JP2004319569A - Laminated ceramic capacitor and its manufacturing method - Google Patents

Laminated ceramic capacitor and its manufacturing method Download PDF

Info

Publication number
JP2004319569A
JP2004319569A JP2003107597A JP2003107597A JP2004319569A JP 2004319569 A JP2004319569 A JP 2004319569A JP 2003107597 A JP2003107597 A JP 2003107597A JP 2003107597 A JP2003107597 A JP 2003107597A JP 2004319569 A JP2004319569 A JP 2004319569A
Authority
JP
Japan
Prior art keywords
ceramic capacitor
multilayer ceramic
dielectric
sio
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003107597A
Other languages
Japanese (ja)
Inventor
Takahiro Suzuki
崇裕 鈴木
Satoshi Tomioka
聡志 富岡
Nobuyuki Aoki
延之 青木
Tsutomu Nishimura
勉 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003107597A priority Critical patent/JP2004319569A/en
Publication of JP2004319569A publication Critical patent/JP2004319569A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated ceramic capacitor that is used for various types of electronic equipment and is much more improved in electrical characteristics than the conventional one, and to provide a method of manufacturing the capacitor. <P>SOLUTION: The method of manufacturing the laminated ceramic capacitor includes a step of compounding a dielectric composition, a step of slurrifying the ceramic composition, and a step of molding the slurry into green sheets. The method also includes a step of laminating the green sheets and a step of baking the laminate. By this method, a highly reliable laminated ceramic capacitor having both a high dielectric constant and a low dielectric loss can be manufactured by using BaTiO<SB>3</SB>coated with fine SiO<SB>2</SB>particles as the main component of the dielectric composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は各種電子機器に用いられる積層セラミックコンデンサおよびその製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の小型化、高機能化、低価格化が急速に進行しており、それらに用いられている積層セラミックコンデンサなどの電子部品に対しても、小型化、高機能化、低価格化が強く望まれている。小型化、高機能化に対しては材料の高誘電率化、低誘電損失(tanδ)化と同時に、誘電率の温度変化を規格の範囲内に制御すること、また低価格化には従来から内部電極に用いられてきたPt,Pdなどの貴金属をNiなどの安価な卑金属に変換するなどの試みがなされてきた。
【0003】
従来の積層セラミックコンデンサは以下のような方法によって作製されている。
【0004】
まず、主成分の誘電体材料に添加物を所定の組成になるように配合した後ボールミルなどによって混合することによって誘電体組成物を得る。
【0005】
その後、水もしくは有機溶剤等の分散媒に前記誘電体組成物と有機バインダー、可塑剤等を加えて混合してスラリー状にし、その後ドクターブレード法などにより所望の厚みの誘電体グリーンシートに成形する。
【0006】
このようにして得られた誘電体グリーンシートに内部電極パターンを形成し、各内部電極パターンの一端を交互に対向する端面から引き出し、それぞれの端面で並列接続できるように複数枚積層して積層体を得る。その後、得られた積層体を切断、脱脂/焼成したのち、電極端子として外部電極を形成することによって製造している。
【0007】
この積層セラミックコンデンサの電極となる内部電極にはニッケルのような安価な卑金属が使用されるようになってきたが、ニッケルは酸化性雰囲気中で加熱されたときに酸化し、誘電体組成物と反応して内部電極の形成が不可能となるため、還元雰囲気中でも主成分の誘電体材料が還元されないように各種の添加物を加えることによって、主成分の誘電体材料自体に耐還元性を持たせる試みや焼結温度を低温化する試みなどがなされてきている。
【0008】
なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
【0009】
【特許文献1】
特開平5−78166号公報
【0010】
【発明が解決しようとする課題】
しかしながら、従来の積層セラミックコンデンサの誘電率を向上させようとした場合、高い焼結温度で焼成することが望ましい。
【0011】
しかし、その際には主成分の誘電体材料が同時に異常粒成長を引き起こすため、高誘電率化は達成されるものの誘電損失および絶縁破壊電圧特性が大幅に悪化してしまうという課題を有していた。
【0012】
このことから、高誘電率化と低誘電損失化あるいは絶縁破壊電圧特性の向上はトレードオフの関係にあり、それぞれの特性を高位で向上させることが困難であった。
【0013】
本発明は前記課題を解決するものであり、原料粉末であるBaTiOの表面をあらかじめSiOの超微粒子で被覆することにより、焼結時に発生する異常粒成長を抑制し、信頼性を維持すると共に誘電損失を損なうことなく誘電率を向上させることができるため、電気特性の優れた積層セラミックコンデンサの製造方法を提供することが可能となる。
【0014】
【課題を解決するための手段】
上記課題を解決するために本発明の請求項1に記載の発明は、誘電体組成物で構成している誘電体層と内部電極層とが交互に積層している素子本体を有する積層セラミックコンデンサであって、粒子表面にSiOを被着させたチタン酸バリウムを前記誘電体組成物の主成分として用いる積層セラミックコンデンサであり、絶縁破壊電圧の降下を伴わずに誘電率を向上させることが可能になり、低い誘電損失と高い誘電率を両立し、信頼性の高い積層セラミックコンデンサを提供することができる。
【0015】
本発明の請求項2に記載の発明は、SiOの粒子径が0.1μm以下の微粒子からなる請求項1に記載の積層セラミックコンデンサであり、被覆による異常粒成長の抑制がより効果的となり、低い誘電損失と高い誘電率を両立し、信頼性の高い積層セラミックコンデンサを提供することができる。
【0016】
本発明の請求項3に記載の発明は、SiOの微粒子がBaTiO100重量部に対して0.01〜1.0重量部である請求項1に記載の積層セラミックコンデンサであり、低い誘電損失と高い誘電率を両立し、より信頼性の高い積層セラミックコンデンサを提供することができる。
【0017】
本発明の請求項4に記載の発明は、誘電体組成物の副成分として希土類元素酸化物、遷移金属酸化物およびガラス成分を含む請求項1に記載の積層セラミックコンデンサであり、誘電率の温度特性を平坦化することが可能となり、請求項1の作用に加えて温度特性を平坦化することができる。
【0018】
本発明の請求項5に記載の発明は、希土類元素酸化物がDyである請求項4に記載の積層セラミックコンデンサであり、低い誘電損失と高い誘電率を両立し、信頼性の高い積層セラミックコンデンサを提供することができる。
【0019】
本発明の請求項6に記載の発明は、誘電体組成物を配合する工程と、スラリー化する工程と、誘電体グリーンシートに成形する工程と、この誘電体グリーンシートに内部電極を形成したものを積層する工程と、焼成工程からなる積層セラミックコンデンサの製造方法において、表面をSiOの微粒子にて被覆したBaTiOを誘電体組成物の主成分として用いる積層セラミックコンデンサの製造方法であり、高温もしくは強還元雰囲気中でもBaTiOが異常粒成長することなく焼成することができるため、絶縁破壊電圧の降下を伴わずに誘電率を向上させることが可能になり、低い誘電損失と高い誘電率を両立し、信頼性の高い積層セラミックコンデンサの製造方法を提供することができる。
【0020】
本発明の請求項7に記載の発明は、焼成工程での最高到達温度が1200〜1400℃である請求項6に記載の積層セラミックコンデンサの製造方法であり、低い誘電損失と高い誘電率を両立し、緻密な焼結体が実現できる信頼性の高い積層セラミックコンデンサの製造方法を提供することができる。
【0021】
【発明の実施の形態】
以下、本発明の積層セラミックコンデンサの製造方法について実施の形態および図面を用いて説明する。
【0022】
(実施の形態1)
本発明の実施の形態1および図1〜図2により請求項1〜7に記載の発明を説明する。
【0023】
図1は本発明の実施の形態1における積層セラミックコンデンサの誘電率の温度特性を示す特性図であり、図2は誘電体層の厚みと絶縁破壊電圧の最頻値との関係を示す特性図である。
【0024】
次に、本発明の積層セラミックコンデンサの製造方法について説明する。
【0025】
まず、誘電体材料の原料としてはBaTiOを主成分とし、添加物として希土類元素酸化物、遷移金属酸化物、ガラス成分を所定の量となるように配合して得ることができる。
【0026】
このとき、主成分の誘電体材料である平均粒径0.3μmのBaTiO粉末の表面には(表1)に示すような条件にてSiOの微粒子を均一に被覆させた粉体を用いた。このようなBaTiO粉末は水酸化チタンコロイドにバリウム塩水溶液を添加して得られる主成分のBaTiOの表面に水ガラス等を用いてSiのアルコキシド化合物を用い、あらかじめSiOを均一に被覆させることによって作製することができる。このアルコキシド化合物としてはメチルトリエトキシシラン、ジメチルジエトキシシラン、テトラエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、テトラメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、イソブチルトリメトキシシラン、デシルトリメトキシシラン等が挙げられる。
【0027】
また、シラン系カップリング剤シリコン化合物もしくは負帯電性ポリマーからなる表面処理方法などによっても被覆することができる。
【0028】
さらに、Siの水酸化物を添加し、オートクレーブ法で水熱反応処理によって表面析出させる方法などを用いることによってもBaTiO粒子の表面にSiOの微粒子を被覆形成することが可能である。
【0029】
次に、温度特性、誘電損失特性などを制御するために(表1)に示すような誘電体材料の副成分を配合する。本実施の形態1では温度特性がB特性(−25℃〜+85℃の温度範囲にて±10%以内の静電容量値変化を示すコンデンサ)になるように前記SiOの微粒子にて被覆形成されたBaTiOを主成分とし、希土類元素酸化物としてDyを0.5重量部、遷移金属酸化物であるMgOを0.5重量部、ガラス成分であるBaSiOを0.5重量部の添加量にて所望の誘電体組成になるように調整したものを実施例1〜4として準備した。この副成分としての希土類元素酸化物としてDy、Ho、YなどをBaTiO100重量部に対して0.5重量部以下の配合割合で用いることが効果的であり、特にDyは最も効果的な添加物である。さらに遷移金属酸化物として、MgO、BaCOなどをBaTiO100重量部に対して0.5重量部以下の配合割合で添加することが好ましい。またガラス成分としてはBaSiO、CaSiOなどをBaTiO100重量部に対して1重量部以下の配合割合で用いることが好ましい。
【0030】
また、粒子表面にSiOの被覆層を施さないBaTiOを用いた誘電体組成を比較例1とし、実施例1と同量のSiOを配合工程において添加物として配合することによって誘電体組成物としたものを比較例2とした。さらに、粒子径0.15μmのSiOの微粒子を均一に被覆させた平均粒径0.3μmのチタン酸バリウムを用いたものを比較例3とした。
【0031】
また、液相のSi化合物含有濃度を変化させることによってBaTiO100重量部に対してSiOの微粒子を0.005重量部、1.5重量部の割合で被覆させたBaTiOを作製して比較例4,5とした。
【0032】
次に、前記誘電体組成物100重量部に対して分散媒として酢酸ブチル30重量部を配合するとともに、直径10mmのジルコニア製玉石500重量部を加える。上記のように配合された誘電体組成物、分散媒および玉石をボールミル内に入れた後12時間混合する。
【0033】
その後、ボールミルで混合された分散媒を含む誘電体組成物の粉体100重量部に対し、バインダーとしてブチラール樹脂系のバインダー(積水化学社製 BM−S)9重量部、可塑剤としてフタル酸ベンジルブチル4.5重量部を添加した後、この配合物を媒体攪拌ミル等で充分に分散処理を行ってスラリー化し、誘電体スラリーとした。
【0034】
次に、前記誘電体スラリーをドクターブレード法などにより厚さ2.5μmの誘電体グリーンシートに成形した。このようにして得られた誘電体グリーンシートにニッケル電極ペーストを用いて内部電極パターンを印刷形成し、各内部電極の一端を交互に対向する端面から引き出し、それぞれの対向する端面で並列接続できるように誘電体層、電極層それぞれ25枚積層して25層の積層体を得た。
【0035】
その後、得られた積層体をN雰囲気中、450℃で脱バインダー処理した後、内部電極のニッケルが酸化しないような還元雰囲気中にて1350℃の温度で焼成し、端面の電極端子として外部電極をニッケル電極ペーストにて形成した後、銅およびはんだ電極をニッケル電極の上にはんだ濡れ性を高めるためにめっき法にて形成することによってチップ状の積層セラミックコンデンサを得た。
【0036】
このようにして得られた積層セラミックコンデンサの電気特性である誘電率、誘電損失はLCRメーター(Agilent社製 4284A)を用い、1.0kHz、1.0Vrmsの測定条件にて測定した。
【0037】
また、絶縁破壊電圧は直流電源電圧(Kikusui社製 PADIK−0.2L)を積層セラミックコンデンサの両極に印加し、絶縁破壊したときの電圧をオシロスコープ(Tektronix社製 TDS210)によって測定した。作製したそれぞれの積層セラミックコンデンサの電気特性を(表1)に示すとともに、その時の誘電率の温度特性を図1に示す。
【0038】
また、積層セラミックコンデンサにおける誘電体層の厚みと絶縁破壊電圧の最頻値との関係を図2に示す。
【0039】
【表1】

Figure 2004319569
【0040】
(表1)および図1の結果から明らかなように、本発明による実施例1〜4は低い誘電損失を維持しながらB特性として実用できる高い誘電率を実現している。しかしながら、SiOを被覆していない比較例1およびSiOを後から添加した比較例2は高い誘電率を持つ一方で誘電損失も増加してしまい、両特性の両立が不可能であった。また請求の範囲外の比較例3〜5についても同様に誘電損失が増加していることから実用性に乏しい積層セラミックコンデンサとなっている。
【0041】
また、本発明の積層セラミックコンデンサは主成分のBaTiO100重量部に対し、SiOが0.01重量部より少量の場合は異常粒成長に対する抑制効果が薄くなるために誘電損失の確保が困難となってしまう。また1.0重量部より多量の場合はSiOのBaTiO表面への被着が大きくばらついてしまうことからSiOの被覆が不均一となり、余剰のSiOが粒界に偏析するこにより絶縁破壊電圧値を低下させてしまうものである。
【0042】
次に、図2の結果より、SiOを被覆した実施例1〜4の絶縁破壊電圧特性は大きく向上しているが、SiOを被覆していない比較例1およびSiOを後から添加した比較例2は焼結粒子が異常粒成長しているために絶縁破壊電圧特性は著しく低下している。次に粒子径が0.15μmのSiOを被覆した比較例3は余剰のSiOが粒界に偏析しているために絶縁抵抗値が低下し、絶縁破壊電圧が低下していた。
【0043】
また、本発明の請求の範囲外である比較例4,5においても同様に絶縁破壊電圧特性は著しく低下している。
【0044】
さらに、微細構造を観察するために切断面を研磨した後フッ酸によりエッチングして内部誘電体層の結晶粒子の状態を走査型電子顕微鏡(日本電子社製 JSM−5910V)によって観察した。
【0045】
測定の結果、本発明による実施例1〜4の結晶粒径は0.3〜0.35μmであり、特に異常粒成長が見られなかったのに対して比較例1〜5には異常粒成長が顕著に現れ、誘電体層の結晶粒子の粒径は約1.0μmであった。
【0046】
以上のように、誘電体材料であるBaTiOの表面を粒子径0.1μm以下のSiO微粒子にて被覆することにより、高い誘電率と低い誘電損失とを両立し、高い絶縁破壊電圧特性を有する信頼性の高い積層セラミックコンデンサの製造方法を提供することができる。
【0047】
次に、(表2)に示すように希土類元素酸化物であるDy、遷移金属酸化物であるMgO、BaCO、ガラス成分であるBaSiO、CaSiOについて添加量の検討を行った。これらの添加物は0.1重量部のSiOを被覆した粒子径0.25μmのBaTiOに添加し、上記と同じ方法にて試料を作製した。その結果を(表2)に示す。
【0048】
【表2】
Figure 2004319569
【0049】
(表2)の結果から、それぞれの誘電体組成物の副成分である希土類元素酸化物および遷移金属酸化物は0.7重量部以下の添加量において温度特性がB特の積層セラミックコンデンサが得られ、より好ましくは0.5重量部以下の添加量によってより優れたB特の積層セラミックコンデンサが得られた。
【0050】
さらに、最高到達温度を1050℃にて焼成した試料は焼結性が不十分で、機械的強度が低く実用性に課題を有していた。より低温で焼結させるためには誘電体組成物の粒子径を小さくすることとガラス成分を最適化することによって1200℃以上であれば実用性を確保することが可能であった。例えば0.1重量部のSiOを被覆した粒子径0.20μmのBaTiOにDy;0.5重量部、MgO;0.5重量部、BaSiO;0.4重量部、BaCO;1.25重量部を配合した誘電体組成にて最高到達温度を1200℃−3時間の焼成条件にて焼成した試料は誘電率;2500、温度特性;−8%であった。また0.1重量部のSiOを被覆した粒子径0.30μmのBaTiOにDy;0.5重量部、MgO;0.5重量部、BaSiO;0.5重量部、BaCO;0.75重量部を配合した誘電体組成にて最高到達温度を1400℃−2時間の焼成条件にて焼成した試料は誘電率;3200、温度特性;−9%であった。このような特性を有する積層セラミックコンデンサの耐電圧も十分に実用できる焼結性を有していた。
【0051】
また、最高到達温度を1450℃にて焼成を行ったものはショート率が著しく悪化し、良好な特性をもつ試料の歩留まりが著しく低下した。この最高到達温度は誘電体組成物の粒子径に依存するが、特にBaTiOの粒子径に大きく依存し、高い誘電率と低い誘電損失とを両立させながら温度特性を満足する信頼性の高い積層セラミックコンデンサを得るためには1200℃〜1400℃の温度範囲で焼成することが好ましく、より好ましくは1250℃〜1350℃の範囲であった。
【0052】
【発明の効果】
以上のように本発明によれば、表面にあらかじめSiOの超微粒子にて被覆したBaTiOを誘電体組成物の主成分として用いて積層セラミックコンデンサを製造することにより、電気特性および信頼性に優れた積層セラミックコンデンサの製造方法を提供することができるという効果を奏するものである。
【図面の簡単な説明】
【図1】本発明の実施の形態1における積層セラミックコンデンサの誘電率の温度特性を示す特性図
【図2】同積層セラミックコンデンサの誘電体層厚さと絶縁破壊電圧の最頻値との関係を示す特性図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer ceramic capacitor used for various electronic devices and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, the miniaturization, high performance, and low price of electronic devices have been rapidly progressing, and electronic components such as multilayer ceramic capacitors used in them have been reduced in size, high performance, and low price. Is strongly desired. For miniaturization and high functionality, the material must have a high dielectric constant and low dielectric loss (tan δ), and at the same time control the temperature change of the dielectric constant within the specification range. Attempts have been made to convert noble metals such as Pt and Pd used for internal electrodes into inexpensive base metals such as Ni.
[0003]
Conventional multilayer ceramic capacitors are manufactured by the following method.
[0004]
First, a dielectric composition is obtained by blending an additive with a dielectric material as a main component so as to have a predetermined composition, and then mixing with a ball mill or the like.
[0005]
Thereafter, the dielectric composition and an organic binder, a plasticizer, etc. are added to a dispersion medium such as water or an organic solvent and mixed to form a slurry, and then formed into a dielectric green sheet having a desired thickness by a doctor blade method or the like. .
[0006]
An internal electrode pattern is formed on the dielectric green sheet thus obtained, and one end of each internal electrode pattern is alternately pulled out from the opposing end faces, and a plurality of layers are stacked so that each end face can be connected in parallel. Get. Thereafter, the obtained laminate is cut, degreased / fired, and thereafter, an external electrode is formed as an electrode terminal to manufacture the laminate.
[0007]
An inexpensive base metal such as nickel has come to be used for an internal electrode serving as an electrode of this multilayer ceramic capacitor.Nickel oxidizes when heated in an oxidizing atmosphere, and becomes a dielectric composition. Since the reaction makes it impossible to form an internal electrode, the main component dielectric material itself has reduction resistance by adding various additives so that the main component dielectric material is not reduced even in a reducing atmosphere. Attempts have been made to reduce the sintering temperature and to lower the temperature.
[0008]
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
[0009]
[Patent Document 1]
JP-A-5-78166
[Problems to be solved by the invention]
However, when trying to improve the dielectric constant of a conventional multilayer ceramic capacitor, it is desirable to fire at a high sintering temperature.
[0011]
However, in this case, since the dielectric material of the main component causes abnormal grain growth at the same time, a high dielectric constant is achieved, but there is a problem that the dielectric loss and the breakdown voltage characteristics are significantly deteriorated. Was.
[0012]
For this reason, there is a trade-off between increasing the dielectric constant and reducing the dielectric loss or improving the dielectric breakdown voltage characteristic, and it has been difficult to improve each characteristic at a high level.
[0013]
The present invention has been made to solve the above-mentioned problems, and by coating the surface of BaTiO 3 as a raw material powder with ultrafine particles of SiO 2 in advance, suppresses abnormal grain growth occurring during sintering and maintains reliability. In addition, since the dielectric constant can be improved without impairing the dielectric loss, it is possible to provide a method for manufacturing a multilayer ceramic capacitor having excellent electric characteristics.
[0014]
[Means for Solving the Problems]
According to an aspect of the present invention, there is provided a multilayer ceramic capacitor having a device body in which dielectric layers and internal electrode layers each composed of a dielectric composition are alternately laminated. A multilayer ceramic capacitor using barium titanate having SiO 2 deposited on the particle surface as a main component of the dielectric composition, wherein the dielectric constant can be improved without a decrease in dielectric breakdown voltage. As a result, it is possible to provide a highly reliable multilayer ceramic capacitor that achieves both low dielectric loss and high dielectric constant.
[0015]
According to a second aspect of the present invention, there is provided the multilayer ceramic capacitor according to the first aspect, comprising fine particles having a particle diameter of SiO 2 of 0.1 μm or less, and the suppression of abnormal grain growth by coating is more effective. Accordingly, a highly reliable multilayer ceramic capacitor having both low dielectric loss and high dielectric constant can be provided.
[0016]
The invention described in claim 3 of the present invention is a multilayer ceramic capacitor according to claim 1 of the SiO 2 particles is 0.01 to 1.0 parts by weight with respect to BaTiO 3 100 parts by weight, low dielectric It is possible to provide a more reliable multilayer ceramic capacitor that achieves both loss and a high dielectric constant.
[0017]
The invention according to claim 4 of the present invention is the multilayer ceramic capacitor according to claim 1, which comprises a rare earth element oxide, a transition metal oxide, and a glass component as subcomponents of the dielectric composition, and has a dielectric constant temperature. The characteristics can be flattened, and the temperature characteristics can be flattened in addition to the effect of the first aspect.
[0018]
The invention according to claim 5 of the present invention is the multilayer ceramic capacitor according to claim 4, wherein the rare earth element oxide is Dy 2 O 3 , which achieves both low dielectric loss and high dielectric constant, and has high reliability. A multilayer ceramic capacitor can be provided.
[0019]
The invention according to claim 6 of the present invention comprises a step of mixing a dielectric composition, a step of slurrying, a step of forming a dielectric green sheet, and an internal electrode formed on the dielectric green sheet. And a sintering step, wherein the laminated ceramic capacitor is made of BaTiO 3 whose surface is coated with fine particles of SiO 2 as a main component of the dielectric composition. Alternatively, since BaTiO 3 can be fired even in a strong reducing atmosphere without abnormal grain growth, the dielectric constant can be improved without a decrease in dielectric breakdown voltage, and both low dielectric loss and high dielectric constant can be achieved. In addition, it is possible to provide a highly reliable method for manufacturing a multilayer ceramic capacitor.
[0020]
The invention according to claim 7 of the present invention is the method for producing a multilayer ceramic capacitor according to claim 6, wherein the maximum temperature in the firing step is 1200 to 1400 ° C, and achieves both low dielectric loss and high dielectric constant. In addition, it is possible to provide a highly reliable multilayer ceramic capacitor manufacturing method capable of realizing a dense sintered body.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for manufacturing a multilayer ceramic capacitor of the present invention will be described with reference to embodiments and drawings.
[0022]
(Embodiment 1)
The first embodiment of the present invention and FIGS.
[0023]
FIG. 1 is a characteristic diagram showing a temperature characteristic of a dielectric constant of the multilayer ceramic capacitor according to the first embodiment of the present invention, and FIG. 2 is a characteristic diagram showing a relationship between a thickness of a dielectric layer and a mode of a dielectric breakdown voltage. It is.
[0024]
Next, a method for manufacturing the multilayer ceramic capacitor of the present invention will be described.
[0025]
First, the dielectric material can be obtained by mixing BaTiO 3 as a main component and rare earth oxides, transition metal oxides, and glass components as additives in predetermined amounts.
[0026]
At this time, a powder obtained by uniformly coating fine particles of SiO 2 on the surface of BaTiO 3 powder having an average particle diameter of 0.3 μm, which is a dielectric material of the main component, under the conditions shown in Table 1 was used. Was. Such BaTiO 3 powder is obtained by adding a barium salt aqueous solution to a titanium hydroxide colloid, and uniformly coating SiO 2 in advance with an alkoxide compound of Si using a water glass or the like on the surface of BaTiO 3 as a main component. It can be manufactured by the following. Examples of the alkoxide compound include methyltriethoxysilane, dimethyldiethoxysilane, tetraethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, tetramethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane , Isobutyltrimethoxysilane, decyltrimethoxysilane and the like.
[0027]
Further, it can also be coated by a surface treatment method comprising a silane coupling agent silicon compound or a negatively chargeable polymer.
[0028]
Furthermore, the addition of hydroxides of Si, it is possible to the SiO 2 particles coated on the surface of the well BaTiO 3 particles by using a method for surface deposition by autoclave method by hydrothermal reaction treatment.
[0029]
Next, in order to control the temperature characteristics, the dielectric loss characteristics, and the like, the auxiliary components of the dielectric material as shown in Table 1 are blended. In the first embodiment, the SiO 2 fine particles are coated so that the temperature characteristic becomes the B characteristic (a capacitor showing a change in capacitance value within ± 10% in a temperature range of −25 ° C. to + 85 ° C.). a main component BaTiO 3, which is, 0.5 parts by weight of Dy 2 O 3 as the rare earth element oxides, 0.5 part by weight of MgO is a transition metal oxide, BaSiO 3 0.5 wt a glass component Examples 1 to 4 were prepared in such a manner that the desired dielectric composition was obtained by the addition amount of the parts. It is effective to use Dy 2 O 3 , Ho 2 O 3 , Y 2 O 3, or the like as a rare-earth element oxide as a sub-component in an amount of 0.5 part by weight or less based on 100 parts by weight of BaTiO 3. Yes, especially Dy 2 O 3 is the most effective additive. Further, it is preferable to add MgO, BaCO 3, or the like as a transition metal oxide at a blending ratio of 0.5 part by weight or less based on 100 parts by weight of BaTiO 3 . As the glass component, it is preferable to use BaSiO 3 , CaSiO 3, or the like in a mixing ratio of 1 part by weight or less based on 100 parts by weight of BaTiO 3 .
[0030]
Further, a dielectric composition using BaTiO 3 having no SiO 2 coating layer on the particle surface was used as Comparative Example 1, and the same amount of SiO 2 as in Example 1 was blended as an additive in the blending step to obtain a dielectric composition. The product was designated as Comparative Example 2. Further, Comparative Example 3 was made of barium titanate having an average particle diameter of 0.3 μm uniformly coated with fine particles of SiO 2 having a particle diameter of 0.15 μm.
[0031]
Further, by changing the concentration of the Si compound content in the liquid phase, BaTiO 3 in which fine particles of SiO 2 were coated at a ratio of 0.005 parts by weight and 1.5 parts by weight with respect to 100 parts by weight of BaTiO 3 was produced. Comparative Examples 4 and 5 were made.
[0032]
Next, 30 parts by weight of butyl acetate as a dispersion medium is added to 100 parts by weight of the dielectric composition, and 500 parts by weight of a zirconia cobblestone having a diameter of 10 mm are added. The dielectric composition, the dispersion medium and the cobblestone blended as described above are placed in a ball mill and mixed for 12 hours.
[0033]
Thereafter, 9 parts by weight of a butyral resin-based binder (BM-S manufactured by Sekisui Chemical Co., Ltd.) as a binder and benzyl phthalate as a plasticizer were added to 100 parts by weight of the powder of the dielectric composition containing the dispersion medium mixed in the ball mill. After adding 4.5 parts by weight of butyl, this mixture was sufficiently dispersed by a medium stirring mill or the like to form a slurry, thereby obtaining a dielectric slurry.
[0034]
Next, the dielectric slurry was formed into a dielectric green sheet having a thickness of 2.5 μm by a doctor blade method or the like. An internal electrode pattern is printed and formed on the thus obtained dielectric green sheet by using a nickel electrode paste, and one end of each internal electrode is alternately pulled out from the opposing end faces so that the respective opposing end faces can be connected in parallel. Then, 25 dielectric layers and 25 electrode layers were laminated to obtain a 25-layer laminate.
[0035]
Thereafter, the obtained laminate is subjected to a binder removal treatment in an N 2 atmosphere at 450 ° C., and then fired at a temperature of 1350 ° C. in a reducing atmosphere in which nickel of the internal electrode is not oxidized. After the electrodes were formed with a nickel electrode paste, copper and solder electrodes were formed on the nickel electrodes by plating to enhance solder wettability, thereby obtaining a chip-shaped multilayer ceramic capacitor.
[0036]
The dielectric constant and dielectric loss, which are the electrical characteristics of the multilayer ceramic capacitor thus obtained, were measured using an LCR meter (4284A manufactured by Agilent) under the conditions of 1.0 kHz and 1.0 Vrms.
[0037]
The dielectric breakdown voltage was obtained by applying a DC power supply voltage (PADIK-0.2L manufactured by Kikusui) to both electrodes of the multilayer ceramic capacitor, and measuring the voltage at the time of dielectric breakdown with an oscilloscope (TDS210 manufactured by Tektronix). The electrical characteristics of each of the manufactured multilayer ceramic capacitors are shown in (Table 1), and the temperature characteristics of the dielectric constant at that time are shown in FIG.
[0038]
FIG. 2 shows the relationship between the thickness of the dielectric layer and the mode of the dielectric breakdown voltage in the multilayer ceramic capacitor.
[0039]
[Table 1]
Figure 2004319569
[0040]
As is clear from the results shown in Table 1 and FIG. 1, Examples 1 to 4 according to the present invention realize a high dielectric constant that can be used as the B characteristic while maintaining a low dielectric loss. However, Comparative Example were added later Comparative Example 1 and SiO 2 does not cover the SiO 2 2 One dielectric loss will be increased with a high dielectric constant, both of the two properties was impossible. In Comparative Examples 3 to 5 outside the scope of the claims, the dielectric loss is similarly increased, so that the multilayer ceramic capacitor is less practical.
[0041]
Further, in the multilayer ceramic capacitor of the present invention, when SiO 2 is less than 0.01 part by weight with respect to 100 parts by weight of BaTiO 3 as a main component, the effect of suppressing abnormal grain growth becomes thin, so that it is difficult to secure dielectric loss. Will be. In the case of larger amounts 1.0 parts by weight makes the coating of SiO 2 is not uniform since the deposition of the BaTiO 3 surface of the SiO 2 resulting in large variations, insulated by this the SiO 2 excess is segregated in the grain boundary This will lower the breakdown voltage value.
[0042]
Next, from the results of FIG. 2, the dielectric breakdown voltage characteristics of Examples 1 to 4 were coated with SiO 2 is greatly improved, but added later Comparative Example 1 and SiO 2 does not cover the SiO 2 In Comparative Example 2, the dielectric breakdown voltage characteristics were remarkably deteriorated because the sintered particles grew abnormally. Next, in Comparative Example 3 coated with SiO 2 having a particle size of 0.15 μm, the excess SiO 2 was segregated at the grain boundaries, so that the insulation resistance value was lowered and the dielectric breakdown voltage was lowered.
[0043]
Also, in Comparative Examples 4 and 5, which are outside the scope of the present invention, the breakdown voltage characteristics are also significantly reduced.
[0044]
Further, in order to observe the fine structure, the cut surface was polished and then etched with hydrofluoric acid, and the state of the crystal grains of the internal dielectric layer was observed with a scanning electron microscope (JSM-5910V manufactured by JEOL Ltd.).
[0045]
As a result of the measurement, the crystal grain sizes of Examples 1 to 4 according to the present invention were 0.3 to 0.35 μm. In particular, no abnormal grain growth was observed, whereas Comparative Examples 1 to 5 showed abnormal grain growth. Remarkably appeared, and the crystal grain size of the dielectric layer was about 1.0 μm.
[0046]
As described above, by coating the surface of BaTiO 3 as a dielectric material with fine particles of SiO 2 having a particle diameter of 0.1 μm or less, a high dielectric constant and a low dielectric loss are compatible, and a high dielectric breakdown voltage characteristic is obtained. Thus, it is possible to provide a highly reliable method for manufacturing a multilayer ceramic capacitor.
[0047]
Next, as shown in (Table 2), the amount of addition was examined for Dy 2 O 3 which is a rare earth element oxide, MgO and BaCO 3 which are transition metal oxides, and BaSiO 3 and CaSiO 3 which are glass components. . These additives were added to BaTiO 3 coated with 0.1 part by weight of SiO 2 and having a particle diameter of 0.25 μm, and samples were prepared in the same manner as described above. The results are shown in (Table 2).
[0048]
[Table 2]
Figure 2004319569
[0049]
From the results shown in Table 2, a rare-earth element oxide and a transition metal oxide, which are subcomponents of each dielectric composition, were obtained at a content of 0.7 parts by weight or less to obtain a multilayer ceramic capacitor having a temperature characteristic of B. More preferably, with an addition amount of 0.5 part by weight or less, a more excellent B-specific multilayer ceramic capacitor was obtained.
[0050]
Furthermore, the sample fired at a maximum temperature of 1050 ° C. had insufficient sinterability, low mechanical strength, and had a problem in practicality. For sintering at a lower temperature, practicality can be ensured at 1200 ° C. or higher by reducing the particle diameter of the dielectric composition and optimizing the glass component. For example, 0.5 parts by weight of Dy 2 O 3, 0.5 parts by weight of MgO, 0.4 parts by weight of BaSiO 3, 0.4 parts by weight of BaCO 3 are coated on BaTiO 3 having a particle diameter of 0.20 μm coated with 0.1 parts by weight of SiO 2. 3. A sample fired under the firing condition of 1200 ° C. for 3 hours with a dielectric composition containing 1.25 parts by weight had a dielectric constant of 2500 and a temperature characteristic of −8%. The Dy 2 O 3 to BaTiO 3 particle size 0.30μm coated with SiO 2 of 0.1 parts by weight; 0.5 parts by weight, MgO: 0.5 parts by weight, BaSiO 3; 0.5 parts by weight, BaCO 3 : A sample fired under the firing condition of a maximum temperature of 1400 ° C. for 2 hours with a dielectric composition containing 0.75 parts by weight had a dielectric constant of 3200 and a temperature characteristic of −9%. The multilayer ceramic capacitor having such characteristics has a sintering property capable of sufficiently withstanding the withstand voltage.
[0051]
In the case of firing at a maximum temperature of 1450 ° C., the short-circuit rate was remarkably deteriorated, and the yield of samples having good characteristics was significantly lowered. This maximum temperature depends on the particle size of the dielectric composition, but in particular greatly depends on the particle size of BaTiO 3 , and a highly reliable laminate satisfying temperature characteristics while achieving both high dielectric constant and low dielectric loss. In order to obtain a ceramic capacitor, firing is preferably performed at a temperature in the range of 1200 to 1400 ° C, and more preferably 1250 to 1350 ° C.
[0052]
【The invention's effect】
As described above, according to the present invention, a multilayer ceramic capacitor is manufactured by using BaTiO 3, whose surface is previously coated with ultrafine particles of SiO 2 , as a main component of a dielectric composition, thereby improving electrical characteristics and reliability. An advantage is that an excellent method for manufacturing a multilayer ceramic capacitor can be provided.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing a temperature characteristic of a dielectric constant of a multilayer ceramic capacitor according to a first embodiment of the present invention. FIG. 2 is a graph showing a relationship between a dielectric layer thickness and a mode of a dielectric breakdown voltage of the multilayer ceramic capacitor. Characteristic diagram shown

Claims (7)

誘電体組成物で構成している誘電体層と内部電極層とが交互に積層している素子本体を有する積層セラミックコンデンサであって、粒子表面にSiOを被着させたチタン酸バリウムを前記誘電体組成物の主成分として用いる積層セラミックコンデンサ。A multilayer ceramic capacitor having an element body in which dielectric layers and internal electrode layers made of a dielectric composition are alternately stacked, wherein the barium titanate having SiO 2 adhered to the particle surface is formed by the above-described method. A multilayer ceramic capacitor used as a main component of a dielectric composition. SiOの粒子径が0.1μm以下の微粒子からなる請求項1に記載の積層セラミックコンデンサ。The multilayer ceramic capacitor according to claim 1 having a particle diameter of SiO 2 is composed of the following fine 0.1 [mu] m. SiOの微粒子がBaTiO100重量部に対して0.01〜1.0重量部である請求項1に記載の積層セラミックコンデンサ。The multilayer ceramic capacitor according to claim 1 of the SiO 2 particles is 0.01 to 1.0 parts by weight with respect to BaTiO 3 100 parts by weight. 誘電体組成物が副成分として希土類元素酸化物、遷移金属酸化物およびガラス成分を含む請求項1に記載の積層セラミックコンデンサ。2. The multilayer ceramic capacitor according to claim 1, wherein the dielectric composition contains a rare earth element oxide, a transition metal oxide, and a glass component as auxiliary components. 3. 希土類元素酸化物がDyである請求項4に記載の積層セラミックコンデンサ。The multilayer ceramic capacitor according to claim 4 rare earth oxide is Dy 2 O 3. 誘電体組成物を配合する工程と、スラリー化する工程と、誘電体グリーンシートに成形する工程と、この誘電体グリーンシートに内部電極を形成したものを積層する工程と、焼成工程からなる積層セラミックコンデンサの製造方法において、表面をSiOの微粒子にて被覆したBaTiOを誘電体組成物の主成分として用いる積層セラミックコンデンサの製造方法。A multilayer ceramic comprising a step of blending a dielectric composition, a step of slurrying, a step of forming a dielectric green sheet, a step of laminating a dielectric green sheet having internal electrodes formed thereon, and a firing step A method for manufacturing a multilayer ceramic capacitor, wherein BaTiO 3 whose surface is coated with fine particles of SiO 2 is used as a main component of a dielectric composition. 焼成工程での最高到達温度が1200〜1400℃である請求項6に記載の積層セラミックコンデンサの製造方法。The method for producing a multilayer ceramic capacitor according to claim 6, wherein the maximum temperature in the firing step is 1200 to 1400C.
JP2003107597A 2003-04-11 2003-04-11 Laminated ceramic capacitor and its manufacturing method Pending JP2004319569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107597A JP2004319569A (en) 2003-04-11 2003-04-11 Laminated ceramic capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107597A JP2004319569A (en) 2003-04-11 2003-04-11 Laminated ceramic capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004319569A true JP2004319569A (en) 2004-11-11

Family

ID=33469384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107597A Pending JP2004319569A (en) 2003-04-11 2003-04-11 Laminated ceramic capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004319569A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201278A (en) * 2006-01-27 2007-08-09 Kyocera Corp Laminated ceramic capacitor
JP2007201277A (en) * 2006-01-27 2007-08-09 Kyocera Corp Laminated ceramic capacitor
JP2007204315A (en) * 2006-02-01 2007-08-16 Murata Mfg Co Ltd Method of manufacturing ceramic powder, ceramic powder and laminated ceramic electronic component
CN113053660A (en) * 2019-12-27 2021-06-29 株式会社村田制作所 Multilayer ceramic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201278A (en) * 2006-01-27 2007-08-09 Kyocera Corp Laminated ceramic capacitor
JP2007201277A (en) * 2006-01-27 2007-08-09 Kyocera Corp Laminated ceramic capacitor
JP2007204315A (en) * 2006-02-01 2007-08-16 Murata Mfg Co Ltd Method of manufacturing ceramic powder, ceramic powder and laminated ceramic electronic component
CN113053660A (en) * 2019-12-27 2021-06-29 株式会社村田制作所 Multilayer ceramic capacitor
CN113053660B (en) * 2019-12-27 2022-07-12 株式会社村田制作所 Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
JP3391269B2 (en) Dielectric ceramic and its manufacturing method, and multilayer ceramic electronic component and its manufacturing method
JP4821357B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP4839913B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP5077362B2 (en) Dielectric ceramic and multilayer ceramic capacitor
JP4428187B2 (en) Dielectric ceramic composition and electronic component
TW200838829A (en) Dielectric ceramic and multilayer ceramic capacitor using the same
JPH11273985A (en) Dielectric ceramic and its manufacture, and laminated ceramic electronic part and its manufacture
JP2008247656A (en) Method for producing dielectric porcelain composition and method for manufacturing electronic component
JP2007331957A (en) Dielectric ceramic composition, electronic component and its production method
JP5397341B2 (en) Multilayer semiconductor ceramic capacitor with varistor function
JP2007261876A (en) Dielectric particles, dielectric porcelain composition and its producing method
JP2007063040A (en) Method for producing dielectric porcelain composition, and electronic component
JP5233763B2 (en) Barium titanate-based dielectric raw material powder, method for producing the same, method for producing ceramic green sheet, and method for producing multilayer ceramic capacitor
JP3882054B2 (en) Multilayer ceramic capacitor
JP2003277139A (en) Dielectric ceramic composition and electronic parts
TWI413139B (en) Dielectric ceramic composition, electronic component and manufacturing method thereof
JP2006287045A (en) Electronic component
JP4696891B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2007169090A (en) Dielectric ceramic composition and laminated ceramic capacitor using the same
JP2006287046A (en) Electronic component
JP5800408B2 (en) Multilayer ceramic capacitor
JP5846398B2 (en) Multilayer semiconductor ceramic capacitor with varistor function and manufacturing method thereof
JP5151039B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP2004319569A (en) Laminated ceramic capacitor and its manufacturing method
JP2007230819A (en) Dielectric ceramic composition, electronic component, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060306

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20060412

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Effective date: 20080603

Free format text: JAPANESE INTERMEDIATE CODE: A02