JP2004319734A - Process for manufacturing electronic apparatus circuit device - Google Patents

Process for manufacturing electronic apparatus circuit device Download PDF

Info

Publication number
JP2004319734A
JP2004319734A JP2003111205A JP2003111205A JP2004319734A JP 2004319734 A JP2004319734 A JP 2004319734A JP 2003111205 A JP2003111205 A JP 2003111205A JP 2003111205 A JP2003111205 A JP 2003111205A JP 2004319734 A JP2004319734 A JP 2004319734A
Authority
JP
Japan
Prior art keywords
solder
metal base
circuit board
stage
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003111205A
Other languages
Japanese (ja)
Other versions
JP4226944B2 (en
Inventor
Satoshi Tabuchi
聡 田渕
Koichi Kimura
好壱 木村
Hiroaki Akimoto
浩明 秋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003111205A priority Critical patent/JP4226944B2/en
Publication of JP2004319734A publication Critical patent/JP2004319734A/en
Application granted granted Critical
Publication of JP4226944B2 publication Critical patent/JP4226944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an electronic apparatus circuit device in which high productivity essential to reflow processing can be ensured by a simple process in correspondence with reduction in the size of components or complicacy in the shape of the components. <P>SOLUTION: In order to manufacture an electronic apparatus circuit device by mounting an electronic component 32 through soldering on a circuit board 31 produced by forming a circuit pattern on the surface 21 of a metal base 20 having uneven thickness between the front surface 21 and the rear surface 22, a first stage comprising a step for adding solders having different melting points to respective surface areas of the circuit board having a different thickness between the front surface 21 and the rear surface 22 while spacing apart from each other and a step for mounting the electronic component 32, a second stage for heating the metal base 20 having the circuit board 31 in the first state, and a third stage for cooling the metal base 20 heated in the second stage, are carried out. In place of solders having different melting points, adding amount of solder having the same melting point may be controlled. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器回路装置を製造する方法に関し、特に、平坦表面直下の肉厚を不均等に形成した回路基板に対し、リフロー炉によるはんだ付け処理を用いて上記装置を製造する方法に関する。
【0002】
【従来の技術】
回路基板上に電子部品を実装する際に多用されるはんだ付け処理は、電子機器回路装置の製造技術に重要であり、放熱フィンの片面側に回路部分を実装する際などに用いられる。(例えば、特許文献1。)
【0003】
また、回路基板上では多様な電子部品が大量に実装可能であるのが理想的であり、このため、熱容量の異なる多岐の部品をはんだ付け処理の対象とする傾向が強い。そして、このような多種類の電子部品への対応を考慮するものとして、特許文献2及び3に示すリフロー処理方法が開示されている。
【0004】
リフロー処理方法は、高い生産性ではんだ付け処理を行うもので、例えば、図1に示すような搬入口1と搬出口2とを連通させて設けたリフロー炉3を用いるのが一般的である。リフロー炉3の内部は、搬入口1から搬出口2への搬送を可能とするベルトコンベア等の搬送路4と、この搬送路4を挟んで対向する上部及び下部ヒータ5、6とが設けられている。リフロー炉3を用いて、回路基板上に電子部品8を実装するに際しては、あらかじめ、リフロー炉3の外部において、ベース7上の絶縁体物質7aに銅箔等の導電性物質を貼り付けたものに対して、エッチング加工等を行って回路基板8を形成し、この回路基板8上で電子部品9の載置部分にクリームはんだを添加する。そして、電子部品9を載置した状態の回路基板8を、搬送路4により搬入口1から搬出口2方向へ搬送させ、この搬送中に、上下ヒータ5、6により加熱する。ヒータ5、6の加熱により基板8上に添加したクリームはんだは融点に達して溶融し、その後、回路基板8を搬出口2から搬出すると基板8の除冷に伴ってはんだが固化し、最終的に電子部品9が回路基板8に固着して、その実装作業が終了する。
【0005】
このようなリフローはんだ処理は、旧来のはんだごてを用いる直接装着作業に比べ、生産性が格段に高く大量生産が可能なことから、回路基板上への電子部品の実装工程に多用される。
【0006】
そして、昇温特性の異なる電子部品間でのはんだ付け処理の進行のばらつき及びこのばらつきに伴う部品品質の劣化を防止するため、特許文献2に示すものは、熱容量の異なる電子部品に応じて、加熱手段(近赤外線ヒータと遠赤外線ヒータ)を選択し、また、特許文献3のものは、予備加熱や本加熱などの加熱工程ごとにはんだ付け処理対象物の搬送速度を相異させている。
【0007】
【特許文献1】
実開平5−87956号公報(第5〜9頁、図1及び2)
【0008】
【特許文献2】
特開平8−64954号公報(第4〜13頁、図1、6及び7)
【0009】
【特許文献3】
特開2000−183511号公報(第3〜6頁、図1)
【0010】
【発明が解決しようとする課題】
上記したように特許文献1に示すものは、多種類の電子部品の実装工程ごとにはんだ付け処理や耐熱性接着剤により接合を行うため工程が煩雑になり生産性に難点がある。
【0011】
また、この欠点を補うはずのリフロー処理による特許文献2及び3のはんだ付け方法も、工程が複雑であるため、これがタクトタイムの長期化要因となり、生産性の向上には限界がある。
【0012】
さらに、近年の電子機器回路装置は、小型化及び軽量化の進展が顕著であり、例えば、モータ装置においては、モータ部と制御基板部とを一体構成するなどの工夫が為されている。
【0013】
これに伴い、回路装置設計上の制約が多くなり、例えば、特許文献1のものの放熱フィンは占有スペースが大きいためそのままで搭載することは歓迎されない。また、基板部の形状の複雑化が避けられず、このため、特許文献2及び3のはんだ付け処理を行っても、実装する電子部品より格段に大きな熱容量を有する基板部内に熱容量の偏りが生じ、電子部品ごとに行ったはずの対応の効果が減殺されてしまう。即ち、電子部品を実装する表面領域直下の基板部の熱容量が異なることにより、はんだ添加部分での昇温不足に起因して融点温度への到達遅延が生じてはんだ処理が確実に行われなかったり、その逆に、局所的に所期以上の過熱を招いて電子部品の劣損が生じたりするおそれがある。
【0014】
本発明は、上記問題点に鑑み、簡易な工程により、装置内部品の小型化やこれに伴う部品形状の複雑化に対応して、リフロー処理本来の高い生産性を確保し得る電子機器回路装置の製造方法を提供することを課題としている。
【0015】
【課題を解決するための手段】
上記課題を解決するため、本発明は、表裏両面間の肉厚が不均等な金属ベースの表面に回路パターンを形成して成る回路基板に対して、はんだ付け処理により電子部品を実装して電子機器回路装置を製造するために、昇温特性の異なる回路基板表面領域ごとに温度特性が異なるはんだをそれぞれ離隔して添加する工程と、電子部品を載置する工程とを第1段階として行うものとする。
【0016】
これによれば、第1段階において、基板表面領域ごとにその昇温特性に応じたはんだを添加することにより、第1段階の金属ベースに対して加熱を行うその後の第2段階を経る際に昇温速度差が生じても、これに伴って生じる、はんだ付け処理進行の相異を解消することができる。
【0017】
例えば、はんだの温度特性としてその融点に着目し、第1段階において、昇温速度の異なる表面領域ごとに融点の異なるはんだをそれぞれ離隔して添加する。即ち、昇温速度の大きい表面領域で高い融点のはんだを用い、昇温速度の小さい領域で低い融点のはんだを用いることにより、はんだ添加部分がほぼ同時期にそれぞれ融点に到達し、この結果、基板上のはんだ付けのタイミングが揃うことになる。
【0018】
また、例えば、はんだの温度特性としてその熱容量に着目し、第1段階において、昇温速度の異なる表面領域ごとに熱容量の異なる同融点のはんだをそれぞれ離隔して添加する。即ち、昇温速度の大きい表面領域で大きい熱容量のはんだを用い、昇温速度の小さい領域で小さい熱容量のはんだを用いることにより、やはり、はんだ添加部分がほぼ同時期にそれぞれ融点に到達し、この結果、基板上のはんだ付けのタイミングが揃うことになる。
【0019】
さらに、第2段階で加熱した金属ベースに対し、大気中に放置したり低温恒温槽へ搬入したりするなどして冷却を行う第3段階を経るものとする。これにより、上記したようなタイミングの揃った状態ではんだ付けを終了することができる。
【0020】
即ち、上記の第1乃至第3に亘る段階を経ることにより、基板上のそれぞれのはんだ添加部分においてはんだ付けのタイミングを揃えることができるので、タクトタイムの長期化を防ぎ、効率良く電子機器回路装置を製造することが可能になる。
【0021】
【発明の実施の形態】
図2(a)は、本発明に用いる金属ベース20の裏面を表す概観図である。図2(b)の側面図に示すように、金属ベース20の表裏両面のうち、表面21は基板回路の形成のため平坦面形状であり、裏面22はモータとの直結を想定した凹凸形状となっており、金属ベース20そのものがモータハウジングの一部として兼用される。即ち、図2(a)の正面図や図2(c)の斜視図に示されるように、金属ベース20の裏面22には、モータ用軸受部23やケーブル穴部24や取付け用ブラケット25などが設けられて起伏の多い複雑形状となっている。また、上記した金属ベース20の平坦表面21上の基板回路は、この表面21上に熱可塑性の絶縁シートを介して被覆した銅材料等の導電材料に対してエッチング加工などを行い、これにより回路パターンを形成して得られる。
【0022】
上記の金属ベース20を用いる本発明の工程図を図3に示す。本工程の第1段階で、裏面22に複雑形状を有する金属ベース20の平坦表面21上に絶縁シート30を介して形成した基板回路31の接合予定部分に、公知の印刷法によりクリームはんだ(図示せず)の印刷を行い、さらに、この接合予定部分にICリードやリード端子あるいはチップ部品などの電子部品32を載置する。この際に、金属ベース20の表面21直下の肉厚が比較的大きい部分には、低融点材質のはんだLを印刷により添加し、肉厚が比較的小さい部分には高融点材質のはんだHを印刷する。
【0023】
なお、はんだH及びLの印刷による添加時に、はんだHとLとが接触していると、その後のはんだ溶融時にはんだ同士が混在し、それぞれの添加部分で所期のはんだ温度特性を得ることが難しくなる。このため、表面21上へのはんだ添加の際は、はんだH及びLによる各添加部分を互いに充分離隔する必要がある。
【0024】
また、はんだの融点は、はんだ中の金属配合量を調整することにより上昇及び下降させることできる。即ち、例えば、スズ、ビスマス、鉛の3金属を配合した三元系はんだの場合、鉛金属の配合量を増減することで融点の変更が可能となる。このようにして、上記した高融点はんだH及び低融点はんだLが容易に得られる。
【0025】
そして、この状態で金属ベース20を、公知の搬送手段により搬入口33aを介して、リフロー炉33内部の通電加熱したホットプレート34上に搬送して、基板回路31上のクリームはんだが溶融できるようにリフロー炉33内部の加熱(例えば180〜230℃)を行い、これを第2段階とする。
【0026】
このとき、表面21直下の肉厚の大きい部分は、熱容量が大きいため、肉厚の小さい部分より昇温速度が遅くなるが、上記したように大肉厚部分に低融点はんだLを、小肉厚部分に高融点はんだHを、それぞれ添加しているので、それぞれのはんだが溶融するタイミングを揃えることができる。
【0027】
また、上記のように表面21直下の肉厚に応じて融点の異なるはんだを添加する替りに、同融点のはんだを用い、肉厚に応じてこのはんだの添加量を相異させるようにしても良い。即ち、大肉厚部分に少量のはんだを添加し、小肉厚部分に多量のはんだをそれぞれ添加すると、小添加量のはんだ部分は熱容量が小さく、大添加量のはんだ部分は熱容量が大きいため、やはり、はんだが溶融するタイミングを揃えることができる。
【0028】
なお、上記いずれの場合も、はんだの溶融を左右する熱容量を考慮するにあたって、電子部品32の影響を取り入れていない。これは、金属ベース20と電子部品32とで格段の体積格差があり、全体の熱容量に占める電子部品32の影響は限定的に留まるからである。このため、熱容量の大小は実質的に金属ベース20の肉厚に依存するものとした。
【0029】
ところで、本第2段階においてホットプレート34を加熱手段として用いるのは、金属ベース20の表面21上に添加したそれぞれのはんだへの熱量供給を、熱容量の異なる金属ベース20の肉厚方向に行うためである。さらに、表面21上に載置した電子部品32に対して、従来例(例えば、図1及び特許文献2)に示すように直接の熱照射が行われてこれが劣損するのを避けるためでもある。即ち、金属ベース20の裏面に対する下部からの加熱手段であれば、コイルヒータや赤外線放射ヒータを用いても良い。なお、上部からのヒータや炉中雰囲気全体を加熱するリフロー炉を用いる場合、電子部品32を覆うカバー(図示せず)を回路基板31上に載置することで、電子部品32の劣損を防ぐことが可能となる。
【0030】
そして、それぞれのはんだを溶融させた後に、金属ベース20を搬出口33bからリフロー炉33の外部に搬出させる。そして、第3段階として冷却することによりはんだを固化させて回路基板31上に各電子部品32を固着させる。
【0031】
このような冷却手段としては、自然冷却の他、低温恒温槽への搬入などの公知手段を用いることができるが、上記したように金属ベース20の肉厚に対応して熱容量の偏りがあり、特に、大肉厚部分の冷却には比較的長時間を要することになる。このことは、生産性向上の阻害要因となるばかりか、大肉厚部分に固着された電子部品32の高温状態の長期化をも招くことになり、部品劣損が発生するおそれが生じる。
【0032】
このため、本実施の形態においては、リフロー炉33の搬出口33bから金属ベース20を搬出した後に、直ちに図4に示す型部材40を取り付けることとした。図4に示すように、型部材40は、図2のモータ用軸受部23やケーブル穴部24や取付け用ブラケット25の凸部や凹部にそれぞれ対応して嵌合できるように、軸受部用溝43、ケーブル穴用溝44、ブラケット用溝45などが形成されている。また、型部材40の材質は、金属ベース20と同等の熱伝導度を有する熱伝導体を用いている。
【0033】
そして、金属ベース20よりも低温にした状態で型部材40を、金属ベース20に嵌合させ、このようにして冷却を行うことにより第3段階が終了し、本実施の形態の全工程が完了する。
【0034】
なお、上記本実施の形態においては、金属ベース20及び型部材40の材質として、金属または合金を想定しているが、カーボンコンポジット素材やセラミックス等、必要な耐熱性及び熱伝導性を備えるものであれば、金属材料に限定されずに樹脂製のものを用いても良い。さらに、ベース20に低導電性材料を用いると、上記の熱可塑性絶縁シート30が不要になり、回路基板31の構成材料を簡略化する効果が得られる。
【0035】
また、本実施の形態では、回路基板31を形成する金属ベース20の表面21を平坦面としてクリームはんだ印刷機を用いるものとしたが、表面21が非平坦面である場合は、えぐれ(スクイーズ)作用により添加精度が低下するおそれがあり、はんだ印刷機の使用が難しくなる。この場合は、シート状はんだを必要な形状に裁断して表面21上に添加することにより、はんだ印刷法の代替とすることができる。
【0036】
さらに、本実施の形態では、金属ベース20の裏面22をモータハウジングの一部としたが、これは複雑形状の裏面22の一例として示したに過ぎず、本発明はこれに限定されるものではない。裏面22の複雑形状を与える例として、ヒートシンクや別の用途の金属ケースを挙げることも可能である。また、金属ベース20の表面21についても、基板回路形成用の平坦表面形状のものとしたが、本発明はこれに限定されることない。即ち、表面21が複雑形状のものであっても、表面21上のはんだ添加部分直下の肉厚に応じて、はんだH及びLの融点や添加量を調整してその温度特性を変更することにより、同様のリフロー処理を行うことができる。
【0037】
【発明の効果】
以上の説明から明らかなように、本発明の電子機器回路装置の製造方法によれば、基板形状が複雑になっても、基板肉厚が異なる部分などで昇温特性格差の原因となる熱容量の偏りが生じても、これに対応して融点や熱容量などの温度特性が異なるはんだを添加することにより、基板上のはんだ添加部分ではんだ付けのタイミングを揃えることができる。そして、これにより、タクトタイムの長期化を防いだ高効率のリフロー処理を行うことができる。
【0038】
さらに、リフロー処理後の冷却時に低温の型部材を基板ベース部に嵌合させることにより、はんだ付け処理の効率をさらに向上させることができる。
【図面の簡単な説明】
【図1】従来のリフロー処理工程を示す略断面図
【図2】(a)本発明において用いる金属ベースの裏面正面図
(b)本発明において用いる金属ベースの側面図
(c)本発明において用いる金属ベースの斜視図
【図3】本発明で用いるリフロー処理工程図
【図4】本発明において用いる型部材の斜視図
【符号の説明】
3 33 リフロー炉
5 6 ヒータ
8 31 回路基板
9 32 電子部品
20 金属ベース
21 表面
22 裏面
34 ホットプレート
40 型部材
H 高融点はんだ
L 低融点はんだ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a circuit device for an electronic device, and more particularly to a method for manufacturing the device using a soldering process in a reflow furnace on a circuit board having a non-uniform thickness immediately below a flat surface.
[0002]
[Prior art]
A soldering process that is frequently used when mounting an electronic component on a circuit board is important for a technology of manufacturing an electronic device circuit device, and is used when a circuit portion is mounted on one surface side of a radiation fin. (For example, Patent Document 1)
[0003]
Ideally, a large amount of various electronic components can be mounted on a circuit board, and therefore, there is a strong tendency that various components having different heat capacities are subjected to the soldering process. Reflow processing methods disclosed in Patent Documents 2 and 3 are disclosed as taking into account such various kinds of electronic components.
[0004]
The reflow processing method performs the soldering processing with high productivity. For example, it is common to use a reflow furnace 3 provided with a carry-in port 1 and a carry-out port 2 as shown in FIG. . The inside of the reflow furnace 3 is provided with a transfer path 4 such as a belt conveyor that enables transfer from the carry-in port 1 to the carry-out port 2, and upper and lower heaters 5 and 6 that face each other across the transfer path 4. ing. When mounting the electronic component 8 on the circuit board using the reflow furnace 3, a conductive material such as copper foil is pasted on the insulating material 7 a on the base 7 outside the reflow furnace 3 in advance. Then, an etching process or the like is performed to form a circuit board 8, and cream solder is added to the mounting portion of the electronic component 9 on the circuit board 8. Then, the circuit board 8 on which the electronic components 9 are placed is transported from the carry-in port 1 to the carry-out port 2 by the transport path 4, and is heated by the upper and lower heaters 5 and 6 during the transport. The cream solder added onto the substrate 8 by the heating of the heaters 5 and 6 reaches the melting point and melts. After that, when the circuit board 8 is carried out from the carry-out port 2, the solder is solidified as the substrate 8 is cooled, and finally the solder is solidified. Then, the electronic component 9 is fixed to the circuit board 8, and the mounting operation is completed.
[0005]
Such a reflow soldering process is much used in a process of mounting electronic components on a circuit board because productivity is remarkably higher than in a direct mounting operation using a conventional soldering iron and mass production is possible.
[0006]
In order to prevent the variation in the progress of the soldering process between the electronic components having different temperature raising characteristics and the deterioration of the component quality due to the variation, the one disclosed in Patent Document 2 is designed according to the electronic components having different heat capacities. Heating means (near-infrared heater and far-infrared heater) are selected, and in the case of Patent Document 3, the transfer speed of the object to be soldered is different for each heating step such as preheating and main heating.
[0007]
[Patent Document 1]
Japanese Utility Model Laid-Open No. 5-87956 (pages 5-9, FIGS. 1 and 2)
[0008]
[Patent Document 2]
JP-A-8-64954 (pages 4 to 13, FIGS. 1, 6 and 7)
[0009]
[Patent Document 3]
JP-A-2000-183511 (pages 3 to 6, FIG. 1)
[0010]
[Problems to be solved by the invention]
As described above, the method disclosed in Patent Document 1 involves a soldering process or a bonding process using a heat-resistant adhesive for each mounting process of various types of electronic components, so that the process is complicated and there is a problem in productivity.
[0011]
Also, the soldering methods disclosed in Patent Literatures 2 and 3 by reflow processing that should compensate for this disadvantage have complicated processes, and this causes a prolonged tact time, and there is a limit to improvement in productivity.
[0012]
Furthermore, in recent years, electronic device circuit devices have been significantly reduced in size and weight. For example, in a motor device, a device such as an integrated motor unit and control board unit has been devised.
[0013]
Along with this, there are many restrictions on circuit device design. For example, the radiating fins disclosed in Patent Document 1 have a large occupied space, so that mounting them as they are is not welcomed. In addition, the shape of the substrate is inevitably complicated, and therefore, even if the soldering processes of Patent Documents 2 and 3 are performed, a bias in the heat capacity occurs in the substrate having a much larger heat capacity than the electronic component to be mounted. In this case, the effect of the response performed for each electronic component is diminished. That is, due to the difference in heat capacity of the substrate portion immediately below the surface area on which the electronic component is mounted, a delay in reaching the melting point temperature occurs due to insufficient heating at the solder-added portion, and solder processing is not reliably performed. On the contrary, there is a possibility that overheating is locally caused for a predetermined time or more, resulting in deterioration of electronic components.
[0014]
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides an electronic device circuit device capable of securing the original high productivity of reflow processing in a simple process in response to downsizing of components in the device and complicating component shapes accompanying the process. It is an object of the present invention to provide a manufacturing method.
[0015]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides an electronic device in which an electronic component is mounted on a circuit board formed by forming a circuit pattern on a surface of a metal base having an uneven thickness between the front and back surfaces by soldering. In order to manufacture a device circuit device, a step of separately adding a solder having a different temperature characteristic to each circuit board surface region having a different temperature rising characteristic and a step of mounting an electronic component are performed as a first step. And
[0016]
According to this, in the first stage, by adding a solder corresponding to the temperature-raising characteristic to each substrate surface region, when the second stage of heating the metal base in the first stage is performed, Even if there is a difference in the rate of temperature rise, it is possible to eliminate the difference in the progress of the soldering process caused by the difference.
[0017]
For example, paying attention to the melting point of the solder as the temperature characteristic, in the first stage, the solder having a different melting point is added to each surface region having a different heating rate while being separated. That is, by using a solder having a high melting point in a surface region having a large temperature rising rate and using a solder having a low melting point in a region having a small temperature rising rate, the solder added portions reach their melting points almost at the same time, and as a result, The timing of soldering on the substrate is aligned.
[0018]
Further, for example, attention is paid to the heat capacity as a temperature characteristic of the solder, and in the first stage, solders having the same melting point and different heat capacities are separately added to the surface regions having different heating rates. That is, by using a solder having a large heat capacity in the surface region where the heating rate is large and using a solder having a small heat capacity in the area where the heating rate is small, the solder-added portions reach their melting points almost at the same time, respectively. As a result, the timing of soldering on the substrate is aligned.
[0019]
Further, a third step of cooling the metal base heated in the second step by leaving it in the air or carrying it into a low-temperature constant-temperature bath is performed. Thus, the soldering can be completed in a state where the timings are aligned as described above.
[0020]
In other words, by going through the above first to third steps, the soldering timing can be made uniform at each of the solder-added portions on the substrate. The device can be manufactured.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 2A is a schematic view illustrating the back surface of the metal base 20 used in the present invention. As shown in the side view of FIG. 2B, of the front and back surfaces of the metal base 20, the front surface 21 has a flat surface shape for forming a substrate circuit, and the back surface 22 has an uneven shape assuming a direct connection to a motor. The metal base 20 itself is also used as a part of the motor housing. That is, as shown in the front view of FIG. 2A and the perspective view of FIG. 2C, a motor bearing 23, a cable hole 24, a mounting bracket 25, and the like are provided on the back surface 22 of the metal base 20. Are provided to form a complicated shape with many undulations. Further, the substrate circuit on the flat surface 21 of the metal base 20 is subjected to an etching process or the like on a conductive material such as a copper material coated on the surface 21 via a thermoplastic insulating sheet. Obtained by forming a pattern.
[0022]
FIG. 3 shows a process diagram of the present invention using the above-described metal base 20. In the first stage of this process, a cream solder (see FIG. 7) is applied to a portion to be joined of a substrate circuit 31 formed on a flat surface 21 of a metal base 20 having a complicated shape on a back surface 22 via an insulating sheet 30 via a known printing method. (Not shown), and an electronic component 32 such as an IC lead, a lead terminal, or a chip component is placed on the portion to be joined. At this time, a solder L of a low melting point material is added by printing to a portion having a relatively large thickness directly below the surface 21 of the metal base 20, and a solder H of a high melting point material is added to a portion having a relatively small thickness. Print.
[0023]
If the solders H and L are in contact with each other at the time of adding the solders H and L by printing, the solders are mixed at the time of subsequent melting of the solder, and the desired solder temperature characteristics may be obtained at each of the added portions. It becomes difficult. For this reason, when the solder is added to the surface 21, it is necessary to separate and separate the respective added portions by the solders H and L.
[0024]
Also, the melting point of the solder can be raised and lowered by adjusting the amount of metal in the solder. That is, for example, in the case of a ternary solder in which three metals of tin, bismuth, and lead are mixed, the melting point can be changed by increasing or decreasing the amount of the lead metal. Thus, the above-mentioned high melting point solder H and low melting point solder L can be easily obtained.
[0025]
Then, in this state, the metal base 20 is conveyed by a known conveying means through the entrance 33a onto the hot plate 34 heated and heated inside the reflow furnace 33 so that the cream solder on the substrate circuit 31 can be melted. Then, the inside of the reflow furnace 33 is heated (for example, 180 to 230 ° C.), and this is set as a second stage.
[0026]
At this time, the portion having a large thickness immediately below the surface 21 has a large heat capacity, so that the rate of temperature rise is slower than that of the portion having a small thickness. Since the high-melting-point solder H is added to each part, the timing at which each solder melts can be made uniform.
[0027]
Also, instead of adding a solder having a different melting point according to the thickness just below the surface 21 as described above, a solder having the same melting point may be used, and the amount of the solder added may be varied according to the thickness. good. In other words, if a small amount of solder is added to a large-thick portion and a large amount of solder is added to a small-thick portion, the small-addition amount solder portion has a small heat capacity, and the large-addition amount solder portion has a large heat capacity. The timing at which the solder melts can be made uniform.
[0028]
In any of the above cases, the influence of the electronic component 32 is not taken into account when considering the heat capacity that affects the melting of the solder. This is because there is a remarkable volume difference between the metal base 20 and the electronic component 32, and the effect of the electronic component 32 on the total heat capacity is limited. Therefore, the magnitude of the heat capacity substantially depends on the thickness of the metal base 20.
[0029]
By the way, the reason why the hot plate 34 is used as a heating means in the second stage is to supply heat to each solder added on the surface 21 of the metal base 20 in the thickness direction of the metal bases 20 having different heat capacities. It is. Further, this is also to prevent the electronic component 32 placed on the front surface 21 from being subjected to direct heat irradiation as shown in a conventional example (for example, FIG. 1 and Patent Document 2), thereby causing deterioration thereof. That is, a coil heater or an infrared radiation heater may be used as long as it is a heating means for heating the rear surface of the metal base 20 from below. When using a heater from above or a reflow furnace for heating the entire atmosphere in the furnace, a cover (not shown) covering the electronic component 32 is placed on the circuit board 31 to reduce the inferiority of the electronic component 32. Can be prevented.
[0030]
Then, after each of the solders is melted, the metal base 20 is carried out of the reflow furnace 33 from the outlet 33b. Then, as a third step, the electronic components 32 are fixed on the circuit board 31 by solidifying the solder by cooling.
[0031]
As such a cooling means, in addition to natural cooling, known means such as loading into a low-temperature constant temperature bath can be used, but as described above, there is a bias in heat capacity corresponding to the thickness of the metal base 20, In particular, it takes a relatively long time to cool the large thickness portion. This not only hinders the improvement of the productivity, but also causes the electronic component 32 fixed to the large-thickness portion to be prolonged in a high-temperature state, which may cause the component to be deteriorated.
[0032]
For this reason, in the present embodiment, the mold member 40 shown in FIG. 4 is immediately attached after the metal base 20 is carried out from the carry-out port 33b of the reflow furnace 33. As shown in FIG. 4, the mold member 40 is provided with a bearing groove so that it can be fitted to the motor bearing 23, the cable hole 24, and the protrusion or recess of the mounting bracket 25, respectively. 43, a cable hole groove 44, a bracket groove 45, and the like. The material of the mold member 40 is a thermal conductor having the same thermal conductivity as the metal base 20.
[0033]
Then, the mold member 40 is fitted to the metal base 20 in a state where the temperature is lower than that of the metal base 20, and the cooling is performed in this manner, whereby the third stage is completed, and all the processes of the present embodiment are completed. I do.
[0034]
In the present embodiment, a metal or an alloy is assumed as a material of the metal base 20 and the mold member 40. However, the metal base 20 and the mold member 40 have necessary heat resistance and heat conductivity, such as a carbon composite material and ceramics. If so, the material is not limited to the metal material, and a resin material may be used. Furthermore, if a low conductive material is used for the base 20, the above-mentioned thermoplastic insulating sheet 30 becomes unnecessary, and an effect of simplifying the constituent material of the circuit board 31 can be obtained.
[0035]
Further, in the present embodiment, a cream solder printing machine is used with the surface 21 of the metal base 20 forming the circuit board 31 as a flat surface, but if the surface 21 is a non-flat surface, it is scrambled. There is a possibility that the addition accuracy may be reduced by the action, and it becomes difficult to use a solder printing machine. In this case, by cutting the sheet-shaped solder into a required shape and adding it to the surface 21, it can be used as an alternative to the solder printing method.
[0036]
Further, in the present embodiment, the back surface 22 of the metal base 20 is a part of the motor housing. However, this is only an example of the back surface 22 having a complicated shape, and the present invention is not limited to this. Absent. As an example of providing a complicated shape of the back surface 22, a heat sink or a metal case for another use can be cited. Also, the surface 21 of the metal base 20 has a flat surface shape for forming a substrate circuit, but the present invention is not limited to this. That is, even if the surface 21 has a complicated shape, by adjusting the melting points and the added amounts of the solders H and L according to the thickness just below the solder-added portion on the surface 21, the temperature characteristics are changed. , A similar reflow process can be performed.
[0037]
【The invention's effect】
As is apparent from the above description, according to the method for manufacturing an electronic device circuit device of the present invention, even when the substrate shape becomes complicated, the heat capacity causing the temperature rise characteristic difference at a portion where the substrate thickness is different or the like. Even if the deviation occurs, by adding the solder having different temperature characteristics such as the melting point and the heat capacity corresponding to the deviation, the timing of the soldering can be made uniform at the soldered portion on the substrate. This makes it possible to perform a high-efficiency reflow process while preventing a long tact time.
[0038]
Furthermore, the efficiency of the soldering process can be further improved by fitting the low-temperature mold member to the substrate base during cooling after the reflow process.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a conventional reflow processing step. FIG. 2 (a) is a front view of a back surface of a metal base used in the present invention, (b) a side view of a metal base used in the present invention, and (c) is used in the present invention. FIG. 3 is a perspective view of a metal base. FIG. 3 is a reflow treatment process diagram used in the present invention. FIG. 4 is a perspective view of a mold member used in the present invention.
3 33 Reflow furnace 5 6 Heater 8 31 Circuit board 9 32 Electronic component 20 Metal base 21 Front surface 22 Back surface 34 Hot plate 40 Mold member H High melting point solder L Low melting point solder

Claims (3)

表裏両面間の肉厚が不均等な金属ベースの表面に回路パターンを形成して成る回路基板に対して、
昇温特性の異なる前記回路基板表面領域ごとに温度特性が異なるはんだをそれぞれ離隔して添加する工程と、
前記電子部品を載置する工程と、
から成る第1段階と、
該第1段階の回路基板を有する金属ベースに対して加熱を行う第2段階と、
該第2段階で加熱した金属ベースを冷却する第3段階とを備える、
ことを特徴とする電子機器回路装置の製造方法。
For a circuit board formed by forming a circuit pattern on the surface of a metal base with an uneven thickness between the front and back sides,
A step of separately adding solder having different temperature characteristics for each of the circuit board surface regions having different temperature raising characteristics,
Mounting the electronic component,
A first stage consisting of
A second stage of heating the metal base having the first stage circuit board;
Cooling the metal base heated in the second step.
A method for manufacturing an electronic device circuit device, comprising:
前記はんだの温度特性として融点を用い、前記第1段階で、前記昇温速度の異なる表面領域ごとに融点の異なるはんだをそれぞれ離隔して添加することを特徴とする請求項1に記載の電子機器回路装置の製造方法。2. The electronic device according to claim 1, wherein a melting point is used as a temperature characteristic of the solder, and the solder having a different melting point is separately added to each of the surface regions having the different heating rates in the first step. 3. A method for manufacturing a circuit device. 前記はんだの温度特性として熱容量を用い、前記第1段階で、前記昇温速度の異なる表面領域ごとに熱容量の異なる同融点のはんだをそれぞれ離隔して添加することを特徴とする請求項1に記載の電子機器回路装置の製造方法。The heat capacity is used as a temperature characteristic of the solder, and the solder having the same melting point and a different heat capacity is separately added to each of the surface regions having the different heating rates in the first step. Method for manufacturing electronic device circuit device.
JP2003111205A 2003-04-16 2003-04-16 Manufacturing method of electronic device circuit device Expired - Fee Related JP4226944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111205A JP4226944B2 (en) 2003-04-16 2003-04-16 Manufacturing method of electronic device circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111205A JP4226944B2 (en) 2003-04-16 2003-04-16 Manufacturing method of electronic device circuit device

Publications (2)

Publication Number Publication Date
JP2004319734A true JP2004319734A (en) 2004-11-11
JP4226944B2 JP4226944B2 (en) 2009-02-18

Family

ID=33471821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111205A Expired - Fee Related JP4226944B2 (en) 2003-04-16 2003-04-16 Manufacturing method of electronic device circuit device

Country Status (1)

Country Link
JP (1) JP4226944B2 (en)

Also Published As

Publication number Publication date
JP4226944B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
TWI240336B (en) Manufacturing apparatus of electronic device, manufacturing method of electronic device, and manufacturing program of electronic device
US6154364A (en) Circuit board assembly with IC device mounted thereto
EP0998175B1 (en) Method for soldering Dpak-type electronic components to circuit boards
CN106356308B (en) Method of die bonding to a board and device made using the method
JP4282501B2 (en) Reflow soldering apparatus and method
JP2004319734A (en) Process for manufacturing electronic apparatus circuit device
JP2732823B2 (en) Soldering method
US6857559B2 (en) System and method of soldering electronic components to a heat sensitive flexible substrate with cooling for a vector transient reflow process
JP2004319735A (en) Method for manufacturing electronic apparatus circuit device
JPH0340460A (en) Heat sink and manufacture thereof
JPS607193A (en) Soldering furnace for circuit board
JP2018107367A (en) Power semiconductor module
US20070267465A1 (en) Reflowing apparatus and reflowing method
JP2021153165A (en) Device and method for sintering electronic component
JP3729689B2 (en) Reflow method and apparatus
JP2588558B2 (en) How to mount surface mount components on printed wiring boards
KR20120002440A (en) Connection structure of elements and connection method
CN217444349U (en) Conveying tray and semiconductor device manufacturing apparatus
JPH05152733A (en) Printed wiring board for surface mount
JP2004025274A (en) Heating furnace
JPH05110242A (en) Board
WO2021020213A1 (en) Solder-attached product manufacturing device, and solder-attached product manufacturing method
JPH11224889A (en) Heating block for eutectic bonding electronic component
JP2004214444A (en) Sheet metal mounting board
CN117998957A (en) Rapid preparation method of thermoelectric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081127

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees