting element 1 is a laser diode or the like, the directivity of the transmitted light is narrow, so the reflection surface of the first light control element 3A may be small.
[0089]
In the present embodiment, the first light control element 3A can be made closer to the second light control element 3B as shown in FIG. 19 by downsizing the first light control element 3A. The entire light emitting / receiving unit 9 can be downsized, and the design of the light receiving / emitting unit 9 can be flexible.
[0090]
[Embodiment 6]
FIG. 20 is an explanatory diagram of a configuration example of the optical wireless transmission / reception device according to the sixth embodiment. By disposing the optical member of the light emitting / receiving unit 9 in the first to fifth embodiments on the same substrate 34, the optical wireless transmission device can be configured as a small module 35. For example, when a module having a size of about 5 mm square to 30 mm square is applied by applying a hologram pickup assembling technique or the like, it can be incorporated into a device such as a personal computer 42 as shown in FIG.
[0091]
As shown in the present embodiment, when the optical members of the light emitting / receiving unit 9 are integrally disposed on the same substrate, not only the apparatus can be reduced in size, but also the cost and the search time are reduced accordingly. Effects such as can be obtained. In addition, when using an integrated structure, the current IC microfabrication technology and hologram pickup assembly technology can be applied, enabling high-definition placement and easier adjustment of the transmission and reception optical axes. It will be something.
[0092]
[Embodiment 7]
Next, another configuration example of the first light control element 3A and the second light control element 3B will be described.
[0093]
As the first light control element 3A and the second light control element 3B, in addition to the beam splitters shown in the above-described embodiments, light that transmits light that is incident on one region and reflects light that is incident on another region A control element can be used.
[0094]
In the first embodiment, when the light emitting element 1 is a laser diode or the like, the directivity of the transmitted light is narrow, so that the transmission surfaces of the first light control element 3A and the second light control element 3B may be small. In this case, as shown in FIG. 22A, a light control element 51 having a transmission region 52 as a central portion through which light emitted from the light emitting element 1 transmits and a reflection surface 53 as all remaining portions (back surface) is used. be able to. The light control element 51 can be manufactured by vapor-depositing a reflective material in a region excluding the central portion of the transmission optical element serving as a base. In the light control element 51, the emitted light from the light emitting element 1 is transmitted through the transmission region 52, and the light received from the counterpart device is reflected by the reflecting surface 53 and guided to the first light receiving element 6. The transmission region 52 of the light control element 51 may be an opening. In this case, it can be manufactured by removing the central portion of the transmissive optical element as a base. FIG. 22A shows an example in which the light control element 51 and the first light receiving unit 40 are opposed to each other, but the same applies to the second light receiving unit 39.
[0095]
In addition, when the light emitted from the light emitting element 1 is reflected by the second light control element 3B as in the second embodiment, as shown in FIG. It is possible to use a light control element 61 in which the central portion where the emitted light is reflected is the reflective surface 62 and the remaining portion is the transmissive surface 63. The light control element 61 can be manufactured by masking all the remaining parts except the central part of the transmissive optical element as a base, and depositing a reflective material on the surface on which the reflective surface is formed. In the light control element 61, the light emitted from the light emitting element 1 is reflected by the reflection surface 62, and the light received from the counterpart device is transmitted through the transmission surface 63 and guided to the first light receiving element 6 through the lens 5. Become. FIG. 22B illustrates an example in which the light control element 61 and the first light receiving unit 40 are opposed to each other, but the same applies to the second light receiving unit 39.
[0096]
[Embodiment 8]
Next, laser output in each of the above embodiments will be described.
[0097]
In an optical wireless transmission device, light transmitted from the device is limited by safety standards. For example, in the case of a laser diode, its radiation intensity is defined by IEC 60825-1 (in Japan, JIS C6802: radiation safety standard for laser products). This reference limits the light output from the device. In the optical wireless transmission device shown in each of the above embodiments, when the light emitting element 1 is a laser diode, the output from the device is within the reference. The laser output of is sufficiently smaller than the level at which the laser diode can actually output. Therefore, in the case of the first embodiment, the transmission light can be made safe by changing the transmission / reflection ratio of the first light control element 3A and the second light control element 3B to lower the transmittance and increase the reflectance. It is possible to transmit at a high output level and to concentrate the received light on the first light receiving element 6 with high efficiency. For example, if the level at which the laser diode can output is 10 times the output level that can be transmitted from the apparatus, the transmittance of the second light control element 3B is 10% and the reflectance is 90%.
[0098]
In the light emitting element 1 shown in each of the above embodiments, the output level can be attenuated, and the transmitted light reflected by the reflection optical system 4 and transmitted to the outside of the apparatus is below the level limited by the safety standard. By being adjustable, high-speed bi-directional communication is possible with a level of strength that is safe for the eyes.
[0099]
In each of the embodiments described above, the pilot light for adjusting the optical axis is configured to be emitted from the light emitting element 1, but the pilot light is another light emitting element disposed inside or outside the light emitting / receiving unit 9. You may comprise so that it may radiate | emit from. The optical axis of the light emitting element is arranged so as to be coaxial or substantially parallel to the optical axis of the light emitting / receiving unit 9. Further, the light of the data signal emitted from the light emitting element 1 can be used as pilot light.
[0100]
【The invention's effect】
As described above, according to the present invention, the optical axis alignment of the transmission light and the reception light can be performed on the same axis by controlling the deflection angle of the reflection optical system. Compared to the conventional device that rotates, there are fewer movable parts, and the device can be made smaller. Further, even when a beam having a narrow directivity angle is used for the transmission light, it is possible to perform optical axis alignment with high accuracy and high speed. Furthermore, since the range in which the counterpart device can be searched is wide, it can be moved to various locations for indoor use.
[0101]
Therefore, when the optical wireless transmission device, the optical axis adjustment method of the optical wireless transmission device, the optical wireless communication method, and the optical wireless transmission system according to the present invention are applied to an indoor optical wireless transmission system, high-accuracy bidirectional communication is performed. Can be done.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an optical wireless transmission apparatus according to a first embodiment.
FIG. 2 is a block diagram showing a configuration of a data supply unit.
FIG. 3 is a block diagram showing a configuration of a deflection angle control signal supply unit.
FIG. 4 is a block diagram showing a configuration of a signal processing unit.
FIG. 5 is a block diagram showing a configuration of a received signal processing unit.
FIG. 6A is a configuration diagram in the case where a piezo actuator is used as a driving unit of the reflective optical system. (B), (c) is explanatory drawing at the time of extending a piezo actuator.
FIG. 7 is an explanatory diagram showing reflectance spectral characteristics of an Au film.
FIG. 8 is a flowchart showing a control procedure of the reflection optical system by a deflection angle control signal supply unit.
FIG. 9 is an explanatory diagram showing a state in which a light receiving spot moves in a stepwise manner by a first light receiving element configured by a four-part PD.
10 is a block diagram showing a configuration for realizing the control procedure of FIG. 8 in a deflection angle control signal supply unit.
FIG. 11 is a schematic configuration diagram illustrating another configuration example of the optical wireless transmission apparatus according to the first embodiment.
FIG. 12 is a schematic configuration diagram of an optical wireless transmission apparatus according to the second embodiment.
FIG. 13 is a schematic configuration diagram illustrating another configuration example of the optical wireless transmission apparatus according to the second embodiment.
FIG. 14 is a schematic configuration diagram of an optical wireless transmission apparatus according to a third embodiment.
FIG. 15 is a schematic configuration diagram showing another configuration example of the optical wireless transmission apparatus according to the third embodiment.
FIG. 16 is a schematic configuration diagram of an optical wireless transmission apparatus according to a fourth embodiment.
FIG. 17 is a schematic configuration diagram illustrating another configuration example of the optical wireless transmission apparatus according to the fourth embodiment.
FIG. 18 is a schematic configuration diagram of an optical wireless transmission apparatus according to a fifth embodiment.
FIG. 19 is a schematic configuration diagram showing another configuration example of the optical wireless transmission apparatus according to the fifth embodiment.
FIG. 20 is an explanatory diagram showing a configuration example of an optical wireless transmission / reception apparatus according to the sixth embodiment.
FIG. 21 is an explanatory diagram when the optical wireless transmission apparatus according to the sixth embodiment is mounted on a personal computer.
FIG. 22 is an explanatory diagram showing another configuration example of the first and second light control elements. (A) is explanatory drawing at the time of making the central part which an emitted light permeate | transmits into a transmissive area | region, and making all the remaining parts into a reflective surface. (B) is explanatory drawing at the time of making the central part which an emitted light reflects into a reflective surface, and making all the remaining parts into a transmissive surface.
FIG. 23 is a schematic configuration diagram of a conventional indoor optical wireless transmission device.
[Explanation of symbols]
1. Light emitting element
2 ... Lens (first optical element)
3A: First light control element
3B ... second light control element
4 ... Reflective optical system
5 ... Lens (second optical element)
6 ... 1st light receiving element
7 ... Data supply section
7A ... External interface
8: Deflection angle control signal supply unit
9 ... Light emitting / receiving section
10: Light emission drive unit
11: Signal processor
12 ... Control unit
13. Calculation unit
18 ... Reflecting part
19 ... Piezo actuator
20 ... Electrode
21 ... Amplifier
21 ... Master unit
22 ... Light emitting part
23. Light emitting means
23A ... Pilot light
24 ... handset
24A ... Light receiving device
25-28 ... A / D converter
29 ... Microprocessor
30, 31 ... D / A converter
32, 33 ... Driver
34 ... Board
35 ... Module
36: Second light receiving element
37. Lens (third optical element)
38. Reception signal processing section
38A ... External interface
39: Second light receiving portion
40. First light receiving portion
41 ... Light emitting part
42 ... PC
51, 61 ... Light control element
101 ... 4B / 5B encoder
102 ... descrambling / scramble part
103 ... Parallel / serial converter
104 ... NRZ / NRZI converter
105, 112 ... PLL
111... NRZI / NRZ converter
113 ... Serial / parallel converter
114 ... Scramble / descramble part
115 ... 4B / 5B decoder
116: Clock recovery circuit

Claims (9)

データ信号により変調された光又は光軸調整用のパイロット光を出射する発光素子、前記発光素子から出射された光を平行光に近いビーム光に成形する第1光学素子、入射光の一部を反射し、残りを透過する第1、第2光制御素子、入射光を反射し且つ当該入射光の光軸に対する偏向角を制御するための駆動手段を有する反射光学系、相手装置から送信された光を集光する第2光学素子、前記第2光学素子で集光された光を受光する第1受光素子、前記相手装置から送信された光を集光する第3光学素子、前記第3光学素子で集光された光を受光する第2受光素子を有し、前記第1光制御素子を通過する光の光軸方向に対する照射面積が、前記第2光制御素子に入射される光の光軸方向に対する照射面積よりも大きくなるように前記第1、第2光制御素子を構成すると共に、前記発光素子から出射された光は前記第1光学素子で平行光に近いビーム光に成形され、前記第2光制御素子で反射された後、前記第1光制御素子を透過し、前記反射光学系で所定方向へ反射されて送信光として送信され、前記相手装置から入射した光は前記反射光学系で反射され、一部の光は前記第1光制御素子で反射された後、前記第2光学素子を経て前記第1受光素子で受光され、残りの光は前記第1光制御素子を透過し、前記第2光制御素子を透過及び前記第2光制御素子の周囲を通過して、前記第3光学素子を経て前記第2受光素子で受光されるように構成された受発光部と、
前記第1受光素子で受光したパイロット光に基づいて前記反射光学系の偏向角を制御するための偏向角制御信号を演算し、当該偏向角制御信号に基づいて前記反射光学系の駆動手段を制御する偏向角制御信号供給部と、
を備え、前記第2受光素子において前記相手装置からの光をデータ信号として受光し、前記第1受光素子において受光した前記パイロット光に基づいて前記反射光学系の偏向角を制御することにより、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行うことを特徴とする光無線伝送装置。
A light emitting element that emits light modulated by a data signal or pilot light for adjusting the optical axis, a first optical element that shapes light emitted from the light emitting element into beam light that is close to parallel light, and a part of incident light First and second light control elements that reflect and transmit the rest, a reflection optical system that has incident means for reflecting incident light and that controls the deflection angle of the incident light with respect to the optical axis, transmitted from the counterpart device A second optical element for condensing the light, a first light receiving element for receiving the light condensed by the second optical element, a third optical element for condensing the light transmitted from the counterpart device, and the third optical A second light receiving element that receives the light collected by the element, and an irradiation area with respect to an optical axis direction of the light passing through the first light control element is light of the light incident on the second light control element The first and the first so as to be larger than the irradiation area in the axial direction. Together constitute a light control element, light emitted from the light emitting element is formed into the beam light close to parallel light by the first optical element after being reflected by the second optical control element, the first light control The light is transmitted through the element, reflected by the reflection optical system in a predetermined direction and transmitted as transmission light, light incident from the counterpart device is reflected by the reflection optical system, and part of the light is transmitted by the first light control element. After being reflected, the light is received by the first light receiving element through the second optical element, and the remaining light is transmitted through the first light control element, transmitted through the second light control element , and the second light control element. And a light receiving / emitting unit configured to be received by the second light receiving element through the third optical element,
A deflection angle control signal for controlling the deflection angle of the reflection optical system is calculated based on the pilot light received by the first light receiving element, and the drive means of the reflection optical system is controlled based on the deflection angle control signal. A deflection angle control signal supply unit,
The second light receiving element receives light from the counterpart device as a data signal, and controls the deflection angle of the reflective optical system based on the pilot light received by the first light receiving element, An optical wireless transmission apparatus characterized in that optical axes of light emitted from a light emitting element and light incident from the counterpart device are aligned.
前記請求項1に記載の光無線伝送装置において、
前記受発光部は、前記発光素子から出射された光は前記第1光学素子で平行光に近いビーム光に成形され、前記第2光制御素子で反射された後、前記第1光制御素子を透過し、前記反射光学系で所定方向へ反射されて前記相手装置に送信され、前記相手装置から入射した光は前記反射光学系で反射され、一部の光は前記第1光制御素子で反射された後、前記第3光学素子を経て前記第2受光素子で受光され、残りの光は前記第1光制御素子を透過し、前記第2光制御素子を透過及び前記第2光制御素子の周囲を通過し、前記第2光学素子を経て前記第1受光素子で受光されるように構成されたものであることを特徴とする光無線伝送装置。
The optical wireless transmission device according to claim 1,
The light emitting / receiving unit is configured to convert the light emitted from the light emitting element into beam light close to parallel light by the first optical element, reflect the light by the second light control element, and then change the first light control element. Transmitted, reflected by the reflective optical system in a predetermined direction and transmitted to the counterpart device, light incident from the counterpart device is reflected by the reflective optical system, and part of the light is reflected by the first light control element Then, the light is received by the second light receiving element through the third optical element, and the remaining light is transmitted through the first light control element, transmitted through the second light control element , and of the second light control element. An optical wireless transmission device configured to pass around and to be received by the first light receiving element through the second optical element.
データ信号により変調された光又は光軸調整用のパイロット光を出射する発光素子、前記発光素子から出射された光を平行光に近いビーム光に成形する第1光学素子、入射光の一部を反射し、残りを透過する第1、第2光制御素子、入射光を反射し且つ当該入射光の光軸に対する偏向角を制御するための駆動手段を有する反射光学系、相手装置から送信された光を集光する第2光学素子、前記第2光学素子で集光された光を受光する第1受光素子、前記相手装置から送信された光を集光する第3光学素子、前記第3光学素子で集光された光を受光する第2受光素子を有し、前記第1光制御素子を通過する光の光軸方向に対する照射面積が、前記第2光制御素子に入射される光の光軸方向に対する照射面積よりも小さくなるように前記第1、第2光制御素子を構成すると共に、前記発光素子から出射された光は前記第1光学素子で平行光に近いビーム光に成形され、前記第1光制御素子で反射された後、前記反射光学系で所定方向に反射されて前記相手装置に送信され、前記相手装置から入射した光は前記反射光学系で反射され、前記第1光制御素子を透過及び前記第1光制御素子の周囲を通過し、一部の光は前記第2光制御素子で反射された後、前記第2光学素子を経て前記第1受光素子で受光され、残りの光は前記第1、第2光制御素子を透過して、前記第3光学素子を経て前記第2受光素子で受光されるように構成された受発光部と、
前記第1受光素子で受光したパイロット光に基づいて前記反射光学系の偏向角を制御するための偏向角制御信号を演算し、当該偏向角制御信号に基づいて前記反射光学系の駆動手段を制御する偏向角制御信号供給部と、
を備え、前記第2受光素子において前記相手装置からの光をデータ信号として受光し、前記第1受光素子において受光した前記パイロット光に基づいて前記反射光学系の偏向角を制御することにより、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行うことを特徴とする光無線伝送装置。
A light emitting element that emits light modulated by a data signal or pilot light for adjusting the optical axis, a first optical element that shapes light emitted from the light emitting element into beam light that is close to parallel light, and a part of incident light First and second light control elements that reflect and transmit the rest, a reflection optical system that has incident means for reflecting incident light and that controls the deflection angle of the incident light with respect to the optical axis, transmitted from the counterpart device A second optical element for condensing the light, a first light receiving element for receiving the light condensed by the second optical element, a third optical element for condensing the light transmitted from the counterpart device, and the third optical A second light receiving element that receives the light collected by the element, and an irradiation area with respect to an optical axis direction of the light passing through the first light control element is light of the light incident on the second light control element The first and the first so as to be smaller than the irradiation area with respect to the axial direction. Together constitute a light control element, light emitted from the light emitting element is formed into the beam light close to parallel light by the first optical element after being reflected by the first optical control element, by the reflecting optical system Light reflected in a predetermined direction and transmitted to the counterpart device, light incident from the counterpart device is reflected by the reflective optical system, passes through the first light control element, and passes around the first light control element, Part of the light is reflected by the second light control element , then received by the first light receiving element through the second optical element, and the remaining light is transmitted through the first and second light control elements. A light emitting / receiving section configured to be received by the second light receiving element through the third optical element;
A deflection angle control signal for controlling the deflection angle of the reflection optical system is calculated based on the pilot light received by the first light receiving element, and the drive means of the reflection optical system is controlled based on the deflection angle control signal. A deflection angle control signal supply unit,
The second light receiving element receives light from the counterpart device as a data signal, and controls the deflection angle of the reflective optical system based on the pilot light received by the first light receiving element, An optical wireless transmission apparatus characterized in that optical axes of light emitted from a light emitting element and light incident from the counterpart device are aligned.
前記請求項3に記載の光無線伝送装置において、
前記受発光部は、前記発光素子から出射された光は前記第1光学素子で平行光に近いビーム光に成形され、前記第1光制御素子で反射された後、前記反射光学系で所定方向へ反射されて前記相手装置に送信され、前記相手装置から入射した光は前記反射光学系で反射され、前記第1光制御素子を透過及び前記第1光制御素子の周囲を通過し、一部の光は前記第2光制御素子で反射された後、前記第3光学素子を経て前記第2受光素子で受光され、残りの光は前記第2光制御素子を透過し、前記第2光学素子を経て前記第1受光素子で受光されるように構成されたものであることを特徴とする光無線伝送装置。
In the optical wireless transmission device according to claim 3,
The light receiving and emitting unit, the light emitted from the light emitting element is formed into the beam light close to parallel light by the first optical element after being reflected by the first optical control element, the predetermined direction by the reflection optical system The light that is reflected to the partner device and transmitted from the partner device is reflected by the reflective optical system, passes through the first light control element, and passes around the first light control element. Is reflected by the second light control element , then received by the second light receiving element through the third optical element, and the remaining light is transmitted through the second light control element, and the second optical element. An optical wireless transmission apparatus configured to be received by the first light receiving element via
前記請求項1乃至4のいずれか一項に記載の光無線伝送装置において、
前記第1受光素子は、多分割された受光素子により構成され、
前記偏向角制御信号供給部は、前記受光素子の各分割領域での受光量に基づいて前記反射光学系の移動方向と移動量を演算する演算手段と、前記演算手段で演算された移動方向と移動量に基づいて前記反射光学系の駆動手段を水平方向又は垂直方向に駆動して、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行う制御手段と、
を備えることを特徴とする光無線伝送装置。
In the optical wireless transmission device according to any one of claims 1 to 4,
The first light receiving element is constituted by a multi-divided light receiving element,
The deflection angle control signal supply unit is configured to calculate a moving direction and a moving amount of the reflection optical system based on a light receiving amount in each divided region of the light receiving element, and a moving direction calculated by the calculating unit. Control means for driving the reflecting optical system driving means in a horizontal direction or a vertical direction based on the amount of movement to align the optical axis of the light emitted from the light emitting element and the light incident from the counterpart device;
An optical wireless transmission device comprising:
前記請求項1乃至5のいずれか一項に記載の光無線伝送装置において、
前記受発光部の構成部材を同一基板上に一体に配置したことを特徴とする光無線伝送装置。
In the optical wireless transmission device according to any one of claims 1 to 5,
An optical wireless transmission apparatus, wherein the constituent members of the light emitting / receiving unit are integrally arranged on the same substrate .
前記請求項5に記載の光無線伝送装置の光軸調整方法において、In the optical axis adjustment method of the optical wireless transmission device according to claim 5,
前記相手装置から入射する光を前記第1受光素子で受光し、当該第1受光素子を構成する前記各受光素子における受光量に基づいて前記反射光学系の移動方向と移動量を演算すると共に、当該移動方向と移動量に基づいて前記反射光学系の駆動手段を水平方向又は垂直方向に駆動することにより、前記発光素子から出射する光と前記相手装置から入射する光の光軸合わせを行うことを特徴とする光無線伝送装置の光軸調整方法。  The light incident from the counterpart device is received by the first light receiving element, and the moving direction and the moving amount of the reflective optical system are calculated based on the amount of light received by each light receiving element constituting the first light receiving element. Based on the moving direction and the moving amount, the driving means of the reflective optical system is driven in the horizontal direction or the vertical direction, thereby aligning the optical axis of the light emitted from the light emitting element and the light incident from the counterpart device. An optical axis adjustment method for an optical wireless transmission device.
前記請求項1乃至6のいずれか一項に記載の光無線伝送装置が第1、第2の光無線伝送装置として所定間隔で対向配置されると共に、請求項7に記載の光無線伝送装置の光軸調整方法により光軸合わせがされた後、前記第1、第2の光無線伝送装置の間で双方向通信を行うことを特徴とする光無線通信方法。The optical wireless transmission device according to any one of claims 1 to 6 is disposed as a first optical wireless transmission device and a second optical wireless transmission device facing each other at a predetermined interval, and the optical wireless transmission device according to claim 7 is also provided. An optical wireless communication method characterized in that, after optical axis alignment is performed by an optical axis adjustment method, bidirectional communication is performed between the first and second optical wireless transmission devices. 前記請求項1乃至6のいずれか一項に記載の光無線伝送装置を第1、第2の光無線伝送装置として所定間隔で対向配置した光無線伝送システムであって、An optical wireless transmission system in which the optical wireless transmission device according to any one of claims 1 to 6 is disposed as a first and second optical wireless transmission device facing each other at a predetermined interval,
前記第1、第2の光無線伝送装置について請求項7に記載の光無線伝送装置の光軸調整方法により光軸合わせがされた後、前記第1、第2の光無線伝送装置の間で双方向通信を行うことを特徴とする光無線伝送システム。  An optical axis alignment of the first and second optical wireless transmission apparatuses by the optical axis adjustment method of the optical wireless transmission apparatus according to claim 7, and then between the first and second optical wireless transmission apparatuses. An optical wireless transmission system characterized by performing bidirectional communication.
JP2003103771A 2003-04-08 2003-04-08 Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system Expired - Fee Related JP3800195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103771A JP3800195B2 (en) 2003-04-08 2003-04-08 Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103771A JP3800195B2 (en) 2003-04-08 2003-04-08 Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system

Publications (2)

Publication Number Publication Date
JP2004312417A JP2004312417A (en) 2004-11-04
JP3800195B2 true JP3800195B2 (en) 2006-07-26

Family

ID=33466777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103771A Expired - Fee Related JP3800195B2 (en) 2003-04-08 2003-04-08 Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system

Country Status (1)

Country Link
JP (1) JP3800195B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645326B2 (en) * 2005-06-30 2011-03-09 日本ビクター株式会社 Light emitting / receiving device and transmitting / receiving device
JP4692329B2 (en) * 2006-02-28 2011-06-01 日本ビクター株式会社 Optical wireless communication device

Also Published As

Publication number Publication date
JP2004312417A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US20200371585A1 (en) Integrated optoelectronic module
EP3224650B1 (en) Multi-mirror scanning depth engine
US10247812B2 (en) Multi-mirror scanning depth engine
WO2010098363A1 (en) Optical axis adjusting apparatus, optical axis adjusting method, and projection type display apparatus
KR100569616B1 (en) Spatial light transmission device and spatial light transmission method
JP2017163636A (en) Energy transmitter, energy receiver, energy transmitter receiver, and wireless power supply system with them
JP3804634B2 (en) Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system
JP3800195B2 (en) Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system
JP4251294B2 (en) Optical wireless communication apparatus, optical axis adjustment method of optical wireless communication apparatus, optical wireless communication method, and optical wireless communication system
JP3757949B2 (en) Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system
US7099536B1 (en) Single lens system integrating both transmissive and reflective surfaces for light focusing to an optical fiber and light reflection back to a monitor photodetector
JP4273458B2 (en) Optical wireless transmission device, optical axis adjustment method of optical wireless transmission device, optical wireless communication method, and optical wireless transmission system
CN112596173B (en) Optical signal transmitter
JP4281062B2 (en) Mirror tilt device
CN114236714B (en) Wireless optical communication receiving device and method based on light beam correction
CN111130638B (en) Directional visible light communication system
JP2004349797A (en) Optical radio transmission apparatus, and optical axis adjusting method thereof
JP7156364B2 (en) Photodetector and transmitter/receiver
JP4462134B2 (en) Optical signal transmission system
JP2004080253A (en) Optical space transmission apparatus and optical space transmission system
AU2015203089B2 (en) Scanning depth engine
JP2005064992A (en) Optical radio apparatus and optical radio system
WO2022031855A1 (en) Free space optical communication terminal with dispersive optical component, actuator system, or optical relay system
JPH11259592A (en) Optical information reader
WO2001057580A3 (en) High power laser head system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R151 Written notification of patent or utility model registration

Ref document number: 3800195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees