JP2004319150A - D.c. circuit breaker - Google Patents

D.c. circuit breaker Download PDF

Info

Publication number
JP2004319150A
JP2004319150A JP2003108682A JP2003108682A JP2004319150A JP 2004319150 A JP2004319150 A JP 2004319150A JP 2003108682 A JP2003108682 A JP 2003108682A JP 2003108682 A JP2003108682 A JP 2003108682A JP 2004319150 A JP2004319150 A JP 2004319150A
Authority
JP
Japan
Prior art keywords
circuit breaker
current
circuit
commutation
breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003108682A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Niwa
芳充 丹羽
Kunio Yokokura
邦夫 横倉
Jun Matsuzaki
順 松崎
Hideji Kikuchi
秀二 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003108682A priority Critical patent/JP2004319150A/en
Publication of JP2004319150A publication Critical patent/JP2004319150A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce control force of an operation mechanism of an auxiliary circuit breaker serially connected to a main circuit breaker. <P>SOLUTION: This D.C. circuit breaker is provided with: the main circuit breaker 1 and the auxiliary circuit breaker 2 serially connected to a D.C. circuit; a commutation circuit 6 having a capacitor 4 and a commutation switch 3 connected in parallel with the circuit breaker 1 for superposing a reverse commutation current on the D.C. circuit; a first operation mechanism 11 for switching the circuit breaker 1; and a second operation mechanism 12 for switching the circuit breaker 2. The D.C. circuit breaker is characterized by that the circuit breaker 1 and the circuit breaker 2 start to open and the commutation current is carried from the commutation circuit 6; control force of the operation mechanism 11 is so set that the electrodes of the circuit breaker 1 reach open positions with respect to each other by the time a D.C. current comes to a current zero point between the electrodes of the circuit breaker 1; and control force of the operation mechanism 12 is so set that the electrodes of the circuit breaker 2 reach open positions with respect to each other by the time the D.C. current of the D.C. circuit is attenuated to come to a current zero point. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、真空遮断器で直流回路を遮断するにあたり、主遮断器と直列に接続された副遮断器の動作を改良した直流遮断器に関する。
【0002】
【従来の技術】
従来の直流遮断器は、直流回路に主遮断器と副遮断器を直列接続し、主遮断器に並列接続された転流回路から転流電流を注入して電流零点を作り主遮断器で遮断を行い、副遮断器で直流回路を開路する構成となっている(例えば、特許文献1参照。)。
【0003】
この種の直流遮断器は、図2に示すように、直流回路のP−N間には、接離自在の一対の電極を有する主遮断器1および副遮断器2が直列に接続されている。主遮断器1には、転流スイッチ3、コンデンサ4およびリアクトル5を直列接続した転流回路6が並列に接続され、また、エネルギー吸収のためのサージアブソーバ7が同様に並列に接続されている。そして、主遮断器1および副遮断器2は、同一の操作機構8でほぼ同時に開閉されるようになっている。
【0004】
このような回路構成において、図3に示すように、直流回路に過大な事故電流Iaが流れる場合を考えると、主遮断器1に制御回路から遮断指令が発せられ、主遮断器1の一方の電極から他方の電極が開離し、両電極間に事故電流Iaが流れる。この事故電流Iaは、両電極間が開極動作位置となる時間t1に達すると、転流スイッチ3が動作して予め充電しているコンデンサ4が放電し、事故電流Iaに対して逆方向に転流電流が重畳され、実線で示したように交流波形となり電流零点となる時間t2で遮断される。この時間t2までには、主遮断器1が開極位置に達するようになっている。
【0005】
また、主遮断器1と同時に副遮断器2も動作を開始して電極間が開離し、この副遮断器2の両電極間にも同様の事故電流Iaが流れる。この事故電流Iaは、点線で示したように主遮断器1が遮断完了する時間t2まで上昇を続け、その後、転流回路6のコンデンサ4の容量と直流回路の負荷抵抗の時定数で減衰して、電流零点になる時間t3で遮断される。
【0006】
このように主遮断器1および副遮断器2は、同一の操作機構8で操作されてほぼ同時に開極を始め、主遮断器1で事故電流Iaを遮断した後、副遮断器2で直流回路が開路されるようになっている。
【0007】
このため、操作機構8は、時間t2までに主遮断器1および副遮断器2が開極位置に達するように、例えば2〜3m/sの開閉速度、特に開極速度としており、この開閉速度を得るために1台当たり定格電流3000Aクラスで40〜50kNの操作力を与えている。即ち、操作機構8の例えば開路バネの操作力は、主および副遮断器1、2を同時に開極するため上記の2倍の80〜100kNが必要とされる。
【0008】
【特許文献1】
特許第3135338号明細書(第2頁、図1)
【0009】
【発明が解決しようとする課題】
上記の従来の直流遮断器においては、以下のような問題がある。
【0010】
主遮断器1および副遮断器2は、同一の操作機構8で開極させるとともに早い開閉速度が要求されるので、操作機構8には過大の操作力が要求される。この操作力は、主遮断器1では必要不可欠の条件であるが、副遮断器2では必ずしも必要不可欠の条件ではない。副遮断器2では、直流電流が減衰して電流零点になる時間t3までに開極位置に達すれば、直流回路を開路させることができる。
【0011】
しかしながら、副遮断器2においては、操作機構8の操作力を過大とせざるを得ず、操作機構8の操作力が増大していた。このため、主遮断器1および副遮断器2の操作力を適切にすることが望まれていた。
【0012】
従って、本発明は、副遮断器を操作する操作力を低減するようにした直流遮断器を得ることを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明の直流遮断器は、直流回路に直列接続された主遮断器および副遮断器と、前記主遮断器に並列接続されたコンデンサと転流スイッチを有する前記直流回路に逆方向転流電流を重畳する転流回路と、前記主遮断器を開閉する第1の操作機構および前記副遮断器を開閉する第2の操作機構とを備え、前記主遮断器および副遮断器が開極を始めて前記転流回路から転流電流が注入され、前記主遮断器の電極間で直流電流が電流零点を迎えるまでに前記主遮断器の電極間が開極位置に達するように前記第1の操作機構の操作力を設定し、前記直流回路の直流電流が減衰して電流零点を迎えるまでに前記副遮断器の電極間が開極位置に達するように前記第2の操作機構の操作力を設定したことを特徴とする。
【0014】
このような構成によれば、主遮断器の第1の操作機構より副遮断器の第2の操作機構の開閉速度を遅くさせているので、第2の操作機構の操作力を大幅に低減することができる。
【0015】
【発明の実施の形態】
本発明の実施の形態に係る直流遮断器を図1および図3を参照して説明する。図1は、本発明の実施の形態に係る直流遮断器の回路構成図、図3は、本発明の実施の形態に係る直流遮断器の動作を説明するための説明図である。なお、各図において、従来と同様の構成部分については、同一符号を付した。
【0016】
図1に示すように、直流回路のP−N間には、例えば真空バルブからなる接離自在の一対の電極を有する主遮断器1および副遮断器2が直列に接続されている。この主遮断器1には、転流スイッチ3、コンデンサ4およびリアクトル5を直列接続した転流回路6が並列に接続され、また、エネルギー吸収のためのサージアブソーバ7が同様に並列に接続されている。そして、主遮断器1および副遮断器2には、第1および第2の操作機構11、12が設けられそれぞれ個別に開閉制御するようになっている。
【0017】
このような回路構成において、図3に示すように、直流回路に過大な事故電流Iaが流れた場合、図示しない制御回路から主遮断器1に遮断指令が発せられ、第1の操作機構11を動作させて主遮断器1における一方の電極から他方の電極を開離する。このとき両電極間には、アークを介して事故電流Iaが流れる。この事故電流Iaは、両電極間が開離を始めて開極動作位置となる時間t1に達すると、転流スイッチ3が動作して予め充電しているコンデンサ4が放電し、事故電流Iaに対して逆方向に転流電流が重畳され、実線で示したように交流波形となり電流零点となる時間t2で遮断される。
【0018】
この第1の操作機構11は、電流零点となる時間t2までに、主遮断器1の電極間が開離を始めて開離の最終位置となる開極位置に達するような開閉速度を有している。即ち、この開閉速度は、例えば2〜3m/sであり、特に電極間を開離させる開極速度が得られるようになっている。この開閉速度を得るために、例えば第1の操作機構11の開路バネの操作力を定格電流3000Aクラスで40〜50kNとしている。
【0019】
一方、副遮断器2は、主遮断器1と同時に遮断指令が発せられ、第2の操作機構12が動作して主遮断器1と同様に開極を始める。この第2の操作機構12は、直流回路の電流が負荷抵抗との時定数で減衰して電流零点になる時間t3に至るまでの時間t4で開離の最終位置となる開極位置に達するようになっている。そして、電流零点になるt3において、副遮断器2で直流回路の開路を確実なものとさせている。
【0020】
このため、副遮断器2の開閉速度は、前記第1の操作機構11よりも遅く例えば0.5m/s程度としている。即ち、副遮断器2の電極間が開離を始めて開離の最終位置となる開極位置に達するまでの時間を遅くしている。これに伴って、開閉速度に大きく影響を与える第2の操作機構12の操作力は、定格電流3000Aクラスで7.5kN程度でよく、第1の操作機構11の約1/6となる。
【0021】
上記実施の形態の直流遮断器によれば、事故電流を開閉速度の速い主遮断器1で遮断後、直流回路を開閉速度の遅い副遮断器2で開路させているので、副遮断器2の第2の操作機構12の操作力を大幅に低減でき、操作機構全体の操作力を低減することができる。
【0022】
本発明は、上記実施の形態に限定されるものではなく、発明の要旨を逸脱しない範囲で、種々変形して実施することができる。本発明の実施の形態では、主遮断器1と副遮断器2とが同時に開極を始めたが、副遮断器2の遮断指令に遅延回路を組込み、主遮断器1の開極を始める時間よりも副遮断器2の開極を始める時間を遅くし、時間t3までに副遮断器2が開極位置に達するようにしてもよい。
【0023】
これにより、本実施の形態による効果のほかに、副遮断器2の電極間のアーク継続時間が短くなり、電極の消耗量を抑制することができる。更には、副遮断器2の電極径などを小型化することができる。
【0024】
【発明の効果】
以上述べたように、本発明によれば、直流回路に直列接続された主遮断器および副遮断器にそれぞれ第1および第2の操作機構を設け、これらの開閉速度を主遮断器よりも副遮断器の方を遅くさせているので、第2の操作機構の操作力を大幅に低減でき、操作機構全体の操作力を低減することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る直流遮断器の回路構成図。
【図2】従来の直流遮断器の回路構成図。
【図3】直流遮断器の動作を説明するための説明図。
【符号の説明】
1 主遮断器
2 副遮断器
3 転流スイッチ
4 コンデンサ
5 リアクトル
6 転流回路
7 サージアブソーバ
8 操作機構
11 第1の操作機構
12 第2の操作機構
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a DC circuit breaker in which the operation of a sub circuit breaker connected in series with a main circuit breaker when a DC circuit is cut off by a vacuum circuit breaker.
[0002]
[Prior art]
A conventional DC breaker has a main circuit breaker and a sub circuit breaker connected in series to a DC circuit, and a commutation current is injected from a commutation circuit connected in parallel to the main circuit breaker to create a current zero point and cut off at the main circuit breaker. And a DC circuit is opened by a sub-breaker (for example, see Patent Document 1).
[0003]
As shown in FIG. 2, in this type of DC circuit breaker, a main circuit breaker 1 and a sub circuit breaker 2 having a pair of detachable electrodes are connected in series between PN of a DC circuit. . A commutation circuit 6 in which a commutation switch 3, a capacitor 4, and a reactor 5 are connected in series is connected to the main circuit breaker 1 in parallel, and a surge absorber 7 for absorbing energy is also connected in parallel. . The main circuit breaker 1 and the sub circuit breaker 2 are opened and closed almost simultaneously by the same operation mechanism 8.
[0004]
In such a circuit configuration, as shown in FIG. 3, considering a case where an excessive fault current Ia flows in the DC circuit, a cutoff command is issued from the control circuit to the main circuit breaker 1 and one of the main circuit breakers 1 The other electrode is separated from the electrode, and a fault current Ia flows between the two electrodes. When the fault current Ia reaches a time t1 at which the electrode opens to the opening position, the commutation switch 3 operates to discharge the pre-charged capacitor 4, and the fault current Ia flows in a direction opposite to the fault current Ia. The commutation current is superimposed, and becomes an AC waveform as shown by the solid line, and is interrupted at time t2 when the current reaches zero. By the time t2, the main circuit breaker 1 reaches the opening position.
[0005]
At the same time as the main circuit breaker 1, the sub-circuit breaker 2 also starts operating to separate the electrodes, and the same fault current Ia flows between both electrodes of the sub-circuit breaker 2. The fault current Ia continues to rise until the time t2 at which the main circuit breaker 1 completes the interruption as indicated by the dotted line, and then attenuates due to the time constant of the capacity of the capacitor 4 of the commutation circuit 6 and the load resistance of the DC circuit. Therefore, the current is cut off at time t3 when the current becomes zero.
[0006]
As described above, the main circuit breaker 1 and the sub circuit breaker 2 are operated by the same operation mechanism 8 and start opening at almost the same time. After the main circuit breaker 1 interrupts the fault current Ia, the sub circuit breaker 2 Is to be opened.
[0007]
For this reason, the operating mechanism 8 sets the opening / closing speed of, for example, 2 to 3 m / s, particularly the opening speed, so that the main circuit breaker 1 and the sub circuit breaker 2 reach the opening position by time t2. In order to obtain this, an operating force of 40 to 50 kN is given at a rated current of 3000 A class per vehicle. That is, the operating force of, for example, the open circuit spring of the operating mechanism 8 is required to be 80 to 100 kN which is twice as large as that described above in order to simultaneously open the main and sub circuit breakers 1 and 2.
[0008]
[Patent Document 1]
Patent No. 3135338 (page 2, FIG. 1)
[0009]
[Problems to be solved by the invention]
The above-described conventional DC circuit breaker has the following problems.
[0010]
The main circuit breaker 1 and the sub circuit breaker 2 are required to open by the same operating mechanism 8 and have a high opening / closing speed, so that the operating mechanism 8 requires an excessive operating force. This operating force is an indispensable condition for the main circuit breaker 1, but not an indispensable condition for the sub circuit breaker 2. In the auxiliary circuit breaker 2, if the DC current reaches the opening position by the time t3 at which the DC current attenuates and reaches the current zero point, the DC circuit can be opened.
[0011]
However, in the auxiliary circuit breaker 2, the operation force of the operation mechanism 8 must be increased, and the operation force of the operation mechanism 8 is increased. For this reason, it has been desired to make the operating force of the main circuit breaker 1 and the sub circuit breaker 2 appropriate.
[0012]
Therefore, an object of the present invention is to provide a DC breaker that reduces the operating force for operating the sub-breaker.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a DC circuit breaker of the present invention is a DC circuit having a main circuit breaker and a sub circuit breaker connected in series to a DC circuit, and a capacitor and a commutation switch connected in parallel to the main circuit breaker. A commutation circuit for superimposing a reverse commutation current on a circuit; a first operation mechanism for opening and closing the main circuit breaker; and a second operation mechanism for opening and closing the sub circuit breaker. A commutation current is injected from the commutation circuit when the circuit breaker starts opening, so that the gap between the electrodes of the main circuit breaker reaches the opening position before the DC current reaches the current zero point between the electrodes of the main circuit breaker. The operation force of the first operation mechanism is set to the second operation so that the gap between the electrodes of the auxiliary circuit breaker reaches the opening position before the DC current of the DC circuit attenuates and reaches the current zero point. The operation force of the mechanism is set.
[0014]
According to such a configuration, since the opening / closing speed of the second operating mechanism of the sub circuit breaker is made slower than that of the first operating mechanism of the main circuit breaker, the operating force of the second operating mechanism is greatly reduced. be able to.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
A DC breaker according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a circuit configuration diagram of a DC breaker according to an embodiment of the present invention, and FIG. 3 is an explanatory diagram for explaining an operation of the DC breaker according to the embodiment of the present invention. In each of the drawings, the same components as those in the related art are denoted by the same reference numerals.
[0016]
As shown in FIG. 1, a main circuit breaker 1 and a sub circuit breaker 2 having a pair of detachable electrodes composed of, for example, a vacuum valve are connected in series between PN of the DC circuit. The main circuit breaker 1 is connected in parallel with a commutation circuit 6 in which a commutation switch 3, a capacitor 4 and a reactor 5 are connected in series, and a surge absorber 7 for energy absorption is also connected in parallel. I have. The main circuit breaker 1 and the sub circuit breaker 2 are provided with first and second operation mechanisms 11 and 12, respectively, so that they can be individually opened and closed.
[0017]
In such a circuit configuration, as shown in FIG. 3, when an excessive fault current Ia flows through the DC circuit, a control circuit (not shown) issues a cutoff command to the main circuit breaker 1, and the first operating mechanism 11 is turned off. The main circuit breaker 1 is operated to separate one electrode from the other electrode. At this time, a fault current Ia flows between the two electrodes via an arc. When the fault current Ia reaches a time t1 at which the two electrodes start to be separated from each other and reach the opening position, the commutation switch 3 operates to discharge the pre-charged capacitor 4, and the fault current Ia Thus, the commutation current is superimposed in the reverse direction, and becomes an AC waveform as shown by the solid line, and is interrupted at time t2 when the current reaches zero.
[0018]
The first operating mechanism 11 has an opening / closing speed such that the electrodes of the main circuit breaker 1 start separating and reach the opening position, which is the final position of the separation, by the time t2 when the current becomes zero. I have. That is, the opening / closing speed is, for example, 2 to 3 m / s, and particularly, an opening speed for separating the electrodes can be obtained. In order to obtain this opening / closing speed, for example, the operating force of the open-circuit spring of the first operating mechanism 11 is set to 40 to 50 kN at a rated current of 3000 A class.
[0019]
On the other hand, the sub circuit breaker 2 is issued a disconnection command at the same time as the main circuit breaker 1, and the second operating mechanism 12 operates to start opening as in the case of the main circuit breaker 1. The second operating mechanism 12 reaches the opening position, which is the final position of the separation, at time t4 until the current of the DC circuit attenuates due to the time constant with the load resistance to reach the current zero point t3. It has become. At t3 when the current reaches zero, the sub circuit breaker 2 ensures that the DC circuit is opened.
[0020]
For this reason, the opening / closing speed of the sub circuit breaker 2 is lower than that of the first operation mechanism 11, for example, about 0.5 m / s. That is, the time from when the electrodes of the sub circuit breaker 2 start to be separated to when the electrodes reach the opening position, which is the final position of the separation, is delayed. Accordingly, the operating force of the second operating mechanism 12, which greatly affects the opening / closing speed, may be about 7.5 kN at a rated current of 3000 A class, and is about 1/6 of that of the first operating mechanism 11.
[0021]
According to the DC circuit breaker of the above embodiment, after the fault current is cut off by the main circuit breaker 1 having a fast switching speed, the DC circuit is opened by the sub circuit breaker 2 having a slow switching speed. The operating force of the second operating mechanism 12 can be greatly reduced, and the operating force of the entire operating mechanism can be reduced.
[0022]
The present invention is not limited to the above embodiment, and can be implemented with various modifications without departing from the spirit of the invention. In the embodiment of the present invention, the main circuit breaker 1 and the sub circuit breaker 2 start opening at the same time. Alternatively, the time at which the opening of the sub-breaker 2 is started may be delayed so that the sub-breaker 2 reaches the opening position by time t3.
[0023]
Thereby, in addition to the effect of the present embodiment, the arc continuation time between the electrodes of the auxiliary circuit breaker 2 is shortened, and the consumption of the electrodes can be suppressed. Further, the diameter of the electrode of the sub circuit breaker 2 can be reduced.
[0024]
【The invention's effect】
As described above, according to the present invention, the first and second operating mechanisms are provided in the main circuit breaker and the sub circuit breaker connected in series to the DC circuit, respectively, and the switching speed of these is set to be smaller than that of the main circuit breaker. Since the circuit breaker is made slower, the operating force of the second operating mechanism can be greatly reduced, and the operating force of the entire operating mechanism can be reduced.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a DC circuit breaker according to an embodiment of the present invention.
FIG. 2 is a circuit configuration diagram of a conventional DC circuit breaker.
FIG. 3 is an explanatory diagram for explaining the operation of the DC breaker.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main circuit breaker 2 Secondary circuit breaker 3 Commutation switch 4 Capacitor 5 Reactor 6 Commutation circuit 7 Surge absorber 8 Operating mechanism 11 First operating mechanism 12 Second operating mechanism

Claims (3)

直流回路に直列接続された主遮断器および副遮断器と、
前記主遮断器に並列接続されたコンデンサと転流スイッチを有する前記直流回路に逆方向の転流電流を重畳する転流回路と、
前記主遮断器を開閉する第1の操作機構および前記副遮断器を開閉する第2の操作機構とを備え、
前記主遮断器および副遮断器が開極を始めて前記転流回路から転流電流が注入され、前記主遮断器の電極間で直流電流が電流零点を迎えるまでに、前記主遮断器の電極間が開極位置に達するように前記第1の操作機構の操作力を設定し、
前記直流回路の直流電流が減衰して電流零点を迎えるまでに、前記副遮断器の電極間が開極位置に達するように前記第2の操作機構の操作力を設定したことを特徴とする直流遮断器。
A main circuit breaker and a sub circuit breaker connected in series to a DC circuit,
A commutation circuit for superimposing a commutation current in the reverse direction on the DC circuit having a capacitor and a commutation switch connected in parallel to the main circuit breaker,
A first operation mechanism that opens and closes the main circuit breaker and a second operation mechanism that opens and closes the sub circuit breaker,
The commutation current is injected from the commutation circuit when the main circuit breaker and the sub circuit breaker start opening, and the DC current reaches the current zero point between the electrodes of the main circuit breaker. The operating force of the first operating mechanism is set so that
By the time the DC current of the DC circuit attenuates and reaches the current zero point, the operating force of the second operating mechanism is set so that the gap between the electrodes of the sub-breaker reaches the opening position. Circuit breaker.
前記第1の操作機構の開閉速度よりも前記第2の操作機構の開閉速度を遅くさせたことを特徴とする請求項1に記載の直流遮断器。2. The DC breaker according to claim 1, wherein an opening / closing speed of the second operating mechanism is lower than an opening / closing speed of the first operating mechanism. 3. 前記主遮断器が開極を始める時間よりも前記副遮断器が開極を始める時間を遅延させたことを特徴とする請求項1または請求項2に記載の直流遮断器。The direct current circuit breaker according to claim 1 or 2, wherein a time when the sub circuit breaker starts opening is delayed from a time when the main circuit breaker starts opening.
JP2003108682A 2003-04-14 2003-04-14 D.c. circuit breaker Pending JP2004319150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108682A JP2004319150A (en) 2003-04-14 2003-04-14 D.c. circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108682A JP2004319150A (en) 2003-04-14 2003-04-14 D.c. circuit breaker

Publications (1)

Publication Number Publication Date
JP2004319150A true JP2004319150A (en) 2004-11-11

Family

ID=33470074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108682A Pending JP2004319150A (en) 2003-04-14 2003-04-14 D.c. circuit breaker

Country Status (1)

Country Link
JP (1) JP2004319150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305590A (en) * 2006-05-12 2007-11-22 Areva T & D Sa Disconnector circuit interrupting device of alternating current power supply driven with servomotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305590A (en) * 2006-05-12 2007-11-22 Areva T & D Sa Disconnector circuit interrupting device of alternating current power supply driven with servomotor

Similar Documents

Publication Publication Date Title
JP6029772B2 (en) DC breaker
WO2015121983A1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
EP3242309B1 (en) High voltage dc circuit breaker
JP5265063B1 (en) DC circuit breaker
WO2013164875A1 (en) Dc circuit breaker
JP3965037B2 (en) DC vacuum interrupter
WO2015081615A1 (en) Direct-current circuit breaker
JPH11234894A (en) Circuit breaker employing semiconductor device
JP2010238391A (en) Direct-current breaker
JP2005222705A (en) Dc circuit breaker
JP6808091B1 (en) DC circuit breaker
JP2019036405A (en) Power supply and cutoff switch circuit
CN108322205B (en) A kind of bridge-type solid-state direct-current breaker and its control method
JP2004319150A (en) D.c. circuit breaker
JPH0589753A (en) Direct current breaker
JP2003007178A (en) Direct current breaker
JP2004248345A (en) Distributed power source system
JP4229630B2 (en) DC circuit breaker
JP3168846B2 (en) Commutation type DC circuit breaker
JP2006260925A (en) Direct current high speed vacuum circuit breaker
JPH04259719A (en) Electric current shutting apparatus
JP4282310B2 (en) DC circuit breaker
JP2002110006A (en) Direct current breaker
JP6919486B2 (en) DC cutoff device
JP2001185008A (en) Direct current breaker

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A977 Report on retrieval

Effective date: 20080905

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

A131 Notification of reasons for refusal

Effective date: 20090508

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091030